
Reviewer 1 (Heimsath and Whipple): 

I provided a preliminary response to Heimsath and Whipple on Sept 25. Below is a brief summary of the 
main points of the Heimsath and Whipple review and my revised responses. 

My P_0 estimates are simply the residuals obtained from the regressions of Heimath et al. (2012). Far from 
being “inappropriate” and “unwise” (reviewer 1), “kooky” and “akin to data fabrication” (reviewer 2), or 
any of the other descriptions employed by the reviewers, computing residuals and testing for additional 
controls is a recommended step in regression analysis. Heimsath and Whipple define P_0 as the y intercept 
of regression of soil production rates to soil thickness. This definition excludes the residuals of the 
regression without any basis. I define P_0 (in the first sentence of the abstract and again in the first sentence 
of the introduction) as the maximum soil production rate at each point on Earth’s surface. My definition 
honors the fact that P_0 values may vary continuously in space and that regressions of soil production rates 
to soil thickness yield a set of residuals that can and should be tested for additional controls. Residuals are 
estimates, since the regression used to compute the residuals has uncertainty. However, the fact that there 
is local variability in P values and uncertainty in 10Be measurements does not provide a basis for ignoring 
the residuals of this or any other regression. If local variability and/or data uncertainty dominate a soil 
production rate dataset, then no statistically significant landscape-scale controls will be identified in the 
residuals. For example, if large spatial variations existed in h_0 (the decay length scale of the soil production 
function) in the SGM, P_0 variations would be highly uncertain and controlling factors impossible to detect. 
However, Heimsath et al. (2012) estimated that h_0 values differ by 0.05 m (0.32 m vs. 0.37 m) between 
portions of the SGM with the largest difference in P_0 values. At a soil thickness of 30 cm, this difference 
corresponds to P_0 differences of approximately 10% (i.e., exp(-0.30/0.32) vs. exp(-0.30/0.37)). This 
difference is more than 100 times smaller than the variation in P_0 values. This difference becomes even 
smaller for soils thinner than 0.3 m. 

Heimsath and Whipple question the processes included in my model. I have thought hard about what 
factors, besides variations in fault density and vegetation cover (and its associated wildfire regime), may 
explain the patterns in the data. Near-surface rocks in the SGM are in a highly compressive state (~10 MPa). 
In compressive-stress environments, the development of rugged topography leads to a reduction in 
compressive stress (and even the development of tensile stress in sufficiently steep areas) in the rocks 
beneath hillslopes. This change in stress state can increase the bulk porosity of the rock, allowing 
weathering agents to penetrate more readily into the rock, thus increasing the rate of weathering for a given 
soil thickness. In my proposed revision, I demonstrate that the predictions of the topographically induced 
stress fracture opening hypothesis are more consistent with the data than my previous model. This 
hypothesis has the benefit of a strong theoretical foundation. Once the data are modeled based on this 
hypothesis, temperature clearly emerges as a limiting factor for P_0 values at the highest elevations of the 
range.  

I regret not nailing this problem in the discussion paper and having to make major changes to the revision 
(in part because this entails more work for the reviewers). However, major changes were called for by the 
reviewers and a major overhaul of a manuscript is sometimes a positive outcome of negative reviews (the 
proposed revision to Section 2.1 is provided below and the proposed revision of the entire manuscript is 
provided as a separate document). I believe my revised paper provides a needed process-based 
understanding of the controls on P_0 values documented by Heimsath et al. (2012) and establishes a 
climatic control on P_0 values at the highest elevations of the SGM. These results provide a useful 
foundation for additional targeted 10Be analyses and for the incorporation of new methods that can further 
test the topographically induced stress fracture opening hypothesis (e.g., shallow seismic refraction surveys, 
3D stress modeling, etc.).    



In my opinion, the truth that has emerged from this review and my response is an interesting middle ground 
in which Heimsath et al. (2012) have been vindicated on their fundamental point that P_0 values can 
increase with topographic ruggedness in some (i.e., compressive-stress) settings, but that also supports the 
hypothesis they rejected, i.e., that P_0 values are controlled solely by climate and rock characteristics. The 
evidence remains that it is changes to rock characteristics, i.e., an increase in bedrock or intact regolith 
porosity in areas of more rugged topography, that lead to higher P_0 values, together with a climatic 
limitation on P_0 values at the highest elevations of the range.  

Reviewer 2 (anonymous): 

I wish to thank this reviewer for his thoughtful comments (I will use the male pronoun since the AE 
identified this reviewer as male). Although I do not agree with some of his comments, I agree with many 
and the manuscript has been significantly improved based on his review. I greatly appreciate the time he 
took to engage with the manuscript, both in this round of review and in a prior round for a different journal. 

Comment: (1) First, I concur with reviewers Heimsath and Whipple on the fact that it is nonstandard at best 
to assign a separate P0 value to each measured P value using exponential scaling relationship in Eq 1. It 
would be equivalent to predicting different values of a y intercept in a linear regression of y on x when you 
know the slope of the regression and the value of y and x for each data point. There is only one y intercept 
per regression through a cloud of data. This business of inferring one y-intercept per data point strikes me 
as – at best – a kooky way (i.e., that differs from established norms) of quantifying the uncertainty in the y 
intercept. Based on what I can see in their reviewer comments, Heimsath and Whipple had the same 
reaction. And the author’s response to their comment – i.e., "On a more practical level, I don’t understand 
how we, as a community, could make significant progress on understanding the controls on P0 values if we 
accept the logic of Heimsath and Whipple that only two P0 values can be reliably determined from 57 CRN 
analyses" – is not compelling. The alternative logic of Pelletier seems to be that we should suspend 
conventions of statistics and stretch data farther than they can be stretched just to support some as yet non 
mechanistic formulation that he has presented here. I prefer the less radical option of recognizing the limits 
of data and working to overcome them in more traditionally acceptable ways – i.e., with new measurements 
and perhaps a more clever analysis approach. For example, as an alternative to the methods presented here, 
the author might think of ways to model P rather than P0 using some sort of multiple regression analysis 
that includes h explicitly in a model of rock damage and microclimatic effects. This business of calculating 
a P0 effectively corrects for the exponential-withdepth variation in P before the modeling begins. In a true 
multiple nonlinear regression, one could account for h, D, A and everything else simultaneously, and as an 
outcome of the approach also quantify the relative importance (leverage) of each variable in the regression. 
If the outcome is that h dominates while D and A add little to the predictive power of the model, then the 
author would be forced to confess that D and A are not strong predictors of P and thereby P0. And as I point 
out below, there is good reason to suspect that that is precisely what he would learn. 

Response: I am not asking the reader to suspend the conventions of statistics. A soil production function is 
the outcome of a regression analysis. A regression analysis yields two types of outputs: the coefficients of 
the regression equation and a set of residuals. Computing residuals and testing for additional controls is a 
recommended step in regression analysis.  

I defined P_0 in the paper as the maximum soil production rate at each point on Earth’s surface. To estimate 
P_0 values defined in this way, one begins by accounting for the effects of soil cover (which has the effect 
of decreasing the soil production rate below its maximum or potential value) by regressing log-transformed 
P values to soil thickness. Following regression, P values are divided by the regression equation (which is 
equivalent to subtracting the regression of the log-transformed data) to obtain a set of residuals that can and 



should be interrogated for additional controls. That is all I have done to estimate P_0 values. If the 
regression of P data to soil thickness yields no statistically significant trend, then there is no statistically 
significant regression to soil thickness and hence no residuals (P_0 values) to study. That is not the case 
here, as Heimsath et al. (2012) clearly demonstrated that gently and steeply sloping portions of the 
landscape fit exponential soil production functions with nearly identical decay constants.   

I think it is reasonable to ask reviewers to at least consider my definition of P_0. However, they simply 
define P_0 differently (as the y-intercept of the soil production function) and then criticize me on the basis 
of that alternative definition. I think the two definitions are complementary. I don’t think see any reason 
why the residuals of this particular regression should be ignored when the output of this or any other 
regression is a set of regression coefficients and a set of residuals, both of which contain important 
information.  

Reviewer 2 joins Heimsath and Whipple in criticizing me for not providing a new suite of CRN-based soil 
production rate data. I think there is broad agreement in the scientific community that it is appropriate for 
some studies to focus on measurements and data analysis (e.g., Heimsath et al., 2012) and others to focus 
on analyses of existing data and modeling/process-based interpretation (this paper). Science would move 
forward more slowly and with a less diverse range of perspectives if, for example, every study of soil 
production required a new in situ CRN dataset. In this specific case I think it is clear that what is most 
needed is a process-based understanding of trends in the existing data that can be used to guide additional 
targeted 10Be analysis. I agree with the reviewers that my ESurfD paper did not provide such an analysis, 
in part because it did not consider the potentially important process of topographically induced stress 
fracture opening. However, I believe that my proposed revision does provide a process-based understanding 
that is both consistent with trends in the data and well-grounded in theory.  

The reviewer also calls for a multivariate regression to all of the potential controlling variables including 
soil thickness. I think it is more appropriate to honor the work of Heimsath et al. (2012) (as the reviewer 
recommends in many of his comments) by using the residuals of their regression as a starting point. The 
combination of stepwise regression and cluster analysis I use in the revision is based on standard statistical 
methods. The reviewer may not agree with every step of my revised analysis, but I respectfully ask that he 
consider it.    

 Comment: (2) Second – and this is a bigger concern in my view – is the degree to which the predicted 
values of P0 ***diverge*** from the observed values in the dataset. It seems like a key goal in this paper 
is to use indices of rock damage and aspect to predict P0 and ultimately map the variations in P0 and some 
additional offshoots of it (E and E*L) onto the landscape. Starting at section 2 and continuing through to 
the end of this paper, this is actually ***the*** central focus of results and discussion. The trouble is, one 
must be willing to believe that the model in Eq 2 is a good predictor of P0 in order to confidently follow 
the author in this vital leap of faith. Personally, after reading this paper, I am not willing to make that leap. 
Nor should any self-respecting data analyst, once he/she realizes that the predicted values are not actually 
a very good match to the observations. Sure – as the reviewer points out – there is a highly significant 
correlation between the measured and predicted values P0, but the existence of such a correlation is not 
sufficient in and of itself to demonstrate that the predictions are good enough to explain the variations in 
P0. Recognizing this challenge nearly fifty years ago, hydrologists Nash and Sutcliffe (1970) developed 
their own measure of model efficiency in their quest to objectively evaluate whether their models of river 
discharge were good predictors of observations. Though this Nash- Sutcliffe (N-S) statistic – as it later 
became known – was developed for models of river flow, it has also been widely used to assess model 
efficiency for other natural variables, including erosion rates and nitrogen and phosphorus loading. My 
quick calculation of a N-S efficiency statistic for the model of predicted P0 yields a value of 0.18 based on 



data provided in the supplemental table. For context, realize that the maximum value of the coefficient, 
which is 1, would indicate that the model explains ***all*** of the observed variation in the data. By 
contrast a value of 0 would indicate that the model is ***just as good as*** the average value of the data 
at explaining observed variations across the data set. Values less than 0 imply that the model ***is worse 
than*** the average. In this case, my estimated value of 0.18 indicates that ***the model in Eq. 2 is a little 
bit better than the average P0*** at predicting the distribution of measured P0 across the dataset. For this 
reason, I think the machinations of the predictive modeling exercise (i.e., most of the paper) are not really 
warranted, irrespective of the significance of any inferred correlations between P0 and D and between P0 
and A. Importantly the reader should only commit to believing those correlations to the extent that he/she 
can overlook the suspect exercise of calculating P0 for each measured value of P. Ultimately, it is not clear 
to me that the author understands that there is a vital difference between documenting a statistically 
significant correlation between a measured and predicted value and demonstrating that a model is good at 
doing what it is supposed to do. If he does, he is hiding it at the top of page 7, where he seems to suggest 
that statistical significance in classical regression metrics is sufficient. I will not deny that the correlation 
coefficient and thus the coefficient of determination by themselves provide a very loose first approximation 
of model fitness. But even then, this is true only to the extent that high coefficients of determination (close 
to one) imply better correlations and low coefficients imply poor correlations (irrespective of whether they 
are statistically significant). To understand the problem with using Rˆ2 in the way the author seems to want 
to use it here, consider the toy example in which P0 observed is exactly 0.2 times the value of P0 predicted 
for each inferred value of P0; in that case, the coefficient of determination of P0 predicted and P0 observed 
would be 1.0 with a very very low p value even though the predicted value of P0 is 5 times higher than the 
observed value at each site. P0 predicted is dead wrong but the coefficient of determination is fantastically 
good. This illustrates how simple correlation indices for predicted versus observed data sets can (and 
probably often do) fall short on gauging the predictive power of a model. 

