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Abstract. The ability to model surface processes and to couple them to both subsurface and atmospheric regimes has proven 

invaluable to research in the Earth and planetary sciences. However, creating a new model typically demands a very large 

investment of time, and modifying an existing model to address a new problem typically means the new work is constrained 15 

to its detriment by model adaptations for a different problem. Landlab is an open-source software framework explicitly 

designed to accelerate the development of new process models by providing: 1. a set of tools and existing grid structures – 

including both regular and irregular grids – to make it faster and easier to develop new process components, or numerical 

implementations of physical processes; 2. a suite of stable, modular, and interoperable process components that can be 

combined to create an integrated model; and 3. a set of tools for data input, output, manipulation, and visualization. A set of 20 

example models built with these components is also provided. Landlab’s structure makes it ideal not only for fully developed 

modelling applications, but also for model prototyping and classroom use. Because of its modular nature, it can also act as a 

platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab exposes a standardized 

model interoperability interface, and is able to couple to third party models and software. Landlab also offers tools to allow 

the creation of cellular automata, and allows native coupling of such models to more traditional continuous differential 25 

equation-based modules. We illustrate the principles of component coupling in Landlab using a model of landform 

evolution, a cellular ecohydrologic model, and a flood-wave routing model. 
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1 Introduction and motivation 

 Across a wide array of fields, researchers use numerical models to study processes that operate on and across the 

Earth’s land surface and shallow subsurface. Science and engineering applications of these models of surface dynamics 

range from short-term flood forecasting (e.g., Horritt and Bates, 2002) to simulating the evolution of Earth’s landscape over 

geologic epochs (e.g., Tucker and Hancock, 2010). Models may focus on a theoretical understanding of processes and their 5 

interaction, on management or engineering applications, or on predicting environmental responses to natural or human-made 

perturbations. Although the processes and temporal and spatial scales vary widely, the software behind these models is often 

quite similar. For example, most Earth surface dynamics models manage data structures and algorithms to represent a terrain 

surface and its connectivity, and many include solution algorithms to compute flows of mass (such as ice, liquid water, 

sediment, or chemical nutrients) across terrain (Slingerland and Kump, 2011) (Fig. 1). 10 

 

 However, scientists who want to use an Earth surface model often build their own unique model from the ground 

up, re-coding the basic building blocks of their model rather than taking advantage of codes that have already been written 

(Adams et al., 2014; Katz et al., 2015; Overeem et al., 2013).  This undoubtedly does produce novel software capable of 

fulfilling its designer’s needs, and can have advantages in helping the programmer to acquire a total understanding of the 15 

code base, but this approach also has many associated problems: many person-hours are lost rewriting existing code, and the 

resulting software is often idiosyncratic, ad hoc, undocumented, and unable to interact with other software programs both in 

the same scientific community and beyond. In particular, models are often initially written to solve a very specific problem, 

rather than to provide a flexible and reliable platform for solving a general class of problems (Easterbrook, 2014). It may 

also become impossible for a single programmer to maintain their grasp of their code base once it exceeds a certain size. A 20 

result is that software development often acts as a bottleneck to progress, with frequent duplication of effort as research 

groups struggle to adapt existing software or develop new code from the ground up as each new research problem emerges. 

 

 The Landlab modelling framework described here seeks to mitigate these redundancies and lost opportunities and 

simultaneously lower the bar for entry into numerical modelling. The approach is to create a user- and developer-friendly 25 

modelling environment that provides scientists with the fundamental building blocks needed for modelling surface dynamics 

on the Earth, and potentially beyond. The framework takes advantage of the fact that nearly all surface-dynamics models 

share a set of common software elements, despite the wide range of processes and scales that they encompass (Peckham et 

al., 2013; Slingerland and Kump, 2011). Providing these elements in the context of the popular scientific programming 

language Python, and with strong user support and community engagement, would contribute to accelerating progress in the 30 

diverse sciences of the Earth's surface. 

 

From the user’s perspective, Landlab enables the following: 
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1. Rapid, easy creation of a number of distinct geometric grids, with all the connectivity between various elements 

already defined, and the ability to create two-dimensional data fields across a given grid; 

2. Functions to operate on the values defined on such a grid, enabling the solution of time-dependent numerical 

algorithms across them (e.g., differential equations, cellular automata); 

3. A mechanism for the control of boundary conditions across a grid; 5 

4. Encapsulation of conceptual models for individual Earth-surface processes into reusable components, with a 

standard interface that allows operation across Landlab grids; 

5. The ability to build a multi-process model by combining together components; 

6. The ability to quickly and efficiently build new components, and to couple them with those components already in 

the library. 10 

7. A straightforward and standardized input and output interface, including the ability to import from and export to 

common spatially distributed data formats such as NetCDF and ESRI ASCII, and a plotting module. This interface 

also enables coupling to third party models and software. 

 

2 Approach 15 

2.1 Guiding design principles 

 The design principles for Landlab have been guided both by our observations of current software design practices in 

the surface-system modelling community, and by white papers issued by existing organisations both within this community 

(Adams et al., 2014; Overeem et al., 2013; Peckham et al., 2013) and in the scientific software design community more 

widely (Becker et al., 2015; Chue Hong, 2014; Katz et al., 2015; NSF, 2012).  Our key observations are that: 20 

1. Many models exist that simulate Earth surface processes, and many of these share a very similar underpinning in 

terms of the basics of grid construction and the suite of simulated processes. This set of models represents 

significant past duplicative effort in the surface process modelling community. Although the reasons for duplication 

are likely multiple and vary from group to group, we note that we are unaware of previous efforts to advertise a 

flexible, open-source programming framework. 25 

2. Orphaned or unmaintained codes are common in the research community, having been built for a single purpose 

and then set aside. 

3. Although standardized frameworks for model interoperability are now in place (such as the framework designed 

and maintained by the Community Surface Dynamics Modelling System (CSDMS) group (Hutton et al., 2014; 

Overeem et al., 2013; Peckham et al., 2013)), many models are not compatible with these standards. We 30 
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hypothesize this is largely due to the effort required by the original programmer to modify legacy code – which in 

many cases was written before the standards were established – to meet these new interoperability criteria. 

4. Existing model software tends to have a high bar to entry. Many models are written in compiled languages, such as 

Fortran, C, and C++ (examples from the geomorphology and sedimentary stratigraphy communities include CHILD 

(Tucker et al., 2001b), Sedflux (Hutton and Syvitski, 2008), MARSSIM (Howard, 2007), Fastscape (Braun and 5 

Willett, 2013), DAC (Goren et al., 2014), SIBERIA (Willgoose et al., 1991a; 1991b)). This requires the prospective 

user be fluent in these languages before the code can be modified, or in many cases, even used efficiently. Because 

many legacy codes were not designed to be shared amongst the community, documentation, both in-line and 

external, tends to be idiosyncratic at best and missing at worst. 

