
Reviewer 2 (anonymous): 

I wish to thank this reviewer for his thoughtful comments (I will use the male pronoun since the AE 
identified this reviewer as male). Although I do not agree with some of his comments, I agree with many 
and the manuscript has been significantly improved based on his review. I greatly appreciate the time he 
took to engage with the manuscript, both in this round of review and in a prior round for a different journal. 

Comment: (1) First, I concur with reviewers Heimsath and Whipple on the fact that it is nonstandard at best 
to assign a separate P0 value to each measured P value using exponential scaling relationship in Eq 1. It 
would be equivalent to predicting different values of a y intercept in a linear regression of y on x when you 
know the slope of the regression and the value of y and x for each data point. There is only one y intercept 
per regression through a cloud of data. This business of inferring one y-intercept per data point strikes me 
as – at best – a kooky way (i.e., that differs from established norms) of quantifying the uncertainty in the y 
intercept. Based on what I can see in their reviewer comments, Heimsath and Whipple had the same 
reaction. And the author’s response to their comment – i.e., "On a more practical level, I don’t understand 
how we, as a community, could make significant progress on understanding the controls on P0 values if we 
accept the logic of Heimsath and Whipple that only two P0 values can be reliably determined from 57 CRN 
analyses" – is not compelling. The alternative logic of Pelletier seems to be that we should suspend 
conventions of statistics and stretch data farther than they can be stretched just to support some as yet non 
mechanistic formulation that he has presented here. I prefer the less radical option of recognizing the limits 
of data and working to overcome them in more traditionally acceptable ways – i.e., with new measurements 
and perhaps a more clever analysis approach. For example, as an alternative to the methods presented here, 
the author might think of ways to model P rather than P0 using some sort of multiple regression analysis 
that includes h explicitly in a model of rock damage and microclimatic effects. This business of calculating 
a P0 effectively corrects for the exponential-withdepth variation in P before the modeling begins. In a true 
multiple nonlinear regression, one could account for h, D, A and everything else simultaneously, and as an 
outcome of the approach also quantify the relative importance (leverage) of each variable in the regression. 
If the outcome is that h dominates while D and A add little to the predictive power of the model, then the 
author would be forced to confess that D and A are not strong predictors of P and thereby P0. And as I point 
out below, there is good reason to suspect that that is precisely what he would learn. 

Response: I am not asking the reader to suspend the conventions of statistics. A soil production function is 
the outcome of a regression analysis. A regression analysis yields two types of outputs: the coefficients of 
the regression equation and a set of residuals. Computing residuals and testing for additional controls is a 
recommended step in regression analysis.  

I defined P_0 in the paper as the maximum soil production rate at each point on Earth’s surface. To estimate 
P_0 values defined in this way, one begins by accounting for the effects of soil cover (which has the effect 
of decreasing the soil production rate below its maximum or potential value) by regressing log-transformed 
P values to soil thickness. Following regression, P values are divided by the regression equation (which is 
equivalent to subtracting the regression of the log-transformed data) to obtain a set of residuals that can and 
should be interrogated for additional controls. That is all I have done to estimate P_0 values. If the 
regression of P data to soil thickness yields no statistically significant trend, then there is no statistically 
significant regression to soil thickness and hence no residuals (P_0 values) to study. That is not the case 
here, as Heimsath et al. (2012) clearly demonstrated that gently and steeply sloping portions of the 
landscape fit exponential soil production functions with nearly identical decay constants.   

I think it is reasonable to ask reviewers to at least consider my definition of P_0. However, they simply 
define P_0 differently (as the y-intercept of the soil production function) and then criticize me on the basis 



of that alternative definition. I think the two definitions are complementary. I don’t think see any reason 
why the residuals of this particular regression should be ignored when the output of this or any other 
regression is a set of regression coefficients and a set of residuals, both of which contain important 
information.  

Reviewer 2 joins Heimsath and Whipple in criticizing me for not providing a new suite of CRN-based soil 
production rate data. I think there is broad agreement in the scientific community that it is appropriate for 
some studies to focus on measurements and data analysis (e.g., Heimsath et al., 2012) and others to focus 
on analyses of existing data and modeling/process-based interpretation (this paper). Science would move 
forward more slowly and with a less diverse range of perspectives if, for example, every study of soil 
production required a new in situ CRN dataset. In this specific case I think it is clear that what is most 
needed is a process-based understanding of trends in the existing data that can be used to guide additional 
targeted 10Be analysis. I agree with the reviewers that my ESurfD paper did not provide such an analysis, 
in part because it did not consider the potentially important process of topographically induced stress 
fracture opening. However, I believe that my proposed revision does provide a process-based understanding 
that is both consistent with trends in the data and well-grounded in theory.  

The reviewer also calls for a multivariate regression to all of the potential controlling variables including 
soil thickness. I think it is more appropriate to honor the work of Heimsath et al. (2012) (as the reviewer 
recommends in many of his comments) by using the residuals of their regression as a starting point. The 
combination of stepwise regression and cluster analysis I use in the revision is based on standard statistical 
methods. The reviewer may not agree with every step of my revised analysis, but I respectfully ask that he 
consider it.    

