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Abstract. Landscape evolution models (LEM) allow studying how the earth surface responses to changing climatic and 

tectonic forcings. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, 10 

the numerical accuracy of these models has received less attention. Most LEMs use first order accurate numerical methods 

that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection 

equation and thus the simulation of retreating landforms such as cliffs and river knickpoints with potential consequences for 

the integrated response of the simulated landscape. Here we test a higher order flux limiting finite volume method that is 

total variation diminishing (TVD-FVM) to solve the partial differential equations of river incision and tectonic displacement. 15 

We show that the choice of the TVD-FVM to simulate river incision significantly influences the evolution of simulated 

landscapes and the spatial and temporal variability of catchment wide erosion rates. Furthermore, a 2D TVD-FVM 

accurately simulates the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation was 

hitherto largely limited to LEMs with flexible spatial discretization. We implement the scheme in TTLEM, a spatially 

explicit, raster based LEM for the study of fluvially eroding landscapes in TopoToolbox 2.  20 

 

1. Introduction 

Landscape evolution models (LEMs) simulate how the earth surface evolves in response to different driving forces including 

tectonics, climatic variability and human activity. LEMs are integrative as they amalgamate empirical data and conceptual 

models into a set of mathematical equations that can be used to reconstruct or predict terrestrial landscape evolution and 25 

corresponding sediment fluxes (Glotzbach, 2015; Howard, 1994). Studies that address how climate variability and land use 

changes will affect landscapes on the long term increasingly rely on LEMs (Gasparini and Whipple, 2014).  

Landscape evolution is not always smooth and gradual. Instead, sudden tectonic displacements along tectonic faults can 

create distinct landforms with sharp geometries (Whittaker et al., 2007). These topographic discontinuities not necessarily 

smooth out over time, but may persist over long time scales in transient landscapes (Mudd, 2016; Vanacker et al., 2015). For 30 

example, faults may spawn knickpoints along river profiles. These knickpoints will propagate upstream as rapids or water 

falls (Hoke et al., 2007), thereby maintaining their geometry through time (Campforts and Govers, 2015). After an uplift 

pulse, the river will only regain a steady state when knickpoints finally arrive in the uppermost river reaches. Transiency is 

not limited to individual rivers but also affects entire orogens such as the Southern Alps of New Zealand where the landscape 

may never reach a condition of steady state due to the permanent asymmetry in vertical uplift, climatically driven denudation 35 

and horizontal tectonic advection (Herman and Braun, 2006).  

Transient ‘shocks’ and topographic discontinuities are inherently difficult to model accurately. Most of the widely applied 

LEMs use first order accurate explicit or implicit finite difference methods to solve the partial differential equations (PDE) 

that are used to simulate river incision (Valters, 2016). These schemes suffer from numerical diffusion (Campforts and 

Govers, 2015; Royden and Perron, 2013). Numerical diffusion will inevitably lead to the gradual disappearance of 40 

knickpoints and will result in ever-smoother shapes. It has already been shown that numerical smearing decreases the 
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accuracy of modelled longitudinal river profiles (Campforts and Govers, 2015). Here, we hypothesize that it is also relevant 

for the simulation of hillslope processes: hillslopes respond to river incision and, thus, inaccuracies in river incision 

modelling will propagate to the hillslope domain. Whether and to what extent this occurs, is yet unexplored.  

Tectonic displacement is similar to river knickpoint propagation; in both cases, sharp landscape forms are laterally moving. 45 

Numerical diffusion may therefore significantly alter landscape features when tectonic shortening or extension is simulated 

using first order accurate methods. In principle, flexible gridding overcomes this problem through dynamically adapting the 

density of nodes on the modelling domain to the local rate of topographic change. However, models using flexible gridding 

have other constraints. They are more difficult to implement and impose the structure of the numerical grid to the natural 

drainage network as rivers must follow the grid structure. Furthermore, the output of flexible grid models is not directly 50 

compatible with most software that is available for topographic analysis. 

Here we present TTLEM, a spatially explicit raster based LEM, which is based on the object-oriented function library 

TopoToolbox 2 (Schwanghart and Scherler, 2014). Contrary to previously published LEMs we solve the stream power river 

incision model using a flux limiting finite volume method (FVM) which is total variation diminishing (TVD) in order to 

avoid numerical diffusion. Our numerical scheme expands on previous work (Campforts and Govers, 2015) by extending the 55 

mathematical formulation of the TVD method from 1D to entire river networks. Moreover, we develop a 2D TVD-FVM 

scheme to simulate horizontal tectonic displacement on regular grids, that enables simulation of three dimensional variations 

in tectonic deformation. The objective of this paper is to evaluate TTLEM and assess the performance of the numerical 

methods for a variety of real and simulated topographic and tectonic situations.  

2. LEM components and geomorphic transport laws 60 

2.1. Tectonic deformation 

In its simplest form, tectonic processes are represented by their kinematics and the assumed vertical surface deformation 

field U(x,y,t) [L t-1]. However, many tectonic configurations imply that displacements have both a vertical (uplift or 

subsidence) and a lateral (extension or shortening) component (Willett, 1999; Willett et al., 2001). The change in elevation 

of the earth surface over time due to lateral tectonic displacement excluding vertical rock uplift (∂z/∂t)td is then: 65 
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where u and v [L T-1] are the tectonic displacement velocities in the cardinal directions (horizontal u and vertical v).  

