
We thank the reviewers for their careful criticism of the text and inciteful comments that have helped us to clarify and im-
prove the manuscript. We think that these comments have helped us to improve the manuscript, and we include the revised
version with this comment. We give detailed responses to specific comments below. For reviewers 1 and 2, the responses are
only slightly expanded versions of the original replies to comments. For reviewer 3, we include a new detailed response here,
which we did not have time to complete before the close of open discussion. Reviewer comments are in bold, and responses in5
normal font.

Reviewer 1

p2 L28: what does “steady state form of a landscape” mean here? You’ve just convinced me it doesn’t exist in these10
settings...this is a bit more clear that you mean something like a flux steady state after reading the rest of the paper, but
it seems that there is no steady landscape form except in the vertical-contacts case.

We changed the wording in this sentence, and added an additional sentence to clarify that we are talking about a flux steady
state rather than topographic steady state.15

p3 L19 A change in process (e.g. away from stream-power erosion) under steep conditions breaks this relationship,
as noted above on L10 or so. This is discussed to some extent but could bear more emphasis. These boundaries are
the very places where erosion processes are changing. For example, some of the same authors have published on how
blocky debris from strong lithologies locally alters the erosion by streams in these settings. The change to effectively a20
transport-limited system may necessitate at least a change in the exponents, if not the form, of the erosion law. It is clear
from the later discussion that the authors appreciate this; it would be useful at this point perhaps to point out that the
formulation in Eq. 3 is effectively a reference case, deviations from which may reflect the process variability present in
any particular landscape.

25
We agree with the reviewer on this point and have added a couple of sentences to make this assumption explicit.

p4 L15 What is considered “subhorizontal” here? How close to horizontal can the contact be before this singularity
becomes important? It is rare in nature (but common in LEMs) to have a perfectly uniform, mathematically horizontal
dip over a significant distance. I suggest adding an extra set of lines (or two) to Fig. 3 with some dip cases close to30
horizontal, perhaps 5 and 10 dip, in addition to the vertical and pure horizontal cases.

Subhorizontal is defined on Lines 1-2 of page 4. It is whenever rock dip is small compared to channel slope. Therefore, the
cases shown actually span a wide range of possible contact and channel slopes. There is not a simple way that we can think of
to show specific other choices of dip angle. We have modified the main text and figure caption to make it clearer that these two35
limits are not explicitly a function of rock dip, but rather a comparison between rock dip and channel slope.

p4 L18 “solely a function of erodibility.” In this framework. I would argue that process variation is critical here.
There is certainly field support for a retreat rate that is independent of slope but a function of drainage area in relevant
landscapes, a la Crosby and Whipple 2006 (cited) and Berlin and Anderson 2007 JGR (not cited but quite relevant).40
But another way to view this singularity is that perhaps n=1 works well away from contacts in sub-horizontal rocks
but the stream power erosion law itself is not a good model in these situations. As noted, this is also where numerical
inaccuracies may become very important in LEMs. I appreciate the authors pointing out where numerical models may
diverge from reality when considering this continuity framework.

45
We agree. For n = 1 the horizontal retreat rate is a function of erodibility AND drainage area and independent of slope. This

is a direct consequence of stream power erosion law. (In chi space, for n = 1 the horizontal retreat rate is a function of erodibil-
ity and independent of slope AND recharge area.) We have corrected the text to include drainage area as a factor influencing
retreat rate. We also agree that the singularity precludes validity of the stream power erosion law in these situations because it
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causes the predicted slopes to not be small enough. We have also added a few lines to the discussion concerning the cited field
work and implications for the n=1 case.

p6 L13 “time-averaged incision rate through both rock types...” This needs some clarification. Do you mean vertical
incision rate in both rocks is identical to the uplift rate? That doesn’t seem quite right. Averaged over what time period?5

p6 L17-18 “continuity state is a type of flux steady state” Here this is presented as if it follows from the above analysis,
but it was stated on line 13 above that the analysis is based on assuming flux steady state. It reads as being a circular
argument, but perhaps the phrasing just needs some clarification.

This section was not very clear and did appear circular. We have edited it to make it clearer. From the results of the simula-10
tions, and specifically the fact that the landscape is periodic in chi space, you can argue that the system must be in a flux steady
state. Using this conclusion, we can derive full profiles. Finally, that the whole story holds together is further confirmed by the
fact that we can match the simulated profiles using the equation derived from flux steady state.

p7 L27 “two cycles through the rock layers” not clear what this means - what cycles? The perturbation has traversed15
two sets of contacts?

Not exactly - it means the knickpoint caused by the perturbation has travelled so far upstream that two sets of contacts now
separate it from the downstream end of the channel that is being perturbed. The number of contacts it traversed on its way (if
any) depends on the ratio between horizontal retreat rates and knickpoint celerity. As a side note, knickpoints pass from one20
lithology to another unobstructed. They get damped through formation of stretch zones as in Royden and Perron (2013) and
through interfering with one another. We have edited the text to try to clarify this point.

p7 L30 how does layer thickness affect this result? Presumably it affects the distances across which a profile is devel-
oped in each rock type. A common geological scenario is thinner layers of hard rock between thick layers of soft rock.25
Will thin layers of hard rock slow down knickpoints for less time than thick ones, reducing the damping lengthscale?
The analytical expressions and 1D modeling here stick to equal thicknesses of each type. I suspect the general result
is the same, but pointing out the effect would be useful, and how to account for it in the framework described on p7.
I see this issue is addressed to some extent in the 2D model setup, but its effect is not then discussed, and the 200 and
300 m alternating thicknesses are similar enough that I wouldn’t expect a big impact. What about 100 m of weak rock30
alternating with 10 m strong-rock interbeds?

Only the thickness of the stronger layer influences this length scale. This results because the problem is asymmetric with
respect to the two rocks. The strong rock knickpoints are always slower. The time for the weak knickpoint to catch up depends
on only three things: 1) how big of a head start the strong knickpoint has, 2) the velocity of the weak knickpoint, 3) the velocity35
of the strong knickpoint. The velocities of the two knickpoints are independent of layer thickness. The head start of the strong
knickpoint is only dependent on the thickness of the strong rock. Therefore, the thinner the strong rock layer, the quicker the
knickpoints should decay.

We agree that it would be interesting to simulate some cases with thin, hard layers, both to test the predictions of our theory
for unequal thickness, and because this is a common situation in nature. We now include new simulation results with thin40
strong layers and have expanded the discussion to examine the implications of layer thickness on steady state form.

p10 L4-5 It’s pretty hard to call the reach corresponding to a caprock waterfall a “channel”, especially once flow is
detached from the face. I think eSurf gives you the space to elaborate a bit more on how processes might commonly
change in these settings (see my notes above) and how in general one would incorporate this into the continuity frame-45
work (without detailed exploration of such a case).

We agree that processes dramatically change in this setting. Our speculation in the manuscript is that stream power erosion,
specifically in subhorizontal rocks with n<1 is one possible mechanism to drive the system toward the caprock waterfall state.
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Once the system reaches this state, stream power erosion has certainly broken down. We have slightly expanded this part of the
discussion, and make it clearer that the material on caprock waterfalls is a speculation about a possibility rather than something
we have definitively shown.

Minor notes p2 L17: “responce” change to “response” Fig 7 caption is missing punctuation at the end.5

These typos were corrected.

Reviewer 2
10

This manuscript on the influence of horizontally (or close to it) layered rocks and their influence on landscape
evolution is very interesting. Some of the results are extremely counter-intuitive, and that always makes for a fun read.
The math and modeling seem sound to me, and I’m generally supportive of this paper. The paper is timely, as another
paper on a similar topic recently came out – Forte et al., which is cited here. Forte et al., also discussed that steady state
is not reached with horizontal layers. Where this paper falls a bit short, in my opinion, is a lack of much discussion and15
also some lack in details of the modeling. As for the discussion, I thought they might tie in more with the Forte paper at
some point, but that never happened. But in general I did not find the discussion to be very deep. As for the modeling,
it was not always clear to me why the models were set-up as they were.

My general comment is just to give a bit more detail, including around the figures, and some suggestions for this are
laid out in my line-by-line comments.20

We thank the reviewer for their careful reading of the manuscript, and pointing out a number of items that were unclear or
deserved further elaboration. Detailed responses to comments are given below.

Line by line comments: After reading the abstract I’m still not sure what channel continuity means. Notably, the25
sentence starting on line 5 made no sense to me, and I think that made me stumble through the rest of the abstract. I
went back and read it after reading the manuscript and then it made sense to me. I think it was hard for me to envision
what retreat in the direction parallel to a contact meant without the schematics, but after seeing the schematics it seems
obvious. I don’t have a great suggestion for improving this sentence.

30
We agree that it is difficult to understand without a figure. We have expanded this part of the abstract in an attempt to more

carefully explain what we mean by continuity. The abstract is now a bit long, but we hope it is clearer.

The caption in Figure 2 and main text around it confuse me. In A, is the upper layer steeper, or is it simply that the
upper layer is overhanging the lower layer, creating an instability? Similarly, in B, isn’t the problem that there was a35
dam created? Equation 2: Is this vertical incision rate?

We have attemped to make this clearer. In case A, the upper layer can become steeper or create an overhang, it depends on
the sign of the dip of the contact. In case B, the lower layer can create a dam or a low slope zone, depending on the sign of the
dip. We have adjusted the text accordingly. Equation 2 does contain the vertical erosion rate, which we now specify in the text.40

Page 4, first paragraph. I see the math, but this is confusing. A few things. I wonder if it would be helpful to remind
people the relationship between Kw and Ks? As for equation 5 with n<1, the prediction is so counter to my ‘gut‘, that I
wonder if some discussion about whether n<1 is realistic, or about whether this counter intuitive relationship has been
observed, would be useful. The n=1 case is also difficult for me to wrap my head around. Maybe more discussion is45
coming later.

It is definitely counter to the common intuition based on prior work. One of the main points of this manuscript is that the
assumption behind prior work actually can break down in subhorizontal rocks. We try to explain this in lines 6-8 of this page.
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Basically, it results because horizontal retreat rate (or knickpoint celerity) is lower for steeper channels in the case where n<1.
This is because, for the same rate of vertical erosion, horizontal retreat rates are less for steeper slopes. In cases where n<1,
the increased erosion from the channel becoming steeper isn’t sufficient to offset the slope effect. At n=1, these two effects are
totally balanced, so slope has no effect on horizontal retreat rate. We have expanded this section to try to make it a bit clearer,
and have reminded the reader that Kw >Ks. We do also discuss later cases where n<1 might be reasonable.5

Page 4, line 28: What does it mean that experiments with resolution suggest that the conclusions are not affected
by numerics? Does that mean you changed the resolution and ran with different numerical schemes, and got the same
answer? Or that your results are not dependent on the resolution for a given implementation of stream power? Please
clarify.10

Our original statement was a bit too vague. We have edited this to clarify that we ran some higher resolution simulations for
some cases that produced the same result.

Page 5, line 6, 7: Is layer thickness thought to vary with uplift? I don’t think so. Why do you do this?15

We are specifically examining cases where there are many different rock layers, such that the influence of base level pertur-
bations dies out and we can see the continuity equilibrium form. This was just a practical way of generating a similar number of
contacts in both the high and low uplift cases (albeit both with parameter ranges that are within the range of natural landscapes).

20
Page 5, L 14: What do you mean it holds if ‘slope is replaced with slope‘?

Slope is replaced with “slope in χ-elevation space.” We agree that the repeated word obscures the meaning a bit. We now
use the word “steepness” instead, and then note in a parenthetical that by steepness we mean slope in χ-elevation space.

25
Figure 4 caption: What is meant by the ‘steady state profile predicted by the theory‘? Just the elev-chi plot for a

channel with that erodibility in vertical layers? Or is it the theory that you present in this paper. I’m confused.

We mean the theory presented in this paper. We have edited the caption to clarify this and have added the relevant equation
references.30

Page 7, summary in paragraph on line 25: I got a bit lost. I think a bit more description/hand holding for the reader
would help. I recognize that λ∗ is a way to show how large χs,+ is. But in the description with respect to figure 6, the
damping is described in terms of cycles through rock layers. I don’t understand what this means, or how to get that
from the equations. I must be missing something easy. How does χs,+ related to the depth of the rock layers? How do I35
know from λ∗ how many layers the knickpoint has propagated through?

χs,0 is the χ length of the strong layer reach near base level at the moment that the weak layer becomes exposed at base
level. Consequently, this distance is less than the profile distance spanned by a pair of weak and strong rocks, but is also on
the same order of magnitude. The dimensionless damping length scale, λ∗ = λ/χs,0, therefore provides a rough (conservative)40
estimate of the number of strong/weak pairs that the knickpoint will pass before significant damping. We have expanded this
text to clarify this point.

Figure 7 is difficult for me to interpret. I think I can see the knickpoint that is propagating up in elevation, but I
can’t really make out the knickpoint that it is ‘catching‘. Can you tell us how you determined that there was a knick-45
point at the red line that was caught? If I look at the dashed line (intermediate time) in C, it does not look like there is
any significant change in the chi-elev relationship at the red line, but I think that there is supposed to be a knickpoint
there, right? Or at least one close to it that will soon catch up? I only see one knickpoint downstream from there, but
maybe I am interpreting incorrectly? Actually, after watching the movies, I may understand this. But I still think it is
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worthwhile to point out to readers exactly what you are calling knickpoints.

Figure 7 was the best way we could think of to show this statically, though it is much clearer in the animations, as we
state in the text. We think that the point of confusion here is that the knickpoints we are talking about are just sudden changes
in slope, and can correspond to increases or decreases in slope (depending on n). We have expanded this explanation in the text.5

Fastscape runs: It is a bit unsatisfying that the n=2/3, 3/2 runs have channels that extend through 4+ layers of each
rock type, but the n=1 run only just barely taps three week layers. I know this is a lot to ask, but it’d be more satisfying
to see more of the n=1 profiles, i.e. just make the K values in this run smaller. I’m not adamant about this, as the 2D
runs appear to be very similar to the 1D runs.10

We agree that the choice of parameters for the n= 1 case was suboptimal. We have rerun the simulation with a lower K
value, and now the simulation has a similar number of weak and strong layers.

In the beginning of Section 4, the authors mention that they include hillslope processes. It seems like this needs a bit15
more description. How are the different rock types treated with the hillslope model? How do they model hillslopes?

We are using the standard hillslope diffusion approach employed in Fastscape, which does not have the capability to adjust
the diffusion coefficient with rock type. We now clarify this in the text.

20
Discussion and Conclusions: I liked that the authors brought in a real world example. However, this example con-

fused me. I may be wrong, but my impression of Niagara Falls and the Niagara river is that the soft rocks underneath
the hard caprock are indeed basically vertical at the waterfalls. But if you move any length downstream the channel is
not so steep anymore. I might be wrong as I haven’t studied the Niagara River, just visited it. But does the whole length
of profile have the ‘inverted‘ relationship (steeper in weak rocks) suggested by Figure 4D, or is it just ‘inverted‘ around25
the waterfall? This may seem a picky point, but I would guess, as the authors brought up elsewhere, that the processes
going on right at the knickpoint are not adequately modeled by stream power. So in some ways this comparison feels a
bit odd to me. I felt as though the discussion could be expanded a bit.

If the stream power erosion law continued to hold as the channel steepened, then in theory one would expect the entire chan-30
nel to remain steep in the weak rocks (for n<1)). However, the stream power erosion law breaks down for such steep channels
as erosion processes take over that are not well-described by the stream power law. Therefore, we are only speculating that
continuity can push the system toward this state (by first making the channel steep in the weak rocks). From a more standard
assumption of topographic equilibrium, one would never expect steepening in weak rocks, so it is not clear how you would
approach such a state to begin with. There are potentially other explanations, such as non-locality in erosion processes near35
the contact, that cannot be entirely ruled out. We have expanded this discussion slightly and tried to make it clearer that it is
speculative. In the specific case of Niagara Falls, which is one of the most famous of many possible examples, the flattening
below the waterfall in part occurs because of the nearby base level imposed by Lake Ontario.

The parameter n turns out to be extremely important in this study. Any thoughts beyond Niagara Falls on how your40
contribution plays in to the n debate? Have many studies suggested that n<1? Are there any other landscapes to call
upon to illustrate the modeled behavior besides Niagara Falls? I also generally prefer a separate conclusions section.
I think it is better for authors because often times the only sections of the paper that get read are the abstract and
conclusions. But this is stylistic.

45
We do not attempt to constrain what realistic values of n should be. There are theoretical arguments that some incision

processes will produce n<1 (e.g. Whipple et al. [2000] cited in this work, or Covington et al. [2015], GRL). While there are
likely good field sites where a natural experiment could be used to test the ideas developed here, we think that finding and
studying such a site is beyond the scope of this manuscript. Our main goal here is to solidify our theoretical understanding of
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the equilibrium behavior of the stream power erosion law in layered rocks.