 Comment: (2) Second – and this is a bigger concern in my view – is the degree to which the predicted 
values of P0 ***diverge*** from the observed values in the dataset. It seems like a key goal in this paper 
is to use indices of rock damage and aspect to predict P0 and ultimately map the variations in P0 and some 
additional offshoots of it (E and E*L) onto the landscape. Starting at section 2 and continuing through to 
the end of this paper, this is actually ***the*** central focus of results and discussion. The trouble is, one 
must be willing to believe that the model in Eq 2 is a good predictor of P0 in order to confidently follow 
the author in this vital leap of faith. Personally, after reading this paper, I am not willing to make that leap. 
Nor should any self-respecting data analyst, once he/she realizes that the predicted values are not actually 
a very good match to the observations. Sure – as the reviewer points out – there is a highly significant 
correlation between the measured and predicted values P0, but the existence of such a correlation is not 
sufficient in and of itself to demonstrate that the predictions are good enough to explain the variations in 
P0. Recognizing this challenge nearly fifty years ago, hydrologists Nash and Sutcliffe (1970) developed 
their own measure of model efficiency in their quest to objectively evaluate whether their models of river 
discharge were good predictors of observations. Though this Nash- Sutcliffe (N-S) statistic – as it later 
became known – was developed for models of river flow, it has also been widely used to assess model 
efficiency for other natural variables, including erosion rates and nitrogen and phosphorus loading. My 
quick calculation of a N-S efficiency statistic for the model of predicted P0 yields a value of 0.18 based on 
data provided in the supplemental table. For context, realize that the maximum value of the coefficient, 
which is 1, would indicate that the model explains ***all*** of the observed variation in the data. By 
contrast a value of 0 would indicate that the model is ***just as good as*** the average value of the data 
at explaining observed variations across the data set. Values less than 0 imply that the model ***is worse 
than*** the average. In this case, my estimated value of 0.18 indicates that ***the model in Eq. 2 is a little 
bit better than the average P0*** at predicting the distribution of measured P0 across the dataset. For this 
reason, I think the machinations of the predictive modeling exercise (i.e., most of the paper) are not really 



warranted, irrespective of the significance of any inferred correlations between P0 and D and between P0 
and A. Importantly the reader should only commit to believing those correlations to the extent that he/she 
can overlook the suspect exercise of calculating P0 for each measured value of P. Ultimately, it is not clear 
to me that the author understands that there is a vital difference between documenting a statistically 
significant correlation between a measured and predicted value and demonstrating that a model is good at 
doing what it is supposed to do. If he does, he is hiding it at the top of page 7, where he seems to suggest 
that statistical significance in classical regression metrics is sufficient. I will not deny that the correlation 
coefficient and thus the coefficient of determination by themselves provide a very loose first approximation 
of model fitness. But even then, this is true only to the extent that high coefficients of determination (close 
to one) imply better correlations and low coefficients imply poor correlations (irrespective of whether they 
are statistically significant). To understand the problem with using Rˆ2 in the way the author seems to want 
to use it here, consider the toy example in which P0 observed is exactly 0.2 times the value of P0 predicted 
for each inferred value of P0; in that case, the coefficient of determination of P0 predicted and P0 observed 
would be 1.0 with a very very low p value even though the predicted value of P0 is 5 times higher than the 
observed value at each site. P0 predicted is dead wrong but the coefficient of determination is fantastically 
good. This illustrates how simple correlation indices for predicted versus observed data sets can (and 
probably often do) fall short on gauging the predictive power of a model. 

Response: I did not include the Nash-Sutcliffe efficiency for the simple reason that it does not apply to 
regression models. The definition of the Nash-Sutcliffe efficiency is  

𝐸𝐸 = 1 − ∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑛𝑛,𝑜𝑜𝑠𝑠𝑠𝑠)2𝑁𝑁
𝑛𝑛=1

∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁
𝑛𝑛=1

  

where Xn,sim are the values predicted by a simulation or other type of model that is not based on regression. 
In cases where the predicted values are based on a regression (as is the case here), the closest analog of the 
Nash-Sutcliffe efficiency is the coefficient of determination, R^2, defined as 

𝑅𝑅2 = 1 −
∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑛𝑛,𝑟𝑟𝑚𝑚𝑟𝑟)2𝑁𝑁
𝑛𝑛=1

∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁
𝑛𝑛=1

  

where Xn,reg are the predicted values based on the regression. If these two equations look almost identical it 
is because they are. When using a regression model, one uses R^2, which I did. When not using a regression 
model, one uses E.  

The reviewer criticizes me for not reporting a Nash-Sutcliffe efficiency despite his request for one in a 
review of a prior version of the paper for the journal Geology. I am not going to include a statistic that, by 
definition, does not apply to the method I am using.  

I don’t want to antagonize this reviewer, but I would like to point out that his discussion of the Geology 
review violates GSA’s ethical guidelines for publication, which require reviewer confidentiality. I am, of 
course, glad that the paper was rejected by Geology and that my ESurfD paper was also negatively reviewed, 
because this has prompted me to take a fresh look at the problem and redouble my efforts to understand the 
process basis for the trends in P_0 values in the SGM. This type of rethinking and major revision is often a 
positive outcome of a negative review. That said, I still think it is reasonable to ask that the review process 
follow established ethical guidelines. I don’t think it is fair or accurate that the literature now suggests that 
I am not a careful scientist who carefully considers reviewer comments. There are simple reasons, identified 
here, why I did not explicitly address some of his concerns from the prior review.  

The 0.18 value computed by the reviewer is inappropriate because it is weighted towards the errors 
associated with higher P_0 values since the reviewer did not log-transform the data. Such weighting is 



appropriate for many applications, such as modeling discharges of water, sediment, or contaminants, in 
which the performance of the model must be judged on its ability to predict both individual data points and 
the integrated value of the quantity under study. Since the integrated value is dominated by the largest 
values in the dataset, it is appropriate to weigh the errors associated with larger values more heavily in such 
cases. That is not the case here. There is no reason to weigh samples from areas with larger potential soil 
production rates more heavily than samples from areas with low potential soil production rates in judging 
the model fitness. Because the data have a positive skew, it is more appropriate to log-transform the data.  

The reviewer poses the case of an independent variable regressed to a dependent variable offset by a factor 
of 5. A regression of the logarithms of the independent variable to the dependent variable yields a model 
with no offset (the unique result of the regression to the hypothetical data posed by the reviewer is ln y = 
ln(0.2) + ln x, R^2 = 1). Therefore, the supposed counterexample suggested by the reviewer is impossible 
using the method I am using (regression of log-transformed data). 

I understand very well that there is value in having a low value of p and a high value of R^2 (or the Nash-
Sutcliffe efficiency, if one is evaluating a simulation model). However, there are many geomorphology 
papers that are based on regressions with R^2 values lower than the ones I obtained (one example: R^2 = 
0.17 in Nature Geosciences, v. 8, p. 462-465, 2015, Fig. 3a). In my revised paper I obtained R^2 = 0.50 
(R^2 = 0.87 when data with the same Sav value are averaged to minimize local variability). I don’t know 
whether this will satisfy the reviewer since I don’t know what he considers an acceptable value of E or R^2.   