2.2. River incision 

Detachment limited fluvial erosion (∂z/∂t)fluv is calculated with the stream power law (SPL) (Howard and Kerby, 1983):  
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(2) 

The equation is solved on a dendritic stream network domain Γ where xΓ refers to the distance from the outlet. A [L2] is 

catchment area and proxy for the local discharge, and K [L1-2m t-1] is an erodibility parameter that depends on local climate, 70 

hydraulic roughness, lithology and sediment load. m and n are the area and slope exponents: their values reflect hydrological 

conditions, channel width, as well as the dominant erosion mechanism. K, m and n are interdependent and it is usually 

impractical to constrain any of their values alone (Croissant and Braun, 2014; Lague, 2014). Thus, many studies provide 
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estimates for the m/n ratio. For m/n ratios between 0.35 and 0.8, K values span several orders of magnitude between 10-10 - 

10-3 m(1-2m) yr-1 (Kirby and Whipple, 2001; Seidl and Dietrich, 1992; Stock and Montgomery, 1999).  75 

2.3. Hillslope processes 

River incision drives the development of erosional landscapes by setting the base level for hillslope processes. Steepening of 

hillslope toes leads to increased sediment fluxes from hillslopes to the river system. Hillslope denudation (∂z/∂t)hill is equal to 

the divergence of the flux of soil/regolith material (qs, [L3 L-1 T-1]): 
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 80 

Different geomorphological laws describe hillslope response to lowering base levels. The model of linear diffusion assumes 

that the soil/regolith flux is proportional to hillslope gradient z  (Culling, 1963): 

 zDsq  
(4) 

 

where D is the diffusivity [L2 t-1] that parameterizes hillslope erodibility and determines rate of soil/regolith creep. Main 

controls on variations of D include substrate, lithology, soil depth, climate and biological activity. Values of D range 85 

between 10-3 and 10-1 m2 yr-1 for slopes under natural land use (Campforts et al., 2016; DiBiase and Whipple, 2011; Jungers 

et al., 2009; Roering et al., 1999; West et al., 2013). Linear hillslope diffusion produces convex upward slopes. Field 

evidence, however, suggests that the linear diffusion model is only rarely appropriate (Dietrich et al., 2013). Instead, 

hillslopes often tend to have convex-planar profiles because rapid, ballistic particle transport and shallow landsliding 

dominate when slopes approach or exceed a critical angle (DiBiase et al., 2010; Larsen and Montgomery, 2012). To account 90 

for this rapid increase of flux rates with increasing slopes, Andrews and Bucknam (1987) and Roering et al. (1999) proposed 

a nonlinear formulation of diffusive hillslope transport, assuming that flux rates increase to infinity if slope values approach 

a critical slope Sc: 
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2.4. Final model 95 

In summary, TTLEM solves the following PDE, whereby an explicit distinction is made between the fluvial and hillslope 

domain. The fluvial domain is determined by cells having a contributing drainage area exceeding a critical drainage area 

(Ac):   
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(6) 

 

The detachment limited incision model assumes that rivers incise directly into bedrock and instantaneously excavate all 100 

material entering rivers from adjacent hillslopes. Material fluxes on slopes mobilize either soil or regolith that have different 
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bulk density than the bedrock. This is accounted for by multiplying the rock uplift rate with the density ratio between ρr and 

ρs [M L-3] representing the bulk densities of the bedrock and the regolith material respectively (Perron, 2011). 

3. Implementation and numerical schemes of TTLEM  

We solve Eq. 6 using a set of numerical schemes that we implement in the software TopoToolbox Landscape Evolution 105 

Model (TTLEM) (see also Fig. A1). TTLEM is written in the MATLAB programming language and in C-code where this 

significantly improves performance (e.g. for the non-linear hillslope diffusion algorithm of Perron (2011)). Integrating 

TTLEM into TopoToolbox (Schwanghart and Kuhn, 2010; Schwanghart and Scherler, 2014) provides access to efficient 

algorithms of digital elevation models (DEMs) analysis, as well as numerous routines for visualizing and analyzing 

modelling outputs. In the following sections, we will discuss the numerical schemes of TTLEM to solve the PDEs described 110 

in previous section. The section numbers correspond to the processes indicated in the model flowchart in the appendix (Fig. 

A1).  

3.1. Drainage network development  

TopoToolbox provides a function library for deriving the drainage network and terrain attributes (Schwanghart and Scherler, 

2014). The calculation of flow-related terrain attributes, i.e., data derived from flow directions, relies on a set of highly 115 

efficient algorithms that exploit the directed and acyclic graph structure of the river flow network (Phillips et al., 2015). 

Nodes of the network are grid cells and edges represent the directed flow connections between the cells in downstream 

direction. Topological sorting of this network returns an ordered list of cells in that upstream cells appear before their 

downstream neighbors. Based on this list, we calculate terrain attributes such as upslope area with a linear scaling thus 

enabling efficient calculation (O(n)) at each time step even for large grids (Braun and Willett, 2013).  120 

DEMs of real landscapes frequently contain data artifacts that generate topographic sinks. Topographic sinks can also occur 

during simulations when diffusion on hillslopes creates “colluvial wedges” that dam sections of the river network. By 

adopting algorithms of flow network derivation from TopoToolbox, TTLEM makes use of an efficient and accurate 

technique for drainage enforcement to derive non-divergent (D8) flow networks (Schwanghart et al., 2013; Soille et al., 

2003). Based on the thus derived flow network, TTLEM uses downstream minima imposition (Soille et al., 2003) that 125 

ensures that downstream pixels in the network have lower or equal elevations than their upstream neighbors.  

3.2. Tectonic displacement  

We implement a 2D version of a flux limiting total volume method to reduce numerical diffusion when simulating tectonic 

displacements on a regular grid. Equation (1) can be written as a scalar conservation law: 
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(7) 

where f(z)u = uz and f(z)v = vz are the flux functions of the conserved variable z. We refer to the supplementary material of 130 

Campforts and Govers (2015) for a derivation of the differential form of Eq. (7) which can be converted to a numerical semi-

conservative flux scheme:  
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where 
k

jiz , is the elevation of the cell at row i and column j at time k × Δt. f represents the numerical approximation of the 

physical fluxes from Eq. (7). The in- and out coming fluxes are approximated with a flux limiting upwind method which is 

TVD. A TVD scheme prevents the total variation of the solution to increase in time and hence prevents spurious oscillations 135 

that are associated with higher order numerical methods (Toro, 2009). The flux limiter entails that the method has a hybrid 

order of accuracy being second order accurate in most cases but shifting to first order accuracy near discontinuities. Hence 

the TVD-FVM method achieves two desirable properties: a higher order of accuracy than first order schemes and high 

numerical stability (Harten, 1983). TTLEM uses a staggered Cartesian grid for numerical discretization. The DEM grid 

centers represent the center of the computational cells, whereas the velocity fields (u and v) are located at the cell faces.  140 

The numerical TVD fluxes are calculated following Toro (2009). In the following, we illustrate how to derive the flux over 

one cell boundary:  
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where f HI and f LO represent the high and low order fluxes respectively:    
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(10) 

The low order fluxes are solved with a first order explicit upwind Godunov scheme (1959):  
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The high order fluxes are solved with a Lax-Wendroff scheme (1960):  145 
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From Eq. (10), Eq. (11) and Eq. (12) it follows that:   
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ji ,
2
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 represents the flux limiter, which is solved with the van Leer scheme (1997): 
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where r is a smoothness index calculated as: 
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(15) 

The overall performance of the TVD-FVM is evaluated by comparing it with the first order accurate upwind Godunov 

scheme (Godunov, 1959), which is not flux limiting Eq. (11). In the remaining part of the text, we refer to this scheme as the 150 

first order Godunov Method (GM).  

