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Abstract. Landscape evolution models (LEM) allow studying how the earth surface responses to changing climatic and 

tectonic forcings. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, 10 

the numerical accuracy of these models has received much less attention. Most LEMs use first order accurate numerical 

methods that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection 

equation and thus the simulation of retreating landforms such as cliffs and river knickpoints with potential consequences for 

the integrated response of the simulated landscape. Here we test a higher order flux limiting finite volume method that is total 

variation diminishing (TVD-FVM) to solve the partial differential equations of river incision and tectonic displacement. We 15 

show that the choice of the TVD-FVM to simulate river incision significantly influences the evolution of simulated landscapes 

and the spatial and temporal variability of catchment wide erosion rates. Furthermore, a 2D TVD-FVM accurately simulates 

the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation is hitherto largely limited to 

LEMs with flexible spatial discretization. We implement the scheme in TTLEM, a spatially explicit, raster based LEM for the 

study of fluvially eroding landscapes in TopoToolbox 2.  20 

 

1. Introduction 

Landscape evolution models (LEMs) simulate how the earth surface evolves in response to different driving forces including 

tectonics, climatic variability and human activity. LEMs are integrative as they amalgamate empirical data and conceptual 

models into a set of mathematical equations that can be used to reconstruct or predict terrestrial landscape evolution and 25 

corresponding sediment fluxes (Glotzbach, 2015; Howard, 1994). Studies that address how climate variability and land use 

changes will affect landscapes on the long term increasingly rely on LEMs (Gasparini and Whipple, 2014).  

Landscape evolution is not always smooth and gradual. Instead, sudden tectonic displacements along tectonic faults can create 

distinct landforms with sharp geometries (Whittaker et al., 2007). These topographic discontinuities not necessarily smooth 

out over time, but may persist over long time scales in transient landscapes (Mudd, 2016; Vanacker et al., 2015). For example, 30 

faults may spawn knickpoints along river profiles. These knickpoints will propagate upstream as rapids or water falls (Hoke 

et al., 2007), thereby maintaining their geometry through time (Campforts and Govers, 2015). After an uplift pulse, the river 

will only regain a steady state when the knickpoint finally arrives in the uppermost river reaches. Transiency is not limited to 

individual rivers but also affects larger systems such as the Southern Alps of New Zealand where the landscape may never 

reach a condition of steady state due to the permanent asymmetry in vertical uplift, climatically driven denudation and 35 

horizontal tectonic advection (Herman and Braun, 2006).  

Transient ‘shocks’ and topographic discontinuities are inherently difficult to model accurately. Most of the widely applied 

LEMs use first order accurate explicit or implicit finite difference methods to solve the partial differential equations (PDE) 

that are used to simulate river incision (Valters, 2016). These schemes suffer from numerical diffusion (Campforts and Govers, 

2015; Royden and Perron, 2013). Numerical diffusion will inevitably lead to the gradual disappearance of knickpoints and will 40 

result in ever-smoother shapes. It has already been shown that numerical smearing decreases the accuracy of modelled 
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longitudinal river profiles (Campforts and Govers, 2015). Here, we hypothesize that it is also relevant for the simulation of 

hillslope processes: hillslopes respond to river incision and, thus, inaccuracies in river incision modelling will propagate to the 

hillslope domain. Whether and to what extent this occurs, is yet unexplored.  

Tectonic displacement is similar to river knickpoint propagation; in both cases, sharp landscape forms are laterally moving. 45 

Numerical diffusion may therefore significantly alter landscape features when tectonic shortening or extension is simulated 

using first order accurate methods. In principle, flexible gridding overcomes this problem through dynamically adapting the 

density of nodes on the modelling domain to the local rate of topographic change. However, models using flexible gridding 

have other constraints. They are much more complex to implement and impose the structure of the numerical grid to the natural 

drainage network as rivers are forced to follow the grid structure. Furthermore, the output of flexible grid models is not directly 50 

compatible with most software that is available for topographic analysis. 

Here we present TTLEM, a spatially explicit raster based LEM, which is based on the object-oriented function library 

TopoToolbox 2 (Schwanghart and Scherler, 2014). Contrary to previously published LEMs we solve the stream power river 

incision model using a flux limiting total volume method (TVM) which is total variation diminishing (TVD) in order to avoid 

numerical diffusion. Our numerical scheme expands on previous work (Campforts and Govers, 2015) by extending the 55 

mathematical formulation of the TVD method from 1D to entire river networks. Moreover, we develop a 2D TVD-FVM 

scheme to simulate horizontal tectonic displacement on regular grids, thus allowing to account for three dimensional variations 

in tectonic deformation. The objective of this paper is to evaluate TTLEM and assess the performance of the numerical methods 

for a variety of real-world and synthetic situations.  

2. Theory and geomorphic transport laws 60 

2.1. Tectonic deformation 

In its simplest form, tectonic deformation is represented by vertical rock uplift, U(x,y,t) [L t-1]. However, many tectonic 

configurations imply that displacements have both a vertical (uplift or subsidence) and a lateral (extension or shortening) 

component (Willett, 1999; Willett et al., 2001). The change in elevation of the earth surface over time due to lateral tectonic 

displacement (thus not including vertical rock uplift) (∂z/∂t)td is then : 65 
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where u and v [L T-1] are the tectonic displacement velocities in the cardinal directions (horizontal u and vertical v).  

2.2. River incision 

Detachment limited fluvial erosion (∂z/∂t)fluv is calculated with the stream power law (SPL) (Howard and Kerby, 1983):  
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(2) 

The equation is solved on a dendritic stream network domain Γ where xΓ refers to the distance from the outlet. A [L2] is 

catchment area and K [L1-2m t-1] is an erodibility parameter that depends on local climate, hydraulic roughness, lithology and 70 

sediment load. A is the drainage area, which is used as a proxy for the local discharge. m and n are the area and slope exponents: 

their values reflect hydrological conditions, channel width, as well as the dominant erosion mechanism. K, m and n are 

interdependent and it is usually impractical to constrain any of their values alone (Croissant and Braun, 2014; Lague, 2014). 