We have subtantially expanded the discussion and written a separate conclusions section. The expanded discussion begins
with a comparison to the work of Forte et al. (2016), and uses this as a framework to discuss implications that were not fully
developed in the previous version. We have also tried to clarify our ideas concerning caprock waterfalls.5

Reviewer 3 (Whipple)

This manuscript is well written and entails an important step forward in understanding the influence of rock strength
variations in landscape evolution. The novel focus is on the influence of the slope exponent (n) in the stream power10
river incision model on landscape evolution in areas where sub-horizontal layered rocks with varying rock strength
are exposed – extending beyond a recent treatment from my group (Forte et al., 2016, Earth Surface Processes and
Landforms) that considered only the n = 1 case. It is remarkable that the venerable stream power model still holds
surprises! Though of course it is always important to consider the degree to which processes and effects not encapsulated
in the stream power model will alter the behavior of natural landscapes.15

There is much value in the analysis and discussion presented. Reading and carefully reviewing this paper has notably
advanced my own understanding of how landscapes described by the stream power model will evolve in the presence
of layered rocks as a function of the relative strength between stronger and weaker layers, the relative thickness of
strong and weak layers, and the dip of the contacts (only simple planar dip panels considered thus far) in cases with
n < 1 or n > 1. As part of the process of reviewing this paper I re-derived most of the key relationships and updated an20
existing 1d finite-difference solver to handle a series of dipping layers with variable erodibility (K in the stream power
model) and variable thickness so I could test both the author’s initially counter-intuitive results (such as the formation
of cliffs in the weak units, not the strong units, if n < 1) and my own derivations. I find complete agreement with Fig-
ures 3, 4, 5, and 8. Similarly, though I would word some aspects differently (reflecting differences in my derivations
described below), I agree with the points made in the discussion and conclusions. Thus I agree with all the findings in a25
qualitative sense. Likewise I see no problems with the numerical simulation results – both in 1d and 2d using FastScape.

We thank the reviewer for this thorough review that has helped us to better understand the results that we present in this
manuscript and to rethink and expand aspects of our approach.

30
However, I do not agree with some of the derivations and prefer a different approach to solving the problems dis-

cussed and explaining the interesting results of the 1d profile evolution models. As the only way I felt I could evaluate
the derivations was to redo them following my own intuition for how to pose the problem, I present alternative solutions
below. Rather than working the derivations here, I outline the logic the present the solution. Hopefully this will prove an
effective and constructive approach. The alternate derivation given below results in an identical solution for horizontal35
bedding (Eqn 5), which is good, but suggests differing sensitivities to the dip of contacts and the relative thicknesses of
strong and weak units.

Our disagreement centers around the general approach and conceptual model used to explain the observed behavior of
the stream power model. Here we summarize our understanding of these differences, and provide a general response. More40
detailed responses to individual points are included below. Our approach uses a concept we called continuity. Continuity is
a natural generalization of topographic equilibrium (where erosion rates are constant everywhere, with steepness adjusting to
rock strength to accommodate those equal erosion rates). We define continuity at a contact as a condition where erosion rates
in both rock types are equal in the direction parallel to the contact surface. In the case of vertical contacts, this produces equal
erosion as is found in the case of topographic equilibrium. Continuity can also be applied along an entire profile. We argue that45
negative feedback between topography and erosion will tend to drive the system toward a state of continuity, in analogy to the
negative feedback that results in topographic equilibrium. However, rather than assumming that profiles will approach a state
of continuity, we have used this as a seemingly reasonable hypothesis to test against simulation results. In Section 2, we now
more carefully explain that erosional continuity is a hypothesis to be tested.
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Whipple did not find our approach using continuity intuitive, which perhaps means that it can be improved or at least more
clearly stated. He begins by examining knickpoint celerity in the different rock layers. Knickpoint celerity is mathematically
identical to horizontal retreat rate. For n not equal to 1, he suggests that either the weak (if n > 1) or strong (if n < 1) layer
controls the horizontal retreat rate of the contact (i.e. knickpoint celerity). The controlling layer maintains the steepness that
it would have if it were the only rock layer and were in equilibrium with uplift rate. The non-controlling layer adjusts its5
horizontal retreat rate (knickpoint celerity) to match the retreat of the controlling layer. Since celerity and horizontal retreat are
identical, the above conceptual framework is the same as our statement of continuity in the case of horizontal rocks. If the dip
of the contact is non-zero, then the two approaches differ, in that the celerity approach is matching horizontal retreat rates at
the contact, and the continuity approach is matching retreat rates in the direction parallel to the contact.

We may be missing something here, but we do not see an a priori reason why one rock layer should control the other, why10
this control should differ in cases with n < 1 and n > 1, or why explicitly celerity, rather than retreat rate, should be matched
at the contact. On the last point, it is at least clear that celerities do not match in the case of vertical contacts, which is why the
proposed celerity approach only applies to the horizontal limit. However, whether or not the proposed set of assumptions can
be justified in advance, they do provide testable predictions about profile shapes that can be compared against the simulations.
These predictions are also different than those produced by the continuity model, enabling a comparison of the two possible15
conceptual approaches with the numerical results.

The easiest prediction to test from the proposed celerity model is that the controlling rock layer maintains an equilibrium
slope. If this were true, then it would certainly invalidate our conclusion that a flux steady state is reached, where long-term
average vertical incision rates at any x position in the profile are equal to the uplift rate. This invalidation would result from the
fact that incision rates in the controlling layer are equal to uplift. If that were true, then in order to match average incision to20
uplift, the incision rates in the non-controlling layer would also have to be equal to uplift. However, as pointed out by both us
and Forte et al. (2016), the vertical incision rates are not equal in the two rock layers.

The above reasoning, along with our conclusion in the manuscript that the simulated profiles are in a flux steady state, leads
us to believe that the proposed celerity model is not precisely correct. However, it can also be tested more explicitly using
simulation results. For n < 1, the controlling rock layer is hypothesized to be the strong layer. If we examine a snapshot from25
a simultion just as the base level encounters a weak rock layer, then we can clearly see the equilibrium slope produced at base
level within the strong rock (where uplift and erosion are equal). This slope can be compared with the slope attained far from
base level, and they are not, in general, the same (Fig. 1). In his response to our short comment, Whipple also notes he observed
some disagreement between his model and the slopes observed in the n < 1 case.

For the n > 1 case, the controlling rock layer is the weak layer. We can again compare the slope at base level with the slope30
observed far from base level (Fig 2). Here the case is not as clear, in part because of oscillations in slope that are produced
by the base level perturbations. The first weak layer above the base level layer actually overshoots the continuity equilibrium
slope (and goes to even lower slopes). Layers further up oscillate back toward the slope observed at base level, but ultimately
settle on a slope that is slightly less than that at base level (see upper two weak layers). This oscillation is more easily observed
in the animations. Since the difference in slope is not large, it is not surprising that Whipple comes to the conclusion that35
the simulations satisfactorily confirm his hypothesis. However, this is in part a result of the parameter choice and can also be
predicted by our theoretical relations. Using the continuity theory, one can explicitly predict the ratio of continuity steady state
slope (S1,cont) to the slope at base level in a given rock layer (S1,topo). Combining equations 1, 5, and 8 gives

S1, cont

S1,topo
=

(
H1/H2 + (K1/K2)1/(1−n)

1 +H1/H2

)1/n

(1)

This relation is depicted (Fig. 3) as a function of n forH1 =H2 andKw = 2Ks. ( Note: Since this figure and equation actually40
make an interesting and useful point, and help to clarify the difference between the two types of equilibrium, we have added this
to the manuscript along with some additional discussion.) For n < 1, the ratio of continuity steady state slope to topographic
steady state slope is always substantially different from one, for both the strong and weak rocks, which is why the difference is
more visible in these simulations. For n > 1, the adjustment of the weak rock, which is suggested to be the controlling layer,
is always less than a factor of 2. For our simulated value of n= 1.5 it is only a difference of 10-20%. The continuity theory45
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predicts slightly more difference in slope as n approaches 1. We simulate a case with n= 1.2 and, as predicted, observe a
slightly larger difference between base level and far from base level slopes in the weak rock (Fig 4).

To summarize our current conclusions about cases with n 6= 1, we can see why one might come to the conclusion that one
rock layer is controlling the retreat of the other, and derive a slope relationship based on knickpoint celerity matching. In fact,
our theory predicts this to be an approximate solution for a variety of parameter choices (Fig 3). However, we do not think5
that this celerity model provides a precise description of the far from base level equilibrium state, as we have demonstrated
by comparison with simulations. Rather than one rock layer controlling the other, the celerities of both rock layers adjust to
meet in the middle. Is is true, however, that in most cases one rock layer is adjusting more than the other. We think that the
approximate success of the knickpoint celerity model in horizontal rocks results exactly because knickpoint celerity is identical
to horizontal retreat rate. The more general statement of continuity matches the retreat rate in the direction of the contact. As a10
result, the theory works for arbitrary dip, not just in the horizontal limit.

For n= 1, we think that the model presented by Whipple is essentially correct. Horizontal retreat rate is independent of
slope, and therefore adjustments in slope cannot produce a match in horizontal retreat in the two rock layers. We think that
this should ultimately lead to a state where the entire profile is retreating at the rate of the weak rock (at least if overhangs are
not allowed to form). We have not tested whether this is precisely true in the numerical simulations, but we suspect that the15
retreat rate in simulations may be sensitive to the discretization scheme, because of numerical dispersion in the vicinity of the
sharp features that form in the profile. Though the numerical schemes typically used in landscape evolution models enforce
continuity at the contact, the continuity theory breaks down for the rest of the profile when n= 1 in horizontal rocks. Since
continuity breaks down, we were having difficulty understanding the n= 1 case, and here we think that Whipple’s explanation
makes dynamics of n= 1 channels much clearer. We have adjusted our discussion accordingly.20

First, I don’t much like the conceptual model in Figures 1 and 2. Most important, a problem only arises in the strong-
over-weak case: overhangs cannot be sustained, as illustrated in Figure 2a. Conversely, as illustrated by Forte et al.
(2016) and commonly seen in nature, weak rocks can readily be stripped off the top of strong rocks, leaving a tapering
wedge of weak rock in the case of an upstream-dipping contact like that shown in Figure 2b. I also don’t like the use of25
the word “continuity” for this, since in much of the geomorphic and fluid flow literature “continuity” means conserva-
tion of mass, though I appreciate that you are imposing a continuous profile with no overhangs.

We do not think that continuity, as we defined it, applies only to the case of strong-over-weak rock. We think that negative
feedback, as described by these figures, will in general tend to drive the system toward continuity. We only consider this line30
of reasoning to be suggestive that continuity is a reasonable hypothesis, and we test this hypothesis against the simulations.
Relationships derived from continuity do predict stream profile shapes for stream power erosion with n 6= 1. In the case of
n= 1, continuity cannot be preserved. In the simulations it is preserved at the contact because of the numerical scheme (e.g.
overhangs are not allowed because the channel can only have one z position for every x position) rather than for physical
reasons.35

In our simulations where n 6= 1 we do not see stripping occur when weak layers are on the top (see animations in supp.
material). We do, however, see this kind of stripping for n= 1, as noted by Forte et al. (2016). We agree that this form of
plateau topped with weak layers is commonly found in nature, which could be an argument for n= 1 in those cases (or
perhaps for the inapplicability of the stream power model in the steep topography). Alternatively, we do often see a flat plateau
preserved at the top of the topography that results from the initial condition of flat topography. Our previous simulations had40
weak layers on top, but we have run additional cases with strong layers on top. This plateau is preserved independent of which
layer is on top. There is some dependence on n, with stonger preservation of the flat initial condition when n > 1.

We agree that the choice of the word “continuity” is somewhat unfortunate. We were never completely satisfied with this
word, though we also had not thought of the conflict with the more common meaning of “continuity” associated with conser-
vation relationships. So far, we have not been able to think of a more appropriate word, though we are open to any suggestions.45
We will change it to “erosional continuity” to try to distinguish it from conservation of mass.

I find it most useful to think about this problem in terms of the controls on the kinematic wave speed that charac-
terizes the evolution of river profiles governed by the stream power incision model (Rosenbloom and Anderson, 1994):
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Ce=KAmS(n−1). Key elements are (1) all else equal the kinematic wave speed is higher in weak rocks than strong,
and (2) wave speed decreases with Slope for n < 1, is independent of Slope for n= 1, and increases with Slope for n > 1.
The surprising results in this paper all stem from the curious effect that wave speed decreases with Slope for n < 1.

Kinematic wave speed happens to be numerically equal to horizontal retreat rate, so we agree with these statements when5
horizontal rocks are considred. While it may be more intuitive to think about celerity, we do not see a way to satisfactorily
predict the simulation results from a celerity based approach. If such an approach could be found that successfully predicted the
simulation results, and was more intuitive to other workers in the field, we would certainly consider using it instead. However,
after some thought, we have not yet found such an approach.

10
From study of the evolution of 1d river profiles cutting through layered rocks for cases n < 1, n > 1, and n= 1

revealed in numerical simulations (as in Figures 4 and 5), I suggest below a set of fundamental controls on the develop-
ment of profile shape (cliffs formed in the weak rock (n < 1), the strong rock (n > 1), or through each strong-over-weak
couplet (n= 1)), and the retreat rate of the slope-break knickpoint at the strong-over-weak contact.

The authors come close to stating what I believe is happening in the case of horizontal contacts: (1) fundamentally15
cliffs are forming because all-else held equal the kinematic wave speed of profile segments within the weak unit exceeds
that of segments within the strong unit, so there is a tendency to undermine, or to form consuming knickpoints at strong-
over-weak contacts, but as described by the authors and illustrated in the numerical simulations, the river profile will
evolve toward an equilibrium where the upstream migration rate of the strong unit matches that of the weak unit at
the contact; (2) for n < 1 wave speed decreases with increasing slope, so in response to the tendency to undermine, the20
profile steepens in the weak unit until the wave speed of the weak unit at the contact has slowed to equal the wave speed
of the strong unit at the contact (the strong unit maintains an equilibrium slope at the contact and the knickpoint at the
contact migrates at the rate set by the wave speed of the strong unit on an equilibrium slope – this best describes the
basal strong-over-weak contact, see below); (3) for n=1 wave speed is independent of slope, so the river profile has no
way to respond, and a vertical cliff forms (50% in weak, 50% in strong unit) with retreat rate = wave speed of the weak25
unit – the cliff grows in height until the full strong-over-weak doublet is incorporated and the retreat rate is set by the
wave speed of the weak unit; (4) for n > 1 wave speed increases with increasing slope, so in response to the tendency to
undermine, the profile steepens in the strong unit until the wave speed of the strong unit at the contact has increased to
equal the wave speed of the weak unit at the contact (the weak unit maintains an equilibrium slope at the contact and
the knickpoint at the contact migrates at the rate set by the weak unit on an equilibrium slope).30

Once this realization is made, it is easy to write equations for the wave speed in each unit at the contact, set them
equal, and solve for the ratio of the slope of the weak unit (Sw) to the slope of the strong unit (Ss). For horizontal beds,
Equation 5 in the paper is recovered. So the derivation given is exact in the limit of horizontal contacts (also satisfies
expectation for vertical contacts). However, in my analysis the derivation for the case of non-horizontal contacts (Eqn
2) appears to be incorrect. First, the solution only applies for strong-over-weak scenarios, so E1, S1 (downstream) could35
only be the weak unit. Second, if the derivation described above for horizontal contacts is generalized to account for
planar dipping beds, a different solution is found.

In the case of dipping beds, the migration rate of the knickpoint at the strong-over weak contact is not set only by the
kinematic wave speed (Ce= E/S =KAmS(n−1)) as it is for horizontal contacts, but must account for the slope of the
contact (Sc). For example, if the contact were exactly parallel to the river bed, then the migration rate would approach40
infinity over that reach. Geometrically one can readily show that the local knickpoint migration velocity (Cekp) will be:
Cekp = E/(S−Sc) (which correctly reduces to the kinematic wave speed for Sc = 0).

(Note here that the caption to Fig. A1 indicates that Sc in the paper is defined positive for an upstream dip, while
channel slope S is positive downstream. I worry that this could prove very confusing. Here I instead define Sc as positive
for downstream dip).45

We have changed this sign convention to avoid confusion.
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As noted above, the migration rate of the slope-break knickpoint at the contact is set by the equilibrium wave speed
within the strong unit for n < 1 (at least for the basal strong-over-weak contact), and within the weak unit for n > 1 -
the problem then is how the dip of the contact amplifies or reduces knickpoint velocity relative to the kinematic wave
speed. Solving for the equivalent of Eqn 5 in the presence of dipping beds, I find (derivations available on request):

Sw/Ss = (Kw/Ks)
(1/(1−n)) ∗ (1−Sc/Ss)

(1/(1−n));forn < 1 (2)5

and

Sw/Ss = (Kw/Ks)
(1/(1−n)) ∗ (1−Sc/Sw)(1/(n−1));forn > 1. (3)

Note that Sc/Ss appears in the n < 1 case because the retreat rate is set by the wave speed in the strong unit, and Sc/Sw

appears in the n > 1 case because the retreat rate is set by the wave speed in the weak unit.
These solutions, however, only obtain over a range of Sc/Ss . 1 or Sc/Sw . 1 - basically restricted to sub-horizontal10

conditions - as outlined below. In addition, as mentioned above, the n < 1 solution applies best to the basal strong-
over-weak contact: the oversteepening of the weak unit is damped up-section because the slope-break knickpoints at
the strong-over-weak contacts act as a local baselevel, reducing local incision rate within the overlying strong unit
(as happens in weak-over-strong contacts with n= 1). This causes a decrease in the slope within the strong unit, which
increases the kinematic wave speed and thus decreases the degree of over-steepening of the weak unit. This complicating15
phenomenon is restricted to the n < 1 case.

I have tested these revised equations, and the limits on their applicability outlined below, against numerical simula-
tions with satisfying results.

Above we outlined both why we think this solution does not adequately explain the simulation results, as well as why it20
should provide an approximate solution in some parts of the parameter space (e.g. n� 1), which is actually predicted by the
continuity theory.

For n < 1 and downstream-dipping beds (Sc is positive), the solution only applies for Sc/Ss < 1˘(Ks/Kw)ˆ(1/n): for
larger (more positive) downstream dips, an equilibrium profile results (Ss and Sw have equilibrium values equal to the25
vertical contact case even though knickpoints are slowly migrating upstream over time). For n < 1 and upstreamdip-
ping beds (Sc is negative), preliminary comparison with numerical simulations indicates the solution is only valid for
|(Sc/Ss)|. 1. For steeper upstream dips, the profile transitions toward an equilibrium form (I have not studied this in
detail).