3.3. River incision 

3.3.1.  Numerical solution 

TTLEM features a 1D version of the flux limiting TVD-FVM to solve for river incision (Eq. (2)) which is written as a scalar 

conservation law:  155 
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(16) 

where f(z) represents the flux function of the conserved variable z, representing the river elevation. The method resembles 

the one described in the previous section but differs in that fluxes are calculated in one direction on a directed acyclic graph 

(Phillips et al., 2015). We refer to the Supplementary Information provided by Campforts and Govers (2015) for a full 

derivation of this scheme.  

In addition, we implement a first order implicit FDM for the solution of the SPL detailed in Braun and Willett (2013). The 160 

method provides stable solutions regardless of the time step length, a property desired when simulating landscape evolution 

over long timescales and large spatial domains. Explicit schemes of river incision (both FDM and TVD-FDM), in turn, 

require time steps that satisfy the Courant Friedrich Lewy condition (CFL):  
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(17) 

 

where maxu  is the maximum velocity dictated by few river cells with high drainage areas. Compared to these velocities, 165 

hillslope processes modelled by the linear diffusion equation are usually slow. Applying longer time steps for hillslope 

processes is a computational advantage that an implicit scheme increases even more (Pelletier 2008). TTLEM thus uses two 

time steps: an outer time step (Δtouter) during which hillslope processes and the planform river network are calculated, and an 

inner time step (Δtinner) nested within the outer time step that used to solve for river incision. Thus, while Δtouter should satisfy 

the CFL criterion for the explicit linear or nonlinear diffusion equation, the Δtinner is flexible and adheres to the CFL criterion 170 

of the explicit river incision equation (Supplement Fig. 1). The adoption of implicit methods allows relaxing both time step 

constraints. Yet, TTLEM allows setting limits to Δtouter and Δtinner, and enables us to investigate the impact of the length of 

the time step on model outcomes (see section 5.1.2).  
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3.3.2.  Analytical solution 

Ideally, numerical methods are benchmarked against analytical solutions. Albeit available for specific initial and boundary 175 

conditions only, analytical solutions are accurate and grid resolution independent, contrary to numerical solutions where 

model parameter values might depend on the grid resolution (Pelletier, 2010). We implemented an analytical solution for the 

SPL as an independent benchmark to compare the performance of the different numerical schemes of river incision under 

conditions where an analytical solution is available.  

First, we created an artificial DEM with topography in steady state between uplift and erosion (see Table 1). From this DEM, 180 

we extracted the drainage network and corresponding river elevations by selecting all cells exceeding 106 m2. Very short 

river profiles (<10 km) are excluded from the analysis. Subsequently, we simulate landscape evolution using the numerical 

models documented in the previous sections assuming spatially invariant uplift rates. After each simulation, we obtain river 

elevations from the resulting DEMs and compare them with river elevations that we derived analytically using the pre-uplift, 

steady state river profiles as input. Analytical solutions for the stream power law are based on the slope patch method of 185 

Royden and Perron (2013) that non-dimensionalizes the stream power law using a dimensionless height (λ) and transformed 

horizontal distance metric χ:  
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where zx represents the dimensionless elevation along the river profile, h0 is a reference length scale (set to 1 m) and A0 is a 

reference value for the drainage area (set to 1  106 m²). To integrate over abrupt changes in the drainage area along the 

rivers, Eq. (19) is solved using the rectangle rule (Mudd et al., 2014). Steady state river profiles appear as straight lines in 190 

this non-dimensional coordinate system. The analytical slope patch solution then calculates the evolution of a dimensionless 

river profile in response to uplift. The method is detailed in the appendix of Royden and Perron (2013) and based on tracing 

individual patches which are initiated at the outlet of the drainage network and propagate upstream with a velocity dictated 

by upstream area and the parameters of the SPL (Eq.(2)). 

We calculated the slope patch solution to the steady-state pre-uplift river profiles using the simulated uplift rates as input, 195 

and assessed the accuracy of the numerical methods with the Root Mean Squared Error (RMSE):  
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where zi,analytical and zi,numerical refer to the analytically and numerically calculated elevation of a river cell respectively and nriv 

is the total number of river cells.  

3.4. Hillslope processes 200 

We implemented linear hillslope diffusion using the implicit Crank-Nicolson scheme (Pelletier, 2008). The scheme is 

unconditionally stable at large time steps A numerical solution of the nonlinear hillslope equation, however, is more 

demanding. The maximum time step length of an explicit FDM sharply decreases as slopes approach the threshold gradient. 

To overcome this restriction, Perron (2011) developed Q-imp, an implicit solver that allows to increase the time step lengths 

by several orders of magnitude. Whereas the per-operation computational cost of this algorithm is higher in comparison to 205 
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the explicit solution, the overall performance of this method is better than alternative solutions (Perron, 2011). Q-imp 

efficiently calculates hillslope diffusion even for high-resolution simulations. However, rapid incision during one time step 

may generate slopes along rivers that are greater than the threshold slope, a situation that Q-imp cannot solve. An approach 

is thus needed that adjusts hillslopes to the threshold slope prior to calculating Q-imp. 

