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We thank the reviewers for their careful criticism of the text and inciteful comments that
have helped us to clarify and improve the manuscript. We think that these comments
have helped us to improve the manuscript, and we include the revised version with
this comment. We give detailed responses to specific comments below. For reviewers
1 and 2, the responses are only slightly expanded versions of the original replies to
comments. For reviewer 3, we include a new detailed response here, which we did not
have time to complete before the close of open discussion. Reviewer comments are in
bold, and responses in normal font. The revised manuscript and differences document
are attached as a supplement.

C1

Reviewer 1

p2 L28: what does “steady state form of a landscape” mean here? You've just
convinced me it doesn’t exist in these settings...this is a bit more clear that you
mean something like a flux steady state after reading the rest of the paper, but
it seems that there is no steady landscape form except in the vertical-contacts
case.

We changed the wording in this sentence, and added an additional sentence to clarify
that we are talking about a flux steady state rather than topographic steady state.

p3 L19 A change in process (e.g. away from stream-power erosion) under
steep conditions breaks this relationship, as noted above on L10 or so. This is
discussed to some extent but could bear more emphasis. These boundaries are
the very places where erosion processes are changing. For example, some of
the same authors have published on how blocky debris from strong lithologies
locally alters the erosion by streams in these settings. The change to effectively
a transport-limited system may necessitate at least a change in the exponents,
if not the form, of the erosion law. It is clear from the later discussion that the
authors appreciate this; it would be useful at this point perhaps to point out that
the formulation in Eq. 3 is effectively a reference case, deviations from which
may reflect the process variability present in any particular landscape.

We agree with the reviewer on this point and have added a couple of sentences to
make this assumption explicit.

p4 L15 What is considered “subhorizontal” here? How close to horizontal can
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the contact be before this singularity becomes important? It is rare in nature
(but common in LEMs) to have a perfectly uniform, mathematically horizontal
dip over a significant distance. | suggest adding an extra set of lines (or two) to
Fig. 3 with some dip cases close to horizontal, perhaps 5 and 10 dip, in addition
to the vertical and pure horizontal cases.

Subhorizontal is defined on Lines 1-2 of page 4. It is whenever rock dip is small
compared to channel slope. Therefore, the cases shown actually span a wide range
of possible contact and channel slopes. There is not a simple way that we can think of
to show specific other choices of dip angle. We have modified the main text and figure
caption to make it clearer that these two limits are not explicitly a function of rock dip,
but rather a comparison between rock dip and channel slope.

p4 L18 “solely a function of erodibility.” In this framework. | would argue
that process variation is critical here. There is certainly field support for a
retreat rate that is independent of slope but a function of drainage area in
relevant landscapes, a la Crosby and Whipple 2006 (cited) and Berlin and
Anderson 2007 JGR (not cited but quite relevant). But another way to view this
singularity is that perhaps n=1 works well away from contacts in sub-horizontal
rocks but the stream power erosion law itself is not a good model in these
situations. As noted, this is also where numerical inaccuracies may become
very important in LEMs. | appreciate the authors pointing out where numeri-
cal models may diverge from reality when considering this continuity framework.

We agree. For n = 1 the horizontal retreat rate is a function of erodibility AND drainage
area and independent of slope. This is a direct consequence of stream power erosion
law. (In chi space, for n = 1 the horizontal retreat rate is a function of erodibility and
independent of slope AND recharge area.) We have corrected the text to include
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drainage area as a factor influencing retreat rate. We also agree that the singularity
precludes validity of the stream power erosion law in these situations because
it causes the predicted slopes to not be small enough. We have also added a few
lines to the discussion concerning the cited field work and implications for the n=1 case.

p6 L13 “time-averaged incision rate through both rock types...” This needs some
clarification. Do you mean vertical incision rate in both rocks is identical to the
uplift rate? That doesn’t seem quite right. Averaged over what time period?

p6 L17-18 “continuity state is a type of flux steady state” Here this is presented
as if it follows from the above analysis, but it was stated on line 13 above that
the analysis is based on assuming flux steady state. It reads as being a circular
argument, but perhaps the phrasing just needs some clarification.

This section was not very clear and did appear circular. We have edited it to make it
clearer. From the results of the simulations, and specifically the fact that the landscape
is periodic in chi space, you can argue that the system must be in a flux steady state.
Using this conclusion, we can derive full profiles. Finally, that the whole story holds
together is further confirmed by the fact that we can match the simulated profiles using
the equation derived from flux steady state.

p7 L27 “two cycles through the rock layers” not clear what this means - what
cycles? The perturbation has traversed two sets of contacts?

Not exactly - it means the knickpoint caused by the perturbation has travelled so far
upstream that two sets of contacts now separate it from the downstream end of the
channel that is being perturbed. The number of contacts it traversed on its way (if
any) depends on the ratio between horizontal retreat rates and knickpoint celerity.
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As a side note, knickpoints pass from one lithology to another unobstructed. They
get damped through formation of stretch zones as in Royden and Perron (2013) and
through interfering with one another. We have edited the text to try to clarify this point.

p7 L30 how does layer thickness affect this result? Presumably it affects the
distances across which a profile is developed in each rock type. A common
geological scenario is thinner layers of hard rock between thick layers of soft
rock. Will thin layers of hard rock slow down knickpoints for less time than thick
ones, reducing the damping lengthscale? The analytical expressions and 1D
modeling here stick to equal thicknesses of each type. | suspect the general
result is the same, but pointing out the effect would be useful, and how to
account for it in the framework described on p7. | see this issue is addressed to
some extent in the 2D model setup, but its effect is not then discussed, and the
200 and 300 m alternating thicknesses are similar enough that | wouldn’t expect
a big impact. What about 100 m of weak rock alternating with 10 m strong-rock
interbeds?