3 

 

Thus, many studies provide estimates for the m/n ratio. For m/n ratios between 0.35 and 0.8, K values span several orders of 

magnitude between 10-10 - 10-3 m(1-2m) yr-1 (Kirby and Whipple, 2001; Seidl and Dietrich, 1992; Stock and Montgomery, 1999).  75 

2.3. Hillslope processes 

River incision drives the development of erosional landscapes by changing the base level for hillslope processes. Steepening 

of hillslopes subsequently leads to increased sediment fluxes from hillslopes to the river system. Hillslope denudation (∂z/∂t)hill 

is equal to the divergence of the flux of soil/regolith material (qs, [L3 L-1 T-1]): 
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 80 

Different geomorphological laws describe hillslope response to lowering base levels. The model of linear diffusion assumes 

that the soil/regolith flux is proportional to hillslope gradient (Culling, 1963): 

 zDsq
 

(4) 

 

where D is the diffusivity [L2 t-1] that parameterizes hillslope erodibility and determines rate of soil/regolith creep. Main 

controls on variations of D include substrate, lithology, soil depth, climate and biological activity. Values of D vary widely 85 

and range between 10-3 and 10-1 m2 yr-1 for slopes under natural land use (Campforts et al., 2016; DiBiase and Whipple, 2011; 

Jungers et al., 2009; Roering et al., 1999; West et al., 2013). Linear hillslope diffusion produces convex upward slopes. Field 

evidence, however, suggests that the linear diffusion model is only rarely appropriate (Dietrich et al., 2013). Instead, hillslopes 

often tend to have convex-planar profiles because rapid, ballistic particle transport and shallow landsliding dominate as soon 

as slopes approach or exceed a critical angle (DiBiase et al., 2010; Larsen and Montgomery, 2012). To account for this rapid 90 

increase of flux rates with increasing slopes, Andrews and Bucknam (1987) and Roering et al. (1999) proposed a nonlinear 

formulation of diffusive hillslope transport, assuming that flux rates increase to infinity if slope values approach a critical slope 

Sc: 
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2.4. Overall landscape evolution  95 

In summary, TTLEM solves the following PDE, whereby an explicit distinction is made between river and hillslope cells, 

based on a threshold contributing area, Ac :   
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(6) 

 

Rivers are assumed to incise directly into bedrock whereas material fluxes on slopes are assumed to mobilize either soil or 

regolith, having a different bulk density than the bedrock. This is accounted for by multiplying the rock uplift rate with the 100 
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density ratio between ρr and ρs [m L3] representing the bulk densities of the bedrock and the regolith material respectively 

(Perron, 2011). The fluvial domain is determined by the cells having a contributing drainage area (A) exceeding a critical 

drainage area (Ac).  

3. Implementation and numerical schemes of TTLEM  

Our main motivation to develop TTLEM is to provide users with a multi-process landscape evolution model that has a good 105 

overall computational performance and high numerical accuracy. TTLEM is written in the MATLAB programming language; 

to reduce run times, however, TTLEM encompasses some C-code where this significantly improves performance (e.g. for the 

non-linear hillslope diffusion algorithm of Perron (2011) ). Integrating TTLEM into TopoToolbox enables running the model, 

visualizing and analyzing its output in the same computational environment. Users can configure the tectonic setting by 

providing (i) a 2D or 3D array that represents spatially and spatio-temporally variable vertical uplift patterns, respectively, and 110 

(ii) two matrices to represent horizontal velocity fields (u and v). TTLEM accepts synthetic topographies and real world DEMs 

and leaves users with full control on model parameter values. In the following sections, we will discuss the numerical methods 

used in TTLEM to solve the PDEs described in section 2. The section numbers correspond to the processes indicated in the 

model flowchart in the appendix (Fig. A1).  

3.1. Drainage network development  115 

TopoToolbox provides a function library for deriving and updating the drainage network and terrain attributes in MATLAB 

(Schwanghart and Scherler, 2014). The calculation of flow-related terrain attributes, i.e., data derived from flow directions, 

relies on a set of highly efficient algorithms that exploit the directed and acyclic graph structure of the river flow network 

(Phillips et al., 2015). Nodes of the network represent grid cells and edges represent the directed flow connections between the 

cells in downstream direction. Topological sorting of this network of grid cells transforms an ordered list of cells in that 120 

upstream cells appear before their downstream neighbors. Based on this list, we calculate terrain attributes such as upslope 

area with a linear scaling thus enabling efficient calculation (O(n)) at each time step even for large grids (Braun and Willett, 

2013).  

DEMs of real landscapes frequently contain data artifacts that generate topographic sinks. Topographic sinks can also occur 

as a result of diffusion on hillslopes by creating “colluvial wedges” damming the sections of the river network. By adopting 125 

algorithms of flow network derivation from TopoToolbox, TTLEM makes use of an efficient and accurate technique for 

drainage enforcement based on auxiliary topography to derive non-divergent (D8) flow networks (Schwanghart et al., 2013; 

Soille et al., 2003). Based on the thus derived flow network, TTLEM uses downstream minima imposition (Soille et al., 2003) 

that ensures that downstream pixels in the network have lower or equal elevations than their upstream neighbors.  

3.2. Tectonic displacement  130 

We implement a 2D version of a flux limiting total volume method to reduce numerical diffusion when simulating tectonic 

displacements on a regular grid. Equation (1) can be written as a scalar conservation law: 

 

 
    0 vut zfzfz  

(7) 

where f(z)u = uz and f(z)v = vz are the flux functions of the conserved variable z. We refer to the supplementary material of 

Campforts and Govers (2015) for a derivation of the differential form of Eq. (7) which can be converted to a numerical semi-

conservative flux scheme:  135 
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(8) 

where 
k

jiz , is the elevation of the cell at row i and column j at time k × Δt. f represents the numerical approximation of the 

physical fluxes from Eq. (7). The in- and out coming fluxes are subsequently approximated with a flux limiting upwind method 

which is TVD. A TVD scheme prevents the total variation of the solution to increase in time and hence prevents spurious 

oscillations that are associated with higher order numerical methods (Toro, 2009). The use of a flux limiter allows the method 

to have a hybrid order of accuracy being second order accurate in most cases but shifting to first order accuracy near 140 

discontinuities. Hence the TVD-FVM method establishes a compromise between two desirable properties of a numerical 

method: it achieves a higher order of accuracy than first order schemes while ensuring numerical stability (Harten, 1983). 

TTLEM uses a staggered Cartesian grid for numerical discretization. The data grid points, or elevations from the DEM (z), are 

considered to represent the center of the computational cells, whereas the velocity fields (u and v) are located at the cell faces.  