5. In several instances, scientific software with a broad user base exists, but remains closed source. This includes both 10 

tools for data analysis (e.g., ArcMap, Matlab) and in some cases the modelling software itself (e.g., FLAC (Itasca, 

2000), Dionisos (Granjeon and Joseph, 1999)). Where software has to be purchased, this presents obvious barriers 

to wide uptake of modelling approaches using these tools in terms of financial cost for the user. More importantly, 

all closed source software also presents significant barriers to code assessment in peer review and to reproducibility 

of the work (Crick et al., 2014; Katz et al., 2015). 15 

 

 These observations lead us to a set of key design principles that have governed our development of Landlab: 

A. Landlab should be a community resource, and thus fully open source. 

B. Landlab should provide a development environment that is flexible, extensible, and highly reusable.  

C. Landlab should be written in a language that allows rapid development of new code. 20 

D. Landlab should be fully compliant with the CSDMS model interoperability standards (Peckham et al., 2013) from 

the ground up, and this compliance should be built into the low-level development framework itself. Thus, for 

example, components written in Landlab will be automatically compliant with these standards. 

E. Landlab should have a low bar to entry, and be thoroughly documented. Tutorials should be present. It should be 

possible for a beginner to use Landlab without a full grasp of the underlying model architecture, in a “plug and 25 

play” fashion. 

F. Landlab’s code needs to be sustainable, as detailed below. 

 

2.2 Low level design choices 

 In turn, these guiding design principles directed early decisions in terms of Landlab’s coding language, architecture, 30 

and distribution. 
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Open source availability. Landlab is licensed under the MIT free software license, an approved license of the Open Source 

Initiative. This license allows a user to deal in the software without restriction, including without limitation the rights to use, 

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the software. The source code and associated files 

are maintained in a git version-control repository, for which the master repository is presently hosted on the GitHub website, 

https://github.com/landlab/landlab. Release versions are also freely available through the pip and conda Python package 5 

managers. The model repository maintained by CSDMS offers links to Landlab documentation and to the GitHub repository, 

increasing Landlab’s visibility to the surface process modelling community in particular. Web-based documentation is 

hosted at http://landlab.github.io. This includes both developer-written summary documents and tutorials, as well as 

reference-level documentation that is automatically generated from inline comments and examples in the code itself. 

 10 

Programming language. Landlab is written in Python and exploits and includes as dependencies a number of widely used 

scientific Python packages: numpy, scipy, matplotlib, nose, netCDF4, numpydoc, cython, six, pyyaml, setuptools, and 

libgcc. The decision to write in Python was explicitly made to lower the bar for entry to Landlab, to increase the flexibility 

and reusability of the code base, and to increase development speed both for the core development team and for future users. 

Informal canvassing amongst the surface process community, especially amongst graduate students and other early-career 15 

scientists less likely to already be strongly wedded to a certain development environment, revealed a marked preference for – 

and greater familiarity with – Python over C++ (other open-source languages were rarely mentioned). This changing 

preference for Python has also been noted for PhD students in general, beyond just the field of surface process modelling 

(Chue Hong, 2014). The choice of Python also means that developers using Landlab can take advantage of that language’s 

affinity for rapid development (Prechelt, 2000). In particular, Python’s dynamic typing and interpreted rather than compiled 20 

implementation remove the developer’s need to deal explicitly with memory management (van Rossum and Drake, 2001). 

Other advantages of this choice include high portability between platforms, open-source language, numerous existing 

scientific libraries, and support for selective optimization of time-critical parts of the code base using Cython and/or 

compiled-language extensions. Cython is a compiled language that is a super-set of Python, and Cython extension modules 

interact seamlessly with pure Python. However, program modules written in Cython allow more granular control of memory 25 

management than is the case in pure Python, which can result in significant acceleration of code. Cython is already in use 

within Landlab for sections of the code that require long out-of-sequence iterations through arrays, and other sections where 

pure Python would tend to have poor performance. For example, Cython is used in the construction of some of the grid 

element connectivity arrays, in the FlowRouter and FastscapeEroder components, and in the CellLab extension to Landlab 

(Tucker et al., 2016). 30 

 

Code sustainability. A key objective for Landlab from inception has been that the code base be sustainable (Adams et al., 

2014; Becker et al., 2015; Katz et al., 2015; Stewart et al., 2010). Following other authors, we view sustainable software as 

that which is able to continue effectively, sustaining or improving its functionality through time while at the same time 
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adding new users. Stewart et al. (2010) drew attention to a number of key features of sustainable software, which we have 

sought to implement. These are: 

• Strong, consistent leadership. The authors of this paper represent the core development team of Landlab. 

• Rapid prototyping and evolutionary design. Landlab was initially developed to fill the immediate research needs of 

the core development team, giving it a strong and well-defined initial direction. In this initial development phase, 5 

we have emphasized long-term mountain belt evolution modelling; steady- and nonsteady-flow routing; eco-, 

surface, and shallow subsurface hydrology; hillslope dynamics; cellular automaton modelling; vegetation dynamics; 

and ecosystem dynamics. However, the explicitly modular nature of Landlab means that it can readily adapt to new 

scientific objectives and expand to meet new and as yet unforeseen demands in the future. 

• Modern and effective software engineering practices. Landlab takes advantage of a number of best practice 10 

processes, including extensive and automated unit testing of key code functionality, a formal bug- and issue-

tracking record implemented through GitHub, cross-team review of code changes before they are merged into the 

master branch, and thorough code documentation. A significant portion of our online documentation is created 

semi-automatically from inline code comments. This reduces duplication of information and aids maintenance and 

updating of the documentation as the code changes. Individual functions and classes are documented automatically 15 

using Python’s docstring functionality. General descriptive documentation and tutorials are created and maintained 

manually. Auto-generated documentation is updated and posted to the project website automatically as new code 

changes are committed to the GitHub repository using “webhook” functionality provided through the 

http://readthedocs.org website. 

• Sustained compatibility with underlying libraries, protocols and operating systems. Landlab is compatible both 20 

with Python 2 and 3. The code base is tested automatically using Travis (Mac, Unix) and Appveyor (PC) 

continuous integration platforms, across Python versions 2.7, 3.4, and 3.5 (see also Section 4). 

• Dissemination and community understanding. We have sought to publicize Landlab widely at a number of 

international conferences and workshops, classes, and through collaborative networks. We estimate that at as of 

mid-2016 approximately 330 potential users have now seen or participated in Landlab-based presentations or 25 

classes. 

• Encouraging collaborative software development. Landlab enables users to tailor its functionality to their specific 

needs, through its modular design and flexible grid and grid functions. We are already aware of a number of groups 

outside the core Landlab development team working with Landlab for their own research purposes. 