Comment: On a side note, when I plotted the P0 measured and P0 predicted values in the supplemental 
table against each other, I get a pattern that looks slightly different than the one shown in the figure. The 
differences are not big enough to explain away the problem of low Nash-Sutcliffe statistics (Fig 3D and 
4C), but it made me worry that the author has some version inconsistencies between his figures and the data 
he provided in the table. Not sure which version is "correct." 

Response: I could not reproduce this error. I am as certain as I can be that the data presented in the table 
and plotted in the figures of the proposed revision are the same.   

Comment: (3) Like Heimsath and Whipple, I am unimpressed with the theoretical basis of Eq 2, and 
moreover, I am not compelled by the author’s response – i.e., "It is far beyond the scope of the paper to 
develop a comprehensive theory for how microclimate relates to vegetation cover, wildfire frequency and 
severity, and soil production rates, assuming such a theory is even possible." However, whereas Heimsath 
and Whipple rightly seem very worried about how D might connect to rock damage at landscape scales, 
and how those variations in D would actually connect to P0 in a mechanistic way, I am stuck on the fact 
that the authors never actually showed me that aspect should matter at SGM. The references cited on page 
3 have nothing to do with the effect of aspect on vegetation or the effect of either vegetation or aspect on 
fire intensity or severity in the SGM. Where is the proof that vegetation, fire frequency, and slope steepness 
vary with aspect in the SGM? It seems it would be crucial to demonstrate this is the case before motivating 
the paper and the formulation of equation 2 more specifically. The aspect story fits with some of the author’s 
work in other landscapes but not here – at least not according to the references cited here. If anything, the 
Keeley and Zedler study seems to suggest that the current regime – in which the landscape is prone to large 
fires that sweep through the landscape with indifference to aspect – has been the norm for a long time. 
Additionally, this study seems to hang a lot of its motivation on the idea that fire promotes weathering. But 
- despite the good investigative work cited on page 3 - I am not sure I concur that the connection has been 
well documented at SGM. All of the studies cited here are fascinating but ultimately just anecdotal 
investigations of weathering of boulders – not weathering of rock under soil, which presumably is important 
here since much of the SGM area is covered by soil. Moreover, they do not report faster weathering rates 



on fire-prone versus not-fire-prone slopes. In fact, none of the studies actually report rates (focusing instead 
on processes) and none compare fire-prone versus not fire-prone slopes. Shtober-Zisu et al. comes close to 
reporting a rate but ultimately says it is hard to say how the boulder spalls in carbonate outcrops influence 
denuda tion rates across the landscape. And again, there is no comparison to a landscape that is not fire 
prone, so there is no control in the experiment – and importantly no support for the author’s claim here that 
weathering is faster in fire-prone versus not-fire-prone landscapes. 

However strong the correlation between P and A may be, I think it is very important for the author to step 
back from this generic claim that aspect-driven differences in wildfire are driving the show and more 
precisely drill in on how anecdotal studies from the SGM in particular support the slope aspect idea. Bottom 
line is there needs to be some stronger motivation here – hopefully shored up some sound mechanistic 
explanations for why both D (measured in the S&B 2011 approach) and A should matter. I do NOT think 
it is "beyond the scope" of this paper to justify the formulations that it presumes to impose broadly on the 
landscape. 

Response: I agree with the criticism that the processes I invoked in my previous model were not necessarily 
the best or only controls on P_0 values, so I have thought hard about this issue, tested the topographically 
induced stress fracture opening process, and found it to be a better explanation of trends in the data. Once 
this control is accounted for, a climatic control on P_0 values becomes apparent at the highest elevations 
of the SGM.  

I did not state or imply that it was beyond the scope of the paper to justify the formulations I am invoking. 
Rather, the point I made was that there is value in documenting statistically significant correlations between 
P_0 values and controls that are based on reasonable process-based models given that the literature has only 
identified one control (average slope) on P_0 in this dataset and no process-based understanding for even 
that trend. My proposed revision is an advance because it identifies topographically induced stress fracture 
opening as the process most likely responsible for the average slope control on P_0 values in the SGM. 

My reanalysis of the data shows that, contrary to my ESurfD paper, the null hypothesis that P_0 values are 
independent of slope aspect cannot be rejected. Ten of the sample locations are ridgetops where the local 
slope is zero and slope aspect should be undefined. However, my initial extraction routine did not account 
for this fact. Instead, the routine returned values that in several cases indicated that the slopes faced nearly 
directly south or north (which was correct given the location data, which in some cases is 10-30 m from the 
ridge due to roundoff error in the sample location). When the data are reanalyzed to include only areas that 
are not ridgetops (47 of 57 samples), P_0 values are slightly higher, on average, on south-facing slopes, but 
the null hypothesis that P_0 values are independent of slope aspect cannot be rejected.  

Note: The AE has instructed me to respond to reviewer 2 prior to drafting a revision. However, I don’t think 
it is possible to fully respond to their concerns without drafting a revision, since the requested changes were 
so extensive and fundamental.  

Comment: (4) The statistical analyses are nonstandard. My discomfort with them is very high. My 
discomfort started with the first indication – I think on page 5 – that the author thinks of statistical 
significance as the logical and quantitative complement to a calculated p value. This is not the case, of 
course. Rather "significance" is commonly reserved referring to the threshold false positive rate that is 
allowed in a statistical hypothesis test. So the idea that the author thinks that a calculated p = 0.001 
corresponds to a "statistical significance" of 99.9% set me on edge. This misappropriation of terminology 
was repeated many times throughout the text. But that was just the start. The author also evidently thinks it 
is ok to calculate a y-intercept for each measured value in a dataset using an overall regression slope that 
was calculated from the entire data set – and which also yields an overall regression intercept. To be honest, 



this seems akin to data fabrication to me, but I can settle on the gentler view of Heimsath and Whipple that 
it is really just of a crude way to estimate the uncertainty in the intercept. Next, the author follows a rather 
stilted approach to quantifying the relationship between P0 and D and A. I personally think it should be P 
versus D, A and h, thus recognizing h as a factor regulating P and avoiding the problem of getting just two 
P0 values from 57 values of P. In addition, I think the author missed an opportunity to perform a very 
standard multiple regression analysis on log-transformed variables and instead opted or a multi stage 
approach that undoubtedly underestimates errors and fails to produce vital outputs like leverage plots and 
partial regression coefficients which would help the audience gauge the relative importance of the different 
factors in the regression. In addition, there is no attempt to propagate uncertainties through any of this. This 
is a major oversight that needs to be fixed. Last and not least, the author also thinks it is ok to use the 
significance of Rˆ2 for the relationship between predicted and observed values to judge the performance of 
his model. In the hydrology community that idea has been rejected for nearly half a century. I am very 
concerned about the strength of the analyses for these reasons. 