The numerical TVD fluxes are calculated following Toro (2009). In the following, we illustrate how the flux over one cell 145 

boundary can be derived:  
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where f HI and f LO represent the high and low order fluxes respectively:    
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The low order fluxes are solved with a first order explicit upwind Godunov scheme (1959):  
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(11) 

The high order fluxes are solved with a Lax-Wendroff scheme (1960):  
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From Eq. (10), Eq. (11) and Eq. (12) it follows that:   150 
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 represents the flux limiter, which is solved with the van Leer scheme (1997): 

 

 







































ji

jiji

ji

rabs

rabsr

,
2

1

,
2

1
,

2

1

,
2

1

1



 

(14) 

where r is a smoothness index calculated as: 
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(15) 

The overall performance of the TVD-FVM is evaluated by comparing it with the first order accurate upwind Godunov scheme 

which is not flux limiting Eq. (11). In the remaining part of the text, we refer to this scheme as the first order Godunov Method 

(GM).  155 

3.3. River network updating 

3.3.1.  Numerical solution  

TTLEM features a 1D version of the flux limiting TVD-FVM to solve for river incision (Eq. (2)) which can be written as a 

scalar conservation law:  

 

 
  0 xt zfz

 

(16) 

where f(z) represents the flux function of the conserved variable z, representing the channel elevation. The method is similar 160 

to the one described in section 3.2 although fluxes are only calculated in one direction. We refer to the Supplementary 

Information provided by Campforts and Govers (2015) for a full derivation of this scheme.  

In addition, we implement a first order implicit FDM for the solution of the stream power law detailed in Braun and Willett 

(2013). Implicit schemes provide stable solutions regardless of the time step length, a property desired when simulating 

landscape evolution over long timescales and large spatial domains. An explicit scheme (both FDM and TVD-FDM), in turn, 165 

requires time steps that satisfy the Courant Friedrich Lewy condition (CFL):  
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Hillslope processes allow for the use of long time steps due to the diffusive nature of the processes and the implementation of 

implicit methods to solve them. River incision however requires the use of smaller time steps (i) because an explicit scheme 

is used, requiring CFL≤1 and (ii) to avoid that a sudden input of vertical uplift in the solution would result in the generation of 170 
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an artificial shockwave. To optimize model performance we therefore introduce the use of a smaller, inner time step (Δtinner) 

for river incision simulation (Fig. 1). TTLEM also allows using an inner time step and satisfying the CFL criterion if an implicit 

solution is used for river incision. Although this is not strictly necessary as such schemes are unconditionally stable it allows 

us to investigate the impact of the length of the time step on model outcomes (see section 5.1.2). At low spatial resolutions the 

Courant criterion is satisfied, even for very large time steps. Therefore, TTLEM also allows users to set a maximum length of 175 

the inner time step (Δtmax).  

3.3.2.  Analytical solution  

While the comparison of different numerical methods can provide valuable insights with respect to their relative accuracy and 

performance, the ultimate test is the comparison of numerical results with an analytical solution of the PDE. Analytical 

solutions are fully correct and are evidently grid resolution independent, contrary to numerical solutions where model 180 

parameter values might depend on the grid resolution (Pelletier, 2010). However, they are not universally applicable. We 

implemented an analytical solution for the stream power law as an independent benchmark to compare the performance of the 

different numerical schemes implemented in TTLEM under conditions where an analytical solution can indeed be obtained.  

First we created an artificial DEM where a steady state between uplift and erosion is reached. From this DEM, the drainage 

network and corresponding river elevations are extracted by selecting all cells exceeding a threshold value (in our case 106 185 

m2). Very short river profiles (<10 km) are not retained. Subsequently, landscape evolution is simulated using the numerical 

models documented in the previous sections assuming spatially invariant uplift rates. At the end of the model runs, river 

elevations are again extracted from the numerically simulated DEMs and compared with river elevations that were analytically 

calculated using the pre-uplift, steady state river profiles as input. Analytical solutions for the stream power law are obtained 

using the slope patch method of Royden and Perron (2013). This method is based on a non-dimensionalisation of the stream 190 

power law. Longitudinal river profiles are converted to a dimensionless height (λ) and distance (χ):  
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where zx represents the dimensionless elevation along the river profile, h0 is a reference length scale (set to 1 m) and A0 is a 

reference value for the drainage area (typically set to 1  106 m²). To properly integrate over abrupt changes in the drainage 

area along the rivers, Eq. (19) is solved using the rectangle rule (Mudd et al., 2014). Steady state river profiles (equilibrium 

between erosion and uplift) are represented as straight lines in this non-dimensional coordinate system. The analytical slope 195 

patch solution then calculates the evolution of a dimensionless river profile in response to uplift. The method is detailed in the 

appendix of Royden and Perron (2013) and based on tracing individual patches which are initiated at the outlet of the drainage 

network and propagate upstream with a velocity depending on the uplift rate and the parameters of the SPL (Eq.(2)). 

We applied the slope patch solution to the steady-state pre-uplift river profiles extracted from the DEM using the simulated 

uplift rates as input. The accuracy of the numerical methods can then be assessed using a Root Mean Squared Error:  200 
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where zi,analytical and zi,TVD refer to the analytically and numerically calculated elevation of a river cell respectively and nbriv is 

the total number of river cells.  
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3.4. Hillslope processes 

We implemented linear hillslope diffusion using the implicit Crank-Nicolson scheme (Pelletier, 2008) that is unconditionally 205 

stable at large time steps. Implicit solutions are well suited since the linear diffusion equation is a parabolic PDE and relatively 

insensitive to numerical diffusion in comparison to hyperbolic advection equation of the stream power incision law. A 

numerical solution of the nonlinear hillslope equation, however, is more demanding. The maximum time step length of an 

explicit FDM sharply decreases as slopes approach the threshold gradient. To overcome this restriction, Perron (2011) 

developed Q-imp, an implicit solver that allows to increase the time step lengths by several orders of magnitude. Whereas the 210 

per-operation computational cost of this algorithm is higher in comparison to the explicit solution, the overall performance of 

this method is better than alternative solutions (Perron, 2011). Q-imp efficiently calculates hillslope diffusion even for high-

resolution simulations. However, rapid incision during one time step may generate slopes along rivers that are greater than the 

threshold slope, a situation that cannot be addressed using Q-imp. What is thus needed is an approach that adjust hillslopes to 

the threshold slope to warrant that the nonlinear diffusion equation can be solved. 215 