  30 

 A secondary aspect to sustainability is the ability to have the software continue to be useable after the active 

development cycle has ceased (Stewart et al., 2010). We anticipate that the choice of Python, minimal system and extension 

package requirements, open-source availability of our code base, and thorough documentation will sustain our code for the 

foreseeable future. 
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3 Model Architecture 

 Landlab has an essentially tripartite structure – a core grid module, a library of process components, and a set of 

supporting utilities (Fig. 2). The various subdivisions of the code behave as Python modules, and can be imported and used 

within a Python environment independently. 5 

 

3.1 Landlab’s Gridding Engine 

 Landlab provides the ability to create a two-dimensional simulation grid of a user-specified size and shape, with a 

single line of code. Grids are represented as Python objects; a grid object includes data describing its geometry and topology, 

as well as a variety of methods and functions to manage data and perform common numerical operations. (In object-oriented 10 

programming parlance, a method is a procedure associated with an object; in this case, “method” means a function that is 

defined within the grid class, and that can be accessed with the “grid.method()” syntax typical of other class 

properties.) 

 

 Although Landlab grids are inherently two-dimensional, in many cases it is nonetheless possible to create an 15 

effectively one-dimensional simulation by creating a 3-by-N regular grid and closing the nodes along the top and bottom 

edges (see Section 3.1.4). Three-dimensional grids are not possible in Landlab at this time, though may be supported in a 

future release. 

 

3.1.1 Grid types and elements 20 

 A Landlab grid is defined by a set of grid primitive elements: nodes, links, cells, corners, faces, and patches (fig. 3). 

In terms of graph theory, these can be thought of as two interlocking and offset sets of points (nodes vs. corners), edges 

(links vs. faces), and areas (patches vs. cells). The entire grid can be generated from a description of the geometry of only 

one of these element types – typically, a user might specify the locations of the nodes, and the grid object’s remaining 

elements are automatically placed according to this node framework. 25 

 

 Each element type shares unique one-to-one or one-to-many geometric mappings with the other elements. Were the 

grids to be infinite, these mappings would be perfectly reciprocal – the topology and connectivity of each element with 

respect to every other element would be identical everywhere it occurs. However, because these grids are finite, we must 
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arbitrarily decide whether the bounding elements are nodes-links-patches or corners-faces-cells. We have chosen the former 

(see Figs. 4, 5), which means that for example, while all cells have nodes, not all nodes have cells – as the nodes at the grid 

perimeter cannot have cells defined around them. Table 1a lists the unique one-to-one mappings of features, and emphasizes 

which element defines the grid edge in each case. Table 1b lists the primary one-to-many relationships defined for each 

element type, and lists the standard number of mapped elements (if well defined) for each of the primary grid classes. Note 5 

that this table only lists the most useful identities within the three-element groupings node-link-patch and cell-face-corner. 

The other identities also exist, and can be reconstructed from the one-to-one identities in Table 1a. 

 

 Data can be assigned to any element of the grid (see Section 3.2, below). The grid classes also provide properties 

that define and describe the geometric interrelationships amongst these grid elements (see, e.g., Fig. 4). These mappings 10 

allow common geometric operations (such as calculation of gradients across the grid, finding maximum/minimum/mean 

values of neighbors, upwinding schemes, and flux divergences) to be achieved in typically one or two lines of code. 

 

 Landlab provides native support for both regular and irregular grids (Figs. 3, 4). Treating both grid types natively 

within Landlab allows the grid to be tailored to specific applications. For example, raster grids provide compatibility with 15 

digital elevation model data, and can in some cases allow better optimized process algorithms. Trigonal grids with hexagonal 

cells provide an additional axis of symmetry, and obviate the need for handling diagonal connections in certain types of 

numerical algorithm (such as flow routing, e.g., Jenson and Domingue, 1988). Irregular grids avoid some of the cardinal 

direction artifacts than can form on regular grids, such as linear networks and linear drainage divides, as well as consequent 

biases in measured channel metrics like drainage density, river length, and channel slope (Braun and Sambridge, 1997). 20 

 

Regular grids with quadrilateral cells are implemented as rasters, and irregular grids and all other regular 

configurations (e.g., hexagons) are implemented as Voronoi-Delaunay interlocked meshes, as also used in the landscape 

evolution models CASCADE (Braun and Sambridge, 1997) and CHILD (Tucker et al., 2001b). Grid subtypes are defined 

within these broad families (Table 2). Landlab also implements a base grid class (“ModelGrid”) from which both the raster 25 

and Voronoi-Delaunay grids are derived. This class describes the elements of the grid and allows their geometries and 

topologies to be set, but defines no rules for how to do this. This base grid class is primarily intended as a framework from 

which to derive new grid architectures, rather than as a usable grid type in isolation. 

 

 Although the grid primitive element set is shared between the various grid types, the implementation of the 30 

geometries is slightly different. For example, core nodes in a raster grid will always have exactly four links, whereas they 

may have any number of links in a Voronoi-centered irregular grid (Table 1b, Fig. 3). Similarly, methods defined for the grid 

may be polymorphic or overloaded to optimize functionality for each grid type. 
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3.1.2 Grid standardization and conventions 

 All Landlab grids share an identical scheme for the numbering of their elements. All elements are numbered from 

the bottom left of the grid, starting with an ID of 0. All features are ordered first by y coordinate, then by x, taking the 

midpoint (for linear features such as faces or links) or geometric center (for areas such as cells or patches) for non-point 

elements as necessary (Fig. 4). 5 

 

 For rotational ordering, Landlab adopts the mathematical standard convention of counterclockwise from the positive 

x axis (i.e., the right-hand rule). This applies not only to almost all measured angles (unless otherwise explicitly noted), but 

also to the ordering of elements around other elements (such as links around a node), and to the ordering of grid edges where 

needed (i.e., the standard order is right-top-left-bottom edges). Simple ordering examples are illustrated in Fig. 4. 10 

 

 We extend this same rotational convention to define the directionality of all linear elements (such as links and, 

where necessary, faces), when such directionality is required. The positive direction is associated with the top-right (first) 

quadrant; in other words, the positive direction is the one that points more right than down or more up than left. This is 

shown in more detail in Fig. 4b. This kind of directionality is important for example in the definition of fluxes along links 15 

into and out of nodes. In the case of link directions, Landlab provides masking arrays that can describe the local orientation 

of each link with respect to another feature; for instance, link_dirs_at_node describes whether a link points into (+1) 

or out of (-1) any given node. The use and utility of such data structures is illustrated in Section 5. 