Only the thickness of the stronger layer influences this length scale. This results be-
cause the problem is asymmetric with respect to the two rocks. The strong rock knick-
points are always slower. The time for the weak knickpoint to catch up depends on
only three things: 1) how big of a head start the strong knickpoint has, 2) the velocity of
the weak knickpoint, 3) the velocity of the strong knickpoint. The velocities of the two
knickpoints are independent of layer thickness. The head start of the strong knickpoint
is only dependent on the thickness of the strong rock. Therefore, the thinner the strong
rock layer, the quicker the knickpoints should decay.

We agree that it would be interesting to simulate some cases with thin, hard layers,
both to test the predictions of our theory for unequal thickness, and because this
is a common situation in nature. We now include new simulation results with thin
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strong layers and have expanded the discussion to examine the implications of layer
thickness on steady state form.

p10 L4-5 It’s pretty hard to call the reach corresponding to a caprock waterfall
a “channel”, especially once flow is detached from the face. | think eSurf gives
you the space to elaborate a bit more on how processes might commonly
change in these settings (see my notes above) and how in general one would
incorporate this into the continuity framework (without detailed exploration of
such a case).

We agree that processes dramatically change in this setting. Our speculation in the
manuscript is that stream power erosion, specifically in subhorizontal rocks with n<1 is
one possible mechanism to drive the system toward the caprock waterfall state. Once
the system reaches this state, stream power erosion has certainly broken down. We
have slightly expanded this part of the discussion, and make it clearer that the material
on caprock waterfalls is a speculation about a possibility rather than something we
have definitively shown.

Minor notes p2 L17: “responce” change to “response” Fig 7 caption is missing
punctuation at the end.

These typos were corrected.

Reviewer 2

This manuscript on the influence of horizontally (or close to it) layered rocks and
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their influence on landscape evolution is very interesting. Some of the results
are extremely counter-intuitive, and that always makes for a fun read. The math
and modeling seem sound to me, and I’'m generally supportive of this paper. The
paper is timely, as another paper on a similar topic recently came out — Forte
et al., which is cited here. Forte et al., also discussed that steady state is not
reached with horizontal layers. Where this paper falls a bit short, in my opinion,
is a lack of much discussion and also some lack in details of the modeling. As
for the discussion, | thought they might tie in more with the Forte paper at some
point, but that never happened. But in general | did not find the discussion to be
very deep. As for the modeling, it was not always clear to me why the models
were set-up as they were.

My general comment is just to give a bit more detail, including around the
figures, and some suggestions for this are laid out in my line-by-line comments.

We thank the reviewer for their careful reading of the manuscript, and pointing out a
number of items that were unclear or deserved further elaboration. Detailed responses
to comments are given below.

Line by line comments: After reading the abstract I’'m still not sure what channel

continuity means. Notably, the sentence starting on line 5 made no sense to
me, and | think that made me stumble through the rest of the abstract. | went
back and read it after reading the manuscript and then it made sense to me. |
think it was hard for me to envision what retreat in the direction parallel to a
contact meant without the schematics, but after seeing the schematics it seems
obvious. | don’t have a great suggestion for improving this sentence.

We agree that it is difficult to understand without a figure. We have expanded this part
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of the abstract in an attempt to more carefully explain what we mean by continuity. The
abstract is now a bit long, but we hope it is clearer.

The caption in Figure 2 and main text around it confuse me. In A, is the upper
layer steeper, or is it simply that the upper layer is overhanging the lower layer,
creating an instability? Similarly, in B, isn’t the problem that there was a dam
created? Equation 2: Is this vertical incision rate?

We have attemped to make this clearer. In case A, the upper layer can become
steeper or create an overhang, it depends on the sign of the dip of the contact. In
case B, the lower layer can create a dam or a low slope zone, depending on the sign
of the dip. We have adjusted the text accordingly. Equation 2 does contain the vertical
erosion rate, which we now specify in the text.

Page 4, first paragraph. | see the math, but this is confusing. A few things. |
wonder if it would be helpful to remind people the relationship between K, and
K,? As for equation 5 with n<1, the prediction is so counter to my ‘gut’, that
| wonder if some discussion about whether n<1 is realistic, or about whether
this counter intuitive relationship has been observed, would be useful. The n=1
case is also difficult for me to wrap my head around. Maybe more discussion is
coming later.

It is definitely counter to the common intuition based on prior work. One of the main
points of this manuscript is that the assumption behind prior work actually can break
down in subhorizontal rocks. We try to explain this in lines 6-8 of this page. Basically,
it results because horizontal retreat rate (or knickpoint celerity) is lower for steeper
channels in the case where n<1. This is because, for the same rate of vertical erosion,

C8



horizontal retreat rates are less for steeper slopes. In cases where n<1, the increased
erosion from the channel becoming steeper isn’t sufficient to offset the slope effect.
At n=1, these two effects are totally balanced, so slope has no effect on horizontal
retreat rate. We have expanded this section to try to make it a bit clearer, and have
reminded the reader that K, > K. We do also discuss later cases where n<1 might
be reasonable.

Page 4, line 28: What does it mean that experiments with resolution suggest that

the conclusions are not affected by numerics? Does that mean you changed
the resolution and ran with different numerical schemes, and got the same
answer? Or that your results are not dependent on the resolution for a given
implementation of stream power? Please clarify.

Our original statement was a bit too vague. We have edited this to clarify that we ran
some higher resolution simulations for some cases that produced the same result.

Page 5, line 6, 7: Is layer thickness thought to vary with uplift? | don’t think so.
Why do you do this?

We are specifically examining cases where there are many different rock layers, such
that the influence of base level perturbations dies out and we can see the continuity
equilibrium form. This was just a practical way of generating a similar number of
contacts in both the high and low uplift cases (albeit both with parameter ranges that
are within the range of natural landscapes).