Response: I did not include the Nash-Sutcliffe efficiency for the simple reason that it does not apply to 
regression models. The definition of the Nash-Sutcliffe efficiency is  

𝐸𝐸 = 1 − ∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑛𝑛,𝑜𝑜𝑠𝑠𝑠𝑠)2𝑁𝑁
𝑛𝑛=1

∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁
𝑛𝑛=1

  

where Xn,sim are the values predicted by a simulation or other type of model that is not based on regression. 
In cases where the predicted values are based on a regression (as is the case here), the closest analog of the 
Nash-Sutcliffe efficiency is the coefficient of determination, R^2, defined as 

𝑅𝑅2 = 1 −
∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑛𝑛,𝑟𝑟𝑚𝑚𝑟𝑟)2𝑁𝑁
𝑛𝑛=1

∑ (𝑋𝑋𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜−𝑋𝑋𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛,𝑜𝑜𝑜𝑜𝑜𝑜)2𝑁𝑁
𝑛𝑛=1

  

where Xn,reg are the predicted values based on the regression. If these two equations look almost identical it 
is because they are. When using a regression model, one uses R^2, which I did. When not using a regression 
model, one uses E.  

The reviewer criticizes me for not reporting a Nash-Sutcliffe efficiency despite his request for one in a 
review of a prior version of the paper for the journal Geology. I am not going to include a statistic that, by 
definition, does not apply to the method I am using.  

I don’t want to antagonize this reviewer, but I would like to point out that his discussion of the Geology 
review violates GSA’s ethical guidelines for publication, which require reviewer confidentiality. I am, of 
course, glad that the paper was rejected by Geology and that my ESurfD paper was also negatively reviewed, 
because this has prompted me to take a fresh look at the problem and redouble my efforts to understand the 



process basis for the trends in P_0 values in the SGM. This type of rethinking and major revision is often a 
positive outcome of a negative review. That said, I still think it is reasonable to ask that the review process 
follow established ethical guidelines. I don’t think it is fair or accurate that the literature now suggests that 
I am not a careful scientist who carefully considers reviewer comments. There are simple reasons, identified 
here, why I did not explicitly address some of his concerns from the prior review.  

The 0.18 value computed by the reviewer is inappropriate because it is weighted towards the errors 
associated with higher P_0 values since the reviewer did not log-transform the data. Such weighting is 
appropriate for many applications, such as modeling discharges of water, sediment, or contaminants, in 
which the performance of the model must be judged on its ability to predict both individual data points and 
the integrated value of the quantity under study. Since the integrated value is dominated by the largest 
values in the dataset, it is appropriate to weigh the errors associated with larger values more heavily in such 
cases. That is not the case here. There is no reason to weigh samples from areas with larger potential soil 
production rates more heavily than samples from areas with low potential soil production rates in judging 
the model fitness. Because the data have a positive skew, it is more appropriate to log-transform the data.  

The reviewer poses the case of an independent variable regressed to a dependent variable offset by a factor 
of 5. A regression of the logarithms of the independent variable to the dependent variable yields a model 
with no offset (the unique result of the regression to the hypothetical data posed by the reviewer is ln y = 
ln(0.2) + ln x, R^2 = 1). Therefore, the supposed counterexample suggested by the reviewer is impossible 
using the method I am using (regression of log-transformed data). 

I understand very well that there is value in having a low value of p and a high value of R^2 (or the Nash-
Sutcliffe efficiency, if one is evaluating a simulation model). However, there are many geomorphology 
papers that are based on regressions with R^2 values lower than the ones I obtained (one example: R^2 = 
0.17 in Nature Geosciences, v. 8, p. 462-465, 2015, Fig. 3a). In my revised paper I obtained R^2 = 0.50 
(R^2 = 0.87 when data with the same Sav value are averaged to minimize local variability). I don’t know 
whether this will satisfy the reviewer since I don’t know what he considers an acceptable value of E or R^2.   

Comment: On a side note, when I plotted the P0 measured and P0 predicted values in the supplemental 
table against each other, I get a pattern that looks slightly different than the one shown in the figure. The 
differences are not big enough to explain away the problem of low Nash-Sutcliffe statistics (Fig 3D and 
4C), but it made me worry that the author has some version inconsistencies between his figures and the data 
he provided in the table. Not sure which version is "correct." 

Response: I could not reproduce this error. I am as certain as I can be that the data presented in the table 
and plotted in the figures of the proposed revision are the same.   

Comment: (3) Like Heimsath and Whipple, I am unimpressed with the theoretical basis of Eq 2, and 
moreover, I am not compelled by the author’s response – i.e., "It is far beyond the scope of the paper to 
develop a comprehensive theory for how microclimate relates to vegetation cover, wildfire frequency and 
severity, and soil production rates, assuming such a theory is even possible." However, whereas Heimsath 
and Whipple rightly seem very worried about how D might connect to rock damage at landscape scales, 
and how those variations in D would actually connect to P0 in a mechanistic way, I am stuck on the fact 
that the authors never actually showed me that aspect should matter at SGM. The references cited on page 
3 have nothing to do with the effect of aspect on vegetation or the effect of either vegetation or aspect on 
fire intensity or severity in the SGM. Where is the proof that vegetation, fire frequency, and slope steepness 
vary with aspect in the SGM? It seems it would be crucial to demonstrate this is the case before motivating 
the paper and the formulation of equation 2 more specifically. The aspect story fits with some of the author’s 
work in other landscapes but not here – at least not according to the references cited here. If anything, the 



Keeley and Zedler study seems to suggest that the current regime – in which the landscape is prone to large 
fires that sweep through the landscape with indifference to aspect – has been the norm for a long time. 
Additionally, this study seems to hang a lot of its motivation on the idea that fire promotes weathering. But 
- despite the good investigative work cited on page 3 - I am not sure I concur that the connection has been 
well documented at SGM. All of the studies cited here are fascinating but ultimately just anecdotal 
investigations of weathering of boulders – not weathering of rock under soil, which presumably is important 
here since much of the SGM area is covered by soil. Moreover, they do not report faster weathering rates 
on fire-prone versus not-fire-prone slopes. In fact, none of the studies actually report rates (focusing instead 
on processes) and none compare fire-prone versus not fire-prone slopes. Shtober-Zisu et al. comes close to 
reporting a rate but ultimately says it is hard to say how the boulder spalls in carbonate outcrops influence 
denuda tion rates across the landscape. And again, there is no comparison to a landscape that is not fire 
prone, so there is no control in the experiment – and importantly no support for the author’s claim here that 
weathering is faster in fire-prone versus not-fire-prone landscapes. 

However strong the correlation between P and A may be, I think it is very important for the author to step 
back from this generic claim that aspect-driven differences in wildfire are driving the show and more 
precisely drill in on how anecdotal studies from the SGM in particular support the slope aspect idea. Bottom 
line is there needs to be some stronger motivation here – hopefully shored up some sound mechanistic 
explanations for why both D (measured in the S&B 2011 approach) and A should matter. I do NOT think 
it is "beyond the scope" of this paper to justify the formulations that it presumes to impose broadly on the 
landscape. 

Response: I agree with the criticism that the processes I invoked in my previous model were not necessarily 
the best or only controls on P_0 values, so I have thought hard about this issue, tested the topographically 
induced stress fracture opening process, and found it to be a better explanation of trends in the data. Once 
this control is accounted for, a climatic control on P_0 values becomes apparent at the highest elevations 
of the SGM.  

I did not state or imply that it was beyond the scope of the paper to justify the formulations I am invoking. 
Rather, the point I made was that there is value in documenting statistically significant correlations between 
P_0 values and controls that are based on reasonable process-based models given that the literature has only 
identified one control (average slope) on P_0 in this dataset and no process-based understanding for even 
that trend. My proposed revision is an advance because it identifies topographically induced stress fracture 
opening as the process most likely responsible for the average slope control on P_0 values in the SGM. 

My reanalysis of the data shows that, contrary to my ESurfD paper, the null hypothesis that P_0 values are 
independent of slope aspect cannot be rejected. Ten of the sample locations are ridgetops where the local 
slope is zero and slope aspect should be undefined. However, my initial extraction routine did not account 
for this fact. Instead, the routine returned values that in several cases indicated that the slopes faced nearly 
directly south or north (which was correct given the location data, which in some cases is 10-30 m from the 
ridge due to roundoff error in the sample location). When the data are reanalyzed to include only areas that 
are not ridgetops (47 of 57 samples), P_0 values are slightly higher, on average, on south-facing slopes, but 
the null hypothesis that P_0 values are independent of slope aspect cannot be rejected.  

Note: The AE has instructed me to respond to reviewer 2 prior to drafting a revision. However, I don’t think 
it is possible to fully respond to their concerns without drafting a revision, since the requested changes were 
so extensive and fundamental.  

Comment: (4) The statistical analyses are nonstandard. My discomfort with them is very high. My 
discomfort started with the first indication – I think on page 5 – that the author thinks of statistical 



significance as the logical and quantitative complement to a calculated p value. This is not the case, of 
course. Rather "significance" is commonly reserved referring to the threshold false positive rate that is 
allowed in a statistical hypothesis test. So the idea that the author thinks that a calculated p = 0.001 
corresponds to a "statistical significance" of 99.9% set me on edge. This misappropriation of terminology 
was repeated many times throughout the text. But that was just the start. The author also evidently thinks it 
is ok to calculate a y-intercept for each measured value in a dataset using an overall regression slope that 
was calculated from the entire data set – and which also yields an overall regression intercept. To be honest, 
this seems akin to data fabrication to me, but I can settle on the gentler view of Heimsath and Whipple that 
it is really just of a crude way to estimate the uncertainty in the intercept. Next, the author follows a rather 
stilted approach to quantifying the relationship between P0 and D and A. I personally think it should be P 
versus D, A and h, thus recognizing h as a factor regulating P and avoiding the problem of getting just two 
P0 values from 57 values of P. In addition, I think the author missed an opportunity to perform a very 
standard multiple regression analysis on log-transformed variables and instead opted or a multi stage 
approach that undoubtedly underestimates errors and fails to produce vital outputs like leverage plots and 
partial regression coefficients which would help the audience gauge the relative importance of the different 
factors in the regression. In addition, there is no attempt to propagate uncertainties through any of this. This 
is a major oversight that needs to be fixed. Last and not least, the author also thinks it is ok to use the 
significance of Rˆ2 for the relationship between predicted and observed values to judge the performance of 
his model. In the hydrology community that idea has been rejected for nearly half a century. I am very 
concerned about the strength of the analyses for these reasons. 

Response: The reviewer is correct that it is more accurate to define a threshold false positive rate (typically 
0.05) and then compare the p value to this threshold to determine whether the null hypothesis is accepted 
or rejected. I have rephrased my discussion of statistical significance accordingly in the revision. An 
example from the proposed revision is as follows: “Assuming a significance level of 0.05, the null 
hypothesis that the cluster of blue points has a mean that is indistinguishable from that of the remaining 
points with Sav > 30° can be rejected based on the standard t test with unequal variances (t = 0.021).”   

The reviewer’s claim that computing residuals is “akin to data fabrication” is troubling. Given that even a 
whiff of fabrication can ruin a scientist’s career, this is language that, if taken out of context, could be very 
damaging. I am stunned that anyone would invoke this charge on a fellow scientist in an open review 
without any evidence of actual fabrication.  