 

3.1.3 Mappings and grid characteristics 20 

 Landlab uses a standardized grammar to describe the methods and Python properties in the grid classes that provide 

information about the mapping of grid elements onto other elements, and to obtain information about the grid (e.g., areas, 

lengths, gradients). The intention of this standardization is to both make it easier for users to quickly find the method they 

require, and also to provide information on the computational efficiency of the operation. Some of this information is 

summarized in Table 3. 25 

 

Grid characteristics. Landlab grids provide Python properties to describe the geometric characteristics of the elements 

themselves, for instance, position, dimension. These properties are denoted by the preposition “of”, as in, for example, 

width_of_face, length_of_link, and area_of_cell. Use of the word of tells the user that an array of floats (or, 

more rarely, integers) denoting a grid characteristic is the expected return.  (See for example use of angle_of_link in 30 

Fig. 4b.) Of is also used to access many counted characteristics of the grid as a whole, such as number_of_nodes. All 

these properties return pre-allocated arrays or single values already stored in memory, and can be expected to be fast. 
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Grid element mappings. The grid also provides numerous Python properties that describe the connectivity and associations 

of elements with one another. These are denoted by the preposition at. Examples include face_at_link, 

link_at_face, links_at_node, patches_at_node, and node_at_cell. Use of at tells the user that an array 

of element IDs is the expected return (see Fig. 4 for examples of usage). The Landlab boundary condition interface also uses 5 

at; for instance, status_at_node returns an array containing the boundary-condition status (as an integer code) of the 

grid nodes. All these properties return pre-allocated arrays, and can be expected to be fast. 

 

“has”, “is”, and “are” methods. Use of has, is, or are in a method name indicates that the method in question applies a 

logical test to grid properties. These are not simple lookups, as in the case of at and of properties, but can still be expected to 10 

be fairly fast. The returned object will either be a Boolean, or an array of Booleans. Examples include is_boundary, 

are_all_core, and has_field. 

 

“get” and “create” methods. Landlab’s design philosophy seeks a balance between speed of access of information about the 

grid, and memory usage. To this end, only the most commonly used arrays of grid characteristics accessed by at and of 15 

properties are created at grid instantiation. In other cases, these arrays are allocated in memory at the first time of usage in 

code, then referenced from that point on at subsequent calls of the property. Methods in the grid that begin with get or create 

are called by these properties the first time they themselves are used, and construct the necessary arrays in memory. These 

methods are typically intended for call only by a well-defined subset of other methods internal to grid, and not directly by the 

user; i.e., in programmer’s parlance they are “private”. We use the standard Python practice of beginning such methods with 20 

a leading underscore in the name, which tells the various Python user interfaces not to report them in standard lists of grid 

methods. 

 

Computational methods. Landlab provides a large number of grid methods to allow easy completion of common and 

frequently repeated analyses of the values on the grid. These are denoted by names that begin with calc, to denote methods 25 

that calculate a new value from provided data, or map, which apply some standard rule to map multiple values for connected 

elements to a single value on the shared element to which they connect. For instance, calc methods might allow calculation 

of gradients at links from data defined at nodes (calc_grad_at_link), or flux balances at a node from fluxes defined at 

incoming and outgoing links (calc_flux_div_at_node). Map methods might return means of values at links around 

nodes (map_mean_of_links_to_node), or minima of node values attached to each link 30 

(map_min_of_link_nodes_to_link), or the maximum slope of links leaving each node 

(map_downwind_node_link_max_to_node). More complex mapping schemes are also available, to allow for 

instance the mapping of data from topographically upwind or downwind elements only (for example, 
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map_value_at_upwind_node_link_max_to_node). All these methods require active calculation and memory 

allocation of new values. 

 

Boundary condition control. Grid methods that allow user control of boundary conditions use the word “set”. Boundary 

condition handling is described further in Section 3.1.4, below. 5 

 

General rules. Words are separated by single underscores. Nouns are typically singular, both describing the element and its 

characteristic, e.g., area_of_cell, not areas_of_cells. The exceptions are cases in which more than one thing is 

associated with each element, such as links_at_node, faces_at_cell. Any grid property can be expected to be a 

fast lookup operation if called repeatedly; methods may require additional memory allocation. 10 

3.1.4 Grid boundary condition handling 

 Also provided are methods to facilitate boundary condition handling (Fig. 5). Nodes can have one of four boundary 

condition types: fixed value (Dirichlet), fixed gradient (Neumann), looped, or closed. A node that is not defined as a 

boundary is known as a core node. The boundary conditions defined on the nodes determine whether each connecting link is 

active (allows flux along it), fixed (allows flux, but flux value is fixed) or inactive (flux is forbidden), as shown in Table 4a. 15 

Each of these boundary conditions is associated with an integer value, which can be seen in the boundary condition arrays 

grid.status_at_node and grid.status_at_link (Table 4b).  

 

 We should emphasise that this framework is provided for user’s convenience; it can be easily ignored if a user 

wishes to implement a different scheme for boundary condition handling. Further, the appropriate boundary conditions 20 

depend on the physical scenario that the user is modeling. 

 

 The edges of a Landlab grid are always defined by boundary nodes. Because perimeter nodes lack cells (Section 

3.1.1), this means not every boundary node necessarily has a cell, and may also not have the standard number of links, 

patches, etc. (Table 1b). Conversely, any core node can always be expected to have a cell and a standard connectivity as 25 

described in that table. Likewise, inactive links at the grid perimeter lack faces, but each active link always intersects, and is 

uniquely associated with, a single face (Fig. 5). Thus cells share the boundary conditions of nodes (core vs. boundary) and 

faces share the boundary conditions of links (active vs. inactive).  Note also that nodes that are in the interior of a grid (i.e. 

not perimeter nodes) can also be assigned as boundary nodes, and that whether or not this occurs depends on the shape of the 

area that the user is modeling. For example, a user may wish use a grid that represents a drainage basin, with the basin’s 30 

interior consisting of core nodes, a single node representing the outlet (flagged as a fixed-value or fixed-gradient boundary), 

and the remainder of the nodes flagged as closed boundaries. 
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 The grid itself is responsible for keeping track of and ensuring internal consistency between boundary condition 

properties. The standard numpy setters and getters are overridden for the boundary condition data structures to ensure this 

internal consistency without the user’s involvement. For example, if a user changes a node’s status from core to fixed-value 

boundary, the gridding engine will automatically update the status of the relevant links.  5 

 

3.2 Spatially distributed data and data fields 

 A key element of any model of surface processes is a description of how the state variables and surface 

characteristics vary across the domain. Such data can include both scalar measurements at a point or over an area (such as 

topographic elevation, water depth, sediment cover fraction, vegetation type), and directional vector data, for instance, 10 

describing fluxes across the surface or gradients in scalar values. Landlab uses data constructs called data fields within the 

grid to store and handle this information. 