We assume that hillslopes instantaneously adjust to oversteepening by mobilising the amount of material required to reduce 

the slope gradient to the threshold value Sc (Burbank et al., 1996). We refrain from simulating individual landslides although 

we acknowledge that single high magnitude low frequency events may be relevant at the time scales of our simulations (Korup, 

2006). Instead, our approach implicitly accounts for the combined effects of a large number and variety of landslides that 

effectively adjust slopes to a threshold slope. This threshold slope can be thought of “an average effective angle of internal 220 

friction which controls hillslope stability” (Burbank et al., 1996). We implement this hillslope adjustment using a modified 

version of the excess topography algorithm (Blöthe et al., 2015). In this algorithm, elevations z at time step t + 1 are calculated 

so that the absolute local gradient at each grid cell becomes less or equal than Sc. This is achieved by decreasing elevations at 

location i to the minimum elevation of all other locations j to which we add an offset calculated as the product of the Euclidean 

distance ||i,j|| and Sc: 225 
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The above equation entails that 
1t

iz  at one location depends on all other grid cells and that the algorithm has a time complexity 

of O(N2), which would render it unsuitable for frequent updating during LEM simulations. To avoid an excessively high 

computational load, we implement the algorithm using morphological erosion with a gray-scale structuring element (see 

MATLAB function ordfilt2), which is a minimum sliding window with additive offsets calculated from the window size and 

Sc. This significantly reduces run times as we calculate elevations at one location from the sliding window. Yet, this approach 230 

not necessarily removes all gradients greater than Sc. We solve this by calling the algorithm repeatedly until all slope values 

are equal or less than Sc.  

3.5. Boundary conditions 

TTLEM allows the use of Dirichlet or Neumann boundaries conditions. Alternatively, one can opt for a random disturbance 

at one or more boundaries of the modelled domain. The latter may be desirable when simulating strong lateral displacements 235 

which may otherwise generate artificially straight river profiles in the direction of the shortening.  

 

 

 

 240 
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4. Impact of numerical methods  

We investigate how numerical schemes implemented in TTLEM affect simulated landscape evolution. Because we focus on 

evaluating the model’s performance all simulations are run with synthetically generated landscapes as initial surfaces. Hence, 

our simulations are uncalibrated and results remain untested against an actual landscape: however, the chosen parameter values 245 

are realistic (e.g. Gasparini and Whipple, 2014; Whipple and Tucker, 1999). We distinguish between the effects on simulated 

river incision on the one hand and on simulated tectonic displacement on the other. To investigate the accuracy and implications 

of river incision methods, we compare the explicit TVD-FVM with the first-order implicit FDM and further differentiate 

between the implicit FDM where no limitation is set on the time step and the implicit FDM where the CFL criterion limits the 

time step length. To investigate the accuracy and implications of river incision methods we compare an explicit first order 250 

Godunov method (GM) with the 2D TVD-FVM.  

4.1. River incision 

4.1.1.  1D river incision  

The impact of numerical diffusion on propagating river profile knickpoints can most clearly be demonstrated in situations 

where an analytical solution is available. The first simulation illustrates such a situation, with an artificial river profile 255 

characterized by a major knickzone between 8 and 12 km from the river head (Fig. 1). We assume that the drainage area is 

increasing in proportion to the square of the distance and uplift equals zero. For this simplified configuration, an analytical 

solution for the SPL relies on the method of characteristics (Luke, 1972). Notwithstanding the relatively high spatial resolution 

of 100 m, the first order implicit FDM suffers from considerable numerical diffusion when river incision is calculated over a 

time span of 1 Myr (Fig. 1). The TVD-FVM systematically achieves a much higher accuracy over a wide range of spatial 260 

resolutions and parameter values (Campforts and Govers, 2015).  

4.1.2.  Drainage network  

The numerical accuracy of the entire drainage network is assessed using spatially and temporally constant values for all model 

parameter values (Table 1) and assuming a fixed drainage network (see section 3.4). We first create a steady-state artificial 

landscape that we initialize with uniformly distributed random elevation values between 0 and 50 m on a 50 km × 100 km grid 265 

with a spatial resolution of 100 m (Movie S3). Landscape evolution is simulated using Dirichlet boundary conditions and by 

inserting spatially and temporally uniform vertical uplift of 1 km Myr-1 over a period of 150 Myr. Outer model time steps are 

set to 5 × 104 yr. Figure 2 shows the resulting steady state landscape. 

We impose four consecutive sinusoidal uplift pulses of equal magnitude to this artificial landscape over 1 Myr. Uplift pulses 

have a wavelength of 0.25 Myr and an amplitude of 3 × 10-3 m yr-1 (Fig. 3). We repeat the simulations with three different 270 

numerical schemes to simulate river incision (implicit FDM without time step limitation, implicit FDM with time step 

limitation (CFL condition applied) and TVD-FVM), each at 22 different spatial resolutions (6.25, 12.5, 25, 50, 100, 150, …950 

m). Hillslopes are simulated using linear hillslope diffusion in combination with threshold slopes, a configuration typically 

used to simulate landscape evolution at geological timescales (e.g. Goren et al., 2014). The threshold slope is set to a value of 

0.8 m m-1 and hillslope diffusivity is set to a value of 0.01 m2y-1. The computational performance is assessed by calculating 275 

the CPU time required to perform a 1 Myr simulation. In order to facilitate the high resolution run (at 6.25 m where the spatial 

domain covers 7950 × 15950 cells) all model runs were executed on one computational node of the Flemish Super Cluster 

(VSC) using a single core (Broadwell, E5-2680v4) and featuring 128 GiB RAM. We evaluate the numerical performance of 

the schemes and the impact of spatial resolution against an analytical solution (slope patch method) for the entire drainage 

network represented by all cells exceeding 1 km2 (Fig. 2).  280 



10 

 

Figure 4 displays the comparison between the numerical methods and the analytical solution. The initial river profile (grey 

line) slightly differs depending on spatial resolution due to interpolation of the steady-state artificial landscape with a spatial 

resolution of 100 m. The results show that TVD-FVM and implicit numerical solutions converge when model resolution is 

increased. In case no CFL criterion is imposed on the solution, however, the implicit solution deviates from those adhering to 

the CFL criterion. This illustrates that there is trade-off between numerical accuracy and numerical stability for an implicit 285 

scheme at long time steps. In addition, an implicit scheme at high spatial resolution fails to converge to an analytical solution 

if time steps are large since uplift is inserted discretely at the beginning of each time step. This results in unrealistic simulations 

where uplift is a discrete stepwise rather than a continuous function (e.g. the sinoidal uplift history used here) that inserts 

artificial shocks in the solution.  