Comment: 2.10. I see that Heimsath and Whipple have provided a review of the manuscript and will defer 
to them as experts on evaluating this paragraph as a motivating theme for the paper. They did not call 
attention to any problems here. However, as I read line 21 on this page, I guess I have to say that this was 
not the take home message I got from Heimsath et al., 2012. Higher frequency of disturbance? 

Response: “… a greater frequency of disturbance for a given soil thickness” is a defining phrase in the 
concluding paragraph of Heimsath et al. (2012). As such, I think it is appropriate to include it in a review 
of the relevant literature. However, I have rephrased this text as follows: “Heimsath et al. (2012) concluded 
that high erosion rates, triggered by high tectonic uplift rates and the resulting steep topography, cause 
potential soil production rates to increase above any limit set by climate and bedrock characteristics. Their 
results challenge the traditional view that P_0 values are controlled solely by climate and rock 
characteristics.”   

Comment: 3.6-3.10. This study seems to hang a lot of its motivation on the unsupported idea that aspect 
promotes differences in vegetation which in turn promote differences in fire that promote differences in 
weathering in the SGM area. See general comment above. 



Response: Text removed.  

Comment: 4.11. I think I understand what the author is trying to do here (correct the measured P0 for the 
hump in the SPF), but on reading this, I am confused. You used 1.78P for P0? Not 1.78P0? The way I want 
to read it is the author is correcting the "measured" P0 – which is inferred from the exponential function to 
the data – by some correction factor. But again, I am confused by this statement. 

Response: A humped production function means that the maximum or potential soil production rate is 
higher than the P value measured on bare ground. Hence P_0, defined as the maximum soil production rate 
at a point, has to be higher than P for these four cases. As explained in the paper, the data suggest that the 
factor increase is 1.78. Hence P_0 = 1.78P. I don’t see how P0=1.78P0 could possibly be an alternative way 
of estimating P0, as the reviewer suggests. 

Comment: 4.12. "This modification of equation (1) affects 4 of the 57 data points." This would only be 
comforting if there was actually a very strong trend across all the data. Instead, it seems that the data form 
really loose clouds of correlations that are hinged entirely on a few points. So the fact that this affects 4 of 
the points is actually troubling – not comforting – to me. 

Response: Text removed.  

Comment: 5.3. This equation does not include the fault specific constant of Savage and Brodsky. So I think 
this assumes that the constant is the same across the study area. Is this justified? Also, to make D 
dimensionless wouldn’t delta x need to be raised to the 0.8 power too? 

Response: Savage and Brodsky found no relationship between the fault specific constant and fault 
displacement (which correlates strongly with fault length). That is, there was variation from fault to fault 
in terms of their effect on fracture density in nearby rocks, but no systematic variations that one could use 
in a predictive equation. They stated “When we plot the entire data set shown in Figure 5, there is no clear 
relationship between c (the fault-specific constant) and displacement”). Savage and Brodsky did propose a 
weak pattern for faults in siliciclastic rocks, which is clearly not relevant for SGM.  

Regarding the units of D, I have thought about this more and run some tests to determine how D should be 
defined so that the results are most nearly independent of grid resolution. I have found that D should not be 
dimensionless but should have units of length since it represents the total length of fault segments in a 
region (albeit weighted by an inverse power-law function of distance). The proposed revision addresses this 
point as follows: “I define the bedrock damage index D (Fig. 5A) as the sum of the inverse distances, raised 
to an exponent 0.8, from the point where the D value is being computed to every pixel in the study area 
were a fault is located: 

   𝐷𝐷 = ∑ ∆𝑥𝑥 �∆𝑥𝑥/ 'xx − �
0.8

𝐱𝐱′         (6) 
where Δx is the pixel width, x is the map location where bedrock damage is being computed, and x’ is the 
location of each mapped pixel in SGM where a fault exists. D has units of length since it is the sum of all 
fault lengths in the vicinity of a point, weighted by a power-law function of inverse distance.” 

Comment: 5.10. ***This is very important.*** The line plotted in Fig. 3A is a log-log regression that 
ignores the cluster of five data points circled in the figure. There is NO justification for ignoring these 
points!!! He says in line 5.20 that they occur in an area of unusually dense landslides. I do not see this in 
figure 1!!! Even if I did, it would not justify excluding them from the analysis. Heimsath and Whipple seem 
to agree. I think it is complete nonsense. Makes the line look steeper than is should be. Sweeping these 
points under the rug does not make them go away. Including them in the regression would undermines his 



story that D plays a "subequal" role with tectonics. It not only looks suspicious. It is suspicious. Author 
needs to HONOR the data in this study and in his other work and not try to sweep data points away like 
this. 

Response: The line plotted in Figure 3A was the linear trend predicted by a simultaneous multivariate 
regression of P_0 to D and A that included all of the data points. My discussion of these 5 points was limited 
to a thought exercise in which I reported p values of the relationship between P_0 and D with and without 
these points included. That thought exercise did not extend to the multivariate regression or any other part 
of the paper. I made it clear in my Sept 25 response to Heimsath and Whipple that any mention of the cluster 
of five points would be removed from the proposed revision.  

Comment: 6.10. I do not understand why the correlation would shut off on north-facing slopes. Is there a 
mechanistic/theoretical basis for this? If not than the relationship is purely empirical. 

Response: My reanalysis of the data shows that, contrary to my ESurfD paper, the null hypothesis that P_0 
values are independent of slope aspect cannot be rejected. In my earlier analysis I extracted slope aspect 
using the location data provided by Heimsath et al. (2012), which identify sample locations to an accuracy 
of approximately 10-30 m. Ten of the sample locations were ridgetops where the local slope is zero and 
slope aspect should be undefined. However, my initial extraction routine did not account for the local slope, 
hence my routine returned a slope aspect close to directly south- or directly north-facing for some of these 
ridgetop samples. When the data are reanalyzed to include only areas that are not ridgetops, P_0 values are 
slightly higher, on average, on south-facing slopes, but the null hypothesis that P_0 values are independent 
of slope aspect cannot be rejected. All of the discussion of aspect has therefore been removed from the 
proposed revision. 

Comment: 6.20. Some more non-standard statistical machinations. The author does a regression that 
suggests that the power law exponents of A and D are 1.1 +/- some error. Then he reanalyzes things 
assuming that they are 1 to determine the value of c – the constant in front of A and D in Eq. 2. I am at a 
loss here. I know the author to be very bright and competent quantitatively. Yet here he invoking using 
some unnecessary, non-standard, and potentially misleading steps to avoid what would be a fairly 
straightforward multiple regression analysis of all of the parameters (slopes and intercepts) implied by a 
power law formulation of Equation 2. Doing this in a more standard way would yield some very useful 
metrics like partial correlation coefficients and leverage plots. Perhaps his approach seemed easier to 
explain at the time he wrote it. But I would argue that the community deserves and expects more. 

Response: When a power-law relationship has an exponent of 1.1 +/- 0.3, I think it is appropriate to assume 
a linear relationship for simplicity (since 1.1 and 1.0 are indistinguishable, within uncertainty). However, 
this text has been removed as it is no longer included in the revised analysis. 

Comment: 7.1-7.2. This is actually not a very good correlation for predicted versus observed – especially 
since it is strangely for a log-log plot. To understand this, look at the plot. There is almost an order of 
magnitude of variation in predicted P0 at any given value of P measured. To evaluate this model, rather 
than see an Rˆ2 for a log-log observed versus predicted plot, I think we need to see something like a Nash-
Sutcliffe statistic, which would tell us how good the model is compared to simply assuming that we could 
use the average P measured to estimate P everywhere. 

Response: As I have already noted, the Nash-Sutcliffe statistic does not apply to regression models, and I 
have provided the closest analogous statistic (R^2). I don’t know what the reviewer means by a “strange” 
log-log plot. When plotting data that have a large positive skew, it is common to plot log-log simply so that 



the points that would otherwise cluster in the lower left corner of a linear-linear scale can be resolved in the 
graph.  

Comment: 7.5 What are the assumptions inherent in simplifying the equations in this way? Simply citing 
off to previous work here is not sufficient. What are the assumptions inherent in doing this? For equation 6 
you assume slopes are planar, right? Is that reasonable here? What are the limitations of removing the higher 
order terms of Roering et al.? 

Response: I have clarified the assumption as follows: “Equation (8) assumes that the mean slope gradient 
at the base of hillslopes (where sediment leaves the slope) can be approximated by the average slope, Sav.” 
Roering et al. proposed that sediment flux is proportional to slope with a one minus slope squared term in 
the denominator. If the divergence of the flux is computed, the result is a complex expression with higher-
order terms, but I am using the same equation Roering et al. proposed for flux. I am happy to clarify further 
but I would need more information from the reviewer to do so.    

Comment: 7.19. Why 0.03? Just because this is the minimum finite thickness measured? But the whole 
point is they have no thickness!!! The mathematical inconvenience of having a value of 0 on what you want 
to plot on a log scale does not justify making up a value that ***drives*** a regression that you then plot 
through the data. Importantly it is very true that these points have a lot of leverage on the regression. Since 
calculating understanding the relationship between h and S is vital to calculating E from topography, this 
ends up being key to the paper. And I really do not think it is well justified. 

Response: These locations have no thickness today but must have episodically had soil in the past or else 
they would never erode (absent landsliding in bedrock or intact regolith, which can certainly occur but are 
not widespread in granitic rocks). It is common practice to add a small constant (comparable to the 
uncertainty of the data) prior to performing a linear regression of log-transformed data. I don’t think the 
alternative (leaving out these values entirely from the analysis, thereby biasing the results to those with 
finite soil thickness) is a better choice. If the reviewer would please provide a suggestion as to how these 
data could be included in a way that would satisfy him, I would be willing to try whatever alternative he 
proposes.  

Comment: 9.8. If this is the key result, then you need to demonstrate it using more conventional statistical 
approaches. A multiple linear regression of the log of P versus log D and h and log A would be a good place 
to start. This would avoid the strange – and thus hard-to-justify – correction of P to P0 that you have 
employed here. It would also avoid the strange practice of finding a 1.1 +/- error power slope and then 
redoing the regression assuming the slopes are 1 to find the best fit intercept term. This whole analysis 
seemed like a contorted and potentially error-prone way of doing what could have been a textbook 
application of multiple linear regression analysis on transformed variables. 

Response: In the proposed revision I have used conventional statistical approaches throughout.  

Comment: 10.12. This is misleading at best. I see a factor of 2 to 3 in either direction, so a factor of 4 to 6 
overall. For example, in Fig 3D, at a value of P0 observed of _150 m/My I see a range of predicted values 
running from 85 to 450 m/My. That’s a factor of nearly 6 range in predictions for a single value of P 
observed. That is NOT a good prediction in my book and my assertion is asserted by the very low N-S 
statistic for this modeling exercise. 

Response: The sentence is correct as stated. When saying that a prediction is correct to within a factor of 2 
from the observed value for 72% of the data points, that includes differences both above and below the 



prediction (resulting in a factor of 4 difference between the max and min predictions at a given observed 
value of P_0). However, I have removed the sentence because it is not central to the argument.  

Reviewer 3 (Simon Mudd): 

Comment: In this paper Jon Pelletier has used the dataset from Heimsath et al 2012 to explore controls on 
soil production. In the original paper, Heimsath and colleagues argued that rapid erosion rates could affect 
the P0 term in the soil production function. The obvious follow on question is: by what mechanisms does 
erosion rate modulate P0? As stated by Heimsath and Whipple’s comment (doi:10.5194/esurf-2016-37), 
the original 2012 paper did not mechanistically explain observed trends. So, does Pelletier’s paper give 
insight into the mechanisms? Firstly we can look at the damage indicator. I found this interesting since 
many authors have speculated on the role of fracturing in controlling weathering rates, and the 
implementation of equation (3) is a novel attempt to translate mapped faults into a metric for fracture density 
using results from detailed field studies. To compare this metric with soil production, Pelletier calculates 
P0 from every data point by regressing the soil production function, using a slope of h0 previously regressed 
in the Heimsath et al paper, to its h = 0 intercept. To do this, one must assume that the individual P0 results 
are meaningful and not simply the results of scatter in the data due to local heterogeneities in shielding and 
erosion history; Heimsath and Whipple feel this unwise, a point I will revisit later in this comment. However 
once Pelletier follows this thread he finds a weak correlation between the D metric and P0;regressed data 
(I’m not sure if I’d be so bold as to call it measured). One can explain 

Response: Simon’s point seems to end abruptly. However, I gather from his comments that he is somewhat 
convinced that a statistically significant relationship exists between P_0 values and D values. In the 
proposed revision, this point the model has been modified to be based on the topographically induced stress 
hypothesis.  