 

 A prominent advantage of the field system is that data may be associated with any of the grid elements: node, cell, 

link, face, patch, or corner. Data fields are one-dimensional numpy arrays whose length matches the number of elements in 15 

question. By indexing these arrays with the IDs of element subsets, the values at specific locations and on each element type 

can be recovered. This scheme readily allows the storage of both scalar and vector data by exploiting the geometric 

relationships between the node-link-patch (and cell-face-corner, if desired) groupings, as in a traditional staggered-grid 

scheme (Harlow and Welch, 1965; Slingerland et al., 1994). Scalar data can be stored at nodes. Because links describe the 

connectivity between nodes, vector information describing fluxes or gradients between nodes is readily stored on links; the 20 

link’s orientation provides an implied unit vector, while the associated value represents the vector’s magnitude. There are 

also a number of use cases in which values can usefully be stored on patches, for instance, in representing resolved means of 

vector values at the bounding links. This data structure also lends itself to the implementation of some cellular automata. For 

instance, pairwise transition automata (Narteau et al., 2001; 2009) represent the states of cells on a grid as paired “doublets”, 

with rules prescribed to govern the rates of transition between each doublet type. These are readily implemented in Landlab 25 

by mapping the pair states onto the links of a Landlab grid, and representing the corresponding automaton cell states at grid 

nodes (Tucker et al., 2016). 

 

 In terms of implementation in the code, Landlab fields are represented as a dictionary of Python dictionaries within 

the grid object. The keys to the first dictionary are strings of the names of the grid elements (viz., ‘node’, ‘link’, ‘patch’, 30 

‘cell’, ‘face’, ‘corner’); the keys to the dictionaries that these return are Landlab field names. Users are free to create field 

names as they wish. However, Landlab maintains a standard format and name list which is widely used by the Landlab 
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component library (supplemental Table S1), and users are strongly encouraged to adopt this scheme to enhance 

standardization and interoperability throughout the software. Our standard naming scheme echoes that of the community 

standards adopted by the Community Surface Dynamics Modeling System (CSDMS). Our rationale follows theirs, aiming to 

remove ambiguity in the identification of different types of numerical information (Peckham, 2014; Peckham et al., 2013). 

However, given the potential for high frequency of name usage in Landlab code, and our ability to easily assess potential 5 

ambiguities between different components, we place more value on name brevity at the expense of total unambiguity as 

compared with the formal CSDMS Standard Names (https://csdms.colorado.edu/wiki/CSN_Searchable_List). Nonetheless, 

we maintain one-to-one mappings with the CSDMS Standard Names to enable automated implementation of the CSDMS 

Basic Model Interface (BMI; see Section 3.4.1). 

 10 

 The general format for Landlab names is “thing_described__quantity_described”. This approach is more generally 

known as the object-attribute-value paradigm: the first word or phrase describes the object, the second word or phrase 

describes the attribute, and the variable’s content is its value. A double underscore separates the object from the attribute. An 

example might be “surface_water__discharge”. A full list of names used in Landlab components as of version 1.0 can be 

found in the supplementary material as Table S1. A version of this list up to date with the current release version can be 15 

found on the Landlab website. 

 

 Units can be attached to grid fields. They are recorded in a further dictionary-like structure, which is a property of 

the element container. This means they can be accessed with syntax like grid[‘node’].units[‘field__name’]. 

 20 

 Landlab offers some degree of “syntactic sugar” for its field name interface – i.e., the field interface is made more 

user-friendly by the addition of more readable grid properties to query the fields at each element type, rather than requiring 

the user to access the both dictionaries directly. For instance, grid.at_node[‘my_field_name’] is equivalent to 

grid[‘node’][‘my_field_name’]. In addition, Landlab also provides convenient shortcuts to create new fields of 

ones (grid.add_ones), zeros (grid.add_zeros), and from existing data (grid.add_field).  25 

 

3.3 Components 

 Components are Python objects that simulate processes within Landlab. A typical Landlab component provides a 

numerical representation of a single process. For instance, a component might compute the flow of water across a terrain 

surface using a particular flow law and numerical solution method. Components also exist in Landlab that produce only 30 

spatially invariant time series, or that produce time-invariant steady-state solutions across a surface. A prominent example 

would be the FlowRouter component, which calculates the steady-state accumulation of water discharge and upstream total 
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drainage area through a drainage basin. The latter category also includes a number of analytical tools that produce spatial 

statistics for a surface; for example, components to calculate the steepness (Wobus et al., 2006) or Chi index (Perron and 

Royden, 2012) for a channel network. 

 

 Multiple components can be used together, allowing the simulation of multiple processes acting on a single grid. 5 

For example, components simulating hillslope processes and fluvial geomorphic processes can be easily implemented 

together to create a “custom” landscape evolution model. In some cases, the output from one component may form the input 

to another, as for example when combining flow routing and sediment transport components, or soil moisture and vegetation 

growth components. The design of each component is intended to work in a “plug-and-play” fashion, where each component 

couples simply and quickly to others. This is permitted by a standardized interface for each component, as described in 10 

Section 3.3.1. Examples of coupled component systems can be seen in Section 5. 

 

 Landlab provides a suite of existing components that can be deployed by users. Future versions of Landlab will add 

further components designed by the core development team. However, we anticipate that users of Landlab will also devise 

new components of their own, allowing the exploration of new processes within Landlab. In keeping with the open source 15 

ethos of the project, we would encourage such users to in turn commit their work back to the master fork of Landlab, for the 

use of others. Documentation and advice for this process can be found on the Landlab website. 

 

3.3.1 Component standard interface 

 Landlab components have standardized interfaces, which are designed to enhance interoperability both internally to 20 

Landlab (between components, or between components and Landlab utilities) and between Landlab and external interfaces 

like the CSDMS Basic Model Interface (Peckham et al., 2013) (see also Section 3.4.1). The Landlab standardized component 

interface consists of the following: 

• An initialization method, with the standard argument signature __init__(self, grid, x=a, y=b, z=c, 

..., **kwds), where grid is a Landlab grid object, x, y, and z are component-specific keyword arguments with 25 

default values a, b, and c, and **kwds is an optional keyword argument dictionary. The grid object passed during 

instantiation is accessed during the running of the component, and its data fields are updated automatically. A 

component may have any number of component-specific keyword arguments. The variable names of these 

arguments are not standardized, but rather are generally unique to each component. The component-specific 

arguments are, however, required to have default values. The names of the keyword arguments make explicit the 30 

data requirements of the component in order to run. However, the **kwds argument alternatively allows these 
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parameters to be set from a dictionary of model parameters. In other words, this component could be initialized in 

two equivalent ways: 

  >>> ld = LinearDiffuser(grid, linear_diffusivity=1.0, method=’simple’) 

 or 

  >>> paramdict = {‘linear_diffusivity’: 1.0, ‘method’: ‘simple’} 5 

  >>> ld = LinearDiffusivity(grid, **paramdict) 

 

• A run method, with the standard argument signature run_one_step(dt, *args, **kwds), where dt is an 

interval of time over which to execute the component before returning a result, and *args and **kwds are an 

argument list and dictionary respectively, specific to each component. These latter items allow any additional 10 

arguments necessary for the model to run to be passed in. If dt is not required for a component to run, it may be 

omitted. 