For n > 1 and downstream-dipping beds (Sc is positive), the solution only applies for Sc < Sw. At Sc= Sw, knick-30
point velocity is infinite. For Sc > Sw, the strong-over-weak contact propagates downstream, invalidating the analysis.
For n > 1 and upstream-dipping beds (Sc is negative), the solution only applies for Sc/Sw > 1− (Kw/Ks)

(1/n): for
larger (more negative) upstream dips, an equilibrium profile results (Ss and Sw have equilibrium values equal to the
vertical contact case even though knickpoints are slowly migrating upstream over time).

35
We would like to point out that in addition to working in the subhorizontal case, for abs(Sc/Ss) & 1, our Eqn 3 correctly

predicts slopes similar to topographic equilibrium slopes for steep or vertical dips.

These solutions can be re-cast into the form of Eqn 2 (note I have inverted the relation here):

E2/E1 = Es/Ew = (Ss−Sc)/Sw;forn < 1 (4)40

E2/E1 = Es/Ew = Ss/(Sw −Sc);forn > 1 (5)

Thus Eqn 2 should have two forms, one for n < 1 and one for n > 1. (remember that Sc is defined here as positive
downstream).
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Section 3.2. I did not attempt to reproduce or critically evaluate Equation 8, but found no dependence of erosion rate
patterns on H1/H2 in my numerical simulations. For horizontal beds, Equation 5 is exactly satisfied for a very wide
range of H1/H2. I did not investigate whether a greater sensitivity to layer thickness emerges with dipping contacts.

Equation 5 only predicts slope ratios, and we agree that it is independent of the thickness ratio (H1/H2). However, the5
absolute slopes, and consequently erosion rates, do depend on this relative thickness. Actually, this is an interesting prediction
of our model that we had not fully tested or explored. In the revised version of the manuscript we present plots that compare
simulations with non-equal thicknesses to some of our previous simulations. Keeping uplift, erodibility, and n the same, an
increase in the percentage of the thickness that is occupied by weak layers results in a decrease in the slopes in both weak and
strong units. In the limit where one rock layer is much thicker than the other, then this thick layer has erosion rates that match10
uplift, and it has a slope that would be the same as its slope in the case of topographic equilibrium. This also has interesting
implications for natural systems, where thicknesses will not typically be regular. We have expanded the discussion to consider
these results.

Section 3.3. I don’t see the profile as being “perturbed” at baselevel because, as the authors note on page 6, line 27,15
new river segments formed at baselevel always begin in equilibrium (E = U , and equilibrium slopes). The perturbations
develop above as the differential wave speeds near contacts begin to manifest in deviations from equilibrium slopes and
erosion rates. Thus I’m not enthused about the “damping length scale” terminology. However, the result appears robust
– differential wave speeds are rapidly accommodated at the first strong-over-weak contact, with knickpoints at contacts
quickly converging on a migration velocity set by the equilibrium wave speed of either the weak unit (n >= 1) or the20
strong unit (n < 1).

We think this is a language issue: perturbed from which equilibrium? The newly forming segment does have an erosion rate
equal to uplift. Segments at distances from base level that are farther than the damping length scale have erosion rates that
depend only on the rock type, are not equal to uplift rate, and are collectively in flux steady state. That is what we mean by25
“damping length scale” (the scale over which erosion rates converge toward continuity steady state). Given that the manuscript
is about continuity steady state, and the base level reach that is at topographic steady state produces disturbances that travel up
the profile and decrease in size as they go, we think that it is reasonable to consider these as perturbations that are damped.
This is certainly the visual impression we get when watching animations of the simulations. However, we have also edited the
text throughout to try to make it clear which equilibrium we are referring to at any given time.30

That said, I am confused by Eqn 10. First, there appears to be a typo in Eqn (10): as derived, the last term should
be A0ˆ(m/n) not Aˆ(m/n). Further, Ce = kinematic celerity = horizontal migration rate of river “patch” (patch as
used by Royden and Perron, 2012) = KAˆmSˆ(n− 1). For a steady-state river patch, S = (U/K)ˆ(1/n)Aˆ(−m/n).
Combining these, Whipple and Tucker (1999) showed that the horizontal migration rate of a steadystate river patch is35
Ce= Uˆ(n− 1)/nKˆ(1/n)Aˆ(m/n) – this is the relation given for Eqn 10, so the equation appears to be correct, but
the derivation (and the apparent typo) implies it is incorrect.

There was a typo in this equation, A should have been A0, as noted. The celerity we are deriving is also celerity in χ space,
which may have been another source of confusion. We now clarify this in the text.40

Finally, although widely appreciated, it seems worth stating that readers should beware the difference between the
mathematics of the stream power model (SPM), insightful though they can be, and the physical reality of nature. Many
processes are not represented in the SPM and therefore predictions may fail. Despite this, I am very supportive of
publishing papers like this that explore model predictions because this allows one to: (1) generate testable hypotheses,45
constrain parameters, or recognize where models fail and why; (2) use any failures to improve the model; and (3) know
what will happen in landscape evolution simulations based on the SPM under different conditions.
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We are aware of the limitations of SPM and hope that we express this clearly in the manuscript. One of the central points
of the manuscript is to clarify that common (implict) assumptions about equilibrium landscapes do not always hold for sub-
horizontal layered rocks. So, to the extent that we are using the SPM and these assumptions to interpret real landscapes, we
should be aware of these limitations. However, beyond this, we provide a framework that can extend the standard topographic
equilibrium model and account for subhorizontal rocks. Whether evidence of continuity steady state is to be seen in nature is5
still uncertain. However, our theoretical work does generate testable hypotheses, and help us to understand what is occuring in
landscape evolution simulations.

I have a few additional comments listed below with reference to page and line number.
1. Title: I suggest revising title to remove “continuity” as this will mean “conservation of mass” to many. Also I sug-10

gest emphasizing your key finding about the dependence on n, if you can find an effective wording.

We have changed this to “erosional continuity” to try to clarify this difference. We have not been able to think of a better
word to describe this concept than “continuity.”

15
2. Page 1, Line 21-22: This is not true. Many studies of bedrock channel morphology are expressly seeking informa-

tion about the history of climate, tectonics, or drainage divide migration recorded in non-steady state profiles (as you
note on page 2, line 4).

Here our text was unclear. Of course bedrock channel profiles are often used to explore transience, but an understanding of20
steady state is used to identify the transience. We have edited these sentences to try to make our meaning clearer.

3. Page 2, line 9: better to not call the stream power model (SPM) a “law”.

We agree and have modified the text accordingly.25

4. Page 2, line 11-12: the SPM is widely used in modeling studies, but is not required as a basis of profile analysis
– channel steepness and concavity can be measured and interpreted in terms of relative uplift rate, climate, or rock
strengths independent of the river incision rule.

30
We agree that profile analysis doesn’t require specific use of a river incision rule, so we have edited this sentence to remove

the “stream power model” phrase.

5. Page 3, line 3-4: as you show in your analysis, this is not true for n<1.
35

The wording here was not precisely correct. We have edited it to note that we are considering retreat rates specifically in the
direction of the contact plane and vertical erosion rates. We also now make it clearer that the idea of continuity is treated as a
hypothesis, which is tested using the simulations.

6. Page 3, line 5-6: I disagree. Where a weak layer overlies a strong layer, there is no constraint on the relative stream40
segment migration speed – the weak layer can be stripped off, leaving a bench on the underlying strong layer or a
tapering wedge of the weak layer. Such forms are very common in nature.

We do think that creation of a low or reverse slope segment will reduce erosion rates as a result of reduced slope in the
contact zone. However, as discussed above, we treat this as a hypothesis to be tested by simulations. The models do seem to45
display this behavior, except for n= 1.
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7. Page 9, line 9: This sentence is confusing since channel segments formed at baselevel are always initially at equilib-
rium (E=U, steady state form) in systems described by the SPM.

It is true that these segments are in topographic equilibrium at baselevel. Topographic equilibrium assumes conditions stay
constant. So if conditions, including K, change with time / uplift, topographic equilibrium is not actually an equilibrium for5
the system. Our system has an equilibrium different from topographic, so we can (and successfully do) treat the events at the
baselevel as perturbations. However, we agree that it is potentially confusing to use the phrase “disequilibrium at base level,”
and we have slightly reworded to clarify our meaning.

8. Page 9, line 16: “channel steepness” here would be better written as “channel slope” or “channel gradient”, since10
“steepness” commonly refers to the steepness index.

Agreed.
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Abstract. Considerations of landscape steady state have

:::
The

:::::::
concept

::
of

:::::::::::
topographic

:::::
steady

:::::
state

:::
has

:
substantially informed our understanding of the relationships between land-

scapes, tectonics, climate, and lithology. Topographic
:
In

:::::::::::
topographic

:
steady state, where topography is fixed in time, is a

particularly important tool in the interpretation of landscape features, such as bedrock channel profiles, within a context of uplift

patterns and rock strength. However, topographic steady state cannot strictly be attained in a landscape with layered rocks with5

non-vertical contacts. Using a combination of analytical solutions, stream erosion simulations, and full landscape evolution

simulations, we show that an assumption of channel
::::::
erosion

::::
rates

:::
are

:::::
equal

:::::::::::
everywhere,

:::
and

::::::::
steepness

::::::
adjusts

::
to

::::::
enable

:::::
equal

::::::
erosion

::::
rates

::
in

:::::
rocks

::
of

::::::::
different

:::::::
stengths.

::::
This

::::::::::
conceptual

:::::
model

::::::
makes

::
an

:::::::
implicit

::::::::::
assumption

::
of

::::::
vertical

::::::::
contacts

:::::::
between

:::::::
different

::::
rock

:::::
types.

::::
Here

:::
we

::::::::::
hypothesize

::::
that

:::::::::
landscapes

::
in

::::::
layered

:::::
rocks

::::
will

::
be

:::::
driven

::::::
toward

::
a
::::
state

::
of

::::::::
erosional continuity,

where channel retreat rates in the direction parallel to
:::::
retreat

:::::
rates

::
on

:::::
either

::::
side

:::
of a contact are equal above and below the10

contact , provides a more general description of
::
in

:
a
::::::::
direction

:::::::
parallel

::
to

:::
the

::::::
contact

:::::
rather

::::
than

:::
in

:::
the

::::::
vertical

::::::::
direction.

::::
For

::::::
vertical

::::::::
contacts,

:::::::
erosional

:::::::::
continuity

::
is

:::
the

:::::
same

::
as

::::::::::
topographic

::::::
steady

:::::
state,

:::::::
whereas

:::
for

::::::::
horizontal

:::::::
contacts

::
it
::
is

:::::::::
equivalent

::
to

::::
equal

:::::
rates

::
of

:::::::::
horizontal

::::::
retreat

::
on

:::::
either

::::
side

::
of

::
a
::::
rock

:::::::
contact.

:::::
Using

:::::::::
analytical

:::::::
solutions

::::
and

::::::::
numerical

:::::::::::
simulations,

:::
we

::::
show

::::
that

:::::::
erosional

:::::::::
continuity

:::::::
predicts

:::
the

::::
form

::
of

::::
flux steady state landscapes in

:::
that

:::::::
develop

::
in

::::::::::
simulations

::::
with

::::::::::
horizontally

layered rocks. Topographic steady state is a special case of the steady state derived from continuity. Contrary to prior work,15

:::
For

::::::
stream

:::::
power

:::::::
erosion,

:::
the

::::::
nature

::
of

:::::::::
continuity

:::::
steady

:::::
state

:::::::
depends

::
on

:::
the

:::::::::
exponent,

::
n,

::
in

:::
the

:::::::
erosion

::::::
model.

:::
For

::::::
n= 1,

::
the

:::::::::
landscape

::::::
cannot

::::::::
maintain

:::::::::
continuity.

::::
For

:::::
cases

:::::
where

::::::
n 6= 1,

:::::::::
continuity

::
is

::::::::::
maintained,

::::
and

::::::::
steepness

::
is
::

a
:::::::
function

:::
of

::::::::
erodibility

::::
that

::
is

::::::::
predicted

:::
by

:::
the

::::::
theory.

:::
The

:::::::::
landscape

::
in

:::::::::
continuity

:::::
steady

:::::
state

:::
can

:::
be

::::
quite

::::::::
different

::::
from

::::
that

::::::::
predicted

::
by

::::::::::
topographic

::::::
steady

::::
state.

:::
For

::::::
n < 1 continuity predicts that channels

:::::::
incising

:::::::::::
subhorizontal

:::::
layers

:
will be steeper in weaker

rocks in the case of subhorizontal rock layerswhen the stream power erosion exponent n < 1
::
the

::::::
weaker

:::::
rock

:::::
layers. For sub-20

horizontal layered rocks with different erodibilities, continuity also predicts larger slope differences than would be predicted

by
:::::::
contrasts

::::
than

::
in topographic steady state. Continuity steady state is a type of flux steady state, where uplift is balanced on

average by erosion. Under conditions of constantuplift rate
::
If

:::::
uplift

:::
rate

::
is
:::::::
constant, continuity steady state cannot be attained

:
is
:::::::::
perturbed near base level. This occurs because continuity steady state requires different rates of vertical incision in rocks

with different erodibility. However, perturbations introduced by disequilibrium at base level rapidly decay for cases with strong25
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contrasts ,
:::
but

:::::
these

:::::::::::
perturbations

:::::
decay

::::::
rapidly

::
if

::::
there

::
is

:
a
::::::::::
substantial

::::::
contrast

:
in erodibility.

::::::
Though

::::::::
examples

::::::::
explored

::::
here

::::
utilze

:::
the

::::::
stream

::::::
power

::::::
erosion

::::::
model,

:::::::::
continuity

:::::
steady

:::::
state

:::::::
provides

:
a
:::::::
general

:::::::::::
mathematical

::::
tool

:::
that

::::
may

::::
also

::
be

::::::
useful

::
to

:::::::::
understand

:::::::::
landscapes

:::
that

:::::::
develop

:::
by

::::
other

:::::::
erosion

::::::::
processes.

:

1 Introduction

The formation of landscapes is driven by tectonics and climate, and often profoundly influenced by lithology, the substrate on5

which tectonic and climate forces act to sculpt Earth’s surface. Much of our interpretation of landscapes, and their relationship

to climatic and tectonic forces, employs concepts of landscape equilibrium, or steady state. Though there are a variety of types

of landscape steady state (Willett and Brandon, 2002), topographic steady state, in which topography is constant over time,

is perhaps most often used in the interpretation of landscapes.
::::::::::::
Understanding

::
of

::::::
steady

::::
state

::::
also

:::::::
enables

:::::::::::
identification

:::
of

::::::::
transience

::::::
within

:::
the

:::::::::
landscape. In particular,

:::::::
concepts

::
of

:
topographic steady state is used ubiquitously

:::
and

:::::::
transient

::::::::
response10

::
to

::::::
changes

:::
in

::::::
climate

::
or

::::::::
tectonics

:::
are

::::::::
frequently

:::::
used within studies of bedrock channel morphology.

Bedrock channels are of particular geomorphic interest because they span most of the topographic relief of mountainous

terrains (Whipple and Tucker, 1999; Whipple, 2004), providing the pathways through which eroded material is routed to

lowlands and a primary means by which the landscape is dissected and eroded. Therefore, bedrock channels exert important

controls on the relief of mountain ranges and set the pace at which mountainous landscapes respond to changes in climate15

or tectonic forcing. Research on bedrock channels has driven new understanding concerning the coupling between mountain

building, climate, and erosion (Molnar and England, 1990; Anderson, 1994; Whipple et al., 1999; Willett, 1999).

The elevation profiles of bedrock channels provide a primary means for analyzing
:::::
enable

:::::::
analysis

::
of

:
landscapes for evidence

of transience, contrasts in rates of tectonic uplift, or the influence of climate (Stock and Montgomery, 1999; Snyder et al., 2000;

Lavé and Avouac, 2001; Kirby and Whipple, 2001; Lague, 2003; Duvall et al., 2004; Wobus et al., 2006; Crosby and Whipple,20

2006; Bishop and Goldrick, 2010; DiBiase et al., 2010; Whittaker and Boulton, 2012; Schildgen et al., 2012; Allen et al.,

2013; Prince and Spotila, 2013). Within this analysis, erosion rates are typically assumed to scale as power law relations with

::
of drainage area and slope, as given by the stream power erosion law

:::::
model

:
(Howard and Kerby, 1983; Whipple and Tucker,

1999),

E =KAmSn, (1)

where E is erosion rate, K is erodibility, A is upstream drainage area, S is channel slope, and m and n are constant exponents.25

While the stream power erosion law
:::::
model has known limitations (Lague, 2014), it remains the most frequently used tool for

channel profile analysis
:::
and

:::::::::
landscape

::::::::
evolution

::::::::
modeling. Under steady climatic and tectonic forcing, channels are typically

assumed to adjust toward topographic steady state (Hack, 1960; Howard, 1965; Willett and Brandon, 2002; Yanites and Tucker,

2010; Willett et al., 2014), where uplift and erosion are balanced and topography is constant with time. This assumption, in

conjunction with the stream power erosion law,
:::::::::
framework enables interpretation and comparison of stream profiles to identify30

spatial contrasts in uplift rates or transient responses to changes in tectonic or climatic forcing.
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Topographic steady state has also been used to explain channel responce
:::::::
response

:
to substrate resistance, generally lead-

ing to a conclusion that channels are steeper within more erosion resistant bedrock and less steep within more erodible rocks

(Hack, 1957; Moglen and Bras, 1995; Pazzaglia et al., 1998; Duvall et al., 2004). However, this result depends on an implicit

assumption of vertical contacts between strata as in Fig. 1A. Strictly speaking, topographic equilibrium does not exist when

channels incise layered rocks with different erodibilities and non-vertical contacts (Howard, 1988; Forte et al., 2016). In the5

case of non-vertical contacts, the contact positions shift horizontally as the channel incises, resulting in topographic changes as

shown in Fig. 1B,C. Studies of bedrock channel morphology have primarily focused on regions with active uplift, where rock

layers are often deformed and tilted from horizontal. However, a substantial percentage of Earth’s surface contains subhori-

zontal strata. Many of these settings also contain bedrock channels, with examples including the Colorado Plateau, the Ozark

Plateaus, and the Cumberland and Allegheny Plateaus. In such settings, intuition developed from assumptions of topographic10

equilibrium does not necessarily apply. Here we explore the limitations of topographic equilibrium

:::::::::::::::::::
Forte et al. (2016) used

::::::::
landscape

::::::::
evolution

:::::::
models

::
to

::::::::::
demonstrate

::::
that

::::::
erosion

::::
rates

:::::
vary

::
in

:::::
space

:::
and

::::
time

:::
in

:::::::::
potentially

:::::::
complex

:::::
ways

::
as

::::::::::
landscapes

:::::
incise

:::::::
through

:::::::
layered

:::::
rocks

::::
with

::::::::
different

:::::::::::
erodibilities.