Comment: What about aspect? There are a few rather high P0;regressed values for south facing slopes. Of 
the 11 points with P0;regressed values greater than 300 m/Myr, 8 of them are on south facing slopes. But 
there are also a large number of points on south facing slopes that don’t have P0 values that are higher than 
the mean P0 value. The model combining topographic gradient and aspect again shows a correlation 
between it and the P0 values, this time explaining 

Response: The revised analysis has demonstrated that aspect is not statistically significant. In the ESurfD 
paper I extracted slope aspect using the location data provided by Heimsath et al. (2012). Ten of the sample 
locations were ridgetops where the local slope is zero and slope aspect is undefined. When the data were 
reanalyzed to include only areas that were not ridgetops, P_0 values are slightly higher, on average, on 
south-facing slopes, but the null hypothesis that P_0 values are independent of slope aspect cannot be ruled 
out. The revised analysis is focused on average slope and climatic controls on P_0 values. I apologize for 
making more work for the reviewers with this major change to the manuscript, but I believe that the revised 
paper makes a convincing case.      

Comment: I am somewhat confused by section 2.2. It seems strange to generate a map of steepness and 
from that calculate the spatial distribution of h and E. Global topographic maps are readily available so why 
calculate S from equation (8), which contains many assumptions, rather than just use topographic data? It 
also seems quite odd to use equation (7) since theory suggests that for a given erosion rate and P0, hillslope-
scale gradient will vary as a function of hillslope length. More explanation of these choices is warranted. 

Response: The purpose of section 2.2 is to model demonstrate that a model based on a combination of soil 
production functions and nonlinear slope-dependent sediment flux can reproduce the observed spatial 
variations and interrelationships among geomorphic and pedogenic variables in the SGM. I think the full 



power of the model is not clear until it can be shown to reproduce the full suite of variables across the range. 
This requires that slope be modeled first, then compared to an independent dataset. Equations (6)-(8) 
includes all the variables mentioned, (hillslope length, hillslope-scale gradient, erosion rate, and P_0), so I 
think the model is consistent with the theory Simon is referring to. In the proposed revision section 2.2 is 
motivated using the following text: “In this section I invoke a balance between soil production and transport 
at the hillslope scale in order to illustrate the interrelationships among potential soil production rates, 
erosion rates, soil thicknesses, and average slopes across the SGM. The conceptual model explored in this 
section is based on the hypothesis that the average slope depends on the difference between uplift and 
erosion rates. Uplift rates (assumed to be equal to exhumation rates) are lower in the western portion of the 
SGM and higher in the eastern portion (Spotila et al., 2002, Fig. 7b). As average slope increases in areas 
with higher uplift rates, erosion rates increase and soils become thinner. Both of these responses represent 
negative feedback mechanisms that tend to decrease the differences that would otherwise exist between 
uplift and erosion rates and between erosion rates and soil production rates. If the uplift rate exceeds the 
potential soil production rate, soil thickness becomes zero and soil production and erosion rates can no 
longer increase with increasing slope (in the absence of widespread landsliding in bedrock or intact 
regolith). In such cases, topography with cliffs or steps may form (Wahrhaftig, 1965; Pelletier and 
Rasmussen, 2009; Jessup et al., 2010). However, if the potential soil production rate increases with average 
slope via the topographically induced stress fracture opening process, the transition to bare landscapes can 
be delayed or prevented, thus representing an additional negative feedback or adjustment mechanism 
(Heimsath et al., 2012). At the highest elevations of the range, however, soil production is slower, most 
likely due to temperature limitations on vegetation growth since the slopes there are among the steepest in 
the range. The interrelationship between these variables can be quantified without explicit knowledge of 
the uplift rate, since the relationship between soil thickness and average slope implicitly accounts for uplift 
rate (i.e., a smaller difference between uplift and erosion rates is characterized by a thinner soil). This 
conceptual model predicts positive correlations among potential soil production rates, erosion rates, and 
topographic steepness, and negative correlations of all of these variables with soil thickness.”       

Comment: It is worth commenting on the use of scatter in soil production data to regress P0 values for 
individual samples. Because these numbers were collected at specific points in the landscape (i.e., they are 
not basin-averaged data), one must consider if the local sources of scatter. Suppose one measured 10 P 
values in close proximity (e.g., in a 15 m radius): how variable would those P values be? We don’t actually 
know how representative the P values are on a local scale, but we know soil thickness can have quite a bit 
of local variability, chemical weathering can have substantial local variability, and you can have substantial 
local variability in the production of 10Be (from where snow falls, any transience in erosion history, etc.). 
So I do not think Heimsath and Whipple’s concern about interpreting the P0 values is unwarranted: I share 
this concern. So, in summary, I am worried that the potential uncertainties in P values makes it difficult to 
come to strong conclusions about influences of other factors on P0, that even if you believe the P0 values 
are representative the correlation with D is rather weak, and that I do not feel the effects of aspect have 
been sufficiently separated from gradient effects. 

Response: I agree with Simon that some variability in P or P_0 values is due to methodological uncertainty 
such as snow shielding, etc. I also agree that, if that variability were dominant it would be dangerous to 
attempt to interpret P_0 values (because, for example, snow shielding varies with aspect and hence a 
methodological bias could be misinterpreted as an aspect control on soil production processes). However, 
I don’t think that errors associated with the methodology are anywhere close to the order-of-magnitude 
variations in P_0 values observed in the data.   

Tracked changes: 
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Abstract. Discerning how tectonic uplift rates, climate, soil production rates, erosion rates, and 
topography interact is essential for understanding the geomorphic evolution of mountain ranges. 
Perhaps the key independent variable in this interaction is the potential soil production rateThe 
potential soil production rate, i.e., the upper limit at which bedrock can be converted into transportable 
material. In this paper I document the controls on potential soil production rates using, limits how fast 
erosion can occur in mountain ranges in the absence of widespread landsliding in bedrock or intact 
regolith. Traditionally, the potential soil production rate has been considered to be solely dependent on 
climate and rock characteristics. Data from the San Gabriel Mountains (SGM) of California as a case 
study. The prevailing conceptual model for the geomorphic evolution of the SGM is that tectonic uplift 
rates control , however, suggest that topographic steepness, erosion rates, and  may also influence 
potential soil production rates. In this paper I test the alternative hypothesis that bedrock damage and 
microclimate also exert first-order controls on landscape evolution in the SGM via their influence on 
potential soil production rates.topographically induced stress opening of pre-existing fractures in the 
bedrock or intact regolith beneath hillslopes of the San Gabriel Mountains increases potential soil 
production rates in steep portions of the range. A mathematical model for this process predicts a 
relationship between potential soil production rates and average slope consistent with published data. 
Once the effects of average slope are accounted for, evidence that temperature limits soil production 
rates at the highest elevations of the range can also be detected. These results confirm that climate and 
rock characteristics control potential soil production rates, but that the porosity of bedrock or intact 
regolith can evolve with topographic steepness in a way that enhances the persistence of soil cover in 
compressive-stress environments. I develop an empirical equation that relates potential soil production 
rates in the SGM to a bedrock damageSan Gabriel Mountains to the average slope and a climatic index 
that depends on the local density of faults and a microclimatic index that relates to aspect-driven 
variations in vegetation cover and wildfire severity and frequency.accounts for temperature limitations 
on soil production rates at high elevations. Assuming a balance between soil production and erosion 
rates at the hillslope scale, I further show that observed trends in topographic steepness can be 
reproduced usingillustrate the empirical equation forinterrelationships among potential soil production 
rates. The results suggest that tectonic uplift, soil thickness, erosion rates, bedrock damage, and 
microclimate play co-equaltopographic steepness that result from the feedbacks among geomorphic, 
geophysical, and interacting roles in controlling landscape evolution in the SGM and perhaps other 
tectonically active mountain ranges. pedogenic processes in the San Gabriel Mountains.  
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1 Introduction 

  The potential soil production rate (denoted herein by P0) is the highest rate, achieved 

when soil cover is thin or absent, that bedrock or intact regolith can be converted into transportable 

material at each point on Earth’s surface. P0 values are the rate-limiting step for erosion in areas where 

landsliding in bedrock or intact regolith is not widespread, because soil must be produced before it can be 

eroded. Slope failure in bedrock or intact regolith is common in some fine-grained sedimentary rocks 

(e.g., Griffiths et al., 2004; Roering et al., 2005) but relatively uncommon in granitic . rock types.  

Despite its fundamental importance, the geomorphic community has no widely accepted 

conceptual or mathematical model for potential soil production rates. Pelletier and Rasmussen (2009) 

took an initial step towards developing such a model for potential soil production rates by relating P0 

values fromin granitic landscapes to mean annual precipitation and temperature values. The goal of this 

model was to quantify how water availability and vegetation cover control the potential soil production 

rate across the extremes of Earth’s climate. The Pelletier and Rasmussen (2009) model predicts P0 values 

consistent with those reported in the literature from semi-arid climates, where P0 values typically range 

from ~30-300 m/Myr. In humid climates, the Pelletier and Rasmussen (2009) model predicts P0 values 

greater than 1000 m/Myr (Fig. 2A of Pelletier and Rasmussen, 2009), which). This is broadly consistent 

with measured soil production rates of up to 2500 m/Myr in the Southern Alps of New Zealand where 

the mean annual precipitation (MAP) exceeds 10 m (Larsen et al., 2014). The Pelletier and Rasmussen 

(2009) model was a useful first step, but clearly not all granites are the same. In particular, variations in 

mineralogy (Hahm et al., 2014) and bedrock fracture density (Goodfellow et al., 2014) can result in large 

variations in soil production rates in granites of the same climate. This study seeks to test the hypothesis 



that P0 values are controlled by bedrock damage and microclimate, and to explore how spatial variations 

in P0 values drive variations in erosion rates and topographic steepness. within the same climate.  

  The San Gabriel Mountains (SGM) of California (Fig. 1) have been the focus of many studies of 

the relationships among tectonic uplift rates, climate, geology, topography, and erosion (e.g., Lifton and 

Chase, 1992; Spotila et al., 2002; DiBiase et al., 2010; 2012; DiBiase and Whipple, 2011; Heimsath et al., 

2012; Dixon et al., 2012). These studies take advantage of a significant west-to-east gradient in 

exhumation rates in this range. What controls this gradient is debated. Spotila et al. (2002) documented 

close associations among exhumation rates, mean annual precipitation (MAP) rates, and the locations 

and densities of active tectonic structures. Mean annual precipitation (MAP) rates vary by a factor of 

two across the elevation gradient and exhibit a strong correlation with exhumation rates (Spotila et al., 

2002, their Fig. 10). Spotila et al. Lithology, which varies substantially across the range (Fig. 1), also 

controls exhumation rates. Spotila et al. (2002) demonstrated that exhumation rates are lower, on 

average, in rocks relatively resistant to weathering (i.e., granite, gabbro, anorthosite, and intrusive 

rocks) compared to the less resistant schists and gneisses of the range (Spotila et al., 2002, their Fig. 9). 

This lithologic control on long-term erosion rates can control drainage evolution. For example, Spotila et 

al. (2002) concluded that the San Gabriel River has exploited the weak Pelona Schist to form a rugged 

canyon between ridges capped by more resistant Cretaceous granodiorite (e.g., Mount Baden Powell). 

Spotila et al. (2002) concluded that landscape evolution in the SGM was controlled by a combination of 

tectonics, climate, and bedrockrock characteristics.  