 Figure 5 illustrates that the TVD-FVM is more accurate than the implicit methods at all spatial resolutions although the implicit 290 

FDM (CFL<1) approaches the high accuracy of the TVD-FVM at very high resolutions (6.25 m). At lower spatial resolutions 

(>10 m) the numerical accuracy of the TVD-FVM is significantly higher compared to the accuracy obtained with the implicit 

methods at the cost of a slightly increased additional computation time. To achieve the same numerical accuracy as the TVD-

FVM at 500 m spatial resolution (RMSE = 18.17, model runtime = 2.89 seconds), the implicit method (CFL<1) would need 

to be evaluated at 150 m which would take 12 times longer (model runtime = 36 sec) (Fig. 5).  295 

4.1.3.  River incision and catchment wide erosion rates  

We hypothesize that the diffusive nature of commonly applied FDM is not restricted to the simulation of river longitudinal 

profiles but has systematic consequences for other measures derived from simulations with LEMs. Such measures include 

catchment-wide erosion rates that constitute the basis for model-field data comparison and model parametrization (Gasparini 

and Whipple, 2014; Moon et al., 2015). In order to investigate the sensitivity of LEM-derived catchment wide erosion rates to 300 

different numerical schemes of the river incision model, we use the steady-state artificial landscape described in the previous 

experiments (section 4.1.2). Similar to these experiments, we impose four consecutive uplift pulses of equal magnitude to this 

artificial landscape but here, uplift pulses have a wavelength of 1.25 Myr and TTLEM is run over 5 Myr, again with Dirichlet 

boundary conditions and a planform fixed drainage network. We use two spatial resolutions (100 m and 500 m) and three 

different numerical methods (implicit FDM without time step limitation, implicit FDM with time step limitation (CFL 305 

condition applied) and TVD-FVM) to simulate river incision. The maximum length of the inner time step is set to 3 × 103 yr 

for all schemes to ensure that the implicit method is converging at higher resolutions, too (see section 4.1.2).  

We compare differences in simulated erosion rates by randomly selecting a number of catchments with drainage areas ranging 

between 1 and 50 km2 (221 and 202 catchments for runs at a spatial resolution of 100 m and 500 m respectively) (Fig. 7). We 

calculate the erosion rates for each time step by subtracting the elevation grid in the previous time step from the updated, 310 

current, elevation grid. The difference between the results obtained with different numerical schemes is quantified by 

calculating the offset between the TVD method and the first order implicit FDM schemes (OTVD-FDM): 
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where εi,TVD and εi,FDM refer to the catchment wide erosion rates simulated with the TVD-FVM and FDM respectively to 

simulate river incision and nb∆t is the total number of discrete time steps of the simulated erosion record.  315 

We rank the catchments in increasing order of OTVD-FDM for each simulation to investigate overall variations in catchment wide 

erosion rates. Figure 6 shows the results for the catchments at 10%, 50% (median) and 90% percentile. The ranking is 
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performed separately for the models runs at 100 m and 500 m as different subcatchments are randomly generated for both 

simulation runs. The percentiles shown in Fig. 6 therefore represent different catchments. 

For most catchments, we observe significant differences in erosion response between the three numerical methods at a spatial 320 

resolution of 100 m. The amplitude of the response to a tectonic uplift pulse increases when reducing numerical diffusion: the 

use of a first order implicit FDM without time step restriction results in a much smoother response in comparison to the TVD-

FVM. The variations in response amplitude are significant: the majority of the catchments record amplitude reductions by 

more 50% when modelled with the implicit FDM without time step restriction. Time step restriction (and thereby sacrificing 

the main advantage of the implicit FDM) significantly reduces numerical diffusion so that most catchments display an erosional 325 

response comparable to that simulated by the TVD-FVM. However, this is only true for simulations with a 100 m spatial 

resolution. The advantage of a time step restricted implicit FDM over a non-restricted implicit FDM disappears almost 

completely for a coarser grid resolution of 500 m.  

Figure 7 shows that erosion rates diverge between the different methods with increasing distance to the outlet of the main river 

while they are similar for larger catchments. A smaller effect of the numerical scheme on large catchment areas may partly 330 

arise from stronger averaging of local variations in catchment erosion rates. In addition, catchments at a large distance from 

the outlet—and thus likely with smaller catchment areas—will experience upstream migrating knickpoints only after several 

model time steps. If catchments are far from the fault zone, knickpoints will then be significantly smoothed by an implicit 

FDM, which will ultimately affect the response of the catchment. Again, spatial resolution matters: a larger grid size not only 

results in larger differences on average but also in larger differences between small and large catchments (Fig. 7).  335 

The differences in catchment response relate to the differences in simulated erosion rates within the catchments. Figure 8 

illustrates the spatial difference in erosion rates calculated with the two numerical methods during the final step of the model 

run (after 5 Myr). This figure shows that spatial differences are significant and form a systematic banded pattern related to the 

upslope migration of the erosion waves of the individual uplift pulses.  

4.2. Tectonic displacement  340 

We test the performance of the 2D version of the flux limiting TVD-FVM to simulate tectonic displacement. A synthetic 

landscape is used as initial surface and a constant lateral tectonic displacement is imposed while keeping erosion rates zero. 

Theoretically, this should result in a laterally displaced landscape that, apart from this displacement, remains unchanged in 

comparison to the initial state. We compare the flux limiting TVD-FVM with a first order accurate upwind Godunov Method 

(GM). Figure 9 illustrates the results when applying a tectonic displacement in two directions (u = v = 10 mm yr-1) over a time 345 

span of 1 Myr. The explicit GM strongly smooths the resulting DEM whereas the 2D TVD-FVM scheme produces a DEM 

that is very similar to the initial DEM, with minimal amounts of numerical diffusion.  

In order to quantify the amount of numerical diffusion (DN [L2 yr-1]) introduced by the GM and the TVD-FVM method, we 

test a range of different model configurations and calculate the numerical diffusivity, DN, corresponding to the observed 

smoothing. DN is the diffusivity required to transform the initial DEM (DEMini) to the final DEMs produced at the end of the 350 

simulations (DEMfint). The optimum amount of diffusion is determined by minimizing the misfit function H with a sequential 

quadratic programming method (Nocedal and Wright, 1999). H is given by: 
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where nbpx is the number of pixels in the DEM. Figure 10a illustrates the relation between DN and the spatial resolution of 

different numerical approximations. The 2D TVD-FVM decreases numerical diffusion by a factor of 5-60 compared to the 355 

GM (Fig. 10b). The accuracy increases for both schemes with increasing resolution and increasing CFL numbers. Yet, the gain 

in accuracy with increasing spatial resolution is higher for the TVD-FVM than for the GM. Our analysis shows that the explicit 

FDM performs best with a CFL criterion close to one where additional required iterations within a given time interval are at a 

minimum (Gulliver, 2007).  