:::::
These

::::::::::
simulations

::::
also

:::::::
suggest

::::
that

:::::::
deviation

:::::
from

::::::::::
topographic

::::::::::
equilibrium

:
is
::::::::
strongest

:::
for

::::
rock

:::::
layers

:::
that

:::
are

:::::::::
horizontal.

::::::
While

::::::::::
topographic

::::::::::
equilibrium

::::
does

:::
not

::::
hold

::
in

::::::
general

:
in landscapes formed in layered rocksand develop a generalized mathematical framework to predict the

:
,
::::
here15

::
we

:::::::
explore

:::::::
whether

:::::::::
landscapes

:::::::
incising

:::::::
layered

:::::
rocks

::::::
develop

::::
any

::::
kind

::
of

:
steady state formof a landscape developed within

layered rocks that have an arbitrary dip. ,
::::
and

:::::::
whether

::::
there

:::
are

:::::::
regular

::::::::::
relationships

::::::::
between

::::::::
steepness

:::
and

::::
rock

::::::::::
erodibility.

:::
We

:::::
show

:::
that

:::::
such

:
a
:::::
form

::::
does

:::::
exist

::
in

:::::
some

:::::
cases,

::::
and

::::
that

::
it

::
is

:
a
:::::

type
::
of

::::
flux

::::::
steady

::::
state

::::
that

:::
can

:::
be

::::::
derived

:::::
from

:::
an

:::::::::
assumption

::
of

::::::::
erosional

:::::::::
continuity

:::::
across

:::
the

::::
rock

::::::::
contacts.

:::
We

::::::
further

:::::::
examine

::::
how

::::
this

:::::
steady

:::::
state

:::::::
depends

::
on

:::
the

:::::::
erosion

:::::
model

:::::::::
employed

::::
and

::
on

:::
the

::::::
contact

::::
dip

:::::
angle,

:::::::
focusing

:::
on

:::
the

::::
case

::
of

:::::::::::
subhorizontal

::::::
layers.20

2 Landscape continuity and steady state

2
::::::::
Erosional

:::::::::
continuity

::::
and

::::::
steady

:::::
state

To understand erosion and morphology near a lithologic contact , we begin with an ansatz that the land surface will strive to

maintain topographic continuity at the contact. This is equivalent to an assumption that retreat rates

:::::::::
Conceptual

::::::
models

::
of
::::
land

:::::::
surface

:::::::
response

::
to

::::::::
changing

::::
rock

::::
type

:::::::
typically

:::::::
employ

:::
the

::::::
concept

::
of
:::::::::::
topographic

:::::
steady

:::::
state,25

:::::
which

:::::
makes

:::
an

:::::::
implicit

:::::::::
assumption

::
of

:::::::
vertical

:::::::
contacts

:::::::
between

:::
the

:::::::
different

::::
rock

::::::
types.

::
In

::::::::::
topographic

::::::
steady

::::
state,

:::::::
vertical

::::::
incision

:::::
rates

:::
are

:::::::
matched

::
in

:::
the

::::
two

::::
rock

:::::
types

::::
(Fig.

:::::
1A).

::::::::::
Considering

:::
the

:::::::
opposite

:::::
limit,

:::::
with

::::::::
horizontal

:::::::
contacts

::::::::
between

:::::
rocks,

::
it

:::::
seems

::::::
natural

:::
to

::::
think

:::::
about

:::::::::
horizontal

::::::
retreat

::::
rates

::::::
rather

::::
than

::::::
vertical

:::::::
incision

:::::
rates

::::
(Fig.

::::
1B).

::
It
::
is
::::::::
plausible

::::
that

:
a
::::::
similar

::::::
steady

::::
state

:::::
exists

::::::
where

::::::::
steepness

::
in

:::::
each

::::
rock

::::
type

::
is

:::::
fixed,

::::
and

::::::::
horizontal

::::::
retreat

:::::
rates

:::
are

:::::
equal

::
at

:::
the

:::::::
contact.

::::
This

:::::
would

:::
not

::
be

::
a
::::::::::
topographic

:::::
steady

:::::
state,

:::
but

::::::::
steepness

:::::
would

::::::::
maintain

:
a
:::::::::
one-to-one

:::::::::::::
correspondence

:::::
with

::::
rock

:::::::::
erodibility.30

:::
The

::::
land

::::::
surface

::::::
would

::::::
retreat

::::::::::
horizontally

::
at

:
a
:::::

fixed
::::
rate above and below the contact will be equal in the direction parallel

to
:::::
while

:::::::::
undergoing

:::::::::
continued

:::::
uplift.

:::::::::::
Generalizing

:::::::
between

:::::
these

::::
two

:::::::
limiting

:::::
cases,

:::
we

:::::::
consider

::
a

:::::::
possible

::::::
steady

::::
state

:::
for

:::::::
arbitrary

::::
rock

::::::
contact

:::
dip

::::::
where

::::::
surface

::::::
erosion

:::::
rates

:::
are

:::::
equal

::
in

:
a
::::::::
direction

:::::::::
paralleling the contact plane

::::
(Fig.

::::
1C).

:::
We

:::::
refer

3



::
to

::::
equal

::::::
retreat

::
in

:::
the

::::::::
direction

::
of

:::
the

::::::
contact

:::::
plane

::
as

::::::::
erosional

:::::::::
continuity.

:::::::::::::
Mathematically

::::::::
speaking,

::
it

:::::
means

::::
that

:::::
retreat

::::
rate

::
in

:::
the

::::::::
direction

::
of

::
a

::::::
contact

::
is

:
a
:::::::::
continuous

::::::::
function

:::::
across

:::
the

:::::::
contact.

:::::::
Physical

::::::::
reasoning

:::::::
supports

:::
the

::::
idea

:::
that

:::::::::
landscapes

::
in

::::::
layered

:::::
rocks

:::::
would

::::
tend

::::::
toward

::::::::
erosional

::::::::
continuity. This assumption

is also identical to topographic equilibrium in the case of vertical contacts. The ansatz of continuity is supported by physical

reasoning . If the upper layer erodes
::::::
retreats slower than the lower layer

:
in

:::
the

::::::::
direction

::
of

:::
the

::::::
contact, this produces a steep,5

or possibly overhanging, land surface at the contact (Fig. 2A). This steepening
:
or

:::::::::::
undercutting will lead to faster

::::::
vertical

:
ero-

sion in the upper layer and drive the system towards continuity (Fig. 2B
:
C). Similarly, if the upper layer retreats faster

::
in

:::
the

:::::::
direction

::
of

:::
the

:::::::
contact, this produces a flattened

:::
low

:::::
slope

::
or

:::::::
reversed

:::::
slope zone near the contact (Fig. 2B) that will reduce

erosion rates in the upper layer and also push the system toward continuity. Therefore, the same types of negative feedback

mechanisms
::::::
between

::::::::::
topography

:::
and

:::::::
erosion

:
that drive landscapes to topographic steady state (Willett and Brandon, 2002)10

will also
::::::::
plausibly drive landforms near a contact into a state that maintains continuity. We refer to this

::::::::::
hypothesized

:
type of

equilibrium as continuity steady state. Localized discontinuities are sometimes produced

:::::
There

:::
are

:::::
cases

:
in natural systems

:::::
where

:::::::::
continuity

::
is

:::
not

::::::::::
maintained

::
at

:::
all

:::::
times. For example, caprock waterfalls are

similar to the case in Fig. 2A. However, even in this case the discontinuity cannot grow indefinitely. If the waterfall reaches a

steady size then the system has
::::
once

:::::
again obtained a state where continuity is maintained in a neighborhood near the contact.15

Numerical landscape evolution models do not typically allow cases such as Fig. 2A-B. Therefore, numerical models are likely

to maintain continuity even more rigidly than natural landscapes.
::::
While

:::::
these

:::::
lines

::
of

:::::::::
reasoning

::::::
suggest

::::
that

::::
both

:::::::
natural

::::::
systems

::::
and

::::::::
landscape

::::::::
evolution

:::::::
models

::::
may

::
be

::::::
driven

::::::
toward

::::::::
erosional

:::::::::
continuity,

::::
here

:::
we

:::::::
consider

:::::::::
continuity

:::::
steady

:::::
state

::
to

::
be

:
a
::::::::::
hypothesis

:::
that

:::
we

:::
test

:::::::
against

::::::::
landscape

::::::::
evolution

:::::::
models.

::::::::
Erosional

:::::::::
continuity

:::::
makes

::::::::::
quantitative

::::::::::
predictions

:::::
about

:::::
steady

::::
state

:::::::::
landscapes

::::
that

:::
are

:::::::::
elucidated

:::::
below

:::
and

::::
then

:::::
tested

:::::::
against

::::::::
numerical

::::::::
landscape

::::::::
evolution

:::::::
models.

:
20

Using the constraint of
:::::::
erosional

:
continuity, one can write a very general relationship between surface erosion rates and

slopes at a contact between two rock types,

E1

E2
=
S1 +Sc

S2 +Sc

S1−Sc

S2−Sc
::::::

, (2)

where Ei and Si are
::::::
vertical erosion rates and slopes, respectively, and the index refers to rock types 1 and 2. Sc is the slope of

the rock contact
:::
and

::
is
:::::::
defined

::
as

:::::::
positive

::
in

:::
the

::::::::::
downstream

::::::::
direction. This relationship results from an assumption of equal

retreat rate at the contact within both rock layers in a direction parallel to the rock contact plane, illustrated in Fig
:
as

:::::::::
illustrated25

::
in

::::
Figs. 1C and Fig. A1. A similar relationship is used by Imaizumi et al. (2015) to examine the parallel retreat of rock slopes.

If we consider the more specific case of stream power erosion through a pair of weak and strong rocks, this leads to

KwSw
n

KsSs
n =

Sw +Sc

Ss +Sc

Sw −Sc

Ss−Sc
:::::::

, (3)

where Kw is the erodibility of the weaker rock, Ks is the erodibility of the stronger rock, Sw = tanθw and Ss = tanθs are the

slopes of the channel bed in each rock type, and the contact slope is Sc = tanφ
:::::::::::
Sc =−tanφ (derivation in Appendix A).

::::
Here

::
we

:::::
have

:::::::
assumed

::::
that

::::::
erosion

:::::::::
processes

::
in

::::
both

::::
rock

:::::
types

:::
can

:::
be

::::::::
expressed

:::::
with

:::
the

::::
same

:::::::::
exponent,

::
n.

::::::
While

::
n

::::
may

::::
vary30
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::::
with

::::
rock

::::
type

:
if
:::::::
erosion

::::::::
processes

:::
are

:::::::
different

::::::::::::::::::::
(Whipple et al., 2000) ,

::::
fixed

::
n

:::::::
provides

::
a

:::::
useful

:::::::
starting

::::
point

::
to
::::::::::
understand

::::::
erosion

::
of

::::::
layered

:::::
rocks

::::
and

:
is
::::
also

:::
the

:::::
most

:::::::
common

::::::
choice

::::
used

::
in

::::::::
landscape

::::::::
evolution

:::::::
models.

:

:::
The

:::::::::::
implications

::
of

:::
the

::::::::::
relationship

::
in

::::::::
Equation

::
3

:::
are

::::
most

::::::
easily

:::::::::
understood

:::
by

:::::::::
examining

:::
two

:::::::
limiting

::::::
cases,

:
a
:::::::
vertical

::::::
contact

:::::
limit,

::::::
which

::::::
applies

:::::::::
whenever

::::::
contact

::::
dip

::
is

:::::
large

:::::::::
compared

::
to

:::::::
channel

::::::
slope,

:::
and

::
a
::::::::::::
subhorizontal

:::::
limit,

::::::
which

::::::
applies

:::::
when

::::::
contact

:::
dip

::
is

:::::
small

::::::::
compared

:::
to

::::::
channel

::::::
slope. When the contact slope is much larger than the channel slopes5

(Sc� Sw,Ss) ,
::::::::::::
|Sc| � Sw,Ss)

:
the right hand side of Eq. (3) is approximately one, and vertical erosion rates in both lithologies

are roughly equal. Rock uplift can thus be balanced by erosion in both segments, and the standard relationship between channel

steepness
:::::
slopes

:
in the two lithologies, normally derived from topographic equilibrium, is recovered, with

KwSw
n =KsSs

n. (4)

If the contact slope is in this steep limit, but not vertical, the contact position and topography will gradually shift horizontally

with erosion and vertically with uplift, while still obeying this relation derived from topographic equilibrium.10

For the case
:::::::::::
subhorizontal

:::::
limit, where channel slopes are much greater than the slope of the contact (Sw,Ss� Sc), as

would be common in subhorizontal rock layers,
::::::::::::
Sw,Ss� |Sc|),:Eq. (3) simplifies to

KwSw
n−1 =KsSs

n−1,orn−1
:::

or
:

Sw

Ss
=

(
Kw

Ks

) 1
1−n

. (5)

In this case, continuity results in roughly the same rate of horizontal retreat in both rocks at the contact,
::
as

::
in

:
Fig. 1B. This

contrasts with the standard assumption of equal rates of vertical erosion, and leads to unexpected behavior. Specifically, if

n < 1then ,
:::::
since

:::::::::
Kw >Ks,

:
higher slopes are predicted in weaker rocks, which is in strong contrast to intuition developed15

from the perspective of topographic equilibrium. This results because the rate of horizontal retreat within a given rock layer

(dx/dt∝KiS
n−1
i ) is a decreasing function of slope if n < 1.

::::::
Steeper

:::::
slopes

::::
can

:::::
retreat

:::::
more

::::::
slowly

::::::::::
horizontally

:::::::
because

::
a

::::
given

:::::::::
increment

::
of

::::::
vertical

:::::::
incision

::::::::
produces

:::
less

:::::::::
horizontal

:::::
retreat

:::
on

:
a
::::::
steeper

:::::
slope

:::
than

::
a
::::::::
shallower

:::::
slope.

:::
For

:::::
n < 1

:::::::
vertical

::::::
erosion

::::
does

:::
not

:::::::
increase

:::::::
quickly

::::::
enough

::::
with

:::::
slope

::
to

:::::
offset

:::
this

::::::
effect. Since horizontal retreat rate is an increasing function

of erodibility, continuity requires that increases in erodibility are offset by increases in slope. For subhorizontal contacts with20

n > 1, higher slopes are once again predicted in stronger rocks.

The slope ratio (Sw/Ss) is depicted for the vertical and horizontal limits in Fig. 3A as a function of n for an erodibility

contrast of Kw = 2Ks. In general, contrasts in the slopes within the two strata in the subhorizontal case as in Eq. (
::::
(Eq. 5) are

larger than would be predicted using the standard formulation for vertical contacts in Eq. (
:::
(Eq. 4). In subhorizontal rocks

:::
(i.e.

::::::::
whenever

::::
rock

:::
dip

::
is

:::::
small

::::::::
compared

:::
to

::::::
channel

::::::
slope), channel slopes may become sufficiently high or low to be driven to25

values outside the range of validity of the stream power erosion law
:::::
model, particularly for cases of n≈ 1. Perhaps the most

common value of n used within landscape evolution models is n= 1, therefore it is also notable that the continuity relation for

subhorizontal strata contains a singularity at n= 1 (Fig. 3). The slope ratio (Sw/Ss) diverges for n→ 1− and approaches zero

for n→ 1+. This suggests strong dependence of channel behavior on n when n is close to 1. The singularity results because

for n= 1 the horizontal retreat rate is independent of slope and solely a function of erodibility
:::
and

::::::::
drainage

::::
area. Therefore30

the channel cannot maintain continuity by adjusting steepness.
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3 Continuity steady state and stream profiles

The channel continuity relations above apply to channels within the neighborhood of a contact. Though there are clear long-

term constraints on the relative retreat rates of any two contacts, these are not sufficient to determine an entire profile. Here,

we examine whether
::::::::
However,

:::
we

::::::::::
hypothesize

::::
that the continuity relation applies along an entire profile

::::
entire

:::::::
profiles,

::::
and

:::::::
therefore

::::
that

:
it
::::

can
::
be

::::
used

:::
to

:::::::
describe

:
a
::::
type

:::
of

:::::::::
equilibrium

:::::
state

:::
that

::::::::
develops

::
in

::::::
layered

::::::
rocks.