Response: The reviewer is correct that it is more accurate to define a threshold false positive rate (typically 
0.05) and then compare the p value to this threshold to determine whether the null hypothesis is accepted 
or rejected. I have rephrased my discussion of statistical significance accordingly in the revision. An 
example from the proposed revision is as follows: “Assuming a significance level of 0.05, the null 
hypothesis that the cluster of blue points has a mean that is indistinguishable from that of the remaining 
points with Sav > 30° can be rejected based on the standard t test with unequal variances (t = 0.021).”   

The reviewer’s claim that computing residuals is “akin to data fabrication” is troubling. Given that even a 
whiff of fabrication can ruin a scientist’s career, this is language that, if taken out of context, could be very 
damaging. I am stunned that anyone would invoke this charge on a fellow scientist in an open review 
without any evidence of actual fabrication.  

Comment: 2.10. I see that Heimsath and Whipple have provided a review of the manuscript and will defer 
to them as experts on evaluating this paragraph as a motivating theme for the paper. They did not call 
attention to any problems here. However, as I read line 21 on this page, I guess I have to say that this was 
not the take home message I got from Heimsath et al., 2012. Higher frequency of disturbance? 

Response: “… a greater frequency of disturbance for a given soil thickness” is a defining phrase in the 
concluding paragraph of Heimsath et al. (2012). As such, I think it is appropriate to include it in a review 
of the relevant literature. However, I have rephrased this text as follows: “Heimsath et al. (2012) concluded 
that high erosion rates, triggered by high tectonic uplift rates and the resulting steep topography, cause 
potential soil production rates to increase above any limit set by climate and bedrock characteristics. Their 
results challenge the traditional view that P_0 values are controlled solely by climate and rock 
characteristics.”   

Comment: 3.6-3.10. This study seems to hang a lot of its motivation on the unsupported idea that aspect 
promotes differences in vegetation which in turn promote differences in fire that promote differences in 
weathering in the SGM area. See general comment above. 

Response: Text removed.  

Comment: 4.11. I think I understand what the author is trying to do here (correct the measured P0 for the 
hump in the SPF), but on reading this, I am confused. You used 1.78P for P0? Not 1.78P0? The way I want 
to read it is the author is correcting the "measured" P0 – which is inferred from the exponential function to 
the data – by some correction factor. But again, I am confused by this statement. 



Response: A humped production function means that the maximum or potential soil production rate is 
higher than the P value measured on bare ground. Hence P_0, defined as the maximum soil production rate 
at a point, has to be higher than P for these four cases. As explained in the paper, the data suggest that the 
factor increase is 1.78. Hence P_0 = 1.78P. I don’t see how P0=1.78P0 could possibly be an alternative way 
of estimating P0, as the reviewer suggests. 

Comment: 4.12. "This modification of equation (1) affects 4 of the 57 data points." This would only be 
comforting if there was actually a very strong trend across all the data. Instead, it seems that the data form 
really loose clouds of correlations that are hinged entirely on a few points. So the fact that this affects 4 of 
the points is actually troubling – not comforting – to me. 

Response: Text removed.  

Comment: 5.3. This equation does not include the fault specific constant of Savage and Brodsky. So I think 
this assumes that the constant is the same across the study area. Is this justified? Also, to make D 
dimensionless wouldn’t delta x need to be raised to the 0.8 power too? 

Response: Savage and Brodsky found no relationship between the fault specific constant and fault 
displacement (which correlates strongly with fault length). That is, there was variation from fault to fault 
in terms of their effect on fracture density in nearby rocks, but no systematic variations that one could use 
in a predictive equation. They stated “When we plot the entire data set shown in Figure 5, there is no clear 
relationship between c (the fault-specific constant) and displacement”). Savage and Brodsky did propose a 
weak pattern for faults in siliciclastic rocks, which is clearly not relevant for SGM.  

Regarding the units of D, I have thought about this more and run some tests to determine how D should be 
defined so that the results are most nearly independent of grid resolution. I have found that D should not be 
dimensionless but should have units of length since it represents the total length of fault segments in a 
region (albeit weighted by an inverse power-law function of distance). The proposed revision addresses this 
point as follows: “I define the bedrock damage index D (Fig. 5A) as the sum of the inverse distances, raised 
to an exponent 0.8, from the point where the D value is being computed to every pixel in the study area 
were a fault is located: 

   𝐷𝐷 = ∑ ∆𝑥𝑥 �∆𝑥𝑥/ 'xx − �
0.8

𝐱𝐱′         (6) 
where Δx is the pixel width, x is the map location where bedrock damage is being computed, and x’ is the 
location of each mapped pixel in SGM where a fault exists. D has units of length since it is the sum of all 
fault lengths in the vicinity of a point, weighted by a power-law function of inverse distance.” 

Comment: 5.10. ***This is very important.*** The line plotted in Fig. 3A is a log-log regression that 
ignores the cluster of five data points circled in the figure. There is NO justification for ignoring these 
points!!! He says in line 5.20 that they occur in an area of unusually dense landslides. I do not see this in 
figure 1!!! Even if I did, it would not justify excluding them from the analysis. Heimsath and Whipple seem 
to agree. I think it is complete nonsense. Makes the line look steeper than is should be. Sweeping these 
points under the rug does not make them go away. Including them in the regression would undermines his 
story that D plays a "subequal" role with tectonics. It not only looks suspicious. It is suspicious. Author 
needs to HONOR the data in this study and in his other work and not try to sweep data points away like 
this. 