We assume that hillslopes instantaneously adjust to oversteepening by mobilising the amount of material required to reduce 210 

the slope gradient to the threshold value Sc (Burbank et al., 1996). We refrain from simulating individual landslides although 

we acknowledge that single high magnitude low frequency events may be relevant at the time scales of our simulations 

(Korup, 2006). Instead, our approach implicitly accounts for the combined effects of a large number and variety of landslides 

that effectively adjust slopes to a threshold slope. This threshold slope can be thought of “an average effective angle of 

internal friction which controls hillslope stability” (Burbank et al., 1996). We implement this hillslope adjustment using a 215 

modified version of the excess topography algorithm (Blöthe et al., 2015). In this algorithm, elevations z at time step t + 1 

are calculated so that the absolute local gradient at each grid cell becomes less or equal than Sc. This is achieved by 

decreasing elevations at location i to the minimum elevation of all other locations j to which we add an offset calculated as 

the product of the Euclidean distance ||i,j|| and Sc: 
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(21) 

The above equation entails that 
1t

iz  at one location depends on all other grid cells and that the algorithm has a time 220 

complexity of O(N2), which would render it unsuitable for frequent updating during LEM simulations. To avoid an 

excessively high computational load, we implement the algorithm using morphological erosion with a gray-scale structuring 

element (see MATLAB function ordfilt2), which is a minimum sliding window with additive offsets calculated from the 

window size and Sc. This significantly reduces run times as we calculate elevations at one location from the sliding window. 

Yet, this approach may retain gradients greater than Sc at steep and long slope sections. We solve this by calling the 225 

algorithm repeatedly until all slope values are equal or less than Sc.  

 

4. Impact of numerical methods  

We investigate how numerical schemes implemented in TTLEM affect simulated landscape evolution. As we focus on 

evaluating the schemes’ performance, all simulations have synthetically generated landscapes as initial surfaces. Hence, our 230 

simulations are uncalibrated and results remain untested against an actual landscape: however, the chosen parameter values 

are within the range of previous studies (e.g. Gasparini and Whipple, 2014; Whipple and Tucker, 1999). We distinguish 

between the effects on simulated river incision on the one hand and on simulated tectonic displacement on the other. To 

investigate the accuracy and implications of river incision methods, we compare the explicit TVD-FVM with the first-order 

implicit FDM and further differentiate between the implicit FDM where no limitation is set on the time step and the implicit 235 

FDM where the CFL criterion limits the time step length. To investigate the accuracy and implications of river incision 

methods we compare an explicit first order Godunov method (GM) with the 2D TVD-FVM.  

4.1. River incision 

4.1.1.  1D river incision 

The impact of numerical diffusion on propagating river profile knickpoints is most obvious in situations where an analytical 240 

solution is available. The first simulation illustrates such a situation, with an artificial river profile characterized by a major 

knickzone between 8 and 12 km from the river head (Fig. 1). We assume that the drainage area is increasing in proportion to 
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the square of the distance and uplift equals zero. For this simplified configuration, an analytical solution for the SPL relies on 

the method of characteristics (Luke, 1972). Notwithstanding the relatively high spatial resolution of 100 m, the first order 

implicit FDM suffers from considerable numerical diffusion when river incision is calculated over a time span of 1 Myr (Fig. 245 

1). The TVD-FVM systematically achieves a much higher accuracy over a wide range of spatial resolutions and parameter 

values (Campforts and Govers, 2015).  

4.1.2.  Drainage network  

We assess the numerical accuracy of the entire drainage network with spatially and temporally constant values for all model 

parameter values (Table 1) and assuming a fixed drainage network (see section 3.3.2). We first create a steady-state artificial 250 

landscape (Fig. 2) on a 50 km × 100 km grid with a spatial resolution of 100 m that we initialize with uniformly distributed 

random elevation values between 0 and 50 m (Movie S1). Our simulation uses Dirichlet boundary conditions and inserts a 

spatially and temporally uniform vertical uplift of 1 km Myr-1 over a period of 150 Myr. Δtouter is set to 5 × 104 yr. 

Following steady state, we impose four consecutive sinusoidal uplift pulses of equal magnitude to this artificial landscape 

over 1 Myr. Each uplift pulse has a wavelength of 0.25 Myr and an amplitude of 3 × 10-3 m yr-1 (Fig. 3). We repeat the 255 

simulations with three different numerical schemes (implicit FDM without time step limitation, implicit FDM with time step 

limitation (CFL condition applied) and TVD-FVM), each at 22 different spatial resolutions (6.25, 12.5, 25, 50, 100, 150, …, 

950 m). Hillslopes are simulated using linear hillslope diffusion in combination with threshold slopes, a configuration 

typically used to simulate landscape evolution at geological timescales (e.g. Goren et al., 2014). The threshold slope is set to 

0.8 m m-1 and hillslope diffusivity is 0.01 m2y-1. We record the CPU time required to run a 1 Myr simulation to assess 260 

computational performance. In order to facilitate the high resolution run (at 6.25 m where the spatial domain covers 7950 × 

15950 cells) all model runs were executed on one computational node of the Flemish Super Cluster (VSC) using a single 

core (Broadwell, E5-2680v4) and 128 Gb RAM. We evaluate the numerical performance of the schemes and the impact of 

spatial resolution against an analytical solution (slope patch method) for the entire drainage network represented by all cells 

exceeding 1 km2 (Fig. 2).  265 

Figure 4 compares results obtained from the numerical methods and the analytical solution. The initial river profiles slightly 

differ depending on spatial resolution due to interpolation of the steady-state artificial landscape with a spatial resolution of 

100 m. The results show that TVD-FVM and implicit numerical solutions converge at increasing spatial resolutions. Where 

the time step of the implicit scheme is unbounded by the CFL criterion, however, the solution deviates from those adhering 

to the CFL criterion. This illustrates that there is trade-off between numerical accuracy and numerical stability for an implicit 270 

scheme at long time steps. In addition, an implicit scheme at high spatial resolution and large time steps fails to converge to 

an analytical solution because uplift is modelled as a discrete stepwise rather than a continuous function (e.g. the sinusoidal 

uplift history used here) that inserts artificial shocks in the solution.  

The TVD-FVM is consistently more accurate than the implicit methods at all spatial resolutions although the implicit FDM 

(CFL<1) approaches the high accuracy of the TVD-FVM at very high resolutions (6.25 m) (Fig. 5a). At lower spatial 275 

resolutions (>10 m) the numerical accuracy of the TVD-FVM is significantly higher compared to the accuracy obtained with 

the implicit methods at the cost of a slightly increased additional computation time. To achieve the same numerical accuracy 

as the TVD-FVM at 500 m spatial resolution (RMSE = 18.17, model runtime = 2.89 seconds), the implicit method (CFL<1) 

would need to be evaluated at 150 m which would take 12 times longer (model runtime = 36 sec) (Fig. 5b).  