::
If

:::
this

::
is

::::::
correct

::::
then

:::::
there5

:
is
::
a
:::::::::
one-to-one

::::::::::
relationship

::::::::
between

::::::::
erodibility

::::
and

::::::::
steepness

::::
that

::
is

::::::::
predicted

::
by

::::
the

::::::::
continuity

::::::::
relations.

:::::
Here

:::
we

:::
test

::::
this

:::::::::
hypothesis using simulations of channel and landscape evolution in horizontally layered rock.

3.1 Methods for one-dimensional simulations and analysis

We solve the stream power erosion law
:::::
model using a first order explicit upwind finite difference method. This method is con-

ditionally stable, and the timestep was adjusted to produce a stable Courant-Friedrich-Lax number of CFL = 0.9. The explicit10

upwind scheme has commonly been used for prior studies, though it is also known to produce smoothing of channel profiles

near knickpoints (Campforts and Govers, 2015). Experimentation with resolution suggests that the conclusions presented here

are not dependent on the numerics. The simulations employed 2000 spatial nodes
:
,
::::::
though

:::
we

:::
also

:::
ran

::
a
:::
few

:::::
cases

::::
with

::::::
higher

::::::::
resolution

::::
that

::::::::
produced

::
the

:::::
same

::::::
results. For simplicity, basin area was held fixed over time and was computed as a function

of longitudinal distance, with15

A= kax
h, (6)

where ka = 6.69 m0.33 and h= 1.67. These parameter values are representative of natural drainage networks (Hack, 1957;

Whipple and Tucker, 1999). Simulations were run with n= 2/3, n= 1, and n= 3/2. The value of m in the stream power

erosion law
:::::
model

:
was adjusted according to the choice of n to assure that the concavity m/n= 0.5, which is typical of

natural channels (Snyder et al., 2000). Both high uplift (2.5 mmy−1) and low uplift (0.25 mmy−1) cases were run. Simulation

parameters were adjusted to provide a similar number of rock contacts in each case. For the high uplift cases, rock layers were20

50 m thick, whereas for the low uplift cases rock layers were 10 m thick. Longitudinal distances were also adjusted with the

high uplift cases simulating 50 km long profiles and the low uplift cases simulating 200 km long profiles. Specific parameter

values are provided in Table 1.

Simulation results are most easily visualized in χ space (Perron and Royden, 2013; Royden and Taylor Perron, 2013), where

the horizontal coordinate x is replaced with a transformed coordinate χ:25

χ=

x∫
x0

(
A0

A(x)

)m/n

dx. (7)

One advantage of this transformation is that the effect of basin area is removed such that equilibrium channels that evolve

according to the stream power erosion law
:::::
model

:
appear as straight lines in this transform space. The relation predicted by

Eq. (5) is invariant under the transformation to χ space, and therefore the relation also holds if slope is replaced with slope

::::::::
steepness

:::::::
(gradient

:
in χ-elevation space.

:
).
::::::::::
Throughout

:::
this

::::::
work,

::
we

::::
use

:
a
:::::
value

::
of

:::::::::
A0 = 1m2

::
in

:::
the

::
χ

:::::::::
transforms.

:
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3.2 Comparison of continuity steady state and simulated profiles

For simulations where n 6= 1,
::
as

:::::::::::
hypothesized,

:
channel profiles far from base level approach a steady configuration, in which

channel slope in χ space is a unique function of rock erodibility, and the profiles exhibit straight line segments in each rock

type (Figs. 4,5). For the horizontally layered case, channel profiles evolve towards a state in which they are maintaining the

same shape in χ space while retreating horizontally into the bedrock. For small changes in basin area, this is equivalent to a5

channel maintaining constant horizontal retreat rates. For non-horizontal rocks, profile shapes will gradually change in χ space,

as the slope of the contact plane in χ space changes with basin area. Animations of the simulations depicted in Figs. 4 and 5

are provided in the online supplementary material.

For n= 1 there is no one-to-one relation between erodibility and slope
::::::::
steepness, and the profiles do not exhibit straight-line

segments in each rock type. The n= 1 case produces this result because the horizontal retreat rates are independent of slope10

and purely a function of erodibility and basin area. Consequently, adjustments of slope cannot produce equal horizontal retreat

rates along the channel. Instead, segments within weaker rocks will retreat more quickly than those within stronger rocks. This

produces “stretch zones” as a channel crosses from weak to strong rocks and “consuming knickpoints” as a channel crosses

from strong to weak rocks (Royden and Taylor Perron, 2013; Forte et al., 2016). The channels in the simulations ultimately

reach a steady stepped shape (Figs. 4C,5C) in which weak rock layers retreat until they intercept
:::
and

:::::::::
undermine

:
the contact15

with strong layers; however, this state will contain near-vertical channelsthat
:
.
:::::::::::
Near-vertical

:::::
cliffs,

:::::::::
containing

::::
both

:::::
strong

::::
and

::::
weak

:::::
rocks,

:::::::
develop

::
at

:::
the

::::::
contact

::::::::
channels.

:::::
These

::::::::
dynamics

:::
are

::::::::
described

::
in
:::::
more

:::::
detail

::
by

::::::::::::::::
Forte et al. (2016) .

::
It

::
is

::::::::
important

::
to

::::
note

:::
that

::::::::
channels

::
in

:::
the

:::::
n= 1

::::::::::::
subhorizontal

::::
case

::::::
contain

:::::::
reaches

::::
that are sufficiently steep to negate the applicability of

the stream power erosion law. Within simulations
::::::::::
assumptions

::::::
behind

:::
the

::::::
stream

:::::
power

::::::
model.

:::::::::::
Additionally, the nature of such

profiles
:
in

::::::::::
simulations

:
may be strongly dependent upon the numerical algorithm employed

::
as

:
a
:::::
result

::
of

:::::::::
numerical

::::::::
diffusion20

::
of

::::
sharp

:::::::
features

:
(Campforts and Govers, 2015).

The continuity relation (3) predicts a slope ratio rather than absolute values of slope in each rock type. The predicted slope

ratio matches the slopes in the simulation at sufficient distances from base level. Notably, the counterintuitive prediction that

profiles would be steeper in weaker rocks for n < 1 is confirmed by the simulations (Figs. 4A,5A). However, absolute slopes,

and therefore entire profiles, can be predicted by realizing that continuity steady state is actually a type of flux steady state25

(Willett and Brandon, 2002), where the rate of uplift of rock into the domain is equal to the rate of removal of material by

erosion. First, it must be noted that the weak and strong rocks experience different rates of vertical incision in the equilibrium

state (Forte et al., 2016). The rates of vertical incision within two alternating layersat equilibrium can be calculated from an

assumption of flux steady state , or, equilvalently, an assumption that the time-averaged incision rate through both rock types

::::::::
However,

::::
since

:::
the

:::::
shape

::
of

:::
the

:::::::::
landscape

::
in

::
χ

:::::
space

::::::
repeats

::::
with

::::
each

::::
pair

::
of

::::
rock

::::::
layers,

::
the

:::::
long

::::
term

::::::
average

:::::::
incision

::::
rate30

::::
must

::
be

:::
the

:::::
same

::
at

::
all

:::::::::
horizontal

:::::::
positions

:::
on

:::
the

:::::
stream

:::::::
profile.

:::::::::::
Furthermore,

:::
the

:::::::::
topography

::
is

:::
not

:::::::
growing

::
or

::::::::
decaying

::::
over

::::
time

::::
after

:::::::::
continuity

:::::
steady

:::::
state

::
is

:::::::
reached,

:::::
which

::::::
means

::::
that

:::
the

:::::::
average

::::::
incision

::::
rate

::
at

:::
all

::::::::
positions is equal to the uplift

rate. This
:
,
::
or,

:::::::::::
equivalently,

::::
that

:::
the

::::::
system

::
is

::
in

::::
flux

:::::
steady

:::::
state.

::::
This

::::::::::
conclusion

:::
that

:::
the

::::
long

:::::
term

::::::
average

::::
rate

::
of

:::::::
vertical

::::::
incision

::
at
:::::

each
::::
point

:::::
along

::::
the

:::::
profile

::
is
:::::
equal

::
to
:::

the
:::::

uplift
::::

rate
:
leads to a relation between vertical erosion rates in the two

7



layers given by
::
for

:::
the

::::::
erosion

::::
rate

::
in

:
a
:::::
given

:::::
layer,

:

E1 = U
(H1/H2) + (K1/K2)(S1/S2)n

1 +H1/H2
, (8)

where Ei ::
E1:

is the erosion rate of the ith
:::
one

:
rock layer, Hi is the thickness of the ith layer measured in the vertical direction,

and U is the uplift rate (see derivation in Appendix B). Entire theoretical profiles can be constructed using this relationship,

in combination with the stream power erosion law
:::::
model

:
and the continuity relation (Eq. 5), which provides the slope ratio.

These profiles closely match the simulations in cases where n 6= 1 at a sufficient distance from base level (Figs. 4A-B,5A-5

B). Therefore,
:
,
::::::
further

:::::::::
confirming

::::
that continuity state is a type of flux steady state. In addition to describing behavior near

contacts, it
::::::::
continuity

::::::
steady

::::
state

:
also describes portions of the profile that are distant from contacts. For sub-horizontal

:::::::::::
subhorizontal rocks this often produces a landscape that is quite different from that which would be predicted by topographic

steady state (Fig. 3).

::
In

::::::::
continuity

::::::
steady

::::
state

:::
the

::::::
slopes

::
in

::::
both

::::
rock

:::::
types

:::
are

::::::::
different,

::
in

:::::::
general,

::::
than

:::
the

::::::
slopes

:::
that

::::::
would

::
be

::::::::
predicted

:::
by10

::::::::::
topographic

:::::
steady

:::::
state.

:::::::::
Combining

:::::
Eqns.

::
1,
::
5,
::::
and

:
8
:::::
gives

S1,cont

S1,topo
=

(
H1/H2 + (K1/K2)1/(1−n)

1 +H1/H2

)1/n

,

:::::::::::::::::::::::::::::::::::::

(9)

:::::
where

::::::
S1,cont:::

and
:::::::
S1,topo :::

are
:::
the

:::::
slopes

:::
for

::::
rock

::::
layer

::
1
:::
that

::::::
would

::
be

::::::::
obtained

:::::
under

::::::::
continuity

::::::
steady

::::
state

::::
and

::::::::::
topographic

:::::
steady

:::::
state,

::::::::::
respecitvely.

::::::
Setting

:::
the

::::::::::
thicknesses

:::::
equal,

::::::::
H1 =H2,

::::
and

::::
using

:::
an

:::::::
example

::::
case

::
of

:::::::::
Kw = 2Ks,

:::
we

::::
plot

:::
the

::::
ratio

::
of

::::::::
continuity

::::
and

::::::::::
topographic

:::::
steady

::::
state

::::::
slopes

:::
for

::::
both

:::
the

:::::
weak

:::
and

::::::
strong

:::::
layers

::::
(Fig.

:::
6).

:::
For

:::::
n < 1

:::::
there

::
is

::::::
always

:
a
::::::
strong15

::::::::
difference

:::::::
between

:::
the

:::::::::
continuity

::::
and

::::::::::
topographic

::::::
steady

::::
state

::::::
slopes

::
in

::::
both

::::::
rocks.

:::
For

::::::
n > 1

:::
the

:::::
weak

::::
rock

::
in

:::::::::
continuity

:::::
steady

::::
state

:::::
never

:::
has

::
a
::::
slope

:::::
more

::::
than

:
a
::::::
factor

::
of

:::
two

::::::::
different

::::
than

::
the

:::::
slope

::::
that

:::::
would

:::
be

::::::::
predicted

::
by

::::::::::
topographic

::::::
steady

::::
state.

:::
For

:::::
large

::
n

::
the

:::::::::
continuity

::::::
steady

::::
state

:::::
slopes

::
of
:::::
both

::::
weak

::::
and

:::::
strong

::::
rock

:::::
layers

::::::
obtain

:::
the

::::
same

:::::
slope

::
as

::::
they

::::::
would

::
in

::::::::::
topographic

:::::
steady

:::::
state.

:::::::::::
Additionally,

::
if

:::
one

:::::
layer

::
is

:::::
much

::::::
thicker

::::
than

:::
the

::::
other

:::::
(e.g.

:::::::::
H1→∞),

::::
then

:::
the

::::
slope

:::
of

:::
this

:::::
layer

:::::::::
approaches

:::
the

:::::
slope

:::
that

::
it

:::::
would

::::
have

::::::
under

::::::::::
topographic

:::::
steady

:::::
state.20

:::::::::
Continuity

:::::
steady

:::::
state

:::::::
predicts

:::
that

:::
the

:::::
ratios

:::
of

:::::
slopes

:::
in

:::
the

:::::
weak

:::
and

::::::
strong

:::::
layers

:::
are

:::::::::::
independent

::
of

:::::
layer

::::::::
thickness

:::
(Eq.

:::
5).

::::::::
However,

::
it
::::
also

:::::::
predicts

:::
that

:::::::
erosion

::::
rates

:::
and

::::::::
absolute

::::
slope

::::::
values

::
in

::::
both

:::::
rocks

:::
are

:::::::::
dependent

::
on

:::
the

::::::::
thickness

:::
of

::
the

::::::
layers

:::::
(Eqs.

:
8
::::
and

:::
9).

::
To

::::
test

:::
this

::::::::::
prediction,

::
we

::::::::::
resimulated

::::
the

::::
high

:::::
uplift

:::::
cases

:::::
above

::::
with

:::::::
n= 2/3

::::
and

:::::::
n= 3/2

::::
and

:::::::
changed

:::
the

::::
layer

:::::::::
thickness.

:::
For

::::
ease

::
of

:::::::::::
comparison,

:::
the

::::
total

::::::::
thickness

::
of

::::
both

:::::
layers

::::
was

::::
kept

:::::
equal

::
to

:::
100

:::
m,

:::
but

:::
the

:::::
weak

::::
layer

::::::::
thickness

::::
was

::::::::
increased

::
to

::
90

:::
m.

:::
As

::::::::
predicted,

:::
the

:::::::::
continuity

:::::
steady

:::::
state

:::::
slopes

::::
vary

::::
with

:::::::
relative

::::
layer

::::::::
thickness

:::::
(Fig.25

::
7).

::::
The

::::::
thicker

:::
of

:::
the

:::
two

:::::
rock

:::::
layers

::::::
adjusts

:::
its

:::::
slope

::::::
toward

:::
the

:::::
slope

::::
that

::
it

:::::
would

:::::
have

:::::
under

::::::::::
topographic

::::::
steady

:::::
state.

::::::::
Increasing

:::
the

:::::::::
percentage

:::
of

::::
weak

::::
rock

::::::
adjusts

::::
both

::::::
slopes

::
in

::::
such

::
a

:::
way

::::
that

::
it

::::::
reduces

:::
the

::::
total

::::::::::
topography

::::
(Fig.

:::
7).

3.3 Dynamics of base level perturbations

Continuity steady state is perturbed near base level, where
:::::::
because

:
a constant rate of base level fall is imposed . This

results because vertical incision occurs
:::
and

::::::::
continuity

::::::
steady

:::::
state

:::::::
requires

::::::
vertical

::::::::
incision at different rates in each rock30

8



in continuity steady state, whereas uplift is constant
::::
type. Despite this disequilibrium near base level

::::::::::
discrepancy

:::::::
between

::::
base

::::
level

::::::::::
topographic

::::::::::
equilibrium

:::
and

:::::::::
continuity

:::::
steady

::::
state, theoretical profiles produced using Eq. (3) and Eq. (8) closely match

the shapes of the profiles for the cases where n is not one. Therefore, these perturbations decay rapidly away from base level

in the simulated cases. However, a question remains as to what controls this decay length scale, and how typical the cases are

that we have simulated.5

In a horizontally layered rock sequence, a segment of stream profile with erosion rate equal to uplift is continuously devel-

oping at base level. The slope of this base level segment in χ-space is given by

dz

dχ
=

(
U

KAm
0

)1/n

. (10)

The difference between this slope , and the continuity steady state slope produces a knickpoint that propagates upstream with

a celerity given by
::
in

::
χ

::::
space

:::::
given

:::
by10

C =
U

dz/dχ
= U (n−1)/nK1/nA0

m/n, (11)

As the knickpoint crosses into the other rock type, continuity demands that C does not change, because C is identical to hori-

zontal retreat rate and continuity requires this to be equal across a horizontal contact. Since celerity is a monotonic increasing

function of erodibility, knickpoints formed at base level in the stronger rock are slower than those formed in the soft
::::
weak

:
rock.

Therefore, the soft
:::::
weak rock knickpoints catch up to the hard

:::::
strong rock knickpoints, and the profile damps toward equilib-15

rium as the two interact. Consequently, we can estimate the damping length scale as the χ distance at which the knickpoints

generated in soft
::::
weak

:
rock at base level catch up to the knickpoints generated in hard

:::::
strong

:
rock at base level.