Response: The line plotted in Figure 3A was the linear trend predicted by a simultaneous multivariate 
regression of P_0 to D and A that included all of the data points. My discussion of these 5 points was limited 
to a thought exercise in which I reported p values of the relationship between P_0 and D with and without 



these points included. That thought exercise did not extend to the multivariate regression or any other part 
of the paper. I made it clear in my Sept 25 response to Heimsath and Whipple that any mention of the cluster 
of five points would be removed from the proposed revision.  

Comment: 6.10. I do not understand why the correlation would shut off on north-facing slopes. Is there a 
mechanistic/theoretical basis for this? If not than the relationship is purely empirical. 

Response: My reanalysis of the data shows that, contrary to my ESurfD paper, the null hypothesis that P_0 
values are independent of slope aspect cannot be rejected. In my earlier analysis I extracted slope aspect 
using the location data provided by Heimsath et al. (2012), which identify sample locations to an accuracy 
of approximately 10-30 m. Ten of the sample locations were ridgetops where the local slope is zero and 
slope aspect should be undefined. However, my initial extraction routine did not account for the local slope, 
hence my routine returned a slope aspect close to directly south- or directly north-facing for some of these 
ridgetop samples. When the data are reanalyzed to include only areas that are not ridgetops, P_0 values are 
slightly higher, on average, on south-facing slopes, but the null hypothesis that P_0 values are independent 
of slope aspect cannot be rejected. All of the discussion of aspect has therefore been removed from the 
proposed revision. 

Comment: 6.20. Some more non-standard statistical machinations. The author does a regression that 
suggests that the power law exponents of A and D are 1.1 +/- some error. Then he reanalyzes things 
assuming that they are 1 to determine the value of c – the constant in front of A and D in Eq. 2. I am at a 
loss here. I know the author to be very bright and competent quantitatively. Yet here he invoking using 
some unnecessary, non-standard, and potentially misleading steps to avoid what would be a fairly 
straightforward multiple regression analysis of all of the parameters (slopes and intercepts) implied by a 
power law formulation of Equation 2. Doing this in a more standard way would yield some very useful 
metrics like partial correlation coefficients and leverage plots. Perhaps his approach seemed easier to 
explain at the time he wrote it. But I would argue that the community deserves and expects more. 

Response: When a power-law relationship has an exponent of 1.1 +/- 0.3, I think it is appropriate to assume 
a linear relationship for simplicity (since 1.1 and 1.0 are indistinguishable, within uncertainty). However, 
this text has been removed as it is no longer included in the revised analysis. 

Comment: 7.1-7.2. This is actually not a very good correlation for predicted versus observed – especially 
since it is strangely for a log-log plot. To understand this, look at the plot. There is almost an order of 
magnitude of variation in predicted P0 at any given value of P measured. To evaluate this model, rather 
than see an Rˆ2 for a log-log observed versus predicted plot, I think we need to see something like a Nash-
Sutcliffe statistic, which would tell us how good the model is compared to simply assuming that we could 
use the average P measured to estimate P everywhere. 

Response: As I have already noted, the Nash-Sutcliffe statistic does not apply to regression models, and I 
have provided the closest analogous statistic (R^2). I don’t know what the reviewer means by a “strange” 
log-log plot. When plotting data that have a large positive skew, it is common to plot log-log simply so that 
the points that would otherwise cluster in the lower left corner of a linear-linear scale can be resolved in the 
graph.  

Comment: 7.5 What are the assumptions inherent in simplifying the equations in this way? Simply citing 
off to previous work here is not sufficient. What are the assumptions inherent in doing this? For equation 6 
you assume slopes are planar, right? Is that reasonable here? What are the limitations of removing the higher 
order terms of Roering et al.? 



Response: I have clarified the assumption as follows: “Equation (8) assumes that the mean slope gradient 
at the base of hillslopes (where sediment leaves the slope) can be approximated by the average slope, Sav.” 
Roering et al. proposed that sediment flux is proportional to slope with a one minus slope squared term in 
the denominator. If the divergence of the flux is computed, the result is a complex expression with higher-
order terms, but I am using the same equation Roering et al. proposed for flux. I am happy to clarify further 
but I would need more information from the reviewer to do so.    

Comment: 7.19. Why 0.03? Just because this is the minimum finite thickness measured? But the whole 
point is they have no thickness!!! The mathematical inconvenience of having a value of 0 on what you want 
to plot on a log scale does not justify making up a value that ***drives*** a regression that you then plot 
through the data. Importantly it is very true that these points have a lot of leverage on the regression. Since 
calculating understanding the relationship between h and S is vital to calculating E from topography, this 
ends up being key to the paper. And I really do not think it is well justified. 

Response: These locations have no thickness today but must have episodically had soil in the past or else 
they would never erode (absent landsliding in bedrock or intact regolith, which can certainly occur but are 
not widespread in granitic rocks). It is common practice to add a small constant (comparable to the 
uncertainty of the data) prior to performing a linear regression of log-transformed data. I don’t think the 
alternative (leaving out these values entirely from the analysis, thereby biasing the results to those with 
finite soil thickness) is a better choice. If the reviewer would please provide a suggestion as to how these 
data could be included in a way that would satisfy him, I would be willing to try whatever alternative he 
proposes.  

Comment: 9.8. If this is the key result, then you need to demonstrate it using more conventional statistical 
approaches. A multiple linear regression of the log of P versus log D and h and log A would be a good place 
to start. This would avoid the strange – and thus hard-to-justify – correction of P to P0 that you have 
employed here. It would also avoid the strange practice of finding a 1.1 +/- error power slope and then 
redoing the regression assuming the slopes are 1 to find the best fit intercept term. This whole analysis 
seemed like a contorted and potentially error-prone way of doing what could have been a textbook 
application of multiple linear regression analysis on transformed variables. 

Response: In the proposed revision I have used conventional statistical approaches throughout.  