4.1.3.  River incision and catchment-wide erosion rates  280 

We hypothesize that the diffusive nature of commonly applied first order FDM is not restricted to the simulation of river 

longitudinal profiles but has systematic consequences for other measures derived from LEM simulations. Such measures 
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include catchment-wide erosion rates that constitute the basis for model-field data comparison and model parametrization 

(Gasparini and Whipple, 2014; Moon et al., 2015). In order to investigate the sensitivity of LEM-derived catchment-wide 

erosion rates to different numerical schemes of the river incision model, we use the steady-state artificial landscape described 285 

in the previous experiments (section 4.1.2). The simulation runs over 5 Myr with four consecutive uplift pulses of equal 

amplitude and a wavelength of 1.25 Myr with Dirichlet boundary conditions and a planform fixed drainage network. We use 

two spatial resolutions (100 m and 500 m) and three different numerical methods (implicit FDM without time step limitation, 

implicit FDM with time step limitation (CFL condition applied) and TVD-FVM) to simulate river incision. The maximum 

length of Δtinner is set to 3 × 103 yr for all schemes to ensure that the implicit method is converging at higher resolutions, too 290 

(see section 4.1.2). Hillslope response is simulated using a linear diffusion scheme in combination with a threshold slope (Sc, 

see Fig. A2).  

We compare differences in simulated erosion rates by randomly selecting >200 catchments with drainage areas ranging 

between 1 and 50 km2 (Fig. 7). We calculate the erosion rates for each time step by subtracting the elevation grid in the 

previous time step from the updated, current, elevation grid. The sum of elevation differences within each catchment refers 295 

to the catchment-wide erosion rate integrated over the time step length. For each catchment, we then derive the difference 

between erosion rates calculated by the different numerical schemes and summarize them using the RMSE statistics (OTVD-

FDM): 
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where εi,TVD and εi,FDM refer to the catchment wide erosion rates simulated with the TVD-FVM and FDM respectively to 300 

simulate river incision and nb∆t is the total number of discrete time steps of the simulated erosion record.  

We rank the catchments in increasing order of OTVD-FDM for each simulation to investigate variations in catchment wide 

erosion rates. Fig. 6 shows the results for the catchments at 10%, 50% (median) and 90% percentile. Ranks are derived 

separately for the models runs at 100 m and 500 m as different catchments are randomly generated for both simulation runs. 

The percentiles shown in Fig. 6 therefore represent different catchments. 305 

For most catchments, we detect differences in catchment-wide erosion rates between the three numerical methods at a spatial 

resolution of 100 m. Generally, the amplitude of the response to a tectonic uplift pulse increases when using TVD-FVM: the 

use of a first order implicit FDM without time step restriction results in a much smoother response in comparison to the 

TVD-FVM. The variations in response amplitude are significant: the majority of the catchments record amplitude reductions 

by more 50% when modelled with the implicit FDM without time step restriction. Time step restriction (and thereby 310 

sacrificing the main advantage of the implicit FDM) significantly reduces numerical diffusion so that most catchments 

display an erosional response comparable to that simulated by the TVD-FVM. However, this is only true for simulations 

with a 100 m spatial resolution. The advantage of a time step restricted implicit FDM over a non-restricted implicit FDM 

disappears almost completely for a coarser grid resolution of 500 m.  

Figure 7 shows that erosion rates diverge between the different methods with increasing distance to the outlet of the main 315 

river while they are similar for larger catchments. A smaller effect of the numerical scheme on large catchment areas may 

partly arise from stronger averaging of local variations in catchment erosion rates. In addition, catchments at a large distance 

from the outlet—and thus likely with smaller catchment areas—will experience upstream migrating knickpoints only after 

several model time steps. If catchments are far from the fault zone, knickpoints will then be significantly smoothed by a first 

order accurate implicit FDM, which will ultimately affect the response of the catchment. Again, spatial resolution matters: a 320 
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larger grid size not only results in larger differences on average but also in larger differences between small and large 

catchments (Fig. 7).  

The differences in catchment response relate to the differences in simulated erosion rates within the catchments. Figure 8 

illustrates the spatial difference in erosion rates calculated with the two numerical methods during the final step of the model 

run (after 5 Myr). This figure shows that spatial differences are significant and form a systematic banded pattern related to 325 

the upslope migration of the erosion waves of the individual uplift pulses.  

4.2. Tectonic displacement  

We test the performance of the 2D version of the flux limiting TVD-FVM to simulate tectonic displacement. A synthetic 

DEM forms the initial surface for a simulation of a constant lateral tectonic displacement with neither fluvial incision nor 

hillslope diffusion. Theoretically, this should result in a laterally displaced landscape that, apart from this displacement, 330 

remains unchanged in comparison to the initial state. We compare the flux limiting TVD-FVM with a first order accurate 

upwind Godunov Method (GM) simulating a tectonic displacement in two directions (u = v = 10 mm yr-1) over a time span 

of 1 Myr. Fig. 9 illustrates that the explicit GM strongly smooths the resulting DEM whereas the 2D TVD-FVM scheme 

produces a DEM that is very similar to the initial DEM, with reduced amounts of numerical diffusion.  

In order to quantify the amount of numerical diffusion (DN [L2 yr-1]) introduced by the GM and the TVD-FVM method, we 335 

test a range of different model configurations and calculate the numerical diffusivity, DN, corresponding to the observed 

smoothing. DN is the diffusivity required to transform the initial DEM (DEMini) to the final DEMs produced at the end of the 

simulations (DEMfint). The optimum amount of diffusion is determined by minimizing the misfit function H with a sequential 

quadratic programming method (Nocedal and Wright, 1999). H is given by: 
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 340 

where nbpx is the number of pixels in the DEM.  

We find that numerical diffusivity of the GM exceeds commonly used values of hillslope diffusivities as soon as spatial 

resolution exceeds 90 m (Fig. 10a). The 2D TVD-FVM decreases numerical diffusion by a factor of 5-60 compared to the 

GM (Fig. 10b). The accuracy increases for both schemes with increasing resolution and increasing CFL numbers. Yet, the 

gain in accuracy with increasing spatial resolution is higher for the TVD-FVM than for the GM. Our analysis shows that the 345 

explicit FDM performs best with a CFL criterion close to one where additional required iterations within a given time 

interval are at a minimum (Gulliver, 2007).  