The strong rock knickpoint begins with a head start equal to the χ distance spanned by the strong rock segment, which we

call χs :::
χs,0:

and is given by

χs,0 =Hs

(
KAm

0

U

)1/n

. (12)20

The strong rock knickpoint will travel an additional distance χs,+ before the soft
::::
weak rock knickpoint catches up, and these

distances are related by

χs,0 +χs,+

Cw
=
χs,+

Cs
, (13)

where Cs and Cw are the knickpoint celerities in the strong and weak rocks, respectively. The damping length scale, λ=

χs,0 +χs,+, is the distance from base level over which the weak rock knickpoint catches the strong one and can be solved for25

by combining Eqs. 11, 12, and 13, leading to

λ=Hs

(
KsA

m
0

U

)1/n [
1 +

(
(Kw/Ks)

1/n− 1
)−1

]
. (14)

To generalize the damping behavior of the base level perturbations it is useful to analyze a dimensionless version of λ, which

is normalized by χs,0,

λ∗ =
λ

χs,0
= 1 +

[(
Kw

Ks

)
− 1

]−1

. (15)30
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It can be seen that the damping length scale is primarily a function of the relative erodibilities of the two rock types. When

the contrast is large, damping occurs rapidly, whereas when the contrast is small the damping length scale is large. However,

in this latter case there is also very little contrast in steepness, since the erodibilities are similar.
::::
Since

::::
χs,0::

is
:::
the

::
χ

:::::
length

:::
of

::
the

::::::
strong

::::
rock

:::::
reach

::::
near

::::
base

:::::
level

::
at

:::
the

:::::::
moment

::::
that

:::
the

:::::
weak

::::
layer

::::::::
becomes

::::::::
exposed,

::::
χs,0 :

is
::::

less
::::
than

:::
but

:::
on

:::
the

:::::
same

::::
order

::
of

:::::::::
magnitude

:::
as

:::
the

:::::
profile

::::::::
distance

:::::::
spanned

::
by

::
a

:::
pair

::
of
:::::

weak
::::
and

:::::
strong

::::
rock

::::::
layers.

:::::::::
Therefore,

:::
λ∗

:::
can

:::
be

:::::::::
interpreted5

::
as

:
a
:::::::::::
conservative

:::::
order

::
of

:::::::::
magnitude

:::::::
estimate

:::
of

:::
the

::::::
number

:::
of

::::
pairs

:::
of

::::
weak

::::
and

::::::
strong

::::
rocks

::::
that

:::
are

:::::::
required

:::
to

:::::::
produce

::::::::
damping.

:::::
That

::
is,

::
if

::::::
λ∗ ∼ 1

::::
then

::::::::
damping

:::::
should

:::::
occur

::::::
within

::
a

:::::
single

::::
pair.

:
We show λ∗ as a function of the erodibility ratio

for several choices of n in Figure 8. Here it can be seen that if the erodibility ratio is greater than about two or three damping

occurs within two cycles through the rock layers away
::::
then

::::::
λ∗ . 2,

:::
or,

::::::::::
equivalently,

::::::::
damping

::::::
occurs

::
for

:::::
parts

::
of

:::
the

:::::
profile

::::
that

::
are

:::::::::
separated from base level

::
by

:::::
more

::::
than

:::
two

::::
sets

::
of

:::::::
contacts

::::::::
between

:::
the

:::
two

::::
rock

:::::
types. If the erodibility ratio is greater10

than about ten, then
::::::
λ∗ . 1,

::::
and damping occurs within a single cycle

:::
pair

::
of

:::
the

::::
two

::::
rock

::::
types.

To illustrate this damping behavior, we run two simulations with somewhat longer damping length scales. Both simulations

have profile lengths of 500 km, uplift rates of 2.5 mmy−1, repeating rock layers with a 50 m thickness, and weak rock layers

that have an erodibility of 1.5 times the hard
:::::
strong

:
rock layers. One case uses: n= 1.2, m= 0.6, and Ks = 1.5× 10−5,

whereas the second case uses:n= 0.8, m= 0.4, and Ks = 1×10−4. For the n= 1.2 case, λ= 2.25, and for the n= 0.8 case,15

λ= 2.45. Profiles are shown for these simulations in Figure 9. Fast knickpoints catch the slow knickpoints at roughly the

calculated length scale (Fig. 9C,D). This
::::
Note

::::
that

:::
the

::::::::::
knickpoints

:::
we

:::
are

::::::::
describing

::::
here

:::
are

::::::
breaks

::
in

:::::::::
steepness,

:::::
which

::::
can

::
be

::::::::::
downstream

:::::::::
decreases

::
or

::::::::
increases

::
in

:::::::::
steepness.

::::
The

:::::::::
knickpoint

::::::::::
interference

:::
can

:::
be

::::
seen

::
as

::::
the

::::::
gradual

::::::::
reduction

:::
in

:::
the

:::
size

::
of

::
a
::::::::::
topographic

::::::::::
equilibrium

:::::
slope

:::::
patch

::::
near

::::
base

:::::
level

:::
that

:::::::
reaches

::::
zero

::::
size

::
at

::::::::::::
approximately

::::::
χ= λ.

::::
This

:::::::
process is

visualized more clearly in animations in the supplementary material that depict the damping length scale. Beyond this damping20

length scale, some minor perturbations remain, and one can see fast and slow knickpoints migrating through the upper parts of

the profile as the system evolves. However, beyond λ the theoretical profiles derived from continuity and flux steady state are

good approximations to profile shape.

4 Full landscape simulations

To determine whether continuity steady state is obtained within whole landscape models, or whether addition of hillslope25

processes might eliminate it, FastScape V5 (Braun and Willett, 2013) was used to simulate stream power erosion coupled to

an entire landscape model. All simulated cases employ a constant rock uplift rate and horizontal rock layers with alternating

high and low erodibility.

The stream power erosion law
:::::
model used in FastScape has the form

E =KfΦmSn, (16)

where Φ is discharge, calculated as the product of the drainage area and the precipitation rate P . Each of the three presented30

model runs uses two different erodibility coefficients, Kfw for the weak rock and Kfs for the strong rock, in place of Kf . For

10



each one of them, a grid of 3000× 3000 pixels representing 100× 100 km is simulated. The initial condition used is a slightly

randomly perturbed flat surface at base level. The boundary condition is open on all sides. 15000 m of uplift is simulated in

60000 timesteps. The softer
::::::
weaker rock is exposed for the first 10800 m of the uplift, allowing an initial drainage network to

establish. Afterwards, a layered rock structure starts to be exposed, with alternating layers of 200 m of the harder
:::::::
stronger rock

and 300 m of the softer
::::::
weaker

:
rock. The different bed thicknesses enables testing of whether any of the previous theoretical5

results require the layered rocks to have equal thickness. The main difference between the model runs is in the slope exponent

n, with cases using n= 2/3, n= 1, and n= 3/2. A listing of numerical parameters is provided in Table 2. The necessary

timestep was calculated from the uplift rate and the ratio of total uplift to the number of timesteps.

Floating point digital elevation models (DEMs) were produced for the final time step for each FastScape simulation. Using

the Landlab landscape evolution model (Tucker et al., 2013) to calculate flow routing, channel profiles were extracted from the10

FastScape DEMs for each case of n. Landlab was extended to enable calculation of χ values for each channel. χ-plots were

then generated for 50 channels in each simulation and are shown in Fig. 10. The continuity equilibrium state described above

is also reflected within the full landscape evolution model, and plots of elevation versus χ for channels within each model

demonstrate similar relationships as displayed in Figure 4A-C
:::::
A,C,E.

5 Discussion and conclusions15

The standard concept of topographic equilibrium and its implications for channel form break down

5
:::::::::
Discussion

::::::::::
Topographic

::::::
steady

::::
state

:
is
:::
not

:::::::
attained within layered rocks as the layers approach horizontal(Howard, 1988; Forte et al., 2016) .

However, under constant forcing, the stream power erosion law drives channels to a different type of steady state , which we

refer to as
::::
with

::::::::::
non-vertical

:::::::
contacts

::::
since

:::
the

::::::
spatial

:::::::::
distribution

::
of

:::::::::
erodibility

:::::::
changes

::
in

::::
time

::::::::::::::::::::::::::::
(Howard, 1988; Forte et al., 2016) .20

:::::::::::::::::::
Forte et al. (2016) show

::::
that

:::::::::
departures

::::
from

::::::::::
topographic

::::::
steady

::::
state

:::
are

:::::::
greatest

:::::
when

:::
the

:::::
layers

::::
have

:::::::
contacts

::::
that

:::
are

::::
near

:::::::::
horizontal.

::::
They

::::
use

::::::::::
simulations

::
of

:::::::::
landscape

::::::::
evolution

::::
with

:
a
::::::

stream
::::::

power
:::::::
erosion

:::::
model

:::::
with

:::::
n= 1.

::::::
These

::::::::::
simulations

::::::::::
demonstrate

:::
that

:::::::
erosion

::::
rates

:::::
vary

:::::
across

:::
the

:::::::::
landscape

::
in

::::::::
complex

:::::
ways,

::::
that

::::
there

::
is
:::
no

:::::
direct

::::::::::
relationship

::::::::
between

::::
rock

::::::::
erodibility

::::
and

::::::
erosion

::::
rate,

:::
and

::::
that

::::::
erosion

::::
rates

:::
can

:::
be

::::::
greater

::
or

:::
less

::::
than

:::
the

:::::
uplift

::::
rate.

::::
They

::::
also

:::::
detect

::::::
distinct

::::::::::
differences

::
in

::::::::
landscape

:::::::::::
development

:::::::
between

::::
cases

::::::
where

:::::
either

::
the

::::::
strong

::
or

:::::
weak

::::
rock

:
is
:::::::
exposed

::::
first.

:::
In

::
the

::::
case

::
of

::
a

::::
weak

::::
rock

:::
on

:::
top25

::
of

:
a
::::::
strong

::::
rock,

::
a

::::::
tapered

::::::
wedge

::
of

:::::
weak

::::
rock

:::::
forms

:::
on

:::
top

::
of

:
a
:::::
steep

::::::::
retreating

::::::::::
escarpment

::
in

:::
the

:::::
strong

:::::
rock.

:::::
When

::::::
strong

::::
rock

:
is
:::
on

:::
top

::
of

:::::
weak

::::
rock,

:::
the

:::::
weak

::::
rock

::::::::
undercuts

:::
the

::::::
strong

::::
rock

:::
and

:::::
forms

:::
an

::::::::
extremely

:::::
steep

::::
zone

::::
near

:::
the

:::::::
contact.

:::
Our

::::::::::
simulations

:::
and

:::::::
analysis

:::::::
support

:::
the

:::::::::
conclusions

:::
of

:::::::::::::::::
Forte et al. (2016) on

:::
the

::::::::
dynamics

::
of

:::
the

:::::
n= 1

:::::
case.

::::::::
However,

:::
we

:::
also

:::::
show

:::
that

:::::
these

::::::::
dynamics

:::::
result

::::::::::
specifically

:::::::
because

:::
the

:::
rate

::
of
:::::::::
horizontal

::::::
retreat,

::
or

:::::::::::
equivalently

:::
the

:::::::::
knickpoint

:::::::
celerity,

:
is
:::::::::::
independent

::
of

:::::
slope

:::::
when

::::::
n= 1.

::::::::::::
Consequently,

:::
the

:::::::::
topography

::
is
::::::
unable

::
to
::::::::

maintain
::
a

::::
state

::
of

::::::::
erosional

:::::::::
continuity,

::::
and30

:::::::
therefore

::::::::::
topography

::
is

:::::
unable

::
to

:::::
reach

:
continuity steady state. Continuity steady state is also a type of flux steady state , where
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time averaged incision in the channel at any given horizontal position is equal to uplift
:::::::::
Landforms

::::::::
developed

::
in
:::::::
layered

:::::
rocks

::
are

::::::
driven

::::::
toward

:::::::::
continuity

:::::
steady

::::
state

:::
by

:::
the

:::::
same

::::
type

::
of

:::::::
negative

::::::::
feedback

::::::::::
mechanisms

:::::::
between

::::::::::
topography

:::
and

:::::::
erosion

:::
that

:::::::
generate

::::::::::
topographic

::::::
steady

:::::
state.

::
In

::::
fact,

::::::::::
topographic

::::::
steady

::::
state

::
is

:
a
::::::
special

::::
case

:::
of

::::::::
continuity

::::::
steady

:::::
state.

:::
For

::::::
stream

:::::
power

::::::
erosion

::::
with

::::::
n 6= 1,

:::::::::
landscapes

:::
are

::::
able

::
to

::::::
adjust

::::
slope

:::
to

:::::::
maintain

:::::::::
continuity

:::::
across

:::::::
multiple

:::::
rock

:::::
layers.

:::::::::
Therefore,

::
a

:::
type

:::
of

:::::::::
equilibrium

:::::::::
landscape

::::
form

::::
does

:::::::
develop

::::::::::
sufficiently

::
far

:::::
from

::::
base

::::
level

:::::
when

:::::
n 6= 1. In this state, changes in channel5

profile shape over time are small and result from changes in basin area. If constant uplift occurs, the channel cannot equilibrate

at base level, because

:
If
:::
we

::::::::
compare

:::
the

:::::
n 6= 1

::::
case

::::
with

:::
the

:::::::::::
conclusions

:::::
above

:::::::::
concerning

:::
the

::::::
n= 1

:::::
cases,

::::::
several

::::::::::
similarities

:::
and

::::::::::
differences

::::::
emerge.

::::
For

::::
both

:::::
cases,

::
it
::
is

::::
true

:::
that

::::::::::
topographic

::::::
steady

::::
state

::
is
:::::
only

::::::
strictly

:::::::
reached

:
if
::::::::

contacts
:::
are

:::::::
vertical.

:::::
Also,

:::
for

::::
both

::::
cases

:::
the

:::::::
patterns

::
of

::::::::
steepness

:::
in

:::
the

::::::::
landscape

::::::
diverge

:::::
most

:::::::
strongly

::::
from

:::::
those

::::::::
predicted

:::
by

::::::::::
topographic

::::::
steady

::::
state

:::::
when10

::::
rocks

:::
are

::::::::::
horizontally

:::::::
layered.

::::::::
However,

:::
for

:::::
n 6= 1

:::::::
erosion

::::
rates

:::
and

::::::::::
steepnesses

:::
do

::::::
exhibit

:::::::::
one-to-one

:::::::::::
relationships

::::
with

::::
rock

:::::::::
erodibility.

:::::
Since

:::::::::
erodibility

:::::::::
determines

:::::::::
steepness,

:::
we

::
do

:::
not

::::
see

:::
any

::::::::::
dependence

::
of

::::::::::
topography

:::
on

:::
the

::::
order

:::
of

:::::::
exposure

:::
of

::
the

::::::
layers,

::::::
unlike

::::
with

:::
the

:::::
n= 1

:::::
case.

::::::::::
Considering

::::
two

::::
rock

:::::
types,

::::
one

:::::
strong

::::
and

:::
one

:::::
weak,

:::::::
erosion

::::
rates

:::::::
bracket

:::
the

:::::
uplift

:::
rate,

:::::
with

:::
one

::::
rock

:::::::::
exhibiting

::::::
erosion

:::::
rates

::::::
higher

::::
than

::::
uplift

::::
and

:::
the

:::::
other

:::::
lower

::::
than

:::::
uplift.

::::
For

:::
the

:::::::::::
subhorizontal

:::::
case,

:::
the

::::
weak

::::
rock

::::::
erodes

:::::
faster

:::::
when

:::::
n < 1

::::
and

:::
the

:::::
strong

::::
rock

::::::
erodes

:::::
faster

:::::
when

:::::
n > 1

::::
(Fig.

:::
6).

::::::::
Contrasts

::
in

:::::::
erosion

::::
rates

:::::::
become15

::::
small

:::
for

:::::
large

:
n
:::::
(Fig.

::
6)

:::
and

::::
very

:::::
large

:::::
when

:::::
n≈ 1.

:

::
As

:::::
noted

:::
by

::::::::::::::::
Forte et al. (2016) ,

:::::::::
variability

::
in
:::::::

erosion
::::
rates

::::::
across

:::
the

:::::::::
landscape

:::
can

::::::::
produce

::::
bias

::
in

::::::
detrital

:::::::
records,

:::
as

:::::
zones

::::::::
exhibiting

:::::
faster

:::::::
erosion

::::
will

::::::::
contribute

::
a
:::::
larger

:::::::::
proportion

:::
of

:::
the

::::::::
exported

:::::::
sediment

:::::
than

:::::
would

:::
be

:::::::::
calculated

:::::
based

::
on

:::::
areal

::::::::
estimates.

:::::
Since

:::
the

::::::::::
framework

:::::::::
developed

:::::::
predicts

:
a
:::::::
regular

::::::::::
relationship

:::::::
between

:::::::
erosion

::::
rates

::::
and

:::::::::
erodibility

:::
for

:::::
n 6= 1,

::
it
::::
may

::::
help

:::::::::
constrain

::::::::::
uncertanties

::
in
:::::

such
:::::::
records.

::::
The

::::
long

:::::
term

:::::::
average

::::::
erosion

::::
rate

::
at
::::

any
:::::::
location

::
is
:::::

equal
:::

to20

::::
uplift

:::::
rate,

:::
and

::::::::
therefore

:
continuity steady state results in different vertical incision rates in each rock type . However, the

perturbations introduced by thisdisequilibrium at base level rapidly decay over a length scale that is primarily
::
is

:
a
::::
type

:::
of

:::
flux

::::::
steady

:::::
state.

:::::::
Because

::
of

::::
this,

::::
there

::
is
::::
also

::
a

::::::
simple

:::
rule

::::
that

:::::::
emerges

:::::
when

::::::::::
considering

::::::
erosion

:::::
rates

::
as a function of the

ratio of rock erodibilities, with larger erodibility contrasts resulting in shorter decay lengths. Practically speaking, for rocks

that have erodibilities sufficiently different to have a strong effect on the profile, these perturbations decay after a couple rock25

contacts are passed
::::
rock

::::
type.

::::
For

::
the

:::::::
portion

::
of

:::
the

::::::::
landscape

::::
that

:
is
::
in
::::
flux

::::::
steady

::::
state,

:::
the

:::::::
amount

::
of

:::::::
material

:::::::
removed

:::::
from

:
a
:::::
given

::::
rock

::::
layer

::::::
within

:
a
::::::
period

::
of

::::
time

:::
will

:::
be

::::::::::
proportional

::
to

:::
the

:::::::
fraction

::
of

:::
the

:::::::::
topography

::::
that

::
is

:::::::
spanned

::
by

::::
that

:::::
layer,

::
as

:::::::
opposed

::
to

::
its

:::::
areal

:::::
extent.