  Heimsath et al. (2012) presented an alternative view based on provided a millennial-time-scale 

soil production and erosion rates. Heimsath et al. (2012)perspective on the geomorphic evolution of the 

SGM. These authors demonstrated that soil production rates (P) and erosion rates (E) in rapidly eroding 

portions of the SGM greatly exceed P0 values in slowly eroding portions of the range. Assuming that 

climate and lithology are similar throughout the SGM, Heimsath et al. (2012) concluded that high 



erosion rates, triggered by high tectonic uplift rates and the resulting steep topography, cause potential 

soil production rates to increase, via a higher frequency of disturbance for a given soil thickness, above 

any limit set by climate and bedrock characteristics. Their results challenge the traditional view that P0 

values are controlled solely by climate and rock characteristics.   

  Climate, lithology, and local fault density (which controls bedrock fracture density) vary greatly 

in the SGM (Fig. 1), however, with potentially important implications for potential soil production rates. 

Bedrock fracture density, which controls the rate of bedrock breakdown into transportable material 

(e.g., Molnar et al., 2004; Koons et al., 2012; Goodfellow et al., 2014), varies inversely with distance to 

individual faults and directly with fault density in the SGM (Chester et al., 2005; Savage and Brodsky, 

2011). As such, it is reasonable to hypothesize that P0 values are higher in the eastern and southern 

portions of the SGM in part because local fault density, and hence bedrock fracture density, is higher 

there.   Recent research, stimulated by shallow seismic refraction and drilling campaigns, has 

documented the importance of topographically induced stresses on the development of new fractures 

(and the opening of pre-existing fractures) in bedrock or intact regolith beneath hillslopes and valleys 

(e.g. Miller and Dunne, 1996; Martel, 2006; 2011; Slim et al., 2014; St. Clair et al., 2015). In this process, 

the bulk porosity of bedrock and intact regolith evolves with topographic ruggedness (i.e., topographic 

slope and/or curvature). In a compressive stress environment, topographically induced stresses can 

result in lower compressive stresses, or even tensile stresses, in rocks beneath hillslopes. As an elastic 

solid is compressed, surface rocks undergo outer-arc stretching where the surface is convex-outward 

(i.e., on hillslopes), reducing the horizontal compressive stress near the surface and eventually inducing 

tensile stress in areas of sufficient ruggedness. Such stresses can generate new fractures or open pre-

existing fractures in the bedrock or intact regolith, allowing potential soil production rates to increase. In 

this paper I test whether potential soil production rates estimated using the data of Heimsath et al. 

(2012) are consistent with the topographically induced stress fracture opening hypothesis in the SGM. 



This hypothesis predicts a relationship between P0 values and average slope that is consistent with the 

data of Heimsath et al. (2012). Once the effects of average slope are accounted for, I test the 

hypotheses that climate, lithology, and local fault density also influence P0 values. I then use the 

resulting empirical model for P0 values to map the spatial variations in potential soil production rates, 

soil thickness, erosion rates, and topographic steepness across the range in order to illustrate the 

interrelationships among these variables.    

Mean annual precipitation (MAP) rates vary by a factor of two across the elevation gradient and 

exhibit a strong correlation with exhumation rates (Spotila et al., 2002, Fig. 10). In addition to this range-

scale climate variation, slope aspect variations create microclimates in which vegetation cover and 

wildfire severity and frequency vary. Many steep, south-facing slopes of the SGM, for example, are 

chaparral shrublands (Holland, 1986) that are prone to frequent, high-severity wildfires (Keeley and 

Zedler, 2009) that these plant communities have evolved to use as a seed germination mechanism 

(Keeley, 1987). More wildfire-prone hillslopes experience faster rates of rock weathering compared to 

less wildfire-prone hillslopes (Blackwelder, 1927; Goudie et al., 1992; Dorn, 2003; Shtober-Zisu et al., 

2010). In this paper I test the hypothesis that bedrock damage and microclimate exert first-order 

controls on potential soil production rates in the SGM. Further, I quantify the implications of this control 

on erosion rates and topographic steepness.  

   

2 Data analysis and mathematical modeling 

2.1 A model forControls on potential soil production rates in the SGM  

 Soil buffers the underlying bedrock or intact regolith from physical weathering processes. P0 

values are a natural place to begin quantifying the coupled soil production-erosion system because they 

do not depend on soil thickness and its controlling factors; hence, they isolate the effects, if present, of 



environmental factors (e.g., water availability, vegetation cover, wildfire severity and frequency) and 

material factors (e.g., bedrock fracture density and lithology/mineralogy) that influence soil production 

rates. Moreover, P0 values are the rate-limiting step for erosion in areas where deep-seated bedrock 

landsliding is not a dominant process. Slope failure in bedrock or intact regolith is common in fine-

grained sedimentary rocks (e.g.,   P0 values for the SGM can be estimated using the residuals obtained 

from the regression of soil production rates to soil thicknesses reported by Heimsath et al. (2012) (their 

Fig. 3). The exponential form of the soil production function quantifies the decrease in soil production 

rates with increasing soil thickness:  

  𝑃𝑃 = 𝑃𝑃0𝑒𝑒−ℎ ℎ0⁄ ,           (1)  

where Griffiths et al., 2004; Roering et al., 2005) but relatively uncommon in granitic terrain such as the 

SGM.  

 I calculated P0 values (Supplementary Table 1) from the cosmogenically derived P values of 

Heimsath et al. (2012) using the exponential form of the soil production function: 

  0/
meas0, e hhPP =             (1) 

where P0,meas refers to values inferred from measurements of P, h is soil thickness, and h0 is a length scale 

quantifying the relative decrease in soil production rates for each unit increase in soil thickness. Heimsath 

et al. (2012) obtained h0 = 0.32 m for locations with S ≤ an average slope, Sav, of less than or equal to 30° 

and h0 = 0.37 m for locations with SSav > 30° based on °. Sav is defined by Heimsath et al. (2012) as the 

average slope over hillslopes adjacent to each sample location. P0 values (Supplementary Table 1) can be 

estimated as the residuals obtained by dividing P values by the regressions reported in Figure 

3exponential term in equation (1):  

  𝑃𝑃0,resid = 𝑃𝑃𝑒𝑒ℎ 0.32 m⁄   if  𝑆𝑆av ≤ 30°
𝑃𝑃𝑒𝑒ℎ 0.37 m⁄   if  𝑆𝑆av > 30°

.       

 (2)  



where P0,resid denotes P0 values estimated using the residuals of the regression. Note that equation (2) is 

equivalent to subtracting the logarithms of the exponential term from the logarithms of P values, since 

division is equivalent to subtraction under log transformation. Log transformation is appropriate in this 

case because P values are positive and positively skewed (i.e., there are many P values in the range of 50-

200 m/Myr and a smaller number of values in the range of 200-600 m/Myr that would be heavily 

weighted in the analysis if the data were not log-transformed). P0,resid values estimated from equation (2) 

increase, on average, with increasing Sav (Fig. 2A). P0,resid values exhibit an abrupt increase at an Sav of 

approximately 30°.  

Heimsath et al. (2012). Heimsath et al. (2012) did not include data points from locations with 

nowithout soil cover in their regressions because these data points appear (especially for areas with SSav > 

30°) to fit below the trend of equation (1). This implies that a humped production function may be at 

work in some portions of the SGM. The mean value of P from areas with SSav ≤ 30° that lack soil cover is 

183 m/Myr, i.e., slightly higher than, but within 2σ uncertainty of, the 170 ± 10 m/Myr value expected 

based on the exponential soil production function fit by Heimsath et al. (2012). As such, it appearsthe 

evidence indicates that for areas with SSav ≤ 30°, data from locations with and without soil cover are both 

consistent with an exponential soil production function. The mean value of P from areas with SSav > 30° 

that lack soil cover is 207 m/Myr, i.e., significantly lower than the 370 ± 40 m/Myr expected based on the 

exponential soil production function. This suggests that a hump may exist in the soil production function 

for steep (SSav > 30°) slopes as they transition to a bare (no soil cover) condition. To account for this, I 

estimated P0 to be equal to 1.78P (i.e., the ratio of 370 to 207) at locations with SSav > 30° that lack soil 

cover. This modification of equation (1) affects 4 of the 57 data points.      

 The SGM has horizontal compressive stresses of ~10 MPa in an approximately N-S direction at 

depths of less than a few hundred meters (e.g., Sbar et al., 1979; Zoback et al., 1980; Yang and Hauksson, 

2013). The development of rugged topography can lead to topographically induced fracturing of bedrock 

and/or opening of pre-existing fractures in compressive-stress environments (e.g., Miller and Dunne, 



1996; Martel, 2006; Slim et al., 2014; St. Clair et al., 2015). Given the pervasively fractured nature of 

bedrock in the SGM (e.g., Dibiase et al., 2015), I assume that changes in the stress state of bedrock or 

intact regolith beneath hillslopes leads to the opening of pre-existing fractures (i.e., an increase in the bulk 

porosity of bedrock or intact regolith) rather than the fracturing of intact rock. I adopt the analytic 

solutions of Savage and Swolfs (1986), who solved for the topographic modification of regional 

compressive stresses beneath ridges and valleys oriented perpendicular to the most compressive stress 

direction. Savage and Swolfs (1986) demonstrated that the horizontal stress (σxx) in bedrock or intact 

regolith becomes less compressive under ridges as the slope increases (Fig. 3). In landscapes with a 

maximum slope larger than 45˚ (equivalent to an average slope of approximately 27˚ or atan(0.5) in the 

mathematical framework of Savage and Swolfs, 1986), bedrock or intact regolith that would otherwise be 

in compression develops tensile stresses close to the surface beneath hillslopes (Fig. 3A). An average 

slope of 27˚ is close to the threshold value of 30˚ that Heimsath et al. (2012) identified as representing the 

transition from low to high P0 values in the SGM. Therefore, the abrupt increase in P0,resid values at 

approximately 30˚ is consistent with a transition from compression to tension in bedrock or intact regolith 

beneath hillslopes of the SGM. In addition to this sign change in the horizontal stress state in the rocks 

beneath hillslopes of the SGM, the Savage and Swolfs (1986) model predicts a gradual decline in 

horizontal compressive stress as Sav increases between 0 and approximately 27˚ (Fig. 3B): 

  
σ𝑥𝑥𝑥𝑥
𝑁𝑁1

= 2−4𝑆𝑆av
(2+4𝑆𝑆av)(1+4𝑆𝑆av)

         (3)  

where N1 is the regional maximum compressive stress and Sav has units of m/m in equation (3). Equation 

(3) is simply equation (36) of Savage and Swolfs (1986) expressed in terms of the average slope from the 

drainage divide to the location of maximum slope rather than the shape parameter b/a used by Savage 

and Swolfs (1986). Note that the tangent of the slope angle (units of m/m) is averaged to obtain Sav in all 

cases in this paper. However, after this averaging Sav is reported in degrees in some cases to facilitate 

comparison with the results of Heimsath et al. (2012).   



 Figure 3 illustrates the effects of topography on tectonic stresses only. Gravitational stresses can 

be included in the model by superposing the analytic solutions of Savage and Swolfs (1986) (their 

equations (34) and (35)) with the solutions of Savage et al. (1985) for the effects of topography on 

gravitational stresses (their equations (39) and (40)). The result is a three-dimensional phase space of 

solutions corresponding to different values of the regional tectonic stress N1, the characteristic 

gravitational stress ρgb (where ρ is the density of rock, g is the acceleration due to gravity, and b is the 

ridge height), and the Poisson ratio μ. The effects of including gravitational stresses are (1) to increase the 

compression at depth via the lithostatic term (at soil depths this corresponds to an addition of ~10 kPa, 

which is negligible compared to the regional compressive stress of ~10 MPa in the SGM), and 2) to 

increase the compressive stresses near the point of inflection on hillslopes (e.g., Fig.  P0 values 

estimated in this way can be modeled using the product of a coefficient c1 (units of m/Myr) and 

dimensionless indices related to bedrock damage, D, and microclimate, A: 

  ADcP ⋅⋅= 1pred,0             (2) 

where P0,pred refers to model predictions of P0. The mathematical form of equation (2) honors trends 

between P0,meas and the bedrock damage and microclimatic indices documented below. 