Comment: 10.12. This is misleading at best. I see a factor of 2 to 3 in either direction, so a factor of 4 to 6 
overall. For example, in Fig 3D, at a value of P0 observed of _150 m/My I see a range of predicted values 
running from 85 to 450 m/My. That’s a factor of nearly 6 range in predictions for a single value of P 
observed. That is NOT a good prediction in my book and my assertion is asserted by the very low N-S 
statistic for this modeling exercise. 

Response: The sentence is correct as stated. When saying that a prediction is correct to within a factor of 2 
from the observed value for 72% of the data points, that includes differences both above and below the 
prediction (resulting in a factor of 4 difference between the max and min predictions at a given observed 
value of P_0). However, I have removed the sentence because it is not central to the argument.  

 

 

 

 



Proposed revision to Section 2.1: 

2.1 Controls on potential soil production rates in the SGM  

  P0 values for the SGM can be estimated using the residuals obtained from the regression of soil production 

rates to soil thicknesses reported by Heimsath et al. (2012) (their Fig. 3). The exponential form of the soil production 

function quantifies the decrease in soil production rates with increasing soil thickness:  

  𝑃𝑃 = 𝑃𝑃0𝑒𝑒−ℎ ℎ0⁄ ,           (1)  

where h is soil thickness and h0 is a length scale quantifying the relative decrease in soil production rates for each unit 

increase in soil thickness. Heimsath et al. (2012) obtained h0 = 0.32 m for locations with an average slope, Sav, of less 

than or equal to 30° and h0 = 0.37 m for locations with Sav > 30°. Sav is defined by Heimsath et al. (2012) as the average 

slope over hillslopes adjacent to each sample location. P0 values (Supplementary Table 1) can be estimated as the 

residuals obtained by dividing P values by the exponential term in equation (1):  

  𝑃𝑃0,resid = 𝑃𝑃𝑒𝑒ℎ 0.32 m⁄   if  𝑆𝑆av ≤ 30°
𝑃𝑃𝑒𝑒ℎ 0.37 m⁄   if  𝑆𝑆av > 30°

.        (2)  

where P0,resid denotes P0 values estimated using the residuals of the regression. Note that equation (2) is equivalent to 

subtracting the logarithms of the exponential term from the logarithms of P values, since division is equivalent to 

subtraction under log transformation. Log transformation is appropriate in this case because P values are positive and 

positively skewed (i.e., there are many P values in the range of 50-200 m/Myr and a smaller number of values in the 

range of 200-600 m/Myr that would be heavily weighted in the analysis if the data were not log-transformed). P0,resid 

values estimated from equation (2) increase, on average, with increasing Sav (Fig. 2A). P0,resid values exhibit an abrupt 

increase at an Sav of approximately 30°.  

Heimsath et al. (2012) did not include data points from locations without soil cover in their regressions 

because these data points appear (especially for areas with Sav > 30°) to fit below the trend of equation (1). This implies 

that a humped production function may be at work in some portions of the SGM. The mean value of P from areas 

with Sav ≤ 30° that lack soil cover is 183 m/Myr, i.e., slightly higher than, but within 2σ uncertainty of, the 170 ± 10 

m/Myr value expected based on the exponential soil production function fit by Heimsath et al. (2012). As such, the 

evidence indicates that for areas with Sav ≤ 30°, data from locations with and without soil cover are both consistent 

with an exponential soil production function. The mean value of P from areas with Sav > 30° that lack soil cover is 

207 m/Myr, i.e., significantly lower than the 370 ± 40 m/Myr expected based on the exponential soil production 

function. This suggests that a hump may exist in the soil production function for steep (Sav > 30°) slopes as they 



transition to a bare (no soil cover) condition. To account for this, I estimated P0 to be equal to 1.78P (i.e., the ratio of 

370 to 207) at locations with Sav > 30° that lack soil cover.     

 The SGM has horizontal compressive stresses of ~10 MPa in an approximately N-S direction at depths of 

less than a few hundred meters (e.g., Sbar et al., 1979; Zoback et al., 1980; Yang and Hauksson, 2013). The 

development of rugged topography can lead to topographically induced fracturing of bedrock and/or opening of pre-

existing fractures in compressive-stress environments (e.g., Miller and Dunne, 1996; Martel, 2006; Slim et al., 2014; 

St. Clair et al., 2015). Given the pervasively fractured nature of bedrock in the SGM (e.g., Dibiase et al., 2015), I 

assume that changes in the stress state of bedrock or intact regolith beneath hillslopes leads to the opening of pre-

existing fractures (i.e., an increase in the bulk porosity of bedrock or intact regolith) rather than the fracturing of intact 

rock. I adopt the analytic solutions of Savage and Swolfs (1986), who solved for the topographic modification of 

regional compressive stresses beneath ridges and valleys oriented perpendicular to the most compressive stress 

direction. Savage and Swolfs (1986) demonstrated that the horizontal stress (σxx) in bedrock or intact regolith becomes 

less compressive under ridges as the slope increases (Fig. 3). In landscapes with a maximum slope larger than 45˚ 

(equivalent to an average slope of approximately 27˚ or atan(0.5) in the mathematical framework of Savage and 

Swolfs, 1986), bedrock or intact regolith that would otherwise be in compression develops tensile stresses close to the 

surface beneath hillslopes (Fig. 3A). An average slope of 27˚ is close to the threshold value of 30˚ that Heimsath et al. 

(2012) identified as representing the transition from low to high P0 values in the SGM. Therefore, the abrupt increase 

in P0,resid values at approximately 30˚ is consistent with a transition from compression to tension in bedrock or intact 

regolith beneath hillslopes of the SGM. In addition to this sign change in the horizontal stress state in the rocks beneath 

hillslopes of the SGM, the Savage and Swolfs (1986) model predicts a gradual decline in horizontal compressive stress 

as Sav increases between 0 and approximately 27˚ (Fig. 3B): 

  
σ𝑥𝑥𝑥𝑥
𝑁𝑁1

= 2−4𝑆𝑆av
(2+4𝑆𝑆av)(1+4𝑆𝑆av)

         (3)  

where N1 is the regional maximum compressive stress and Sav has units of m/m in equation (3). Equation (3) is simply 

equation (36) of Savage and Swolfs (1986) expressed in terms of the average slope from the drainage divide to the 

location of maximum slope rather than the shape parameter b/a used by Savage and Swolfs (1986). Note that the 

tangent of the slope angle (units of m/m) is averaged to obtain Sav in all cases in this paper. However, after this 

averaging Sav is reported in degrees in some cases to facilitate comparison with the results of Heimsath et al. (2012).   