::::
For

:::::::
example,

:::
in

:::
our

:::::::::
simulations

::::::
where

::::
each

::::
rock

::::
type

::::::
makes

::
up

::::
half

::
of

:::
the

::::::::::
topography,

::::
there

::
is
:::
an

::::::::::::
approximately

::::
equal

:::::::
volume

::
of

:::::::
material

::::::
eroded

::::
from

:::::
each

::::
rock

::::
type

:::::
within

::
a

::::
given

::::::::
timestep.

If
:::::
When contacts between rocks are dipping

:::
dip at slopes much greater than the channel slope, then the vertical contact30

limit from Eq. (4) applies and traditional conceptions for equilibrium channel form hold
:::::::::
topography

::::::::::
approaches

:::
the

::::
form

::::
that

:::::
would

::
be

::::::::
predicted

:::
by

::::::::::
topographic

::::::
steady

::::
state. The considerations introduced here become important as rock dips approach

values comparable to or less than channel steepness
::::
slope. This subhorizontal limit, given by Eq. (5), is most likely to apply for

rocks that are very near horizontal and/or channels that are very steep. Therefore, these considerations are most applicable in

cratonic settings, and in headwater channels,
:
or when considering processes of scarp retreat in subhorizontal rocks (Howard,35
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1995; Ward et al., 2011).
:
In

:::
the

::::::::::::
subhorizontal

:::::
limit,

::::
slope

::::::::
contrasts

:::
are

:::::
larger

::::
than

::::::
would

::
be

::::::::
predicted

:::
by

::::::::::
topographic

::::::
steady

::::
state

::::
(Fig.

:::
3).

::
In

:::
the

::::
case

::
of

::::::
n < 1,

::::
slope

:::::::
patterns

::
in

:::::::::
continuity

:::::
steady

:::::
state

:::
are

:::
also

:::::::::::
qualitatively

:::::::
different

::::
than

:::::
those

::::::::
predicted

::
by

::::::::::
topographic

::::::
steady

::::
state,

::::
with

:::::::
steeper

::::::
channel

::::::::
segments

::
in

::::::
weaker

::::::
rocks.

The framework presented here provides an intriguing hint concerning the generation of
:::
For

:::::
n≈ 1

:::::
slope

::::::::
contrasts

:::::::
become

:::::::
extreme,

:::::
which

::
is
::::::::::

particularly
:::::::::
important

::::
since

::::::
n= 1

::
is

:::
the

::::
most

::::::::
common

:::::
value

::::
used

::
in

:::::::::
landscape

::::::::
evolution

:::::::
models.

::
In

::::
this5

::::
case,

::::
large

:::::
slope

::::::::
contrasts

:
at
:::::::
contacts

::::
may

:::::::::
accentuate

:::::::::
numerical

:::::::::
dispersion.

::
It

:::
also

:::::
must

::
be

:::::::
realized

:::
that

:::::
n= 1

::
is

::::
quite

::
a
::::::
special

:::
case

:::
in

:::::::::::
subhorizontal

::::::
rocks,

:::
and

:::
the

::::
rest

::
of

:::
the

:::::::::
parameter

:::::
range

:::
for

::
n

::::::
results

::
in

:::::::::::
substantially

:::::::
different

::::::::
dynamics

::::
and

::::::
steady

::::
state.

:::::
Field

::::::
studies

::::
have

::::::::
suggested

::::
that

:::::
n= 1,

::::::
where

:::::::::
knickpoint

:::::
retreat

:::
rate

::
is
::::::::::
independent

:::
of

:::::
slope,

:::
can

::::::
explain

:::
the

::::::::::
distribution

::
of

:::::::::
knickpoints

::::::
within

:::::::
drainage

::::::
basins

:::::::::::::::::::::::::::::::::::::::::::::::
(Crosby and Whipple, 2006; Berlin and Anderson, 2007) .

::::::::
However,

::
it

:
is
::::
also

::::
clear

:::::
from

:::
our

:::::::
analysis

:::
that

::::
with

:::::
n= 1

::
in
::::::::::::
subhorizontal

:::::
rocks

:::::::
channels

::::
near

:::::::
contacts

::::::
obtain

:
a
:::::
steep

:::::
state,

:::::
where

:::
the

::::::
stream

:::::
power

::::::
model10

:::
will

:::::
break

:::::
down.

:

::::::
During

:::::::
constant

::::::
uplift,

:::::::
channels

::::::
cannot

::::::
attain

:::::::::
continuity

:::::
steady

:::::
state

::
at

::::
base

:::::
level,

:::::::
because

::
it
:::::::
requires

::::::::
different

:::::::
vertical

::::::
incision

:::::
rates

::
in

::::
each

::::
rock

::::
type.

::::::::
However,

:::
the

:::::::::::
perturbations

::::::::::
introduced

::
by

::::::
stream

::::::::
segments

::
in

::::::::::
topographic

::::::::::
equilibrium

::
at

::::
base

::::
level

::::::
rapidly

::::::
decay

::::
over

:
a
::::::

length
:::::
scale

::::
that

::
is

::::::::
primarily

:
a
::::::::

function
::
of

:::
the

:::::
ratio

::
of

::::
rock

:::::::::::
erodibilities,

::::
with

::::::
larger

:::::::::
erodibility

:::::::
contrasts

::::::::
resulting

::
in

::::::
shorter

:::::
decay

:::::::
lengths.

:::::::::
Practically

::::::::
speaking,

:::
for

:::::
rocks

:::
that

::::
have

:::::::::::
erodibilities

:::::::::
sufficiently

:::::::
different

::
to
:::::

have15

:
a
:::::
strong

:::::
effect

:::
on

:::
the

::::::
profile,

::::
base

::::
level

:::::::::::
perturbations

:::
of

::::::::
continuity

::::::
steady

::::
state

:::::
decay

::::
after

::
a
::::::
couple

::::
rock

:::::::
contacts

:::
are

::::::
passed.

::::::
Though

::::::::
steepness

:::::
ratios

:::
are

::
a

::::
fixed

:::::::
function

:::
of

::::
rock

::::::::
erodibility

:::
in

::::::::
continuity

::::::
steady

:::::
state,

:::::::
absolute

::::::::
steepness

:::::
values

:::::::
depend

::
on

::::
rock

:::::
layer

:::::::::
thickness.

:::::
Since

::::::
natural

:::::::
systems

::::
will

:::
not

::::::::
generally

:::::
have

::::::
regular

:::::::
patterns

:::
of

::::::::
thickness

::
or

::::::::::
erodibility,

:::
this

::::
has

::::::::::
implications

:::
for

:::
the

:::::
ability

::
of

::::::
natural

:::::::
systems

::
to

::::::::
approach

::::::::
continuity

::::::
steady

::::
state.

:::
As

::::
new

::::
rock

:::::
layers

::::
with

:::::::
different

::::::::::
thicknesses

::
or

::::::::::
erodibilities

:::
are

:::::::
exposed

::
at
::::
base

:::::
level,

::::
the

:::::::
absolute

::::::::
steepness

::::::
values

:::
that

::::::
would

::::::::
represent

:::::::::
continuity

::::::
steady

::::
state

:::::::
change.20

::::::::
Therefore,

:::::::::
continuity

:::::
steady

::::
state

::::
may

:::::
often

::::::::
represent

:
a
::::::
moving

::::::
target,

:::::
where

:::
the

::::::::
landscape

::
is

:::::::::
constantly

:::::::
adjusting

::::::
toward

::
it

:::
but

::::
never

::::::::
reaching

::
it.

::::
The

::::::::::
introduction

::
of

::::
rock

::::::
layers

::::
with

::::::
varying

::::::::
thickness

::::
and

::::::::
erodibility

::::
can

:::::::
produce

::::::::
transience

:::
in

:::::::::
landscapes

:::
that

:::
are

:::::::::::
experiencing

::::::::
otherwise

:::::
stable

:::::::
tectonic

::::
and

::::::
climate

:::::::
forcing.

::::
This

::::
only

:::::::
applies,

:::::::
however,

:::
for

::::::::
absolute

::::::::
steepness

::::::
values.

::::::::
Steepness

:::::
ratios,

::::
and

::::
their

::::::::::
relationship

::
to

:::::::::
erodibility,

:::::
would

:::
be

:::::::
expected

::
to

:::
be

:::::::
relatively

::::::::
constant

::
in

::::
time

:
if
::::::::::
sufficiently

::
far

:::::
from

::::
base

::::
level.

:
25

:::
We

::::::::
speculate

:::
that

:::
the

::::::::
observed

::::::::
dynamics

::
in

:::::::::::
subhorizontal

:::::
rocks

:::::::
provide

:
a
::::::::
potential

:::::
means

::
to
::::::::
generate caprock waterfalls, a

feature that has long fascinated geologists (Gilbert, 1895). Caprock waterfalls, such as Niagara Falls, have a resistant caprock

layer that is underlain by a weaker rock. The waterfall has the caprock at its lip, followed by a vertical, or often overhanging,

face within the weak rock. This is a case of a very steep channel within a highly erodible rock, which would not be predicted

from topographic equilibrium and stream power erosion. Such a state is predicted by the continuity relation developed here for30

subhorizontal layers with n < 1,
::::
and

::::::::
somewhat

::::::
similar

:::::::
features

:::::::
develop

::
in

:::
the

::::
case

:::
of

:::::
n= 1. Values of n might be expected

to fall in this range
:
be

::::
less

::::
than

::::
one

:
for erosion processes active in the weak rock layer, such as plucking (Whipple et al.,

2000). Furthermore, caprock waterfalls typically form in relatively horizontal strata, and are common within steep headwater

channels,
::::::

which
:::
are

:::
the

:::::::
settings

::::::
where

:::::::::
differences

:::::::
between

:::::::::::
topographic

:::
and

:::::::::
continuity

::::::
steady

::::
state

:::::::
become

::::::::
important. The

stream power law
:::::
model

:
arguably does not apply to waterfalls (Lamb and Dietrich, 2009; Haviv et al., 2010; Lague, 2014),35
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and a variety of erosion mechanisms that are independent of stream power can act in such an oversteepened reach,
::::
such

:::
as

::::::
gravity

::::::
failure,

::::::::::
freeze-thaw,

:::::::::::
shrink-swell,

::::
and

:::::::
seepage

:::::::::
weathering. However, starting from an initial condition of low relief,

topographic equilibrium
:::
and

::::::
stream

:::::
power

:::::::
erosion

:
would not predict a channel to evolve toward the caprock waterfall state.

In contrast, the framework presented here naturally produces features resembling caprock waterfalls from considerations of

landscape equilibrium. While further work would be needed to test this hypothesis, it remains plausible that caprock waterfalls5

are the result of channels steepened within weaker rocks to maintain continuity. Once
:
,
::::
even

:::
if,

::::
once

:
the channel becomes

sufficiently steep, stream power erosion may no longer provide
::
no

::::::
longer

:::::::
provides

:
a good approximation to erosion rates,

though the
:
.
::::
The

:
concept of continuity could also be applied to other, more mechanistic, erosion models. ,

:::
as

:::
the

:::::::
relation

:::::::
provided

:::
by

:::
Eq.

:
2
::
is
::::::::::
independent

:::
of

::::::
erosion

::::::
model.

::::::::
However,

:::::::::
continuity

:::::::
relations

:::
are

::::
most

:::::
likely

:::
to

::::::
provide

::::::
insight

:::
for

::::::
simple

::::::
erosion

::::::
models

:::::
where

:::::::::
analytical

:::::::
solutions

:::
can

:::
be

::::::
derived,

:::
as

::::
with

:::::
stream

::::::
power

::::::
erosion.

:::::
With

::::
more

::::::::
complex

::::::
models,

:::
the

::::::
results10

::
of

::::::::
numerical

::::::::
landscape

::::::::
evolution

:::::::
models

:::::
could

::
be

::::::::
compared

::::::
against

:::
the

:::::::::
continuity

:::::::
relation

::
to

:::
test

:::::::
whether

:
a
::::::
similar

:::::::::
continuity

:::::
steady

::::
state

::
is

:::::::
attained.

:

Though the focus of this work is on bedrock channel profiles in layered rocks, the concepts of continuity and flux steady

state can be applied in general to any mathematical model for erosion. Much like topographic steady state, both continuity

and flux steady state result from negative feedbacks within the uplift-erosion system that drive it toward this
:::::
steady

:
state as15

uplift and erosion become balanced.
::::
Such

::::::::
feedback

::::::::::
mechanisms

:::
are

:::::
likely

::
to

::
be

:::::::
present

:::::
within

:::::
most

:::::::
erosional

:::::::
models.

:
Though

topographic steady state has been a powerful theoretical tool to understand landscapes, the more general concept of
:::::::::
generalized

::::::
concept

::
of

::::::::
erosional

:
continuity may prove more useful in interpreting steep landscapes in subhorizontal rocks.

6 Conclusions

::::::::::
Topographic

::::::
steady

::::
state

::::
has

::::::::
provided

:
a
::::::::
powerful

::::
tool

:::
for

::::::::::::
understanding

:::
the

::::::::
response

:::
of

:::::::::
landscapes

::
to

:::::::
climate,

:::::::::
tectonics,20

:::
and

::::::::
lithology.

:::::::::
However,

:::::
within

:::::::
layered

::::::
rocks,

::::::::::
topographic

::::::
steady

::::
state

::
is
:::::

only
:::::::
attained

::
in

:::
the

::::
case

:::
of

:::::::
vertical

:::::::
contacts.

:::
In

::::::::::
topographic

:::::
steady

:::::
state,

:::::::
vertical

::::::
erosion

:::::
rates

:::
are

:::::
equal

::::::::::
everywhere,

::::
and

::::::::
steepness

::::::
adjusts

::::
with

::::
rock

:::::::::
erodibility

:::
to

:::::::
produce

::::
equal

:::::::
erosion.

:::::
Here

:::
we

:::::::::
generalize

:::
this

::::
idea

:::::
using

:::
the

:::::::
concept

::
of

::::::::
erosional

:::::::::
continuity,

::::::
which

::
is

:
a
:::::

state
:::::
where

::::::
retreat

::::
rates

:::
of

::
the

:::::
land

::::::
surface

:::
on

:::::
either

::::
side

::
of

::
a
::::
rock

::::::
contact

::::
are

:::::
equal

::
in

:::
the

::::::::
direction

::::::
parallel

:::
to

:::
the

::::::
contact

::::::
rather

::::
than

::
in

:::
the

:::::::
vertical

::::::::
direction.

:::::
Using

:
a
::::::
stream

:::::
power

:::::::
erosion

:::::
model

::::
with

::::::
n= 1,

::::
prior

:::::
work

:::::::
showed

:::
that

::::::
erosion

:::::
rates

::::::
exhibit

:::::::
transient

:::
and

::::::::
complex25

::::::::::
relationships

:::::
with

::::
rock

:::::::::
erodibility

:::::::::::::::::
(Forte et al., 2016) .

::::
Our

:::::
work

:::::::
suggests

::::
that

:::::
these

::::::::
complex

::::
and

:::::::
transient

::::::
effects

::::::
result

::::::
because

::::::::::
adjustments

:::
in

::::::::
steepness

::::::
cannot

:::::::
produce

:
a
::::
state

::
of
::::::::

erosional
:::::::::
continuity

:::::
when

::::::
n= 1.

::
In

:::::
cases

:::::
where

::::::
n 6= 1,

::::::::
erosional

::::::::
continuity

:::
can

:::
be

:::::::
attained,

:::
and

:::
the

::::::::
landscape

:::::::::
sufficiently

:::
far

::::
from

::::
base

::::
level

:::::::
exhibits

:::::::::
one-to-one

:::::::::::
relationships

:::::::
between

::::::::
steepness

:::
and

:::::::::
erodibility

:::
that

::::
are

::::::::
predicted

::
by

:::::::::
continuity.

::::
We

::::
refer

::
to

::::
this

::
as

:::::::::
continuity

::::::
steady

::::
state,

::::
and

:::::
show

:::
that

::
it
::
is

::
a

::::
type

::
of

::::
flux

:::::
steady

:::::
state.

::::::
Results

::::
from

:::
1D

::::
and

::
2D

:::::::::
landscape

::::::::
evolution

::::::
models

:::::::
confirm

::
the

::::::::::
predictions

::
of

:::
the

::::::::
erosional

::::::::
continuity

:::::::::
equations.30

:::
For

::::::::
continuity

::::::
steady

:::::
state,

:::
the

::::::::::
relationships

:::::::
between

::::
rock

:::::::::
erodibility

::::
and

::::::::
landscape

::::::::
steepness

:::::
differ

::::
most

:::::
from

::::::::::
topographic

:::::
steady

::::
state

:::::
when

:::
the

::::
rock

:::::::
contacts

:::
are

:::::::::::
subhorizontal,

::::
that

::
is,

:::::
when

::::::
contact

::::
dips

::
are

::::
less

::::
than

::::::
channel

::::::
slope.

::
In

::
the

::::::::::::
subhorizontal

14



::::
case,

::::::::
contrasts

::
in

::::::::
steepness

:::
are

:::::
larger

::::
than

::::::::
predicted

::
by

:::::::::::
topographic

:::::
steady

:::::
state.

:::::
These

::::::::
contrasts

:::
are

::::::
largest

:::::
when

:::::
n≈ 1,

::::
and

::
in

:::
fact

::::
may

:::::
create

::::::::::
sufficiently

:::::
steep

:::::::
channels

::
in

::::
one

::
of

:::
the

::::
rock

:::::
layers

::
to
::::::
negate

:::
the

:::::::::::
applicability

::
of

:::
the

::::::
stream

:::::
power

:::::::
erosion

::::::
model.