Page 5, L 14: What do you mean it holds if ‘slope is replaced with slope‘?
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Slope is replaced with “slope in y-elevation space.” We agree that the repeated word
obscures the meaning a bit. We now use the word “steepness” instead, and then note
in a parenthetical that by steepness we mean slope in y-elevation space.

Figure 4 caption: What is meant by the ‘steady state profile predicted by the
theory‘? Just the elev-chi plot for a channel with that erodibility in vertical
layers? Or is it the theory that you present in this paper. I'm confused.

We mean the theory presented in this paper. We have edited the caption to clarify this
and have added the relevant equation references.

Page 7, summary in paragraph on line 25: | got a bit lost. | think a bit more
description/hand holding for the reader would help. | recognize that \* is a
way to show how large x,  is. But in the description with respect to figure
6, the damping is described in terms of cycles through rock layers. | don’t
understand what this means, or how to get that from the equations. | must be
missing something easy. How does ;. related to the depth of the rock layers?
How do | know from \* how many layers the knickpoint has propagated through?

Xs,0 is the x length of the strong layer reach near base level at the moment that the
weak layer becomes exposed at base level. Consequently, this distance is less than
the profile distance spanned by a pair of weak and strong rocks, but is also on the
same order of magnitude. The dimensionless damping length scale, A* = \/xs.0,
therefore provides a rough (conservative) estimate of the number of strong/weak pairs
that the knickpoint will pass before significant damping. We have expanded this text to
clarify this point.
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Figure 7 is difficult for me to interpret. | think | can see the knickpoint that is
propagating up in elevation, but | can’t really make out the knickpoint that it is
‘catching’. Can you tell us how you determined that there was a knickpoint at
the red line that was caught? If | look at the dashed line (intermediate time) in C,
it does not look like there is any significant change in the chi-elev relationship
at the red line, but | think that there is supposed to be a knickpoint there, right?
Or at least one close to it that will soon catch up? | only see one knickpoint
downstream from there, but maybe | am interpreting incorrectly? Actually, after
watching the movies, | may understand this. But | still think it is worthwhile to
point out to readers exactly what you are calling knickpoints.

Figure 7 was the best way we could think of to show this statically, though it is much
clearer in the animations, as we state in the text. We think that the point of confusion
here is that the knickpoints we are talking about are just sudden changes in slope,
and can correspond to increases or decreases in slope (depending on n). We have
expanded this explanation in the text.

Fastscape runs: It is a bit unsatisfying that the n=2/3, 3/2 runs have channels
that extend through 4+ layers of each rock type, but the n=1 run only just barely
taps three week layers. | know this is a lot to ask, but it’'d be more satisfying to
see more of the n=1 profiles, i.e. just make the K values in this run smaller. I'm
not adamant about this, as the 2D runs appear to be very similar to the 1D runs.

We agree that the choice of parameters for the n = 1 case was suboptimal. We have
rerun the simulation with a lower K value, and now the simulation has a similar number
of weak and strong layers.
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In the beginning of Section 4, the authors mention that they include hillslope
processes. It seems like this needs a bit more description. How are the different
rock types treated with the hillslope model? How do they model hillslopes?

We are using the standard hillslope diffusion approach employed in Fastscape, which
does not have the capability to adjust the diffusion coefficient with rock type. We now
clarify this in the text.

Discussion and Conclusions: | liked that the authors brought in a real world
example. However, this example confused me. | may be wrong, but my impres-
sion of Niagara Falls and the Niagara river is that the soft rocks underneath the
hard caprock are indeed basically vertical at the waterfalls. But if you move any
length downstream the channel is not so steep anymore. | might be wrong as
I haven’t studied the Niagara River, just visited it. But does the whole length
of profile have the ‘inverted® relationship (steeper in weak rocks) suggested
by Figure 4D, or is it just ‘inverted’ around the waterfall? This may seem a
picky point, but | would guess, as the authors brought up elsewhere, that the
processes going on right at the knickpoint are not adequately modeled by
stream power. So in some ways this comparison feels a bit odd to me. | felt as
though the discussion could be expanded a bit.

If the stream power erosion law continued to hold as the channel steepened, then in
theory one would expect the entire channel to remain steep in the weak rocks (for
n<1)). However, the stream power erosion law breaks down for such steep channels
as erosion processes take over that are not well-described by the stream power law.
Therefore, we are only speculating that continuity can push the system toward this
state (by first making the channel steep in the weak rocks). From a more standard
assumption of topographic equilibrium, one would never expect steepening in weak
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rocks, so it is not clear how you would approach such a state to begin with. There
are potentially other explanations, such as non-locality in erosion processes near the
contact, that cannot be entirely ruled out. We have expanded this discussion slightly
and tried to make it clearer that it is speculative. In the specific case of Niagara Falls,
which is one of the most famous of many possible examples, the flattening below the
waterfall in part occurs because of the nearby base level imposed by Lake Ontario.

The parameter n turns out to be extremely important in this study. Any thoughts
beyond Niagara Falls on how your contribution plays in to the n debate? Have
many studies suggested that n<1? Are there any other landscapes to call
upon to illustrate the modeled behavior besides Niagara Falls? | also generally
prefer a separate conclusions section. | think it is better for authors because
often times the only sections of the paper that get read are the abstract and
conclusions. But this is stylistic.

We do not attempt to constrain what realistic values of n should be. There are
theoretical arguments that some incision processes will produce n<1 (e.g. Whipple
et al. [2000] cited in this work, or Covington et al. [2015], GRL). While there are
likely good field sites where a natural experiment could be used to test the ideas
developed here, we think that finding and studying such a site is beyond the scope of
this manuscript. Our main goal here is to solidify our theoretical understanding of the
equilibrium behavior of the stream power erosion law in layered rocks.