 Figure 3 illustrates the effects of topography on tectonic stresses only. Gravitational stresses can be included 

in the model by superposing the analytic solutions of Savage and Swolfs (1986) (their equations (34) and (35)) with 

the solutions of Savage et al. (1985) for the effects of topography on gravitational stresses (their equations (39) and 

(40)). The result is a three-dimensional phase space of solutions corresponding to different values of the regional 

tectonic stress N1, the characteristic gravitational stress ρgb (where ρ is the density of rock, g is the acceleration due 

to gravity, and b is the ridge height), and the Poisson ratio μ. The effects of including gravitational stresses are (1) to 

increase the compression at depth via the lithostatic term (at soil depths this corresponds to an addition of ~10 kPa, 

which is negligible compared to the regional compressive stress of ~10 MPa in the SGM), and 2) to increase the 

compressive stresses near the point of inflection on hillslopes (e.g., Fig. 2a of Savage et al., 1985). These modifications 

do not alter the first-order behavior illustrated in Figure 3 for rocks close to the surface that are not close to hollows 

or other points of inflection. Section 3 provides additional discussion of the assumptions and alternative approaches 

to modeling topographically induced stresses.  

The fit of the solid curve in Figure 2A to P0,resid values is based on equation (3), together with an assumption 

that the transition from compressive to tensile stresses triggers an step increase in P0,resid values over a small range of 

Sav values in the vicinity of the transition from compression to tension: 

  𝑃𝑃0,𝑆𝑆 =

𝑃𝑃0,𝑙𝑙 �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�   if  𝑆𝑆av ≤ 𝑆𝑆𝑙𝑙

𝑃𝑃0,ℎ �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�   if  𝑆𝑆av > 𝑆𝑆ℎ

 �𝑃𝑃0,𝑙𝑙 + �𝑃𝑃0,ℎ − 𝑃𝑃0,𝑙𝑙�
𝑆𝑆av−𝑆𝑆l
𝑆𝑆h−𝑆𝑆l

� �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�  if  𝑆𝑆𝑙𝑙 ≤ 𝑆𝑆av < 𝑆𝑆ℎ

    (4)  

where P0,S denotes the model for the dependence of P0 values on Sav, P0,l  and P0,h are coefficients defining the low and 

high values of P0, and Sl and Sh are the average slopes defining the range over which P0 values increase from low to 

high values across the transition from compression to tension. P0,l  and P0,h were determined to be 170 m/Myr and 500 

m/Myr based on least-squares minimization to the data (data from elevations above 2300 m were excluded because 

of the climatic influence described below). Sl and Sh were chosen to be 30˚ and 32˚, respectively, to characterize the 

abrupt increase in P0 values in the vicinity of 30˚.  

 In addition to the average slope control associated with the topographically induced stress fracture opening 

process, a climatic control on P0 values can be identified using cluster analysis. This type of analysis involves 

identifying clusters in the data defined by distinctive values of the independent variables that also have different mean 

values of the dependent variable. The four points colored in blue in Figure 2A are the four highest elevation samples 



in the dataset, with elevations ≥ 2300 m a.s.l. The logarithms (base 10) of this cluster have a mean value of -0.40 after 

subtracting the logarithms of P0,S to account for the average slope control on P0,resid values, compared with a mean of 

0.00 for the logarithms of the remaining data points with Sav > 30° (also with the logarithms of P0,S subtracted). 

Assuming a significance level of 0.05, the null hypothesis that the cluster of blue points has a mean that is 

indistinguishable from that of the remaining points with Sav > 30° can be rejected based on the standard t test with 

unequal variances (t = 0.021).  

Figures 4A-4C illustrate the mean annual temperature (MAT), mean annual precipitation (MAP), and 

existing vegetation height (EVH) for the central portion of the SGM. Above elevations of approximately 1800 m a.s.l., 

vegetation height decreases systematically with increasing elevation (Fig. 4D). This limitation is likely to be primarily 

a result of temperature limitations on vegetation growth because MAP increases with elevation up to and including 

the highest elevations of the range. This result is consistent with the hypothesis that vegetation is a key driver of soil 

production. The decrease in P0 values with elevation is likely to be gradual rather than abrupt, and indeed there is 

evidence of a peak in the climatic control of P0 values. Figure 4E plots the ratio of P0,resid to P0,S as a function of 

elevation. The closed circles are binned averages of the data (each bin equals 100 m in elevation). The ratio of P0,resid 

to P0,S (equivalent to the residuals under log transformation after the effects of average slope are removed) increases, 

on average, and then decreases within the range of elevations between 1500 and 2600 m, broadly similar to the trend 

of EVH (Fig. 4D). 

Local variability in P0 estimates due to variations in soil thickness, mineralogical variations within a given 

lithology, spatial variations in fracture density, etc. can be minimized by averaging P0 values (not including the four 

highest-elevation points because of the climatic control) from locations that have the same average slope (Fig. 2C). 

This process tends to average data from the same local cluster since local clusters often have average slopes that are 

both equal within the cluster and different from other clusters. Figure 2C demonstrates that the predictions of the 

topographically induced stress fracture opening hypothesis are consistent with the observed dependence of P0,resid 

values on Sav values.   

The average slope and climatic controls on P0 values can be combined into a single predictive equation for 

P0 values: 

  𝑃𝑃0,pred = 𝑃𝑃0,𝑠𝑠𝐶𝐶          (5)  



where P0,pred denotes predicted values for P0, C is a climatic index defined as 1 for z < 2300 m and 0.4 (i.e., the ratio 

of the geometric mean of the data for z > 2300 m to the remaining data points with Sav > 30°) for z > 2300 m. A 

regression of P0,pred values to P0,resid values yields an R2 of 0.50 (Fig. 2D). When data with equal Sav values are averaged 

(i.e., the filled circles in Fig. 2D), the resulting R2 value is 0.87.  