5. Discussion  360 

Our analysis of numerical solvers focusses on three interrelated issues: numerical accuracy, spatial resolution and 

computational efficiency. Adopting highly simplifying assumptions allow us to benchmark the solvers against analytical 

solutions. Our focus is on testing an implicit FDM against TVD-FVM. The implicit FDM has several desirable properties. It 

is unconditionally stable and tolerates time step lengths exceeding those prescribed by the CFL criterion. LEMs are often run 

over time spans of millions of years and the CFL criterion is dictated by a few grid cells with high upslope areas. Adopting an 365 

implicit scheme is therefore potentially interesting as it allows to significantly decrease the computation time while it enables 

simulations at high spatial resolutions. Our results, however, show that this major advantage vanishes if the aim of a LEM 

simulation is to capture transiency correctly. For CFL > 1, the implicit FDM introduces significant numerical smearing, and 

for CFL >> 1, the approach tends to insert artificial shockwaves of uplift because gradual uplift is approximated by a step 

function if time steps are (very) large.  370 

 

For time step lengths approaching those prescribed by the CFL criterion, we show that computational gains by implicit FDM 

are marginal compared to TVD-FVM. The TVD-FVM code can be vectorized, i.e. it exploits single-instruction multiple-data 

parallelism to save CPU time. The implicit FDM requires a lower number of numerical operations required but all stream 

network nodes need to be treated sequentially. Simulations at higher spatial resolutions increase the numerical accuracy and 375 

may balance the low accuracy of the implicit FDM. Our results indicate that there is indeed a strong gain in numerical accuracy 

for all methods (Fig. 4 and 5) with increasing spatial resolution. However, to achieve the same numerical accuracy as the TVD-

FVM, the implicit method with a CFL<1 constraint requires the use of spatial resolution that is ca. three times higher, resulting 

in a computation time that is ca. twelve times higher (Fig. 5). In summary, while a first order implicit scheme is stable and 

accurate for long-term, steady-state solutions (Braun and Willett 2013), it has severe shortcomings when simulating transient 380 

landscape evolution caused by knickpoint propagation in detachment limited erosional basins. These shortcomings can, to a 

large extent, be avoided by using a TVD-FVM.  

 

We also show that the impact of the numerical scheme used to simulate river incision is not limited to river profile development 

alone. Hillslopes adjust to local base level changes dictated by river incision. Hillslope denudation rates therefore must—at 385 

least partly— reflect the geometry and dynamics of a knickpoint and will respond differently to a diffuse signal that is the 

result of relatively slow, continuous uplift on the one hand and a sharp discontinuity caused by a rapid base level drop of major 

fault activity on the other hand. Our simulations show that, depending on the spatial and temporal resolution, catchment wide 

erosion rates are more responsive to uplift when fluvial incision is calculated by TVD-FVM rather than by the implicit FDM. 

This is because first order (explicit and implicit) FDMs fail to properly reproduce transient incision waves (Campforts and 390 

Govers, 2015) due to knickpoint smoothing. This also affects hillslope denudation as the drop in hillslope base level due to the 

passage of a knickpoint is smeared out in time when smoothing occurs. The response of catchment wide erosion rates to uplift 

will therefore also be smoothed, resulting in significantly lower peak erosion rates. This effect will be most significant in 

upstream catchments which are far away from the base level as smoothing increases with time and knickpoint migration 

distance.  395 



13 

 

 

One might question the significance and necessity of numerical schemes that avoid diffusion of retreating knickpoints. Given 

the many assumptions and uncertainties that underlie many LEMs, numerical accuracy may seem a problem of lesser 

importance. We argue that the simulations presented in this paper show that this is not the case and that it is indeed critical to 

simulate knickpoint retreat as accurately as possible. However, our analysis does not cover all situations wherein the accurate 400 

simulation of knickzones is important. Simulation of sharp knickpoints is also required in geomorphological and lithological 

settings where knickpoint retreat is caused by rock toppling, possibly triggered during extreme flood events (Baynes et al., 

2015; Lamb et al., 2014; Mackey et al., 2014). Similarly, glacial incision often creates hanging valleys which are reshaped by 

migrating fluvial knickpoints after glacial retreat (Valla et al., 2010). In all these cases simulation tools with a minimum of 

numerical diffusion are required to correctly quantify natural knickpoint diffusion and to study the underlying processes.  405 

 

First order numerical methods also inadequately simulate lateral tectonic displacement on a regular grid. The amount of 

numerical diffusion that is introduced by these methods will, in many cases, far exceed natural diffusion rates, thus making 

accurate simulation of hillslope development impossible. A 2D variant of the TVD-FVM strongly reduces the amount of 

numerical diffusion (DN) to values well below natural diffusivity values, an effect that is especially apparent at high spatial 410 

resolutions. The 2D TVD-FVM thus allows to accurately model this process, that significantly impacts the evolution of 

topography and river networks (Willett, 1999), using a fixed grid. This was hitherto only possible with flexible spatial 

discretization schemes. 

 

Although most LEMs use first order accurate discretization schemes (Valters, 2016), the problem of numerical diffusion has 415 

been discussed in the broader geophysical community (Durran, 2010; Gerya, 2010). An alternative family of shock capturing 

Eulerian methods are MPDATA advection schemes (Jaruga et al., 2015). These schemes are based on a two-step approach in 

which the solution is first approximated with a first order upwind numerical scheme and then corrected by adding an 

antidiffusion term (Pelletier, 2008). However, contrary to the TVD-FVM, the standard MPDATA scheme (Smolarkiewicz, 

1983) is not monotonicity preserving (i.e. it is not TVD). Instead, MPDATA introduces dispersive oscillations in the solution 420 

if combined with a source term (such as uplift) in the equation (Durran, 2010). Adding limiters to the solution of the 

antidiffusive step (Smolarkiewicz and Grabowski, 1990) renders the MPDATA scheme oscillation free (Jaruga et al., 2015). 