We have subtantially expanded the discussion and written a separate conclusions
section. The expanded discussion begins with a comparison to the work of Forte et
al. (2016), and uses this as a framework to discuss implications that were not fully
developed in the previous version. We have also tried to clarify our ideas concerning
caprock waterfalls.
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Reviewer 3 (Whipple)

This manuscript is well written and entails an important step forward in under-
standing the influence of rock strength variations in landscape evolution. The
novel focus is on the influence of the slope exponent (n) in the stream power
river incision model on landscape evolution in areas where sub-horizontal lay-
ered rocks with varying rock strength are exposed — extending beyond a recent
treatment from my group (Forte et al., 2016, Earth Surface Processes and Land-
forms) that considered only the n = 1 case. It is remarkable that the venerable
stream power model still holds surprises! Though of course it is always impor-
tant to consider the degree to which processes and effects not encapsulated in
the stream power model will alter the behavior of natural landscapes.

There is much value in the analysis and discussion presented. Reading and
carefully reviewing this paper has notably advanced my own understanding of
how landscapes described by the stream power model will evolve in the pres-
ence of layered rocks as a function of the relative strength between stronger
and weaker layers, the relative thickness of strong and weak layers, and the dip
of the contacts (only simple planar dip panels considered thus far) in cases
with n < 1 or n > 1. As part of the process of reviewing this paper | re-derived
most of the key relationships and updated an existing 1d finite-difference solver
to handle a series of dipping layers with variable erodibility (K in the stream
power model) and variable thickness so | could test both the author’s initially
counter-intuitive results (such as the formation of cliffs in the weak units, not the
strong units, if » < 1) and my own derivations. | find complete agreement with
Figures 3, 4, 5, and 8. Similarly, though | would word some aspects differently
(reflecting differences in my derivations described below), | agree with the points
made in the discussion and conclusions. Thus | agree with all the findings in
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a qualitative sense. Likewise | see no problems with the numerical simulation
results — both in 1d and 2d using FastScape.

We thank the reviewer for this thorough review that has helped us to better understand
the results that we present in this manuscript and to rethink and expand aspects of our
approach.

However, | do not agree with some of the derivations and prefer a different
approach to solving the problems discussed and explaining the interesting
results of the 1d profile evolution models. As the only way I felt | could evaluate
the derivations was to redo them following my own intuition for how to pose
the problem, | present alternative solutions below. Rather than working the
derivations here, | outline the logic the present the solution. Hopefully this will
prove an effective and constructive approach. The alternate derivation given
below results in an identical solution for horizontal bedding (Eqn 5), which is
good, but suggests differing sensitivities to the dip of contacts and the relative
thicknesses of strong and weak units.

Our disagreement centers around the general approach and conceptual model used
to explain the observed behavior of the stream power model. Here we summarize
our understanding of these differences, and provide a general response. More de-
tailed responses to individual points are included below. Our approach uses a con-
cept we called continuity. Continuity is a natural generalization of topographic equilib-
rium (where erosion rates are constant everywhere, with steepness adjusting to rock
strength to accommodate those equal erosion rates). We define continuity at a contact
as a condition where erosion rates in both rock types are equal in the direction parallel
to the contact surface. In the case of vertical contacts, this produces equal erosion as
is found in the case of topographic equilibrium. Continuity can also be applied along
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an entire profile. We argue that negative feedback between topography and erosion
will tend to drive the system toward a state of continuity, in analogy to the negative
feedback that results in topographic equilibrium. However, rather than assumming that
profiles will approach a state of continuity, we have used this as a seemingly reason-
able hypothesis to test against simulation results. In Section 2, we now more carefully
explain that erosional continuity is a hypothesis to be tested.

Whipple did not find our approach using continuity intuitive, which perhaps means that
it can be improved or at least more clearly stated. He begins by examining knickpoint
celerity in the different rock layers. Knickpoint celerity is mathematically identical to
horizontal retreat rate. For n not equal to 1, he suggests that either the weak (if n > 1)
or strong (if n < 1) layer controls the horizontal retreat rate of the contact (i.e. knick-
point celerity). The controlling layer maintains the steepness that it would have if it
were the only rock layer and were in equilibrium with uplift rate. The non-controlling
layer adjusts its horizontal retreat rate (knickpoint celerity) to match the retreat of the
controlling layer. Since celerity and horizontal retreat are identical, the above concep-
tual framework is the same as our statement of continuity in the case of horizontal
rocks. If the dip of the contact is non-zero, then the two approaches differ, in that the
celerity approach is matching horizontal retreat rates at the contact, and the continuity
approach is matching retreat rates in the direction parallel to the contact.

We may be missing something here, but we do not see an a priori reason why one
rock layer should control the other, why this control should differ in cases with n < 1
and n > 1, or why explicitly celerity, rather than retreat rate, should be matched at
the contact. On the last point, it is at least clear that celerities do not match in the
case of vertical contacts, which is why the proposed celerity approach only applies
to the horizontal limit. However, whether or not the proposed set of assumptions can
be justified in advance, they do provide testable predictions about profile shapes that
can be compared against the simulations. These predictions are also different than
those produced by the continuity model, enabling a comparison of the two possible
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conceptual approaches with the numerical results.

The easiest prediction to test from the proposed celerity model is that the controlling
rock layer maintains an equilibrium slope. If this were true, then it would certainly
invalidate our conclusion that a flux steady state is reached, where long-term average
vertical incision rates at any x position in the profile are equal to the uplift rate. This
invalidation would result from the fact that incision rates in the controlling layer are equal
to uplift. If that were true, then in order to match average incision to uplift, the incision
rates in the non-controlling layer would also have to be equal to uplift. However, as
pointed out by both us and Forte et al. (2016), the vertical incision rates are not equal
in the two rock layers.