The results of this section demonstrate that average slope and climate exert controls on P0 values in the SGM. 

Although I did not find additional controls that were clearly distinct from these, it is worth discussing additional 

controls that I tested for. The data points colored in gray in Figure 2B are from the three rock types most resistant to 

weathering as determined by Spotila et al. (2002): granite, anorthosite, and the Mount Lowe intrusive suite. Spotila et 

al. (2002) also identified gabbro as a relatively resistant rock in the SGM, but no soil production rates are available 

from this rock type. Figure 2B suggests that lithology might exert some control on P0 values. Specifically, 7 samples 

from the more resistant lithologies sit above the least-squares fit of equation (4) to the data, while 13 (including the 7 

lowest P0 values) sit below the least-squares fit. However, the null hypothesis that the residuals of the gray cluster 

after the effects of average slope are removed has a mean that is indistinguishable from the residuals of the remaining 

points (colored black in Figure 2B) cannot be rejected (t = 0.21). 

Many studies have proposed a relationship between fracture density and bedrock weatherability on the basis 

that fractures provide additional surface area for chemical weathering and pathways for physical weathering agents to 

penetrate into the bedrock or intact regolith (e.g., Molnar, 2004; Molnar et al., 2007; Goodfellow et al., 2014; Roy et 

al., 2016a,b). The difference in erosion rates between the SGM and adjacent San Bernadino Mountains, for example, 

has been attributed in part to differences in fracture density between these ranges (Lifton and Chase, 1992; Spotila et 

al., 2002). As such, it is reasonable to hypothesize that differences in P0 values might result from spatial variations in 

fracture density within each range. I computed a bedrock damage index D based on the concept that P0 values increase 

in bedrock that is more pervasively fractured, together with the fact that bedrock fracture densities are correlated with 

local fault density in the SGM (Chester et al., 2005; Savage and Brodsky, 2011). Savage and Brodsky (2011) 

documented that bedrock fracture density decreases as a power-law function of distance from small isolated faults, 

i.e. as r-0.8 where r is the distance from the fault. Fracture densities around larger faults and faults surrounded by 

secondary fault networks can be modeled as a superposition of r-0.8 decays from all fault strands (Savage and Brodsky, 

2011). Chester et al. (2005) documented similar power-law relationships between bedrock fracture density and local 

fault density in the SGM specifically. I define the bedrock damage index D (Fig. 5A) as the sum of the inverse 



distances, raised to an exponent 0.8, from the point where the D value is being computed to every pixel in the study 

area were a fault is located: 

   𝐷𝐷 = ∑ ∆𝑥𝑥 �∆𝑥𝑥/ 'xx − �
0.8

𝐱𝐱′         (6) 

where Δx is the pixel width, x is the map location where bedrock damage is being computed, and x’ is the location of 

each mapped pixel in SGM where a fault exists. D has units of length since it is the sum of all fault lengths in the 

vicinity of a point, weighted by a power function of inverse distance. Equation (6) honors the roles of both the distance 

to and the local density of faults documented by Savage and Brodsky (2011) because longer faults and/or more mature 

fault zones with many secondary faults have more pixels that contribute to the summation. The fact that a relationship 

exists between P0,resid values and D (Fig. 5B, p = 0.035) and between D and Sav (Fig. 5C, p = 0.015) suggests that some 

of the control by average slope that I have attributed to the topographically induced stress fracture opening process 

may reflect differences in the density of pre-existing fractures related to local fault density. However, the much higher 

R2 value of the relationship between P0,resid and P0,pred (R2 = 0.50) compared to that for the relationship between P0,resid 

and D (R2 = 0.08) suggests that the topographically induced stress fracture opening process is the dominant mechanism 

controlling P0 values in the SGM. In addition, this process has a stronger theoretical foundation.  

 
 



Figure 2. Analytic solutions illustrating the perturbation of a regional compressive stress field by topography. (A) Color 
maps of the horizontal normal stress, σxx (normalized to the regional stress, N1), as a function of ridge steepness (defined 
by the shape factor b/a of Savage and Swolfs (1986) and the average slope Sav) using equations (34) and (35) of Savage and 
Swolfs (1986). The hillslopes are plotted with no vertical exaggeration. (B) Plot of σxx directly beneath the ridge as a function 
of Sav using equation (36) of Savage and Swolfs (1986). The plot illustrates the decrease in compressive stress with increasing 
average slope and the transition to tensile stresses at a Sav value of approximately 27˚.  
, 

 
Figure 3. Plots of P0,resid and their relationship to average slope, Sav, and other potential controlling factors. (A) Plot of P0,resid 
values versus Sav. Data points colored blue are from the highest elevations of the range (z > 2300 m). (B) The same plot as 
(A), except that data points are colored according to whether they from rocks that are relatively more resistant (gray) or 
less resistant (black) to weathering. (C) Plot of P0,resid values averaged for each value of Sav. In (A) and (B), error bars 
represent the uncertainty of each data point, while in (C) the error bar represents the standard deviation of the data points 
averaged for each Sav value. (D) Plot of P0,resid versus values predicted from equation (5). Unfilled circles show individual 
data points, while filled circles represent the averaged data plotted in (C).  
 
 



 
Figure 4. Climate and vegetation cover of the central San Gabriel Mountains. Color maps of (A) mean annual temperature 
(MAT) and (B) mean annual precipitation (MAP) from the PRISM dataset (Daly et al., 2001). (C) Color map of mean 
existing vegetation height (EVH) from the U.S. Geological Survey LANDFIRE database (U.S.G.S., 2016). (D) Plot of mean 
EVH versus elevation above sea level, z, using the data illustrated in (C). (E) Plot of the ratio of P0,resid to P0,S as a function 
of elevation. Filled circles are binned averages of the data (each bin equals 100 m in elevation). 
 

 



 
Figure 5.  Map of the bedrock damage index, D, and its correlation with Sav. (A) Color map of spatial variations D. (B) Plot 
of D versus Sav for the 57 sample locations of Heimsath et al. (2012).   
 
 