5. Discussion  

Our analysis of numerical solvers focusses on three interrelated issues: numerical accuracy, spatial resolution and 

computational efficiency. Adopting highly simplifying assumptions allow us to benchmark the solvers against analytical 350 

solutions. Our focus is on testing an implicit, first order accurate, FDM against TVD-FVM. The implicit FDM has several 

desirable properties. It is unconditionally stable and tolerates time step lengths exceeding those prescribed by the CFL 

criterion. LEMs are often run over time spans of millions of years and the CFL criterion is dictated by a few grid cells with 

high upslope areas. Adopting an implicit scheme is therefore potentially interesting as it allows decreasing the computation 

time while enabling simulations at high spatial resolutions. Our results, however, show that this major advantage vanishes if 355 

the aim of a LEM simulation is to capture transiency correctly. For CFL > 1, the implicit FDM introduces significant 
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numerical smearing, and for CFL >> 1, the approach tends to insert artificial shockwaves of uplift because gradual uplift is 

approximated by a step function if time steps are (very) large.  

 

For time step lengths approaching those prescribed by the CFL criterion, we show that computational gains by implicit FDM 360 

are marginal compared to TVD-FVM. The TVD-FVM code can be vectorized, i.e. it exploits single-instruction multiple-data 

parallelism to save CPU time. The implicit FDM requires a lower number of numerical operations but all stream network 

nodes need to be treated sequentially. Simulations at higher spatial resolutions increase the numerical accuracy and may 

balance the low accuracy of the implicit, first order accurate, FDM. Our results indicate that there is indeed a strong gain in 

numerical accuracy for all methods (Fig. 4 and 5) with increasing spatial resolution. However, to achieve the same numerical 365 

accuracy as the TVD-FVM, the implicit method with a CFL<1 constraint requires the use of spatial resolution that is about 

three times higher, resulting in a computation time that is ~12 times higher (Fig. 5). In summary, while a first order implicit 

scheme is stable and accurate for long-term, steady-state solutions (Braun and Willett 2013), it has severe shortcomings 

when simulating transient landscape evolution caused by knickpoint propagation in detachment limited erosional basins. 

These shortcomings can, to a large extent, be avoided by using a TVD-FVM.  370 

 

We also show that the impact of the numerical scheme used to simulate river incision is not limited to river profile 

development alone. Hillslopes adjust to local base level changes dictated by river incision. Hillslope denudation rates 

therefore must—at least partly— reflect the geometry and dynamics of a knickpoint and will respond differently to a diffuse 

signal that is the result of relatively slow, continuous uplift on the one hand and a sharp discontinuity caused by a rapid base 375 

level drop of major fault activity on the other hand. Our simulations show that, depending on the spatial and temporal 

resolution, catchment wide erosion rates are more responsive to uplift when fluvial incision is calculated by TVD-FVM 

rather than by the, first order accurate, implicit FDM. This is because first order (explicit and implicit) FDMs fail to properly 

reproduce transient incision waves (Campforts and Govers, 2015) due to knickpoint smoothing. This also affects hillslope 

denudation as the drop in hillslope base level due to the passage of a knickpoint is smeared out in time when smoothing 380 

occurs. The response of catchment wide erosion rates to uplift will therefore also be smoothed, resulting in significantly 

lower peak erosion rates. This effect will be most significant in upstream catchments which are far away from the base level 

as smoothing increases with time and knickpoint migration distance.  

 

One might question the significance and necessity of numerical schemes that avoid diffusion of retreating knickpoints. Given 385 

the many assumptions and uncertainties that underlie many LEMs, numerical accuracy may seem a problem of lesser 

importance. We argue that the simulations presented in this paper show that this is not the case and that it is indeed critical to 

simulate knickpoint retreat as accurately as possible. However, our analysis does not cover all situations wherein the 

accurate simulation of knickzones is important. Simulation of sharp knickpoints is also required in geomorphological and 

lithological settings where knickpoint retreat is caused by rock toppling, possibly triggered during extreme flood events 390 

(Baynes et al., 2015; Lamb et al., 2014; Mackey et al., 2014). Similarly, glacial incision often creates hanging valleys which 

are reshaped by migrating fluvial knickpoints after glacial retreat (Valla et al., 2010). In all these cases simulation tools with 

a minimum of numerical diffusion are required to correctly quantify natural knickpoint diffusion and to study the underlying 

processes.  

 395 

First order numerical methods also inadequately simulate lateral tectonic displacement on a regular grid. The amount of 

numerical diffusion that is introduced by these methods will, in many cases, exceed natural diffusion rates, thus making 

accurate simulation of hillslope development impossible. A 2D variant of the TVD-FVM reduces the amount of numerical 

diffusion to values well below natural diffusivity values, an effect that is especially apparent at high spatial resolutions. The 
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2D TVD-FVM thus allows to accurately model this process, that significantly impacts the evolution of topography and river 400 

networks (Willett, 1999), using a fixed grid. This was hitherto only possible with flexible spatial discretization schemes. 

 

Although most LEMs use first order accurate discretization schemes (Valters, 2016), the problem of numerical diffusion has 

been discussed in the broader geophysical community (Durran, 2010; Gerya, 2010). An alternative family of shock capturing 

Eulerian methods are MPDATA advection schemes (Jaruga et al., 2015). These schemes are based on a two-step approach in 405 

which the solution is first approximated with a first order upwind numerical scheme and then corrected by adding an 

antidiffusion term (Pelletier, 2008). However, contrary to the TVD-FVM, the standard MPDATA scheme (Smolarkiewicz, 

1983) is not monotonicity preserving (i.e. it is not TVD). Instead, MPDATA introduces dispersive oscillations in the solution 

if combined with a source term (such as uplift) in the equation (Durran, 2010). Adding limiters to the solution of the 

antidiffusive step (Smolarkiewicz and Grabowski, 1990) renders the MPDATA scheme oscillation free (Jaruga et al., 2015). 410 

However, by adding this additional correction, the method approaches the numerical nature of the TVD-FVM which does 

not require further adjustments in any case.  