The above reasoning, along with our conclusion in the manuscript that the simulated
profiles are in a flux steady state, leads us to believe that the proposed celerity model
is not precisely correct. However, it can also be tested more explicitly using simulation
results. For n < 1, the controlling rock layer is hypothesized to be the strong layer. If
we examine a snapshot from a simultion just as the base level encounters a weak rock
layer, then we can clearly see the equilibrium slope produced at base level within the
strong rock (where uplift and erosion are equal). This slope can be compared with the
slope attained far from base level, and they are not, in general, the same (Fig. 1). In his
response to our short comment, Whipple also notes he observed some disagreement
between his model and the slopes observed in the n < 1 case.

For the n > 1 case, the controlling rock layer is the weak layer. We can again com-
pare the slope at base level with the slope observed far from base level (Fig 2). Here
the case is not as clear, in part because of oscillations in slope that are produced by
the base level perturbations. The first weak layer above the base level layer actually
overshoots the continuity equilibrium slope (and goes to even lower slopes). Layers
further up oscillate back toward the slope observed at base level, but ultimately settle
on a slope that is slightly less than that at base level (see upper two weak layers). This
oscillation is more easily observed in the animations. Since the difference in slope is
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not large, it is not surprising that Whipple comes to the conclusion that the simulations
satisfactorily confirm his hypothesis. However, this is in part a result of the parameter
choice and can also be predicted by our theoretical relations. Using the continuity the-
ory, one can explicitly predict the ratio of continuity steady state slope (51 cont) to the
slope at base level in a given rock layer (S +0po). Combining equations 1, 5, and 8 gives

ey

h 1+H1/H2

1
Si,cont  ( Hy/Hy+ (Kl/Kg)l/(lfn) /n
Sl,topo

This relation is depicted (Fig. 3) as a function of n for H; = Hy and K,, = 2K,. (
Note: Since this figure and equation actually make an interesting and useful point,
and help to clarify the difference between the two types of equilibrium, we have added
this to the manuscript along with some additional discussion.) For n < 1, the ratio of
continuity steady state slope to topographic steady state slope is always substantially
different from one, for both the strong and weak rocks, which is why the difference is
more visible in these simulations. For n > 1, the adjustment of the weak rock, which is
suggested to be the controlling layer, is always less than a factor of 2. For our simulated
value of n = 1.5 it is only a difference of 10-20%. The continuity theory predicts slightly
more difference in slope as n approaches 1. We simulate a case with n = 1.2 and,
as predicted, observe a slightly larger difference between base level and far from base
level slopes in the weak rock (Fig 4).

To summarize our current conclusions about cases with n # 1, we can see why one
might come to the conclusion that one rock layer is controlling the retreat of the other,
and derive a slope relationship based on knickpoint celerity matching. In fact, our
theory predicts this to be an approximate solution for a variety of parameter choices
(Fig 3). However, we do not think that this celerity model provides a precise description
of the far from base level equilibrium state, as we have demonstrated by comparison
with simulations. Rather than one rock layer controlling the other, the celerities of both
rock layers adjust to meet in the middle. Is is true, however, that in most cases one rock
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layer is adjusting more than the other. We think that the approximate success of the
knickpoint celerity model in horizontal rocks results exactly because knickpoint celerity
is identical to horizontal retreat rate. The more general statement of continuity matches
the retreat rate in the direction of the contact. As a result, the theory works for arbitrary
dip, not just in the horizontal limit.

For n = 1, we think that the model presented by Whipple is essentially correct.
Horizontal retreat rate is independent of slope, and therefore adjustments in slope
cannot produce a match in horizontal retreat in the two rock layers. We think that
this should ultimately lead to a state where the entire profile is retreating at the rate
of the weak rock (at least if overhangs are not allowed to form). We have not tested
whether this is precisely true in the numerical simulations, but we suspect that the
retreat rate in simulations may be sensitive to the discretization scheme, because
of numerical dispersion in the vicinity of the sharp features that form in the profile.
Though the numerical schemes typically used in landscape evolution models enforce
continuity at the contact, the continuity theory breaks down for the rest of the profile
when n = 1 in horizontal rocks. Since continuity breaks down, we were having
difficulty understanding the n = 1 case, and here we think that Whipple’s explanation
makes dynamics of n = 1 channels much clearer. We have adjusted our discussion
accordingly.

First, | don’t much like the conceptual model in Figures 1 and 2. Most important,
a problem only arises in the strong-over-weak case: overhangs cannot be
sustained, as illustrated in Figure 2a. Conversely, as illustrated by Forte et al.
(2016) and commonly seen in nature, weak rocks can readily be stripped off the
top of strong rocks, leaving a tapering wedge of weak rock in the case of an
upstream-dipping contact like that shown in Figure 2b. | also don’t like the use
of the word “continuity” for this, since in much of the geomorphic and fluid flow
literature “continuity” means conservation of mass, though | appreciate that
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you are imposing a continuous profile with no overhangs.

We do not think that continuity, as we defined it, applies only to the case of strong-
over-weak rock. We think that negative feedback, as described by these figures, will
in general tend to drive the system toward continuity. We only consider this line of
reasoning to be suggestive that continuity is a reasonable hypothesis, and we test this
hypothesis against the simulations. Relationships derived from continuity do predict
stream profile shapes for stream power erosion with n # 1. In the case of n = 1, conti-
nuity cannot be preserved. In the simulations it is preserved at the contact because of
the numerical scheme (e.g. overhangs are not allowed because the channel can only
have one z position for every x position) rather than for physical reasons.