 The bedrock damage index D is based on the concept that soil production rates2a of Savage et al., 

1985). These modifications do not alter the first-order behavior illustrated in Figure 3 for rocks close to 

the surface that are not close to hollows or other points of inflection. Section 3 provides additional 

discussion of the assumptions and alternative approaches to modeling topographically induced stresses.  

The fit of the solid curve in Figure 2A to P0,resid values is based on equation (3), together with an 

assumption that the transition from compressive to tensile stresses triggers an step increase in P0,resid 

values over a small range of Sav values in the vicinity of the transition from compression to tension: 



  𝑃𝑃0,𝑆𝑆 =

𝑃𝑃0,𝑙𝑙 �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�   if  𝑆𝑆av ≤ 𝑆𝑆𝑙𝑙

𝑃𝑃0,ℎ �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�   if  𝑆𝑆av > 𝑆𝑆ℎ

 �𝑃𝑃0,𝑙𝑙 + �𝑃𝑃0,ℎ − 𝑃𝑃0,𝑙𝑙�
𝑆𝑆av−𝑆𝑆l
𝑆𝑆h−𝑆𝑆l

� �1 − σ𝑥𝑥𝑥𝑥
𝑁𝑁1
�  if  𝑆𝑆𝑙𝑙 ≤ 𝑆𝑆av < 𝑆𝑆ℎ

   

 (4)  

where P0,S denotes the model for the dependence of P0 values on Sav, P0,l  and P0,h are coefficients defining 

the low and high values of P0, and Sl and Sh are the average slopes defining the range over which P0 

values increase from low to high values across the transition from compression to tension. P0,l  and P0,h 

were determined to be 170 m/Myr and 500 m/Myr based on least-squares minimization to the data (data 

from elevations above 2300 m were excluded because of the climatic influence described below). Sl and 

Sh were chosen to be 30˚ and 32˚, respectively, to characterize the abrupt increase in P0 values in the 

vicinity of 30˚.  

 In addition to the average slope control associated with the topographically induced stress 

fracture opening process, a climatic control on P0 values can be identified using cluster analysis. This type 

of analysis involves identifying clusters in the data defined by distinctive values of the independent 

variables that also have different mean values of the dependent variable. The four points colored in blue 

in Figure 2A are the four highest elevation samples in the dataset, with elevations ≥ 2300 m a.s.l. The 

logarithms (base 10) of this cluster have a mean value of -0.40 after subtracting the logarithms of P0,S to 

account for the average slope control on P0,resid values, compared with a mean of 0.00 for the logarithms 

of the remaining data points with Sav > 30° (also with the logarithms of P0,S subtracted). Assuming a 

significance level of 0.05, the null hypothesis that the cluster of blue points has a mean that is 

indistinguishable from that of the remaining points with Sav > 30° can be rejected based on the standard t 

test with unequal variances (t = 0.021).  

Figures 4A-4C illustrate the mean annual temperature (MAT), mean annual precipitation (MAP), 

and existing vegetation height (EVH) for the central portion of the SGM. Above elevations of 



approximately 1800 m a.s.l., vegetation height decreases systematically with increasing elevation (Fig. 

4D). This limitation is likely to be primarily a result of temperature limitations on vegetation growth 

because MAP increases with elevation up to and including the highest elevations of the range. This result 

is consistent with the hypothesis that vegetation is a key driver of soil production. The decrease in P0 

values with elevation is likely to be gradual rather than abrupt, and indeed there is evidence of a peak in 

the climatic control of P0 values. Figure 4E plots the ratio of P0,resid to P0,S as a function of elevation. The 

closed circles are binned averages of the data (each bin equals 100 m in elevation). The ratio of P0,resid to 

P0,S (equivalent to the residuals under log transformation after the effects of average slope are removed) 

increases, on average, and then decreases within the range of elevations between 1500 and 2600 m, 

broadly similar to the trend of EVH (Fig. 4D). 

Local variability in P0 estimates due to variations in soil thickness, mineralogical variations 

within a given lithology, spatial variations in fracture density, etc. can be minimized by averaging P0 

values (not including the four highest-elevation points because of the climatic control) from locations that 

have the same average slope (Fig. 2C). This process tends to average data from the same local cluster 

since local clusters often have average slopes that are both equal within the cluster and different from 

other clusters. Figure 2C demonstrates that the predictions of the topographically induced stress fracture 

opening hypothesis are consistent with the observed dependence of P0,resid values on Sav values.   

The average slope and climatic controls on P0 values can be combined into a single predictive 

equation for P0 values: 

  𝑃𝑃0,pred = 𝑃𝑃0,𝑠𝑠𝐶𝐶          (5)  

where P0,pred denotes predicted values for P0, C is a climatic index defined as 1 for z < 2300 m and 0.4 

(i.e., the ratio of the mean of the logarithms of the data for z > 2300 m to the mean of the logarithms of 

remaining data points with Sav > 30°) for z > 2300 m. A regression of P0,pred values to P0,resid values yields 



an R2 of 0.50 (Fig. 2D). When data with equal Sav values are averaged (i.e., the filled circles in Fig. 2D), 

the resulting R2 value is 0.87.  

The results of this section demonstrate that average slope and climate exert controls on P0 values 

in the SGM. Although I did not find additional controls that were clearly distinct from these, it is worth 

discussing additional controls that I tested for. The data points colored in gray in Figure 2B are from the 

three rock types most resistant to weathering as determined by Spotila et al. (2002): granite, anorthosite, 

and the Mount Lowe intrusive suite. Spotila et al. (2002) also identified gabbro as a relatively resistant 

rock in the SGM, but no soil production rates are available from this rock type. Figure 2B suggests that 

lithology might exert some control on P0 values. Specifically, 7 samples from the more resistant 

lithologies sit above the least-squares fit of equation (4) to the data, while 13 (including the 7 lowest P0 

values) sit below the least-squares fit. However, the null hypothesis that the residuals of the gray cluster 

after the effects of average slope are removed has a mean that is indistinguishable from the residuals of 

the remaining points (colored black in Figure 2B) cannot be rejected (t = 0.21). 

Many studies have proposed a relationship between fracture density and bedrock weatherability 

on the basis that fractures provide additional surface area for chemical weathering and pathways for 

physical weathering agents to penetrate into the bedrock or intact regolith (e.g., Molnar, 2004; Molnar et 

al., 2007; Goodfellow et al., 2014; Roy et al., 2016a,b). The difference in erosion rates between the SGM 

and adjacent San Bernadino Mountains, for example, has been attributed in part to differences in fracture 

density between these ranges (Lifton and Chase, 1992; Spotila et al., 2002). As such, it is reasonable to 

hypothesize that differences in P0 values might result from spatial variations in fracture density within 

each range. I computed a bedrock damage index D based on the concept that P0 values increase in 

bedrock that is more pervasively fractured, together with the fact that bedrock fracture densities are 

correlated with thelocal fault density of local faultsin the SGM (Chester et al., 2005; Savage and Brodsky, 

2011). Savage and Brodsky (2011) documented that bedrock fracture density decreases as a power-law 

function of distance from small isolated faults, i.e. as r-0.8 where r is the distance from the fault. Fracture 



densities around larger faults and faults surrounded by secondary fault networks can be modeled as a 

superposition of r-0.8 decays from all fault strands (Savage and Brodsky, 2011). Chester et al. (2005) 

documented similar power-law relationships between bedrock fracture density and local fault density in 

the SGM specifically. I define the bedrock damage index D (Fig. 2A5A) as the sum of the inverse 

distances, raised to an exponent 0.8, from the point where the D value is being computed to every pixel in 

the study area were a fault is located: 

  ∑
−
∆
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'
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xD             (3) 

   𝐷𝐷 = ∑ ∆𝑥𝑥 �∆𝑥𝑥/ 'xx − �
0.8

𝐱𝐱′         (6) 

where Δx is the pixel width (included to make D dimensionless),, x is the map location where bedrock 

damage is being computed, and x’ is the location of each mapped pixel in SGM where a fault exists. D 

has units of length since it is the sum of all fault lengths in the vicinity of a point, weighted by a power 

function of inverse distance. Equation (36) honors the roles of both the distance to, and the local density 

of, local faults documented by Savage and Brodsky (2011) because longer faults and/or more mature fault 

zones with many secondary fault zonesfaults have more pixels that contribute to the summation. A least-

squares regression of the logarithms of P0,meas to the logarithms of D (Fig. 3A) results in a p value of  

0.014, indicating that the null hypothesis that P0 is unrelated to D can be rejected with 98.6% confidence. 

 The correlation fact that a relationship exists between P0,meas and Dresid values (Fig. 3A) is 

especially apparent at the extremes: 12 of 13 of the highest P0,meas values come from locations where D 

is higher than the median value of 23, while the 7 lowest P0,meas values come from areas where D is 

lower than the median value. The correlation and D (Fig. 5B, p = 0.035) and between P0,meas and D 

values may include some influence of lithology/mineralogy in addition to bedrock fracture density. For 

example, the high P0,meas values observed in the Cloudburst summit D and related monzogranites (Fig. 1) 

may be a function of their high biotite content in addition to their proximity to locally dense fault 



networks. I attempted to introduce lithology as an additional variable but I found the number of points in 

the dataset to be insufficient to objectively calibrate equation (2) separately to individual lithologies in 

addition to bedrock damage and microclimate. There are several clusters of data points that weaken the 

correlation of P0,meas and D. One such cluster is circled in Figures 1 and 3A. This cluster of five data 

points is located in an area with a relatively low density of active faults (hence D values are low) but 

which nevertheless have relatively high P0 values (155-261 m/Myr) and thick soils (15-43 cm). These 

points are located in an area with an unusually high density of mapped landslides (Fig. 1). If these five 

points were removed, the statistical significance of Sav (Fig. 5C, p = 0.015) suggests that some of the 

control by average slope that I have attributed to the topographically induced stress fracture opening 

process may reflect differences in the density of pre-existing fractures related to local fault density. 

However, the much higher R2 value of the relationship between P0,resid and D would increase to 99.9% 

(pP0,pred (R2 = 0.001).    

 A natural starting point50) compared to that for evaluating the climatic control on P0 values in the 

SGM is to plot P0,meas values vs. elevation, which is strongly correlated with MAP (Spotila et al., 2002). 

No systematic relationship between P0,meas values and elevation exists (Fig. 4A). However, a relationship 

does exist between P0,meas values and cos(φ– φ0), where φ is the slope aspect (azimuth) and φ0 = π radians 

or 180° (included so that the value of cos(φ– φ0) is maximized for south-facing slopes; φ0 = 0 would 

maximizeresid and D (R2 = 0.08) suggests that the topographically induced stress fracture opening process 

is the dominant mechanism controlling P0 values in the SGM. In addition, this function for north-facing 

slopes). As with the relationship between P0,meas and D values, the relationship between P0,meas and cos(φ– 

φ0) is particularly apparent at the extremes, with the largest several values of P0,meas occuring on south-

facing hillslopes and the lowest several values occurring on north-facing hillslopes. Rather than using 

slope aspect alone, microclimate is traditionally quantified using S·cos(φ– φ0), where S is the slope 

gradient (e.g., Callaway and Davis, 1983). The slope gradient is included in the standard microclimatic 

index to provide a continuous variation from steep south-facing slopes, where S·cos(φ– φ0) is close to 1 



(if S ≈ 1), to steep north-facing slopes, where S·cos(φ– φ0) is close to -1. In the absence of a slope 

gradient term, the index would change stepwise from maximum and minimum values among slopes that 

vary by only a degree or less (i.e., from a slope that dips slightly to the south to one that dips slightly to 

the north). A least-squares regression of the logarithms of P0,meas to A demonstrates that an approximately 

exponential relationship exists (i.e., a linear trend on a log-linear plot) for south-facing slopes (p = 0.0003 

or >99.9% significance) (Fig. 3C):  
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where c2 = 1.7 ± 0.4 is the best-fit value from the regression. A similar fit of P0,meas to S·cos(φ– φ0) for 

north-facing slopes indicates no relationship (p = 0.5), hence I used a constant value of A = 1 to honor the 

absence of a dependence of P0,meas on S·cos(φ– φ0) for north-facing hillslopes. I propose that microclimate 

most likely controls P0 values in the SGM as a result of the wildfire-prone nature of the chaparral 

shrublands (Keeley and Zedler, 2009), which tend to occur on steep, south-facing slopes (Holland, 1986), 

together with the fact that rock weathering rates tend to increase with wildfire severity and frequency 

(Blackwelder, 1927; Goudie et al., 1992; Dorn, 2003; Shtober-Zisu et al., 2010). 