However, by adding this additional correction, the method approaches the numerical nature of the TVD-FVM which does not 

require further adjustments in any case.  

 425 

Some of the weaknesses of the tested numerical solutions can be reduced by using LEMs that rely on irregular grid geometries. 

Irregular grids, for example, allow to simulate tectonic shortening using a Lagrangian approach where grid nodes are advected 

with the tectonically imposed velocity field (e.g. Herman and Braun, 2006). In TTLEM the TVD-FVM solvers are 

implemented using a fixed grid, which has some advantages. First, input data such as topography, climate, lithology or tectonic 

displacement fields are typically available as raster datasets and thus require only minor modifications before they can be used 430 

whereas irregular grids require substantial preprocessing. Second, TTLEM output can instantly be analyzed and visualized 

using the TopoToolbox library (Schwanghart and Kuhn, 2010; Schwanghart and Scherler, 2014) or any other geographic 

information system. Thus, while irregular grid geometries and flexible grids may have some advantages over rectangular grids, 

TTLEM’s implementation of numerically accurate algorithms strongly reduce the shortcomings of rectangular grids while 

facilitating straightforward processing of model in- and output.  435 
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6. Conclusion 

Most eroding landscapes are in a transient state characterized by dynamic river networks requiring numerical methods to solve 

the governing PDEs. Despite the growing interest in the development and use of LEMs, accuracy assessment of the numerical 440 

methods used has received little attention. We show that the most commonly applied numerical methods introduce numerical 

diffusion and artificially smoothen the discontinuities that are inherent to transient landscapes. To overcome this problem, we 

present a higher order Total Variation Diminishing Finite Volume Method referred to as TVD-FVM. The TVD-FVM solves 

river incision much more accurately than the traditional schemes: this does not only affect river development but also 

catchment wide erosion rates. The magnitude of the errors related to numerical smearing depend on the spatial and temporal 445 

resolution used as well as on the position of the catchment in the landscape. The fact that the impact of numerical schemes is 

not only altering simulated topography but also simulated erosion rates is of utmost importance in the light of current research 

efforts which aim at using long term erosion histories to unravel the climate-erosion-uplift enigma. The 2D version of the 

TVD-FVM, allows to accurately simulate the impact of lateral tectonic displacement in a fixed grid environment. The 

TVD_FVMs are implemented in the open access raster based Landscape Evolution Model (TTLEM) contained within 450 

TopoToolbox and featuring a range of response schemes to simulate hillslope processes. The combination of geomorphological 

laws to capture landscape response to changes in both internal (e.g. tectonic configurations) and external (e.g. climate changes) 

forcing provides the community with a novel tool to accurately reconstruct, predict and explore landscape evolution scenarios 

over different spatial and temporal timescales. In its current form, TTLEM is limited to uplifting, fluvially eroding landscapes. 

Further development will allow to integrate other processes (e.g. glacial erosion) as well as the explicit routing of sediment 455 

through the landscape. 

 

Code availability 

TTLEM 1.0 is embedded within TopoToolbox version 2.2. The source code and future updates can be downloaded from the 

GIT repository https://github.com/wschwanghart/topotoolbox. TTLEM is platform independent and requires MATLAB 2014b 460 

or higher and the Image Processing Toolbox. Documentation and user manuals for the most current release version of 

TopoToolbox and TTLEM can be found at the GIT repository in the help folders of the software. The user manual of TTLEM 

includes three tutorials which can be accessed from the command window in MATLAB. The source code for the solution of 

the one dimensional Stream Power Law (SPLM) can be downloaded from the GIT repository 

https://github.com/BCampforts/SPLM. SPLM contains the solution of the 1D river incision codes including four examples.  465 
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Appendix 

 

Model structure 

The model architecture of TTLEM is illustrated in Fig. A1.  

 485 

Hillslope processes 

We illustrate the impact of different hillslope process models on simulated landscape evolution, using a 30 m resolution DEM 

of the Big Tujunga region in California as an example (Fig A2). TTLEM allows to simulate hillslope processes assuming 

(non)-linear slope dependent diffusion with the consideration of a threshold hillslope. Figure A2 illustrates how different 

hillslope process algorithms affect the evolution of hillslopes in the Big Tujunga region, California (Fig. A2a). We assume no 490 

tectonic displacement and use standard parameter values for river incision and hillslope diffusion (Table 1) and a threshold 

slope (Sc) of 1.2 (m/m) when applicable (Fig. A2b). We illustrate model results after 500 ky in Fig. 2c-d using the current 

topography as the starting condition. Linear diffusion (Eq. (4)) is not capable to keep up with river incision, which results in 

strongly oversteepened hillslopes near the river channels (Fig. A2c and 1g). While higher values for the diffusion coefficient 

D will eliminate this problem (e.g. Braun and Sambridge, 1997) they are incompatible with experimental findings (Roering et 495 

al., 1999) and will restrict hillslopes to convex upward shapes. The use of non-linear diffusion in combination with a threshold 

slope results in hillslopes similar to those simulated with linear diffusion in combination with a threshold slope. However, for 

a similar value of D, hilltops become more smoothed assuming non-linear diffusion as sediment fluxes due to diffusive 

processes now reach higher values when hillslopes approach the threshold slope. 

 500 
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Figure 1. Solution of the linear 1D stream power law for a synthetic knickzone over a timespan of 1 Myr. The analytical 635 

solution is obtained with the method of characteristics. The spatial resolution equals 100 m. Other model parameter values are 

listed in Table 1. 
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Figure 2. A synthetic steady state landscape produced as the testing environment to verify and compare the different numerical 640 

schemes implemented in TTLEM. Model runtime was 150 Myr, uplift rate was assumed to be spatially uniform over the area 

(block uplift) and fixed to 1 km Myr-1. Other model parameter values are listed in Table 1. Dynamic landscape evolution is 

presented in Movie S1. The grey lines indicate the drainage network for which the solution has been calculated analytically as 

a benchmark solution. The blue line indicates the river profile for which model results at different resolutions are plotted in 

Fig. 4. 645 
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Figure 3. Uplift imposed to the steady state landscape show in Figure 2 to investigate the impact of different numerical 

schemes.  