::::
For

::::::
n≈ 1,

::::::::
numerical

:::::::::
dispersion

::::
may

::::
also

::::::::
influence

:::
the

:::::
time

::::::::
evolution

::
of

:::
the

::::::::::
topography

:::::::
because

::
of

:::
the

:::::
large

:::::
slope

::::::::
contrasts.

:::::
When

:::::
n < 1,

::::::::
steepness

:::::::
patterns

:::
are

::::
also

::::::::::
qualitatively

::::::::
different

:::
than

:::::
those

::::::::
predicted

::
by

:::::::::::
topographic

:::::
steady

:::::
state,

::::
with

::::::
steeper

::::::
channel

::::::::
segments

::
in
:::::::
weaker

:::::
rocks.

::
In

:::::::::
continuity

:::::
steady

:::::
state,

:::::::
erosion

::::
rates

::::::
bracket

:::
the

:::::
uplift

:::
rate

::::
and

::::::
display

::
a

::::::
regular5

:::::::::
relationship

::::
with

::::::::::
erodibility.

::::
This

::::
may

::::
assist

::
in
::::::::::
quantifying

:::
the

::::::::::
uncertainty

:::
and

::::
bias

:::::
within

::::::
detrital

:::::::
records

:::
that

:::
can

:::::
result

:::::
from

:::::::
different

::::::
erosion

::::
rates

::
in

::::::::
different

:::
rock

:::::
types

::::::::::::::::
(Forte et al., 2016) .

::::
For

:::::::::::
subhorizontal

:::::
rocks,

:::::::::
continuity

:::::
steady

::::
state

::
is

:::
not

:::::::
attained

:
at
:::::

base
::::
level.

:::::::::
However,

:::
the

:::::::::::
perturbations

::
to

:::::::::
continuity

:::::
steady

:::::
state

:::
that

:::
are

:::::::::
introduced

::
at
::::
base

:::::
level

:::::
decay

::::::
rapidly

:::::
when

:::::
there

:
is
::
a
:::::::
contrast

::
in

:::::::::
erodibility

::
of

:::::
more

::::
than

:
a
::::::
factor

::
of

::::
2-3.

:::
We

::::::::
speculate

:::
that

::::
the

:::::::::
framework

:::::::::
developed

::::
here

:::::::
provides

::
a

:::::::
possible

:::::::::
mechanism

:::
for

:::
the

:::::::::::
development

::
of

:::::::
caprock

:::::::::
waterfalls,

:::::
since

:
it
:::::::
predicts

:::::
steep

:::::::
channel

::::::
reaches

::::::
within

:::::
weak

:::::
rocks.

:::::::
Though

:::
we10

::::
focus

:::
on

::::::
stream

:::::
power

:::::::
erosion,

:::
the

:::::::
concept

::
of

::::::::
erosional

:::::::::
continuity

::
is

::::
quite

:::::::
general,

::::
and

::::
may

::::::
provide

::::::
insight

:::::
when

:::::::
applied

::
to

::::
other

::::::
erosion

:::::::
models.

:

Appendix A: Derivation of the continuity relation

Here we detail how the constraint of channel continuity can be used to derive the relationship given in Eq. (3). Consider a

planar contact between lithologies with different erodibilities. We label the downstream and upstream erodibility with K1 and15

K2. Downstream and upstream slopes are S1 and S2, the slope of the contact is Sc, and their respective slope angles are θ1, θ2,

and φ, see Fig. A1.

In this section we use the subscript i to denote either 1 or 2, as the relationships are valid for the channel within both rock

types. Erosion at a rate Ei in the vertical direction, as is calculated by the stream power erosion law
:::::
model, can be transformed

to an erosion rate Bi that is perpendicular to the channel bed using the slope of the channel bed, θi, with Bi = Ei cosθi, see20

Fig. A1. The contact and the channel intersect at angle θi +φ, thus the rate of exposure of the contact plane is

Ri =
Bi

sin(θi +φ)
=

Ei cosθi
sin(θi +φ)

. (A1)

For the case where θi +φ > π/2 the diagram changes, but these same relationships can be recovered using sin(π− θi−φ) =

sin(θi +φ). Continuity of the channel bed requires that the contact exposure rates R1 and R2 are equal, which gives

E1 cosθ1
sin(θ1 +φ)

=
E2 cosθ2

sin(θ2 +φ)
. (A2)25

Using a trigonometric identity for angle sums leads to

E1 cosθ1
sinθ1 cosφ+ cosθ1 sinφ

=
E2 cosθ2

sinθ2 cosφ+ cosθ2 sinφ
. (A3)

Simplifying the fractions and multiplying both sides of the equation with cosφ we get

E1

tanθ1 + tanφ
=

E2

tanθ2 + tanφ
. (A4)

15



Solving for the ratio of erosion rates in the two rock types and converting to slopes rather than angles, the relation becomes

::::
using

::
a
::::
sign

:::::::::
convention

:::::
where

::::
both

:::::::
contact

:::
and

:::
bed

::::::
slopes

:::
are

:::::::
positive

::
in

:::
the

::::::::::
downstream

::::::::
direction,

:::
the

::::::
relation

::::::::
becomes

E1

E2
=
S1 +Sc

S2 +Sc

S1−Sc

S2−Sc
::::::

. (A5)

If erosion rates are given by the stream power law
:::::
model, then it follows that

K1S
n
1

K2Sn
2

=
S1 +Sc

S2 +Sc

S1−Sc

S2−Sc
::::::

, (A6)5

which is identical to Eq. (3) with the general subscripts 1 and 2 replaced with s and w for strong and weak.

Appendix B: Derivation of the erosion relation

Using the stream power erosion law
:::::
model, erosion rates in two channel segments above and below a contact are

E1 =K1A
mSn

1 and E2 =K2A
mSn

2 , (B1)

where A is the recharge area. Taking the ratio of both equations at an arbitrary basin area, we get10

E1

E2
=
K1

K2

(
S1

S2

)n

. (B2)

We define H1 and H2 to be the thicknesses of the rock layers measured in the vertical direction. If flux steady state is assumed,

then the average erosion rate equals the uplift rate U . Therefore, the time needed to uplift a distance equal to the sum of the

two layers’ thicknesses equals the sum of the times needed to erode through the two layers:

H1 +H2

U
=
H1

E1
+
H2

E2
. (B3)15

Combining Eq. (B2) and Eq. (B3) gives an expression for the erosion rate in a given rock:

E1 = U
H1/H2 +K1/K2 (S1/S2)

n

1 +H1/H2
. (B4)

While flux steady state seems like a reasonable assumption, simulations also confirm that the erosion rates predicted by Eq.

(B4) are approached within a few contacts above base level. Similarly, simulations that alternate uplift rate over time to match

the erosion rate of the rock type currently at base level, as given by Eq. (B4), obtain straight line slopes in χ-elevation space20

all the way to base level. This confirms that the disequilibrium seen in the profiles in Fig. 4B-D is produced by the difference

between the constant uplift rate and the equilibrium incision rates experienced in each layer.
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A Vertical contact:
Topographic equilibrium

B Horizontal contact:
Topography changes

C General case:
Topography 

changes

Kw
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s

w 

Figure 1. Topographic equilibrium in layered rocks. (A) Response of steepness to rock erodibility is typically derived from a perspective

of topographic equilibrium, with equal vertical incision rates in all locations that are balanced by uplift. Topographic equilibrium does not

occur in the case of non-vertical contacts. (B) For horizontal strata, horizontal retreat rates, rather than vertical incision, must be equal at the

contact. (C) In general, retreat in the direction parallel to the contact must be equal within both rocks to maintain channel continuity. Dashed

lines depict former land surface and contact positions, and arrows show the direction of equal erosion at the contact. Uplift is not depicted.

C Continuity
maintained

B Upper layer erodes
faster

A Upper layer erodes
slower

Figure 2. Erosional continuity. (A) If the upper layer at a contact erodes slower, this produces a discontinuity at the contact and the resulting

steepening in
::
or

:::::::::
undercutting

::
of
:
the upper layer will drive the system toward erosional continuity. (B) If the upper layer erodes faster, this

produces a low
::
or

::::::
reversed

:
slope zone near the contact, which will reduce erosion rates in

:::
also

::::
drive

:
the upper layer

:::::
system

:::::
toward

::::::::
continuity

(C) In
::
We

:::::::::
hypothesize

::::
that,

::
in general, the system

:::::::::
topography will

:::
tend

::
to
:
approach a state where continuity is maintained.
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Figure 3. Channel slope response at a subhorizontal contact from an assumption of continuity. The ratio of slope within the weaker rock (Sw)

and the slope within the stronger rock (Ss) near a horizontal contact (solid line) with differing values of the power
::::::
exponent

:
n in the stream

power erosion law
::::
model. Erodibility in the weaker rocks (Kw) is twice that of the stronger rocks (Ks).

:::
This

::::::::::
subhorizontal

::::
case

::::::
applies

::::
when

:::
the

::
dip

:::
of

::
the

::::::
contact

::
is

::::
small

::::::::
compared

::
to

::::::
channel

:::::
slope. The dashed line displays the traditional

::::::
standard

:::::::::
topographic

:::::::::
equilibrium

relationship, which applies for cases where the contact slope is much larger than the channel slope.
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Figure 4. Channel profiles in subhorizontally layered rocks with high uplift (2.5 mmyr−1). (A-C) Channel profiles in χ-elevation space for

cases where n= 2/3 (A), n= 3/2 (B), and n= 1 (C). (D-F) Channel profiles as a function of distance from divide. Each panel contains

three time snapshots of the profile with uplift subtracted from elevation so that the profiles evolve from left to right. Grey bands represent the

weak rock layers. The dashed lines (A,B) show the continuity steady state profile
:::::
profiles

:
predicted by the

:::::::
continuity

:::::
steady

::::
state theory

::::
(Eqs.

:
5
:::
and

::
8), with filled circles depicting predicted crossing points of the contacts. Channel profiles obtain an equilibrium

:
a
:::::
steady

::::
state

:
shape

except near base level, where a constant rate of base level fall is imposed. For n 6= 1 the equilibrium profile
:::::::
steepness

:
(slope in χ space

:
)

has a one-to-one relationship with rock erodibility, with steeper channels in weaker rock if n < 1. For n= 1 there is no unique relationship

between erodibility and χ slope
:::::::
steepness,

::
as

::::::::
continuity

:::::
cannot

::
be

:::::::::
maintained

::::
along

:::
the

::::
entire

:::::
profile.

22



0 1 2 3 4 5 6 7 8 9
χ [m]

0

20

40

60

80

100

El
ev

at
io

n 
[m

]

weak rocks

A
n=2/3

050100150200
Distance from divide [km]

0

20

40

60

80

100

El
ev

at
io

n 
[m

]

weak rocks

D
n=2/3

0 1 2 3 4 5 6 7 8 9
χ [m]

n=3/2

weak rocks

B

050100150200
Distance from divide [km]

n=3/2

weak rocks

E

0 1 2 3 4 5 6 7 8 9
χ [m]

n=1

weak rocks

C

050100150200
Distance from divide [km]

n=1

weak rocks

F

Figure 5. Channel profiles in subhorizontally layered rocks with low uplift (0.25 mmyr−1). (A-C) Channel profiles in χ-elevation space for

cases where n= 2/3 (A), n= 3/2 (B), and n= 1 (C). (D-F) Channel profiles as a function of distance from divide. Grey bands indicate

weaker rocks. The low uplift simulations utilize longer distances and thinner rock layers in order to obtain a similar number of rock layer

cycles. Profile
::::
These

:::::
profile

:
shapes are qualitatively similar for

:
to

:
the low and high uplift cases

:::
(Fig.

::
4).
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Figure 6.
:::
An

::::::
example

::::
case

::
of

:::
the

:::
ratio

:::
of

:::::
slopes

:::::::
predicted

::
by

::::::::
continuity

:::
and

:::::::::
topographic

:::::
steady

:::::
states.

::::
This

:::::::
example

::::::
assumes

:
a
::::::

choice
::
of

::::
equal

::::
rock

::::::::
thicknesses

::
in

::::
both

:::
rock

:::::
types

:::
and

:
a
::::
weak

::::
rock

::::::::
erodibility

:::
that

::
is

::::
twice

:::
that

::
of
:::
the

:::::
strong

::::
rock.

:::::::
Contrasts

:::
are

::
in

::::::
general

:::::::
strongest

::
for

:::::
n < 1

:::
and

:::::::
gradually

:::::::
disappear

:::
for

::::
large

::
n.
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Figure 7.
:::
The

:::::::
influence

::
of

::::::
relative

::::
layer

:::::::
thickness

::
on

:::::
slopes

::
in

::::::::
continuity

:::::
steady

::::
state.

::
If

::
the

::::::
relative

:::::::
thickness

::
of

:::
the

:::::
strong

:::
and

::::
weak

:::::
layers

:
is
:::::::
changed,

:::
the

:::
far

::::
from

:::
base

::::
level

:::::
slopes

::
in
::::

both
:::::
rocks

:::::
adjust

::::::::::::
correspondingly

::::
(solid

::::::
lines),

::
as

:::::::
predicted

::
by

::::::::
continuity

:::::
steady

:::::
state.

::::
Grey

::::
bands

:::::
depict

:::
the

:::::::
locations

:
of
:::::
weak

::::
rocks

::
in

::
the

:::::::
differing

:::::::
thickness

::::::
model.

:::
The

:::::
dashed

::::
lines

:::::
depict

::::::
channel

::::::
profiles

::
for

:::::::::
simulations

:::
with

:::::
equal

::::
layer

:::::::
thickness

::
but

:::
the

::::
same

:::::::
erosional

:::::::::
parameters.

::::::::
Increasing

:::
the

::::
weak

::::
layer

::::::::
percentage

::::::
reduces

:::::::::
topography

::::::
overall.
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Figure 8. The dimensionless damping length scale
:
,
:::
λ∗, as a function of erodibility ratio. Damping of base level perturbations is strong when

the erodibility ratio is greater than three.
:
λ∗

:::
can

:::
be

::::::::
interpreted

::
as

::::::
roughly

:::
the

:::::
number

::
of
::::
pairs

::
of
:::::
strong

:::
and

:::::
weak

:::
rock

:::::
layers

:::
that

::::
base

::::
level

:::::::::
perturbations

::::
must

::::
pass

::::::
through

:::::
before

::::::::
substantial

:::::::
damping

:::::
toward

::::::::
continuity

:::::
steady

::::
state.

Simulation Ks [m
1−2m a−1] Kw [m1−2m a−1] m U [ma−1]

High uplift cases

n= 2/3 1 · 10−4 2 · 10−4 1/3 2.5 · 10−3

n= 1 2 · 10−5 2.4 · 10−4 1/2 2.5 · 10−3

n= 3/2 1.5 · 10−6 3 · 10−6 3/4 2.5 · 10−3

Low uplift cases

n= 2/3 4 · 10−5 8 · 10−5 1/3 2.5 · 10−4

n= 1 2 · 10−5 2.4 · 10−4 1/2 2.5 · 10−4

n= 3/2 3 · 10−6 6 · 10−6 3/4 2.5 · 10−4

Table 1. Parameters used in the 1D model runs.
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Figure 9. Simulations of knickpoint propagation and damping from base level. Entire equilibrium profiles are depicted for cases where

n= 1.2 (A) and n= 0.8 (B). Panels C and D show zoomed figures that depict three separate timesteps (dotted, dashed, and then solid) as

fast knickpoints catch up with slow knickpoints at the calculating
:::::::
calculated

:
damping length scale (λ, thick red line).

:::
The

::::::::
interaction

::
of

:::
the

:::
two

:::::::::
knickpoints

:::
can

::
be

::::::::
visualized

::
as

::
the

::::::::
reduction

::
in

:::
size

::
of

:
a
:::::

slope
::::::
patches

:::
that

:::
are

:
at
:::

the
:::::::::
topographic

:::::::::
equilibrium

:::::
slope

::
as

::::
these

::::::
patches

:::::::
approach

::
λ.
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Figure 10. Results of the FastScape simulations. Lines in the left-hand panels are profiles extracted from the DEMs. Simulations were

run at constant uplift with alternating bands of weak and strong rocks. Grey bands indicate the weaker rocks. The individual panels show

simulations where n= 2/3 (A), n= 3/2 (C), and n= 1 (E). The dashed lines (A,C) show the equilibrium profile predicted by the theory,

with circles depicting predicted crossing points of the contacts. Profiles obtain similar shapes as in the 1D simulations (Figure 2B-D). Panels

B, D, and F show DEMs of the landscapes formed in each simulation. Color represents elevation with white being high.
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Simulation Kfw [m1−3m a−1+m] Kfs [m
1−3m a−1+m] m P [ma−1] U [ma−1]

n= 2/3 1.2 · 10−4 0.5 ·Kfw 1/3 1 2.5 · 10−3

n= 1 2.5 · 10−5
::::::::
1.5 · 10−5 0.83333 ·Kfw 1/2 1 2.5 · 10−3

n= 3/2 1 · 10−6 0.5 ·Kfw 3/4 1 2.5 · 10−3

Table 2. Parameters used in the FastScape model runs.

K1

K2

2
1



E1 B1 +1
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Figure A1. Geometric relationships used to derive the equation for continuity of the channel at a contact between two rock types. Note that

the slope of the contact plane (φ
::::::::::
Sc =−tanφ) is

:::::
defined

::
as

:
positive when the contact dips in a

::
the

:::::::::
downstream

:
directionopposite that of

channel bed slope.
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