• A standard set of properties for the component: name, input_var_names, output_var_names, var_units, 

var_mapping, and var_definition. These properties describe the fields that the component interacts with, the units of 

each, which element each field is defined on, and a brief summary of what each field represents. 15 

 

 All components inherit from the base class Component.  This base class enables and regulates the standardized 

properties and interface that are available for every Landlab component. It also provides methods designed to streamline the 

creation of the output data fields when a component is instantiated. 

 20 

 Landlab version 1.0 provides a standard component library as part of its installation. A full list of components 

available in version 1.0 can be found in Table 5. Although these existing components are largely Earth-surface focused, we 

emphasize that Landlab permits modeling of the evolution of almost any two-dimensional system that lends itself to 

description by discretized systems of differential equations or cellular automaton rules. 

 25 

3.3.2 Timestepping and interaction of components 

 For most existing Landlab components, the component is responsible for controlling its own internal numerical 

stability. A timestep parameter dt is passed to each component that operates in a time-dependent fashion; this timestep can be 

thought of as the “coupling timescale”, and represents the frequency of interaction between components if more than one is 

coupled (Fig. 6). However, it is not necessarily the stable timescale, which will vary between components. Each component 30 

is responsible for calculating its own stable timestep under the model run conditions, and internally subdividing the imposed 

dt in order to ensure the model run does not become unstable. The user is responsible for selecting an appropriate coupling 
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timescale – too short, and a model run will take more steps than necessary for each component to be stable; too large, and 

information transfer between the components will be limited, possibly introducing an additional source of numerical error.  

 

Note also that where components employ implicit solutions, there may be no internal limit to the timestep at all 

(e.g., Braun and Willett’s (2013) Fastscape algorithms for stream power). In such cases, Landlab will make no check on the 5 

imposed timestep, and the user must ensure that the imposed dt is appropriate under the boundary and initial conditions that 

they are running. For instance, the Braun-Willett algorithm ceases to behave in a truly timestep-independent fashion under 

transient conditions, but in a way that still permits timesteps larger than would be imposed under an explicit Courant 

condition (for more details see their Appendix B). However, those authors did not propose an alternative scheme to limit the 

timestep in such cases, and consequently Landlab also does not. A user of this component is assumed to have read the 10 

component documentation and taken on board that this is potentially an issue, and to have taken steps to check that their 

output is behaving sensibly and is not highly sensitive to changes in the supplied timestep. We reiterate that it is ultimately 

the user’s responsibility to check that the provided dt is appropriate to the modelling scenario in hand. 

 

 15 

3.3.3 Parallelization 

 

Together, the componentized nature of Landlab and the level of flexibility afforded to the user conspire to rule out 

the idea of Landlab as a whole being highly optimized through parallelization. However, there is great potential for 

parallelization of Landlab at the component level, since the run methods of each component are entirely self-contained. As 20 

proof of concept, the Flexure component has already been parallelized (see online code and documentation). Although in 

Landlab version 1.0 we have not had a compelling enough use case to invest significant time in such work, many of the 

components already in the library would be amenable to parallelization in this style, and this could be done in future releases. 

 

3.4 Utilities and interfaces 25 

 In addition to the grid, which governs the topology and connectivity of spatial data, and the components, which 

describe how spatial data change with time, Landlab also offers tools that control input and output, including data input and 

export, translation between widely used data formats, plotting, and the BMI external model interface. Landlab can read and 

write data files in NetCDF4, VTK, and ESRI ASCII data formats. These options are intended to allow interoperability with 

third-party software, especially Geographical Information Systems, and also to allow Landlab data to be manipulated in and 30 

displayed with specialized visualization software (such as ParaView). 
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 Landlab’s standard interfaces also allow it to interact more easily with software frameworks developed by the 

geoscience and hydroscience communities. For instance, Landlab is already embedded within the Hydroshare collaboration 

environment, http://www.hydroshare.org. This means that Landlab models can be created and run within the Hydroshare 

data and modelling environment, and can take advantage of that environment’s shared data platform and metadata systems. 5 

 

3.4.1 Dynamic model interaction and the Basic Model Interface 

 As noted in previous sections, Landlab has been designed from conception to be fully compliant with the 

Community Surface Dynamics Modelling System’s Basic Model Interface (BMI) (Peckham et al., 2013). The BMI concept 

allows any two models describing the changes caused by surface processes to be coupled together, regardless of the vagaries 10 

of model gridding schemes, programming languages, or other low-level design choices. It does this by means of a standard 

interface (the Basic Model Interface, sensu stricto), which is callable for any BMI compliant model or component and 

includes generically applicable functions such as initialize, update (i.e., run one timestep), and 

get_current_time. The interface allows information about the current state of a simulation to be passed back and forth 

between running models in a manner that is agnostic in terms of implementation details. 15 

 

 The Landlab framework is designed such that the Landlab standard component interface can also expose a full BMI 

interface; in other words, all Landlab components are also BMI-compliant components. This means that by choosing 

Landlab as their model development environment, users also gain the ability to couple their models immediately with any 

other model in the CSDMS repository of BMI-compliant codes. This choice will also enhance the utility of Landlab to users 20 

who wish to implement component functionality alongside some other model using the CSDMS BMI or Web Modeling Tool 

(WMT) (Piper et al., 2015). 

4. Validation, testing, and documentation 

 Landlab makes extensive use of Python’s native documentation and code testing systems in order to test and 

validate the code base and to keep our documentation up to date. The development team exploits a combination of this 25 

Python “doctesting” and unit testing techniques to simultaneously test and document the code base. Doctests are code 

examples that can be included in the docstring that describes each Python method, and they list the expected output from 

each line of code as part of the documentation. Crucially, this code is then actually run whenever testing of the code base is 

triggered (for instance, by calling landlab.test()), and any doctests for which the output does not match the expected 

solution are recorded as either an error (tested function does not run cleanly) or a fail (output does not match). Because 30 
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doctests are part of each function’s docstring, they are also then automatically scraped from the code and included in the 

online documentation as examples for the user. In this way doctests allow us both to help ensure Landlab functionality does 

not break as the code base evolves, while at the same time documenting for the user the way in which a given method, 

function, property, or component can be used. 

 5 

 Landlab also includes suites of unit tests. These are test scripts written specifically to exercise particular aspects of 

the code, and to check the output of that test against known correct solutions. Examples of when this is useful can occur in 

longer or more involved code, especially in components, where various different configurations of grid types and initial and 

boundary conditions need to be tested to ensure the component is robust under various different conditions. Unit tests differ 

from doctests in that they are not intended to be user-facing, although they are run alongside them when testing of the code 10 

base is triggered. 