 To constrain the mathematical form of the relationships among P0, D, and A, I performed a 

multivariate linear regression of the logarithms of P0 to the logarithms of both D and A. Transformed in 

this way, the best-fit coeffcients obtained by the regression are equivalent to the exponents of power-law 

relationships of P0 (the dependent variable) to D and A (the independent variables). This regression 

yielded exponents of 1.1 ± 0.4 and 1.1 ± 0.3 for the relationship of P0 to D and A, respectively. These 

values are sufficiently close to 1 that I chose to fix the values of the exponents to 1 (i.e., eqn. (2)) for 

simplicity and reanalyze the data to determine the value of c1 that yields the best fit of equation (2) to 

data. The result is c1 = 6.7 m/Myr. The regression metrics of ln(P0,meas) vs. ln(P0,pred) are R2 = 0.24 and p = 

10-4 (process has a stronger theoretical foundation.Fig. 3D). Equation (2), with c1 = 3.5 m/Myr, also 

predicts P values (Fig. 4C, R2 = 0.41, p = 10-7).  



 

2.2 Relating potential soil production rates to erosion rates and topographic steepness in the SGM 

 In this section I invoke a balance between soil production and transport at the hillslope scale in 

order to illustrate the interrelationships among potential soil production rates, erosion rates, soil 

thicknesses, and average slopes across the SGM. The conceptual model explored in this section is based 

on the hypothesis that the average slope depends on the long-term difference between uplift and erosion 

rates. Uplift rates (assumed here to be equal to exhumation rates) are lower in the western portion of the 

SGM and higher in the eastern portion (Spotila et al., 2002, their Fig. 7b). As average slope increases in 

areas with higher uplift rates, erosion rates increase and soils become thinner. Both of these responses 

represent negative feedback mechanisms that tend to decrease the differences that would otherwise exist 

between uplift and erosion rates and between erosion rates and soil production rates. If the uplift rate 

exceeds the potential soil production rate, soil thickness becomes zero and soil production and erosion 

rates can no longer increase with increasing slope (in the absence of widespread landsliding in bedrock or 

intact regolith). In such cases, topography with cliffs or steps may form (e.g., Wahrhaftig, 1965; Strudley 

et al., 2006; Jessup et al., 2010).  Equation (2However, if the potential soil production rate 

increases with average slope via the topographically induced stress fracture opening process, the 

transition to bare landscapes can be delayed or prevented as Heimsath et al. (2012) proposed. This 

represents an additional negative feedback or adjustment mechanism. At the highest elevations of the 

range, soil production is slower, most likely due to temperature limitations on vegetation growth. The 

interrelationship between these variables can be quantified without explicit knowledge of the uplift rate, 

since the relationship between soil thickness and average slope implicitly accounts for the uplift rate (i.e., 

a smaller difference between uplift and erosion rates is characterized by a thinner soil). This conceptual 

model predicts positive correlations among potential soil production rates, erosion rates, and topographic 

steepness, and negative correlations of all of these variables with soil thickness.      



Equation (5), in combination with modified versions of equations (9)&(11) of Pelletier and 

Rasmussen (2009), i.e., 

  EeP hh =− 0
0             (5)

EeP hh =− 0
0             (7)  
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predict spatial variations in erosion rates and topographic steepness associated with spatial variations in 

bedrock damage and microclimate predicted by equation (2).P0 values. In equations (5)&(67)&(8), κ is a 

sediment transport coefficient (m2/Myr) and L is a mean hillslope length (m). Equation (68) assumes a 

steady- state balance between soil production and erosion (, modeled in eqn. (6) via the nonlinear slope-

dependent sediment flux model of Roering et al., . (1999) at the hillslope scale. Equation (8) assumes that 

the mean slope gradient at the base of hillslopes (where the sediment flux leaves the slope) of a given area 

can be approximated by the average slope.      

 Spatial variations in erosion rates can be estimated using P0 values predicted by equation (25) if 

spatial variations in soil thickness can also be determinedestimated. To do this, I developed an empirical 

relationship between soil thickness and slope gradient derived from the Heimsath et al. (2012) dataset 

(Fig. 4D6): 
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with best-fit coefficients of b = 1.0 and h1 = 0.06 m (R2 = 0.18, p = 0.001). For this regression, I shifted 

the soil thickness in areas with no soil upward to a small finite value (0.03 m). WithoutThese areas have 

no soil today, but must have had some soil over geologic time scales or else no erosion would occur. 

Also, without some shift, the 10 data points with h = 0 cannot be used, biasing the analysis towards areas 

withthat have soil cover today. The 0.03 m value was chosen because this is the minimum finite soil 

thickness measured by Heimsath et al. (2012).   

 Using equation (79) as a substitution, equations (5)&(67)&(8) can be combined to obtain a single 

equation that predictsfor topographic steepness, SSav: 
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Given a map of steepness obtained by solving equation (810), soil thicknesses and erosion rates can be 

mapped using equations (57) and (68), respectively. Note that the Sav value obtained by solving equation 

(10) is not a prediction in the usual sense, since Sav is an input to eqn. (10) via P0,pred. The model can be 

considered to capture the effects of topographic steepness if the predicted and observed values of Sav have 

broadly similar absolute values and patterns of spatial variation.  

 Equations (5)&(67)&(8) are the same as equations (9)&(11) of Pelletier and Rasmussen (2009) 

except that their equation (9) included a term representing the bedrock-soil density contrast related to a 

slightly different definition of P0 and their equation (11) assumed a depth- and slope-dependent transport 

relation. Here I use a slope-dependent relation because depth-dependent models depend on the average 

soil depth when soil is present (because soil must be present for transport to occur), which cannot be 

determined for locations where soil thickness is currently zero. 

 The SSav values predicted by equation (810) (Fig. 2C7C) reproduce the observed first-order 

patterns of topographic steepness (Fig. 2D7C) if L/κ = 0.003005 Myr/m and Sc = 0.8 are used. The value 



Sc = 0.8 was chosen because it is in the middle of the range of values (i.e., 0.78-0.83) that Grieve et al. 

(2016) obtained for steep landscapes in California and Oregon. With this value for Sc, the best-fit value 

for L/κ was determined by minimizing the least-squares error between the model prediction (Fig. 2C7B) 

and observed variations in average slope (Fig. 2D7C). Predicted and measured SSav values are lowest in 

the Western block and higher in the Sierra Madre, Tujunga, and Baldy blocks. The results in Figure 2 

demonstrate that spatial variations in bedrock damage and microclimate can be directly associated with 

observed variations in topographic steepness in the SGM. Soil thicknesses predicted by the model 

correlate inversely with slopes and P0 values (Fig. 2E7D). Erosion rates (Fig. 2F7E) closely follow P0 

values, but they are lower in absolute value, reflecting the buffering effect of soil on bedrock physical 

weathering processes.   

 The absence of a systematic relationship between P0 values and elevation (Fig. 4A) is perhaps 

surprising given the strong correlation Spotila et al. (2002) documented between exhumation rates, 

elevation, and MAP. Spotila et al. (2002) cautioned, however, that this correlation could be coincidental 

as “prevailing winds happen to deliver the most precipitation along the southern range front where the 

most active structures are.” The largest P0,meas values increase and then decrease with elevation 

between 1.5 and 2.5 km elevation, as indicated by the dashed curve that defines the envelope of the 

data in Figure 4A. The presence of two relatively large P0,meas values at low elevations in Figure 4A is a 

consequence of the influence of bedrock damage on P0, since these locations are close to range-

bounding faults and hence have large D values. Mean canopy height, constrained from the Existing 

Vegetation Height layer of the U.S.G.S. LANDFIRE database (U.S. Geological Survey, 2016), follows a 

similar pattern to that of P0,meas (Fig. 4B), correlating positively with elevation below 1.8 km a.s.l. and 

negatively with elevation above 1.8 km due to limited energy availability, especially in the cold-season 

months when most precipitation falls in the SGM. Figures 4A&4B suggest that P0 may have some 

dependence on range-scale climate or vegetation. However, it is difficult to tease apart this possible 



control from other factors given the relatively narrow range of elevations over which P0,meas values are 

available, i.e., 80% of the data points are from 1.6 to 2.2 km a.s.l.  

   

3 Discussion 

 The key result of this paper is that statistically significant relationships exist between P0 and 

both bedrock damage (98.6% significance) and microclimate (>99.9% significance, for south-facing 

slopes). This result suggests that a revision to the standard conceptual model for the relationships 

among tectonics, climate, potential soil production rates, and erosion rates in the SGM may be 

necessary. I propose that the correlation between P0 and E values documented by Heimsath et al. (2012) 

can partly be understood as a consequence of the fact that E values are limited by (i.e., cannot exceed) 

P0 values in the relative absence of bedrock landsliding. This suggests that erosion rates in areas of thin 

or no soil are controlled by potential soil production rates, not vice-versa. In addition, P0 and E values 

tend to be correlated because they have similar bioclimatic controls. The influence of wildfire on rock 

weathering rates, for example, has been documented in the field or established experimentally by many 

authors (Blackwelder, 1927; Goudie et al., 1992; Dorn, 2003; Shtober-Zisu et al., 2010). Similarly, 

wildfires alter rainfall-runoff partitioning in a way that tends to increase erosion rates, both on an event 

basis (e.g., Wagenbrenner and Robichaud, 2014) and over geologic time scales (Orem and Pelletier, 

2016). Tectonic uplift rates still exert significant control in this revised conceptual model, acting in 

concert with bedrock damage and microclimate, via their control on soil thickness. Soil thickness is set 

by the difference between P0 and E values. This difference tends to be smaller, resulting in thinner soils 

and higher erosion rates, in areas of higher P0 values because tectonic uplift tends be localized where 

erosion rates (which correlate with potential soil production rates for the reasons stated above) are 

higher (e.g., Willett, 1999). This hypothesis is consistent with the inverse relationship between soil 



thickness and slope gradient (the latter of which correlates with erosion rates, as documented by 

Heimsath et al. (2012), Figs. 1E&1F) documented in Figure 4D together with the fact that the spatial 

variations in erosion rates predicted by the model (Fig. 2F) are similar to those measured over million-

year time scales (Spotila et al., 2002, Fig. 7B). The localization of tectonic uplift in areas of higher 

bedrock damage may also lead to enhanced localization of bedrock damage in a positive feedback. The 

higher variability of small-scale (i.e., 1-10 m) topographic curvature in areas of thin/patchy soil cover 

(Crouvi et al., 2013) may also be a factor in explaining the persistence of soil cover in rapidly eroding 

landscapes. Zones of locally high (positive) topographic curvature may promote temporary soil 

deposition/storage not yet accounted for in most models of hillslope evolution. Channel steepness, 

which varies from west to east in a manner similar to P0 values in the SGM (DiBiase et al., 2010), likely 

correlates with increasing P0 values because tectonic uplift is localized where P0 and E values are highest 

and because channels must steepen in areas of higher P0 simply to remain bedrock channels, i.e., to 

transport the larger sediment fluxes delivered from hillslopes. 