 

Some of the weaknesses of the tested numerical solutions can be reduced by using LEMs that rely on irregular grid 

geometries. Irregular grids, for example, allow to simulate tectonic shortening using a Lagrangian approach where grid 415 

nodes are advected with the tectonically imposed velocity field (e.g. Herman and Braun, 2006). In TTLEM the TVD-FVM 

solvers are implemented using a fixed grid, which has several advantages. First, input data such as topography, climate, 

lithology or tectonic displacement fields are typically available as raster datasets and thus require only minor modifications 

whereas irregular grids require substantial preprocessing. Second, TTLEM output can instantly be analyzed and visualized 

using the TopoToolbox library (Schwanghart and Kuhn, 2010; Schwanghart and Scherler, 2014) or any other geographic 420 

information system. Thus, while irregular grid geometries and flexible grids may have some advantages over rectangular 

grids, TTLEM’s implementation of numerically accurate algorithms strongly reduce the shortcomings of rectangular grids 

while facilitating straightforward processing of model in- and output.  

 

 425 

6. Conclusion 

Despite the growing interest in the development and use of LEMs, accuracy assessment of the numerical methods has 

received little attention. First order accurate FDM are the most commonly applied numerical methods. However, they 

introduce numerical diffusion and artificially smooth discontinuities that are inherent in transient landscapes. To overcome 

this problem, we developed the TVD-FVM. The TVD-FVM solves river incision more accurately than the first order 430 

accurate FDM’s with significant influences on the geometry of modelled river profiles and implications for catchment wide 

erosion rates. Errors due to numerical diffusion depend on the spatial and temporal resolution as well as on the position of 

the catchment in the landscape. In addition, we introduce a 2D version of the TVD-FVM that allows simulating lateral 

tectonic displacement with low numerical diffusion on a fixed computational domain. Our new numerical techniques are 

implemented in the open access raster based Landscape Evolution Model (TTLEM) contained within TopoToolbox. 435 

Together with numerical implementations of common hillslope process models, TTLEM provides the community with a 

novel simulation tool for the accurate reconstruction, exploration and prediction of landscape evolution. In its current form, 

TTLEM is limited to uplifting, fluvially eroding landscapes. Further development will integrate other processes (e.g. glacial 

erosion) as well as the explicit routing of sediment through the landscape. 

 440 

Code availability 
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TTLEM 1.0 is part of TopoToolbox version 2.2. The source code and future updates are available on the GIT repository 

https://github.com/wschwanghart/topotoolbox. TTLEM is platform independent and requires MATLAB 2014b or higher and 

the Image Processing Toolbox. Documentation and user manuals for the most current release version of TopoToolbox and 

TTLEM can be found at the GIT repository in the help folders of the software. The user manual of TTLEM includes three 445 

tutorials which can be accessed from the command window in MATLAB. The source code for the solution of the one 

dimensional Stream Power Law (SPLM) can be downloaded from the GIT repository https://github.com/BCampforts/SPLM. 

SPLM contains the solution of the 1D river incision codes including four examples.  
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  465 

Appendix 

 

Model structure 

The model architecture of TTLEM is illustrated in Fig. A1.  

 470 

Hillslope processes 

We illustrate the impact of different hillslope process models on simulated landscape evolution, using a 30 m resolution 

DEM of the Big Tujunga region in California as an example (Fig A2). TTLEM allows to simulate hillslope processes 

assuming (non)-linear slope dependent diffusion with the consideration of a threshold hillslope. Figure A2 illustrates how 

different hillslope process algorithms affect the evolution of hillslopes in the Big Tujunga region, California (Fig. A2a). We 475 

assume no tectonic displacement and use standard parameter values for river incision and hillslope diffusion (Table 1) and a 

threshold slope (Sc) of 1.2 (m/m) when applicable (Fig. A2b). We illustrate model results after 500 ky in Fig. 2c-d using the 

current topography as the starting condition. Linear diffusion (Eq. (4)) is not capable to keep up with river incision, which 

results in strongly oversteepened hillslopes near the river channels (Fig. A2c and 1g). While higher values for the diffusion 

coefficient D will eliminate this problem (e.g. Braun and Sambridge, 1997) they are incompatible with experimental findings 480 

(Roering et al., 1999) and will restrict hillslopes to convex upward shapes. The use of non-linear diffusion in combination 

with a threshold slope results in hillslopes similar to those simulated with linear diffusion in combination with a threshold 

slope. However, for a similar value of D, hilltops become more smoothed assuming non-linear diffusion as sediment fluxes 

due to diffusive processes now reach higher values when hillslopes approach the threshold slope. 

 485 
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 620 

 
Figure 1. Solution of the linear 1D stream power law for a synthetic knickzone over a time span of 1 Myr. The analytical 

solution is obtained with the method of characteristics. The spatial resolution is 100 m. Table 1 lists other model parameter 

values. 

  625 
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Figure 2. A synthetic steady state landscape produced as the testing environment to verify and compare the different 

numerical schemes implemented in TTLEM. Model runtime was 150 Myr, uplift rate was assumed to be spatially uniform 

over the area (block uplift) and fixed to 1 km Myr-1. Other model parameter values are listed in Table 1. Dynamic landscape 

evolution is presented in Movie S1. The grey lines indicate the drainage network for which the solution has been calculated 630 

analytically as a benchmark solution. The blue line indicates the river profile for which model results at different resolutions 

are plotted in Fig. 4. 
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Figure 3. Uplift imposed to the steady state landscape shown in Figure 2 to investigate the impact of different numerical 635 

schemes.  
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Figure 4: Comparison between different modelled resolutions for the river profile indicated in blue on figure 2. The green 640 

line is the analytical, ‘true’ solution, obtained with the slope patch method of Royden and Perron (2013). The full red line 

represents the first order accurate implicit solution when the CFL<1 and the dotted blue line represents the first order 

accurate implicit solution when the time step is left free. The implicit solutions where CFL<1 are simulated with a time step 

equal to the time step used for the TVD-FVM.  

 645 
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Figure 5: a. Performance of the different numerical schemes where the RMSE is calculated between the analytical and 

numerical methods. b. CPU time required to perform the model runs at the indicated resolutions.  