In our simulations where n # 1 we do not see stripping occur when weak layers are on
the top (see animations in supp. material). We do, however, see this kind of stripping
for n = 1, as noted by Forte et al. (2016). We agree that this form of plateau topped
with weak layers is commonly found in nature, which could be an argument forn = 1
in those cases (or perhaps for the inapplicability of the stream power model in the
steep topography). Alternatively, we do often see a flat plateau preserved at the top
of the topography that results from the initial condition of flat topography. Our previous
simulations had weak layers on top, but we have run additional cases with strong layers
on top. This plateau is preserved independent of which layer is on top. There is some
dependence on n, with stonger preservation of the flat initial condition when n > 1.

We agree that the choice of the word “continuity” is somewhat unfortunate. We were
never completely satisfied with this word, though we also had not thought of the
conflict with the more common meaning of “continuity” associated with conservation
relationships. So far, we have not been able to think of a more appropriate word,
though we are open to any suggestions. We will change it to “erosional continuity” to
try to distinguish it from conservation of mass.
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| find it most useful to think about this problem in terms of the controls on
the kinematic wave speed that characterizes the evolution of river profiles
governed by the stream power incision model (Rosenbloom and Anderson,
1994): Ce = KA™S("—1), Key elements are (1) all else equal the kinematic wave
speed is higher in weak rocks than strong, and (2) wave speed decreases with
Slope for n < 1, is independent of Slope for n» = 1, and increases with Slope for
n > 1. The surprising results in this paper all stem from the curious effect that
wave speed decreases with Slope for n < 1.

Kinematic wave speed happens to be numerically equal to horizontal retreat rate, so
we agree with these statements when horizontal rocks are considred. While it may
be more intuitive to think about celerity, we do not see a way to satisfactorily predict
the simulation results from a celerity based approach. If such an approach could be
found that successfully predicted the simulation results, and was more intuitive to other
workers in the field, we would certainly consider using it instead. However, after some
thought, we have not yet found such an approach.

From study of the evolution of 1d river profiles cutting through layered rocks for
casesn < 1, n > 1, and n = 1 revealed in numerical simulations (as in Figures
4 and 5), | suggest below a set of fundamental controls on the development of
profile shape (cliffs formed in the weak rock (n < 1), the strong rock (n > 1),
or through each strong-over-weak couplet (» = 1)), and the retreat rate of the
slope-break knickpoint at the strong-over-weak contact.

The authors come close to stating what | believe is happening in the case of
horizontal contacts: (1) fundamentally cliffs are forming because all-else held
equal the kinematic wave speed of profile segments within the weak unit exceeds
that of segments within the strong unit, so there is a tendency to undermine, or
to form consuming knickpoints at strong-over-weak contacts, but as described
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by the authors and illustrated in the numerical simulations, the river profile will
evolve toward an equilibrium where the upstream migration rate of the strong
unit matches that of the weak unit at the contact; (2) for » < 1 wave speed de-
creases with increasing slope, so in response to the tendency to undermine, the
profile steepens in the weak unit until the wave speed of the weak unit at the
contact has slowed to equal the wave speed of the strong unit at the contact (the
strong unit maintains an equilibrium slope at the contact and the knickpoint at
the contact migrates at the rate set by the wave speed of the strong unit on an
equilibrium slope — this best describes the basal strong-over-weak contact, see
below); (3) for n=1 wave speed is independent of slope, so the river profile has
no way to respond, and a vertical cliff forms (50% in weak, 50% in strong unit)
with retreat rate = wave speed of the weak unit — the cliff grows in height until
the full strong-over-weak doublet is incorporated and the retreat rate is set by the
wave speed of the weak unit; (4) for » > 1 wave speed increases with increasing
slope, so in response to the tendency to undermine, the profile steepens in the
strong unit until the wave speed of the strong unit at the contact has increased
to equal the wave speed of the weak unit at the contact (the weak unit maintains
an equilibrium slope at the contact and the knickpoint at the contact migrates at
the rate set by the weak unit on an equilibrium slope).

Once this realization is made, it is easy to write equations for the wave speed
in each unit at the contact, set them equal, and solve for the ratio of the slope
of the weak unit (S,,) to the slope of the strong unit (S;). For horizontal beds,
Equation 5 in the paper is recovered. So the derivation given is exact in the limit
of horizontal contacts (also satisfies expectation for vertical contacts). However,
in my analysis the derivation for the case of non-horizontal contacts (Eqn 2)
appears to be incorrect. First, the solution only applies for strong-over-weak
scenarios, so E1, S1 (downstream) could only be the weak unit. Second, if the
derivation described above for horizontal contacts is generalized to account for
planar dipping beds, a different solution is found.
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In the case of dipping beds, the migration rate of the knickpoint at the strong-
over weak contact is not set only by the kinematic wave speed (Ce = E/S =
K AmS(=1)) as it is for horizontal contacts, but must account for the slope of the
contact (S.). For example, if the contact were exactly parallel to the river bed,
then the migration rate would approach infinity over that reach. Geometrically
one can readily show that the local knickpoint migration velocity (Cey,) will be:
Ceyy, = E/(S — Sc) (which correctly reduces to the kinematic wave speed for
Se =0).

(Note here that the caption to Fig. A1 indicates that Sc in the paper is defined
positive for an upstream dip, while channel slope S is positive downstream. |
worry that this could prove very confusing. Here | instead define Sc as positive
for downstream dip).

We have changed this sign convention to avoid confusion.