 

 Almost all core Landlab functionality of both grid methods and components is now tested in this way. As of this 

version, around 1400 separate tests are run on the code each time testing is triggered, and the tests cover 80% of the code 

base. Most of the remaining uncovered code is either challenging to adequately test (for example, plotting functions), not 15 

part of the core Landlab functionality (such as helper scripts involved in building releases), or deprecated. Tests are triggered 

automatically and remotely through the web-based applications Travis (Mac/Linux) and Appveyor (PC) whenever a new 

commit is made to either a branch or the master version of the code repository on GitHub, or when a new release of the code 

is built. These tests are performed on a range of supported Python versions, including both versions 2 and 3. Tests can also 

be triggered manually on a local machine by running a testing script included with Landlab, or by calling 20 

landlab.test() from an interactive Python environment. 

5. Creating models with Landlab 

 

 We here illustrate some of the key functionality of Landlab by example, demonstrating its applicability across a 

variety of types of problem. We hope to emphasize here that Landlab is not a landscape evolution model (although it can be 25 

used to create them) – rather, it presents a framework under which a wide variety of different models can be implemented 

using its tools, including hydrologic, ecologic, and sedimentological models, as well as landscape evolution models. This 

section illustrates four possible contrasting model designs that can be implemented within the Landlab framework: a very 

simple “toy” geomorphic diffusion code that demonstrates the core functionality of the grid; a coupled stream power-

hillslope diffusion model driven with a stochastic sequence of storms, illustrating some of Landlab’s components; a cellular 30 

automaton, demonstrating a fundamentally different style of model implementation that is also enabled by Landlab’s design; 

and a flood wave routing model, run on real topographic data ingested by Landlab. We hope that these examples will also 
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serve as an illustration of the potential power of the Landlab framework to enable novel or under-explored process 

interaction studies (e.g., of vegetation on landscape evolution; of surface hydrology on stochastic surface processes). 

 

5.1 A simple diffusion model 

 Although Landlab provides “off the shelf” process simulation code in the form of the components, Landlab also 5 

facilitates the design of models without using the components. The Landlab grids provide mapping, gradient, and divergence 

functions to make implementation of, for instance, finite-difference or finite-volume methods both concise and 

straightforward. 

 

 Here we illustrate this functionality using a simple finite-volume diffusion scheme, which here is representing the 10 

down-slope flow of soil on hillslopes (Culling, 1963). We wish to represent the evolving form of a diffusional hillslope that 

is undergoing a constant uplift (1 mm y-1) with reference to a relative base level. In this case, the grid is radial and so roughly 

circular in plan view. Use of this particular configuration is intended in part to demonstrate the flexibility of Landlab’s 

design, although this radial grid arrangement could perhaps be thought of in terms of response to a rising volcanic mound or 

salt diapir, or other similar scenario with a radially symmetric uplift field. 15 

 

 The governing equations for this example are: 

 

𝜕𝜂
𝜕𝑡

= 𝑈 − ∇𝑞) 

(1) 20 

𝑞) = −𝐷∇η 

(2) 

where h is land-surface elevation, t is time, U is the rate of vertical motion (“uplift”) of rock relative to base level, qs is 

volumetric sediment flux per unit slope width, and D is a transport coefficient with dimensions of length squared per time.  

 25 

 For our example model, Eq. (2) will be discretized and solved using a finite-volume solution scheme. Consider a 

cell of surface area a that is surrounded by N neighbouring cells (Fig. 7). We can integrate Eq. (1) over the surface area of 

the cell: 
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(3) 
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Applying the divergence theorem to the last term on the right, and evaluating the other two integrals, 

 

𝑎
𝜕𝜂
𝜕𝑡

= 𝑈𝑎 − 𝑞)(𝑝)
	

3
𝐧𝑑𝑝 

(4) 

where 𝜂 is the average elevation within the cell, p represents position along the perimeter of the cell, and n is a unit vector 5 

normal to the perimeter and pointing outward. The last term is a line integral that represents adding up all the inflows and 

outflows of mass along the cell’s perimeter. If the cell is a polygon with N faces, this last term can be replaced by a 

summation: 

 

𝜕𝜂
𝜕𝑡

= 𝑈 −
1
𝑎

𝑞)6𝑤6

𝑵

𝒌:𝟏

 10 

(5) 

where 𝑞)6 is the unit flux at face k, positive outward, and 𝑤6  is the width of face k. 

 

We will implement this solution in Landlab by assigning to each node i the value of the average elevation within its 

cell, 𝜂< (for notational convenience, we will drop the use of the overbar below). To calculate the flux at each face, we first 15 

need to calculate the topographic gradient at each face. We will do this by taking the elevation difference between each 

neighboring pair of nodes, dividing by the length of the link that connects them, and then assigning the resulting gradient 

value to the relevant link. The gradient at link j is therefore calculated as: 

 

𝐺> =
𝜂?@ − 𝜂A@

𝐿>
 20 

(6) 

where 𝜂?@ and 𝜂A@ are the elevation values at link j’s head and tail nodes, respectively, and Lj is the length of link j. In 

Landlab’s gridding engine, the calculation of link-based gradients in a node-based scalar quantity like h is handled by the 

grid method calc_grad_at_link, which takes a node array or field name as an argument and returns a link array. 

Figure 7 illustrates how values of h defined at nodes can be used to calculate gradients at links, and then the gradients can be 25 

used to calculate the net flux into and out of a cell. 

 

In our diffusion example, the summation of fluxes along the cell faces is calculated as follows: 
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(7) 

where dik indicates the direction of link k relative to the cell i: if dik = -1, the link points outward from the cell; if dik = +1, the 

link points inward. 

 5 

To calculate flux divergence using this finite-volume approach, Landlab provides the general grid method 

calc_flux_div_at_node, which takes a link-based array of unit fluxes as an input, and returns a node array that 

contains the sum of in/out fluxes (divided by cell area) at each node (Fig. 7). Values at perimeter nodes, which lack cells, are 

ignored. In keeping with the standard definition of the divergence operation, the function returns positive values where the 

net flux is outward, and negative values where it is inward. 10 

 

 In the diffusion example shown in Figure 8, the time derivative is discretized using a simple forward-Euler explicit 

method, such that the values of elevation at the new timestep t+1 are calculated from values at the old timestep: 

 

𝜂<FGE = 𝜂<F +Δ𝑡 𝑈 +
𝐷
𝑎<

𝛿<6𝐺6𝑤6

D

6:E

 15 

(8) 

where the superscript indicates timestep, and the quantity in brackets is evaluated at timestep t. The code to implement the 

model is shown in Figure 8. Note the use of the calc_grad_at_link and calc_flux_div_at_node methods (and 

note also that U = 0 in this example). 

 20 

 An advantage of the finite-volume approach is that it can be applied to cells of any shape. For instance, it can be 

used with hexagonal cells, or with Voronoi polygons as in the example in Figure 8. 