  650 
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Figure 6. Temporal variation in simulated catchment wide erosion rates using different numerical methods to simulate river 

incision. The black lines represent simulations where a flux limiting TVD-FVM is used, the blue lines represent the first 

order accurate implicit FDM without constraints on the time steps and the red lines represent the first order accurate FDM 

with an inner time step calculated with the CFL criterion. (a) Simulations performed at a spatial resolution of 100 m. (b) 655 

Simulations performed at a spatial resolution of 500 m. Here, a median filter with a window of 3 time steps is applied to the 

simulated erosion rates to eliminate spikes which might occur at low resolutions.  
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Figure 7. Spatial variation of differences between simulated erosion rates calculated with a flux limiting TVD-FVM for 660 

simulating river incision and a first order accurate implicit FDM. Here, we compare methods both run with an inner time 

step constrained with the CFL criterion (see text). OTVD-FDM is thus calculated between the black and red lines from Figure 6. 

Left column represents simulations run at a spatial resolution of 100 m, right column at 500 m. (a and b) Location of the 

randomly selected catchments with an area > 1 km² and < 50 km². Colors refer to the OTVD-FDM between the two simulations. 

(c and d) Differences between the schemes increase with increasing distance from the river outlets and are inversely 665 

correlated with the catchment area.  
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Figure 8. Spatial pattern of erosion rates during one model time step when simulating landscape evolution with the flux 

limiting TVD-FVM versus the first order accurate implicit FDM. (a) simulation at a resolution of 100 m where the time step 670 

of the implicit method is not constrained (b) simulation at a resolution of 100 m where the time step of the implicit method is 

constrained with the CFL criterion (c) simulation at a resolution of 500 m where the time step of the implicit method is not 

constrained (d) simulation at a resolution of 500 m where the time step of the implicit method is constrained with the CFL 

criterion.  
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Figure 9. Impact of numerical schemes when simulating horizontal shortening on a fixed grid. Left: extract from 

synthetically produced DEM from Fig. 2. Middle: horizontal shortening in two directions simulated with a 2D explicit first 

order Godunov Method (GM). Right: horizontal shortening in two directions simulated with a 2D explicit flux limiting 

TVD-FVM.  680 
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Figure 10. (a) Amount of numerical diffusion (DN) introduced in the system when simulating lateral tectonic displacement in 

two directions as a function of raster resolution. The grey zone indicates the range of naturally observed diffusion rates. (b) 

The ratio between the amount of numerical diffusion for the first order Godunov Method (GM) versus the flux limiting 685 

TVD-FVM.   
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Table 1. Model parameters used for the TTLEM simulations. 

Parameter Units Figure 1 
Figure 

2 
Figure 4-5 Figure 6-8 Figure 9-10 Figure 2A 

Initalization 

InitialSurface 
 

flat, 1D 

random 

synthetically 

produced DEM  

shown in Fig. 2 

synthetically 

produced DEM  

shown in Fig. 2 

synthetically 

produced DEM  

shown in Fig. 2 

Big Tujunga SRTM 

UpliftPattern 
 

no uplift 
uniform 

uniform uniform 
Lateral 

Displacement 
- 

UpliftRate m yr-1 0 1 × 10-3 0 - 3×10-3 0 - 3×10-3 0 0 

SpatialStep m 100 100 varying 100 - 500 varying 30 

        Computational parameters 

TimeSpan yr 1 × 106 
150 × 

106 
1 × 106 5 × 106 1 × 106 5 × 105 

TimeStep (outer) yr ca. 6 × 103 5 × 104 5 × 104 5 × 104 
resolution 

dependent  
1250 

AreaThresh m2 - 5 × 104 5 × 104 5 × 104 - 5 × 104 

DrainDir 
 

- variable Fixed Fixed - variable 

SS_Value m - 0.5 - - - - 

        Boundary conditions 

BC_Type 
 

- 

 

Dirichlet Dirichlet Neumann Neumann 

BC_dir_DistSite

s  
- 

 

- - - - 

BC_dir_Dist_Value - 

 

1 1 - 1 

BC_dir_value 
 

- 

 

0 0 - 0 

BC_nbGhost 
 

- 

 

1 1 - 1 

FlowBC 
 

- 

 

- - - - 

        River incision 

Kw 
L1-2m 

t-1 
5 × 10-6 

 

7 × 10-6 7 × 10-6 - 4 × 10-6 

m 
 

0.42 

 

0.42 0.42 - 0.45 

n 
 

1 

 

1 1 - 1 

Hillslope response 

D 
m2 yr-

1 
- 

 

0.01 0.036 - 0.015 

ρr ρs
-1 - - 

 

1.3 1.3 - 1.3 

DiffTol 
 

- 

 

1 × 10-4 1 × 10-4 - 1 × 10-4 

Sc m m-1 - 

 

0.8 1 - 1.2 

Sc_unit 
 

- 

 

tangent - - tangent 

Tectonic shortening 

u m yr-1 
  

- - 0.01 - 

v m yr-2 - 

 

- - 0.01 - 

        Numerics 

riverInc 
 

implicit_FD

M 

TVD_FVM 

 

implicit_FDM 
implicit_FDM 

TVD_FVM 
- implicit_FDM 

cfls 
 

0.9 

 

0.9 0.9 - 0.9 

diffScheme 
 

- 

 

Implicit linear 

with 

thresholdslope 

(Sc) 

Implicit linear 

with 

thresholdslope 

(Sc) 

- 
Different schemes 

(see Fig. A2) 

shortening_meth 
 

- 

 

- - 
Upwind_TVD 

Godunov Method 
- 
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 690 

Figure A1: Schematic representation of the TTLEM model flow. The numbered methods correspond with the paragraphs 

from section 3 in the main text.  



31 

 

 

Figure A2: Hillslope response to river incision. (a) Standard SRTM DEM (30 m) included in TopoToolbox representing the 

Tujunga region. The dotted grey line indicates the location of the transect shown in subplot g. (b) Resulting topography after 695 

500k years using four different descriptions for hillslope evolution. (c) Linear diffusion over all slope values (lin). (d) 

Threshold landscape where no slopes exceed the threshold slope (Sc). (e) Linear diffusion combined with immediate 

adjustment to a threshold slope (Sc). (f) Non-linear diffusion combined with immediate adjustment to a threshold slope (Sc). 

(g) Elevation profiles of the different model runs compared with the initial profile. Model parameter values are listed in 

Table 1. 700 