As noted above, the migration rate of the slope-break knickpoint at the contact
is set by the equilibrium wave speed within the strong unit for n < 1 (at least
for the basal strong-over-weak contact), and within the weak unit for n > 1 -
the problem then is how the dip of the contact amplifies or reduces knickpoint
velocity relative to the kinematic wave speed. Solving for the equivalent of Eqn
5 in the presence of dipping beds, | find (derivations available on request):

Suw/Ss = (Ku/K )M s (1 = 5,/8) A=) forn < 1 )

and
Su/Ss = (Kuw/K) M) s (1 = 5./8,) M=) forn > 1. 3)

Note that S./S, appears in the n < 1 case because the retreat rate is set by the
wave speed in the strong unit, and S./S,, appears in the n > 1 case because the
retreat rate is set by the wave speed in the weak unit.
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These solutions, however, only obtain over a range of S./S; < 1or S./Sy, <1
- basically restricted to sub-horizontal conditions - as outlined below. In addi-
tion, as mentioned above, the n < 1 solution applies best to the basal strong-
over-weak contact: the oversteepening of the weak unit is damped up-section
because the slope-break knickpoints at the strong-over-weak contacts act as a
local baselevel, reducing local incision rate within the overlying strong unit (as
happens in weak-over-strong contacts with » = 1). This causes a decrease in the
slope within the strong unit, which increases the kinematic wave speed and thus
decreases the degree of over-steepening of the weak unit. This complicating
phenomenon is restricted to the n < 1 case.

I have tested these revised equations, and the limits on their applicability
outlined below, against numerical simulations with satisfying results.

Above we outlined both why we think this solution does not adequately explain the
simulation results, as well as why it should provide an approximate solution in some
parts of the parameter space (e.g. n > 1), which is actually predicted by the continuity
theory.

For n < 1 and downstream-dipping beds (S. is positive), the solution only ap-
plies for S./Ss < 1— —(K,/Ky,)(1/n): for larger (more positive) downstream dips,
an equilibrium profile results (S; and S,, have equilibrium values equal to the
vertical contact case even though knickpoints are slowly migrating upstream
over time). For n < 1 and upstreamdipping beds (S. is negative), preliminary
comparison with numerical simulations indicates the solution is only valid for
|(S./Ss)| < 1. For steeper upstream dips, the profile transitions toward an equi-
librium form (I have not studied this in detail).

For n > 1 and downstream-dipping beds (S. is positive), the solution only
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applies for Sc < Sw. At Sc = Sw, knickpoint velocity is infinite. For Sc > Sw,
the strong-over-weak contact propagates downstream, invalidating the analysis.
For n > 1 and upstream-dipping beds (S. is negative), the solution only applies
for S./S, > 1 — (K,/K,)/™: for larger (more negative) upstream dips, an
equilibrium profile results (S; and S, have equilibrium values equal to the
vertical contact case even though knickpoints are slowly migrating upstream
over time).

We would like to point out that in addition to working in the subhorizontal case, for
abs(S./Ss) 2 1, our Egn 3 correctly predicts slopes similar to topographic equilibrium
slopes for steep or vertical dips.

These solutions can be re-cast into the form of Eqn 2 (note | have inverted the
relation here):
Ey/Ey = Es/Ey, = (Ss — S¢)/Sw; forn < 1 ()

Ey/Ey = Es/Ey = Ss/(Syw — Se); forn > 1 5)

Thus Eqgn 2 should have two forms, one for n < 1 and one for n > 1. (remember
that S. is defined here as positive downstream).

Section 3.2. | did not attempt to reproduce or critically evaluate Equation 8,
but found no dependence of erosion rate patterns on H;/H, in my numerical
simulations. For horizontal beds, Equation 5 is exactly satisfied for a very
wide range of H;/H,. | did not investigate whether a greater sensitivity to layer
thickness emerges with dipping contacts.

Equation 5 only predicts slope ratios, and we agree that it is independent of the

thickness ratio (H1/H>). However, the absolute slopes, and consequently erosion

rates, do depend on this relative thickness. Actually, this is an interesting prediction
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of our model that we had not fully tested or explored. In the revised version of the
manuscript we present plots that compare simulations with non-equal thicknesses
to some of our previous simulations. Keeping uplift, erodibility, and n the same, an
increase in the percentage of the thickness that is occupied by weak layers results
in a decrease in the slopes in both weak and strong units. In the limit where one
rock layer is much thicker than the other, then this thick layer has erosion rates that
match uplift, and it has a slope that would be the same as its slope in the case of
topographic equilibrium. This also has interesting implications for natural systems,
where thicknesses will not typically be regular. We have expanded the discussion to
consider these results.

Section 3.3. | don’t see the profile as being “perturbed” at baselevel because,
as the authors note on page 6, line 27, new river segments formed at baselevel
always begin in equilibrium (£ = U, and equilibrium slopes). The perturba-
tions develop above as the differential wave speeds near contacts begin to
manifest in deviations from equilibrium slopes and erosion rates. Thus I’'m not
enthused about the “damping length scale” terminology. However, the result
appears robust — differential wave speeds are rapidly accommodated at the first
strong-over-weak contact, with knickpoints at contacts quickly converging on
a migration velocity set by the equilibrium wave speed of either the weak unit
(n >= 1) or the strong unit (n < 1).

We think this is a language issue: perturbed from which equilibrium? The newly
forming segment does have an erosion rate equal to uplift. Segments at distances
from base level that are farther than the damping length scale have erosion rates that
depend only on the rock type, are not equal to uplift rate, and are collectively in flux
steady state. That is what we mean by “damping length scale” (the scale over which
erosion rates converge toward continuity steady state). Given that the manuscript
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is about continuity steady state, and the base level reach that is at topographic
steady state produces disturbances that travel up the profile and decrease in size
as they go, we think that it is reasonable to consider these as perturbations that are
damped. This is certainly the visual impression we get when watching animations of
the simulations. However, we have also edited the text throughout to try to make it
clear which equilibrium we are referring to at any given time.