  650 
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Figure 4: Comparison between different modelled resolutions for the river profile indicated in blue on figure 2. The green line 

is the analytical, ‘true’ solution, obtained with the slope patch method of Royden and Perron (2013). The full red line represents 

the implicit solution when the CFL<1 and the dotted blue line represents the implicit solution when the time step is left free. 655 

The implicit solutions where CFL<1 are simulated with a time step equal to the time step used for the TVD-FVM.  
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Figure 5: a. Performance of the different numerical schemes where the RMSE is calculated between the analytical and 660 

numerical methods. b. CPU time required to perform the model runs at the indicated resolutions.  
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Figure 6. Temporal variation in simulated catchment wide erosion rates using different numerical methods to simulate river 

incision. The black lines represent simulations where a flux limiting TVD-FVM is used, the blue lines represent the implicit 665 

FDM without constraints on the time steps and the red lines represent the FDM with an inner time step calculated with the 

CFL criterion. (a) Simulations performed at a spatial resolution of 100 m. (b) Simulations performed at a spatial resolution of 

500 m. Here, a median filter with a window of 3 time steps is applied to the simulated erosion rates to eliminate spikes which 

might occur at low resolutions.  

  670 
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Figure 7. Spatial variation of differences between simulated erosion rates calculated with a flux limiting TVD-FVM for 

simulating river incision and an implicit FDM. Here, we compare methods both run with an inner time step constrained with 

the CFL criterion (see text). OTVD-FDM is thus calculated between the black and red lines from Figure 6. Left column represents 

simulations run at a spatial resolution of 100 m, right column at 500 m. (a and b) Location of the randomly selected catchments 675 

with an area > 1 km² and < 50 km². Colors refer to the OTVD-FDM between the two simulations. (c and d) Differences between 

the schemes increase with increasing distance from the river outlets and are inversely correlated with the catchment area.  
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Figure 8. Spatial pattern of erosion rates during one model time step when simulating landscape evolution with the flux 680 

limiting TVD-FVM versus the first order implicit FDM. (a) simulation at a resolution of 100 m where the time step of the 

implicit method is not constrained (b) simulation at a resolution of 100 m where the time step of the implicit method is 

constrained with the CFL criterion (c) simulation at a resolution of 500 m where the time step of the implicit method is not 

constrained (d) simulation at a resolution of 500 m where the time step of the implicit method is constrained with the CFL 

criterion.  685 
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Figure 9. Impact of numerical schemes when simulating horizontal shortening on a fixed grid. Left: extract from synthetically 

produced DEM from Fig. 2. Middle: horizontal shortening in two directions simulated with a 2D explicit first order Godunov 

Method (GM). Right: horizontal shortening in two directions simulated with a 2D explicit flux limiting TVD-FVM.  690 
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Figure 10. (a) Amount of numerical diffusion (DN) introduced in the system when simulating lateral tectonic displacement in 

two directions as a function of raster resolution. The grey zone indicates the range of naturally observed diffusion rates. (b) 

The ratio between the amount of numerical diffusion for the first order Godunov Method (GM) versus the flux limiting TVD-695 

FVM.   
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Table 1. Model parameters used for the TTLEM simulations. 

Parameter Units Figure 1 
Figure 

2 
Figure 4-5 Figure 6-8 Figure 9-10 Figure 2A 

Initalization 

InitialSurface  flat, 1D 

random 

synthetically 

produced 

DEM  

shown in Fig. 

2 

synthetically 

produced 

DEM  

shown in Fig. 

2 

synthetically 

produced DEM  

shown in Fig. 2 

Tujunga SRTM 

UpliftPattern  no uplift 
uniform 

uniform uniform Lateral Displacement - 

UpliftRate m yr-1 0 1 × 10-3 0 - 3×10-3 0 - 3×10-3 0 0 

SpatialStep m 100 100 varying 100 - 500 varying 30 

        
Computational parameters 

TimeSpan yr 1 × 106 
150 × 

106 
1 × 106 5 × 106 1 × 106 5 × 105 

TimeStep (outer) yr ca. 6 × 103 5 × 104 5 × 104 5 × 104 resolution dependent  1250 

AreaThresh m2 - 5 × 104 5 × 104 5 × 104 - 5 × 104 

DrainDir  - variable Fixed Fixed - variable 

SS_Value m - 0.5 - - - - 

        
Boundary conditions 

BC_Type  -  Dirichlet Dirichlet Neumann Neumann 

BC_dir_DistSite

s 
 - 

 
- - - - 

BC_dir_Dist_Value -  1 1 - 1 

BC_dir_value  -  0 0 - 0 

BC_nbGhost  -  1 1 - 1 

FlowBC  -  - - - - 

        
River incision 

Kw 
L1-2m 

t-1 
5 × 10-6 

 
7 × 10-6 7 × 10-6 - 4 × 10-6 

m  0.42  0.42 0.42 - 0.45 

n  1  1 1 - 1 

Hillslope response 

D 
m2 yr-

1 
- 

 
0.01 0.036 - 0.015 

ρr ρs
-1 - -  1.3 1.3 - 1.3 

DiffTol  -  1 × 10-4 1 × 10-4 - 1 × 10-4 

Sc m m-1 -  0.8 1 - 1.2 

Sc_unit  -  tangent - - tangent 

Tectonic shortening 

u m yr-1   - - 0.01 - 

v m yr-2 -  - - 0.01 - 

        
Numerics 

riverInc  

implicit_FD

M 

TVD_FVM  

implicit_FD

M 

implicit_FDM 

TVD_FVM 
- implicit_FDM 

cfls  0.9  0.9 0.9 - 0.9 

diffScheme  - 

 

imp_lin_sc imp_lin_sc - 

imp_lin 

only_sc 

imp_lin_sc 

imp_nonlin_sc 

shortening_meth  - 

 

- - 
Upwind_TVD 

Godunov Method 
- 
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 700 

Figure A1: Schematic representation of the TTLEM model flow. The numbered methods correspond with the paragraphs from 

section 3 in the main text.  
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7.  

Figure A2: Hillslope response to river incision. (a) Standard SRTM DEM (30 m) included in TopoToolbox representing the 

Tujunga region. The dotted grey line indicates the location of the transect shown in subplot g. (b) Resulting topography after 705 

500k years using four different descriptions for hillslope evolution. (c) Linear diffusion over all slope values (lin). (d) 

Threshold landscape where no slopes exceed the threshold slope (Sc). (e) Linear diffusion combined with immediate 

adjustment to a threshold slope (Sc). (f) Non-linear diffusion combined with immediate adjustment to a threshold slope (Sc). 

(g) Elevation profiles of the different model runs compared with the initial profile. Model parameter values are listed in Table 

1. 710 