 To the extent that the correlations documented in this paper are not stronger, it should be 

noted that substantial scatter is expected due to the inherent variability in P0 values, which vary at the 

hillslope scale due to factors such as small-scale variations in bedrock characteristics. Equation (2) 

correctly predicts P0 values to within a factor of 2 (the inherent range of variability at the hillslope scale 

estimated by Heimsath et al. (2012) in their Fig. 4A) for 72% of the dataset. Finally, the validity of this or 

any other model should not be judged exclusively on the strength of its correlations with data because 

factors besides model quality, including the accuracy with which the independent variables (e.g., 

bedrock damage) can be quantified and the range of variation in the controlling variables captured by 

the dataset, factor into such correlations. While the fault map illustrated in Figure 1 represents a best 

attempt to map the fault network of the San Gabriel Mountains, a single missing fault strand, if located 

close to a cluster of cosmogenic sample locations, could significantly alter the relationship plotted in 



Figure 3A. The model of this paper may also improve as additional information becomes available on 

how best to quantify the relationships among P0 values, bedrock fracture density, and local fault density, 

and among P0 values, vegetation cover, and wildfire severity and frequency. I also wish to stress that the 

mathematical forms of the relationships are not unique, and additional research in the SGM and 

elsewhere will almost certainly require a revision to the specific forms of the equations that relate P0 

values to bedrock damage and microclimate. My hope is that this paper stimulates the community to 

debate the factors that control potential soil production rates, better quantify the linkages among the 

potential soil production rate and its controlling factors, and add to the remarkable datasets that 

Heimsath and his colleagues have made available for studying the soil production problem. In particular, 

the analysis of this paper points to the need for measurements of soil production rates in the SCM and 

elsewhere across the broadest possible range of elevations, lithologies, and bedrock damage values.    

  

The effect of topographically induced stresses on regolith production is a rapidly evolving field at 

the boundaries among geomorphology, geophysics, and structural geology. The results presented here, 

based on the Savage and Swolfs (1986) model, represents just one possible approach to the problem. 

Miller and Dunne (1998), for example, modified the Savage and Swolfs (1986) solutions to account for 

cases with vertical compressive stress gradients (their parameter k) larger than 1. Data from the SGM and 

the adjacent southwestern Mojave Desert indicate that the vertical gradient of horizontal stress in the 

SGM is likely less than one. Sbar et al. (1979) measured mean maximum compressive stresses at the 

surface equal to 16 MPa, which is similar to values measured at depths of 100-200 m obtained by Zoback 

et al. (1980) (their Figs. 7&10). As such, the Savage and Swolfs (1986) approach is likely to be 

appropriate for the SGM. In addition to the effects of variations in the depth gradient of stress, fractures 

can open beneath hillslopes in a direction perpendicular to the slope, parallel to the slope, or in shear. The 

criteria for each of these strains depends on different components and/or derivatives of the stress field. 



For example, Martel (2006, 2011) emphasized the vertical gradient of vertical stress, which depends on 

the topographic curvature instead of the slope, in driving fracturing parallel to the surface, while St. Clair 

et al. (2015) emphasized the ratio of the horizontal stress to the spacing between ridges and valleys. More 

research is needed in the SGM and elsewhere to better understand the response of bedrock and intact 

regolith to the 3D stress field. However, all studies agree that the extent of one or more fracture opening 

modes increases with topographic slope and/or curvature, often with a threshold change from 

compression to tension above a critical value of topographic ruggedness.   

 The results presented here provide a process-based understanding of the dependence of 

potential soil production rates on topographic steepness documented by Heimsath et al. (2012) in the 

SGM. These authors proposed a negative feedback in which high erosion rates trigger higher potential 

soil production rates, with the result that soil cover may more persistent than previously thought. The 

results presented here suggest that, in the SGM, the release of compressive stress in steep landscapes 

causes fractures beneath ridges to open, thereby allowing weathering agents to penetrate into the 

bedrock or intact regolith more readily. The fact that this process requires a regional compressive stress 

state suggests that this it is not likely to be equally important everywhere on Earth. In cases of low 

regional compression or extension, the development of rugged topography in rocks with pre-existing 

fractures is not likely to be significant in promoting fracture opening in the rocks beneath hillslopes. 

Heimsath et al. (2012) argued that P0 values increase with erosion rates not just in the SGM, but 

globally based on the strong correlation between P and E values (their Fig. 4b). However, the results of 

this paper suggest that the process that leads to an increase in P0 values with increasing topographic 

ruggedness in the SGM in not operative everywhere. As such, other factors might explain the global 

correlation between P and E values. For example, erosion rates may be limited by P0 values (since 

erosion cannot occur faster than soil is produced in the absence of widespread landsliding in bedrock or 

intact regolith). P0 values are a function of climate, with values exceeding 1000 m/Myr in humid climates 



(Pelletier and Rasmussen, 2009; Larsen et al., 2014). As such, the global correlation between P and E 

values may, in part, be a result of water availability being important for both soil production and erosion 

processes. If erosion rates cannot keep pace with erosion rates, stepped topography can and does form 

in some cases (e.g., Wahrhaftig, 1965; Strudley et al., 2006; Jessup et al., 2010), leading to a reduction in 

erosion rates (as evidenced by lower soil production rates in bare areas relative to soil-covered areas 

(Hahm et al., 2014)) despite locally steeper slopes. In such cases, P and E values are still correlated 

because erosion cannot occur at rates higher than P0.  

 

4 Conclusions 

 In this paper I documented that bedrock damage (quantified using the local density of faults) 

and microclimate control potential soil production rates in the San Gabriel Mountains (SGM) of 

California. Assuming a balance between soil production and erosion rates at the hillslope scale, I further 

showed that observed trends in topographic steepness can be reproduced using the empirical equation 

for potential soil production rates based on bedrock damage and microclimate. The results suggest co-

equal and interacting roles for tectonic uplift rates, bedrock damage, and microclimate in the 

geomorphic evolution of the SGM. In this conceptual model, erosion rates increase in areas of where 

bedrock damage, microclimate, and potentially additional factors not explicitly account for here (e.g., 

mineralogy, large-scale variations in climate) make bedrock conducive to rapid soil production. The 

localization of tectonic uplift in areas of high erosion and potential soil production rates leads to a 

positive feedback in which erosion rates and factors conducive to soil production (e.g., high bedrock 

damage values and severe, frequent wildfires) correlate and coevolve with potential soil production 

rates.   



 In this paper I estimated spatial variations in the potential soil production rate, P0, using 

cosmogenic-radionuclide-derived soil production rates from the central San Gabriel Mountains of 

California published by Heimsath et al. (2012). The results demonstrate that trends in the data are 

consistent with the hypothesis that topographically induced stresses cause pre-existing fractures to 

open beneath steeper hillslopes. This model predicts an abrupt increase in P0 values close to the average 

slope (approximately 30˚) where an increase is observed in the data. After the effects of topographically 

induced stress are accounted for, a limitation on P0 values can be detected at the highest elevations of 

the range, where vegetation growth is limited by temperature. There is some evidence that lithology 

and local fault density may also influence potential soil production rates, but the null hypotheses that 

these processes are not significant cannot be ruled out with given a threshold statistical significance 

(false positive rate) of 0.05, or they cannot be clearly distinguished from other controls. The results of 

this paper demonstrate that P0 values are solely dependent on climate and rock characteristics, but that 

rock characteristics evolve with topographic ruggedness in compressive stress environments. These 

results provide a useful foundation for additional targeted cosmogenic-radionuclide analyses in the San 

Gabriel Mountains and for the incorporation of methods that can further test the topographically 

induced stress fracture opening hypothesis such as shallow seismic refraction surveys and 3D stress 

modeling.    
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Figure 1. Geologic map of the central San Gabriel Mountains, California. Potential soil production rates inferred from the 
data of Heimsath et al. (2012) are also shown. Lithologic units were compiled using Yerkes and Campbell (2005), Morton and 
Miller (2003), and Figure 3 of Nourse (2002). Faults were mapped from Morton and Miller (2003) and the Quaternary fault 
and fold database of the United States (U.S. Geological Survey and California Geological Survey, 2006). The dashed red circle 
identifies a cluster of data points discussed in Section 2.1. 

 





 

 

Figure 2. Color maps Analytic solutions illustrating the perturbation of a regional compressive stress field by topography. (A) 
Color maps of the horizontal normal stress, σxx (normalized to the regional stress, N1), as a function of ridge steepness 
(defined by the shape factor b/a of Savage and Swolfs (1986) and the average slope Sav) using equations (34) and (35) of 
Savage and Swolfs (1986). The hillslopes are plotted with no vertical exaggeration. (B) Plot of σxx directly beneath the ridge 
as a function of Sav using equation (36) of Savage and Swolfs (1986). The plot illustrates the decrease in compressive stress 
with increasing average slope and the transition to tensile stresses at a Sav value of approximately 27˚.  
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Figure 3. Plots of P0,resid and their relationship to average slope, Sav, and other potential controlling factors. (A) Plot of P0,resid 
values versus Sav. Data points colored blue are from the highest elevations of the range (z > 2300 m). (B) The same plot as (A), 
except that data points are colored according to whether they from rocks that are relatively more resistant (gray) or less 
resistant (black) to weathering. (C) Plot of P0,resid values averaged for each value of Sav. In (A) and (B), error bars represent the 
uncertainty of each data point, while in (C) the error bar represents the standard deviation of the data points averaged for 
each Sav value. (D) Plot of P0,resid versus values predicted from equation (5). Unfilled circles show individual data points, while 
filled circles represent the averaged data plotted in (C).  

 

 



 

Figure 4. Climate and vegetation cover of the central San Gabriel Mountains. Color maps of (A) mean annual temperature 
(MAT) and (B) mean annual precipitation (MAP) from the PRISM dataset (Daly et al., 2001). (C) Color map of mean existing 
vegetation height (EVH) from the U.S. Geological Survey LANDFIRE database (U.S.G.S., 2016). (D) Plot of mean EVH versus 
elevation above sea level, z, using the data illustrated in (C). (E) Plot of the ratio of P0,resid to P0,S as a function of elevation. 
Filled circles are binned averages of the data (each bin equals 100 m in elevation). 

 

 



 

Figure 5.  Map of the bedrock damage index, D, and its correlation with Sav. (A) Color map of spatial variations D. (B) Plot of D 
versus Sav for the damage index (D),57 sample locations of Heimsath et al. (2012).   

 

 



Figure 6. Plot of soil thickness, h, as a function of average slope, Sav. The least-squares power-law fit to the data (equation 
(9)) is also shown.  

 

 

Figure 7. Color maps illustrating the predicted potential soil production rate from equation (5) (P0,pred), predicted and 
observed values of average slope gradient, S, Sav, soil thickness, h, and erosion rate, E. (A) Color map of damage index D (eqn. 
(3)) with fault traces superimposed. (B) Color map of P0,pred values estimated as described in Section 2.1. (Cfrom equation (5). 
(B) Color map of SSav values predicted by equations (7)&(8equation (10), smoothed by a moving average filter with a 1-km 
length scale to emphasize patterns at the landscape scale. (DC) Color map of measured Sactual (DEM-derived) Sav values, 
smoothed in the same manner as (C). (EB). (D) Color map of soil thicknesses, h. (F, predicted by equation (9). (E) Color map of 
erosion rates, E. predicted by equation (7).  



 

Figure 3. Plots of P0 and their relationship to the bedrock damage and microclimatic indices. (A) Plot of measured potential 
soil production rates, P0,meas, versus bedrock damage index, D. The red dashed circle refers to the cluster of data points 
discussed in Section 2.1. (B) Plot of P0,meas versus cos(φ–φ0). (C) Plot of P0,meas versus S·cos(φ–φ0). Linear relationship 
between P0 and A also shown. (C) Plot of measured versus predicted P0 values.  

 



 

Figure 4. (A) Plot of P0,meas versus elevation, z. The dashed curve identifies the maximum values or “envelope” of the data. (B) 
Plot of mean canopy height versus elevation using the U.S. Geological Survey LANDFIRE database. (C) Plot of measured 
versus predicted values for the soil production rate, P. The predicted value is from equation (2) with c1 = 3.5 m/Myr. (D) Plot 
of soil thickness, h, versus slope gradient, S. Results of the linear regression of the logarithms of h and S also shown.  

 