That said, | am confused by Eqn 10. First, there appears to be a typo in
Eqn (10): as derived, the last term should be Ay(m/n) not A(m/n). Further,
Ce = kinematic celerity = horizontal migration rate of river “patch” (patch
as used by Royden and Perron, 2012) = KAmS(n—1). For a steady-state
river patch, S = (U/K)(1/n)A(—m/n). Combining these, Whipple and Tucker
(1999) showed that the horizontal migration rate of a steadystate river patch
is Ce = U(n—1)/nK(1/n)A(m/n) — this is the relation given for Eqn 10, so
the equation appears to be correct, but the derivation (and the apparent typo)
implies it is incorrect.

There was a typo in this equation, A should have been Ay, as noted. The celerity
we are deriving is also celerity in x space, which may have been another source of
confusion. We now clarify this in the text.

Finally, although widely appreciated, it seems worth stating that readers should
beware the difference between the mathematics of the stream power model
(SPM), insightful though they can be, and the physical reality of nature. Many
processes are not represented in the SPM and therefore predictions may fail.
Despite this, | am very supportive of publishing papers like this that explore
model predictions because this allows one to: (1) generate testable hypotheses,
constrain parameters, or recognize where models fail and why; (2) use any
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failures to improve the model; and (3) know what will happen in landscape
evolution simulations based on the SPM under different conditions.

We are aware of the limitations of SPM and hope that we express this clearly in the
manuscript. One of the central points of the manuscript is to clarify that common (im-
plict) assumptions about equilibrium landscapes do not always hold for subhorizontal
layered rocks. So, to the extent that we are using the SPM and these assumptions to
interpret real landscapes, we should be aware of these limitations. However, beyond
this, we provide a framework that can extend the standard topographic equilibrium
model and account for subhorizontal rocks. Whether evidence of continuity steady
state is to be seen in nature is still uncertain. However, our theoretical work does gen-
erate testable hypotheses, and help us to understand what is occuring in landscape
evolution simulations.

| have a few additional comments listed below with reference to page and line
number.

1. Title: | suggest revising title to remove “continuity” as this will mean “con-
servation of mass” to many. Also | suggest emphasizing your key finding about
the dependence on n, if you can find an effective wording.

We have changed this to “erosional continuity” to try to clarify this difference. We have
not been able to think of a better word to describe this concept than “continuity.”

2. Page 1, Line 21-22: This is not true. Many studies of bedrock channel
morphology are expressly seeking information about the history of climate,
tectonics, or drainage divide migration recorded in non-steady state profiles (as
you note on page 2, line 4).
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Here our text was unclear. Of course bedrock channel profiles are often used to
explore transience, but an understanding of steady state is used to identify the
transience. We have edited these sentences to try to make our meaning clearer.

3. Page 2, line 9: better to not call the stream power model (SPM) a “law”.

We agree and have modified the text accordingly.

4. Page 2, line 11-12: the SPM is widely used in modeling studies, but is not
required as a basis of profile analysis — channel steepness and concavity can
be measured and interpreted in terms of relative uplift rate, climate, or rock
strengths independent of the river incision rule.

We agree that profile analysis doesn’t require specific use of a river incision rule, so
we have edited this sentence to remove the “stream power model” phrase.

5. Page 3, line 3-4: as you show in your analysis, this is not true for n<1.

The wording here was not precisely correct. We have edited it to note that we are
considering retreat rates specifically in the direction of the contact plane and vertical
erosion rates. We also now make it clearer that the idea of continuity is treated as a
hypothesis, which is tested using the simulations.

6. Page 3, line 5-6: | disagree. Where a weak layer overlies a strong layer, there
is no constraint on the relative stream segment migration speed — the weak
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layer can be stripped off, leaving a bench on the underlying strong layer or a
tapering wedge of the weak layer. Such forms are very common in nature.

We do think that creation of a low or reverse slope segment will reduce erosion rates
as a result of reduced slope in the contact zone. However, as discussed above, we
treat this as a hypothesis to be tested by simulations. The models do seem to display
this behavior, except for n = 1.

7. Page 9, line 9: This sentence is confusing since channel segments formed at
baselevel are always initially at equilibrium (E=U, steady state form) in systems
described by the SPM.

It is true that these segments are in topographic equilibrium at baselevel. Topographic
equilibrium assumes conditions stay constant. So if conditions, including K, change
with time / uplift, topographic equilibrium is not actually an equilibrium for the system.
Our system has an equilibrium different from topographic, so we can (and successfully
do) treat the events at the baselevel as perturbations. However, we agree that it is
potentially confusing to use the phrase “disequilibrium at base level,” and we have
slightly reworded to clarify our meaning.

8. Page 9, line 16: “channel steepness” here would be better written as “channel
slope” or “channel gradient”, since “steepness” commonly refers to the steep-
ness index.

Agreed.
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Please also note the supplement to this comment:

http://www.earth-surf-dynam-discuss.net/esurf-2016-41/esurf-2016-41-AC3-
supplement.zip

Interactive comment on Earth Surf. Dynam. Discuss., doi:10.5194/esurf-2016-41, 2016.
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Fig. 1. High uplift simulation with n=2/3. The slope attained in the strong rock far from base

level is different than the topographic steady state slope that is attained near base level. Grey
is weak rocks.
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Fig. 2. High uplift simulation with n=1.5. The slope attained in the weak rock far from base
level is different than the topographic steady state slope that is attained near base level. Grey
is weak rocks.
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Fig. 3. Contrast between continuity steady state and topographic steady state slopes as a
function of n, with equal layer thickness and Kw = 2 Ks.

C34



Elevation (m)

Chi (m)

Fig. 4. High uplift simulation with n=1.2 The weak rock has stronger slope contrasts than in the
n=1.5 case, as predicted by erosional continuity.

C35