 

 This model can be implemented in Landlab and plotted in as few as 16 lines of code (Fig. 8). Here, line 1 imports 

the Landlab classes and functions we will use, and line 2 imports the show() function from matplotlib that will let us 25 

display the plot. Line 3 instantiates the Landlab grid object. This example uses a RadialModelGrid, but the same code would 

work with any grid type. Lines 4–6 initialize data for the model run. z will be the land surface elevation at each node; qs will 

be the volumetric sediment flux per unit width along each link. Note that this implementation is consciously not using data 

stored as Landlab fields, to illustrate that this is not a requirement; however, it would be trivial to modify lines 4 and 5 to 

create the data as fields on the grid, and the remainder of this script would be unchanged. Line 7 is the first line that actually 30 
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begins the calculations that perform the diffusion. This line calculates a Courant-Friedrichs-Lewy (CFL) stability condition 

(Slingerland and Kump, 2011) for the maximum stable timestep for the finite-volume scheme we are about to implement. 

 

 Lines 8–14 implement a time loop, within which the diffusion occurs. The core (i.e., interior) nodes of the grid are 

uplifted at a rate of 0.001 length units per time unit relative to base level. Lines 10–14 implement the meat of the 5 

differencing scheme, where we use a staggered grid to solve the discretized diffusion equation (Eq. 8). The depth-integrated 

fluxes on the links are calculated as the product of the diffusivity parameter D and the topographic gradient at the links (lines 

10, 11), taking care to calculate the flux only on active links. The flux divergence is then calculated at each node based on 

the fluxes on the links to which is it adjoined (line 12). Note that Landlab enables each of these operations to be performed 

with a single grid method. The final lines of the code invoke the standard Landlab plotter, then display the output. Although 10 

we have not specified any particular units in our calculation, in line 15 we assert that the length unit is meters and the time 

unit is years. 

 

 Note that this same result could have been achieved even more concisely using Landlab’s inbuilt LinearDiffuser 

component. The equivalent code is shown in Fig. 9. Not only are the implementation details of the scheme now handled 15 

entirely within the component, but so also is internal subdivision of the provided timestep to meet the necessary stability 

conditions for the simulation. Additionally, the elevation data are now passed into the component as the field 

‘topographic__elevation’ – which is attached to the grid – rather than as a separate variable (lines 5, 7), as discussed in 

Section 3.2. 

 20 

5.2 Coupling diffusion to stream power with a storm sequence 

 The next example illustrates a simple model for the evolution of an eroding and uplifting landscape, explicitly 

representing channel incision and hillslope processes. In this model, we also explicitly represent time variability of water 

input to the system (i.e., storms). In technical terms, the example is designed to show in more detail the use and coupling of 

several Landlab components: the FlowRouter, the StreamPowerEroder, the DepressionFinderAndRouter, the LinearDiffuser, 25 

and the PrecipitationDistribution classes. The aim here is to demonstrate how Landlab couples components, and to illustrate 

several different component styles. 

 

 Here, channel incision processes are represented by the stream power law (Howard, 1994; Lague, 2014; Whipple 

and Tucker, 1999), which says that incision rate, E, of a stream is proportional to a product of powers of channel discharge, 30 

Q, and local channel bed slope, S. In this version, we also include an incision threshold, C, below which incision is 

forbidden: 
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 E = K Qm Sn – C  if C < K Qm Sn 

 E = 0   if C >= K Qm Sn 

(9) 

 5 

 In this case m = 0.5, K = 1e-5 m-0.5y-0.5, C = 1e-5 m y-1, which are fairly typical and widely-adopted values for a 

generic erosional upland landscape (Harel et al., 2016; Tucker and Whipple, 2002). Here we also adopt n = 1. This is 

primarily to maintain dimensionally sensible units for K while still honouring the widely-observed ratio of m/n ~ 0.5, 

interpreted from channel concavities of natural rivers at apparent topographic steady state. Nonetheless, we note n > 1 in 

some global data compilations for stream power where C = 0, and suggest our incorporation of an explicit erosion threshold 10 

makes our choice of n = 1 reasonable (Harel et al., 2016). We shall see that this set of values together produce a plausible 

total landscape relief of order 1 km for catchments of maximum length ~5 km, which is within the range expected for real 

catchments of this scale in tectonically active regions. Other forms of stream power-based incision rules are also possible 

using this component, but are not illustrated here. 

 15 

 The Landlab StreamPowerEroder and FlowRouter components deployed here use the “Fastscape” algorithms of 

Braun and Willett (2013). This solution scheme is implicit and order-n, and permits arbitrarily long, numerically stable 

timesteps to be taken. The Fastscape algorithm requires out-of-order (i.e., upstream order) iteration through the nodes, but 

pure Python code has relatively poor speed performance when executing explicit loops or iterations through arrays. For this 

reason, both the stream power and flow routing components also use compiled Cython (see Section 2.2) to accelerate these 20 

speed bottlenecks in the code. (The release version of Landlab distributes this code in pre-compiled form to users.)  The run 

method of the component performs as order-n, and as expected is unaffected by grid type (in this demonstration, raster 

versus hex grids). The initialization of the grid and components adds a very small overhead which also increases close-to-

linearly with grid size (Fig. 10; code in supplementary information as Script S2). This overhead reflects the calculations 

necessary to build the data structures describing the grid’s connectivity, and is significantly greater for Voronoi grids 25 

compared to rasters, due to the iterative calculations required to assemble Voronoi grid-connectivity arrays. 

 

 The final topographies from the raster and hexagonal implementations of this pure stream power component are 

shown in Fig. 11. The code can be seen in the supplemental information as Script S3. It conforms to a typical form for a 

Landlab driver script, which looks like: 30 

1. Import necessary Python libraries, including from Landlab 

2. Instantiate a grid object 

3. Create input fields and set the grid initial and boundary conditions 

4. Instantiate the components 
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5. Perform a loop to run the components 

6. Finalize, plot, save, and/or export 

In this case, the model is driven by a stochastic storm generator (the PrecipitationDistribution class), based on that suggested 

by Eagleson (1978) and similar to the one underlying the CHILD landscape evolution model (Tucker and Bras, 2000; Tucker 

et al., 2001b). Unlike CHILD but in keeping with Eagleson’s original derivation, here an explicit inverse relationship 5 

between storm length and intensity is built into the distribution, by calculating storm water depth as a gamma-distributed 

random variable, and then deriving storm intensity as the quotient of depth and (exponentially distributed) duration. This 

approach prevents unrealistic long-duration, high-intensity events from being sampled (Eagleson, 1978). The 

PrecipitationDistribution class provides a method that yields tuples of interval durations and rainfall intensities as a true 

Python generator – in other words, the code block below the generator will repeat with fresh values for each iteration until 10 

the total time is elapsed, at which point the loop will cease (see lines 46–53 in the code). This makes the implementation of 

the “run” loop both efficient and concise, as well as being a classically “Pythonic” way to implement this kind of loop. In 

this instance, the parameters for the PrecipitationDistribution have been chosen to represent a mean annual rainfall rate of 

around 5 m y-1, and with rainfall occurring around 10 % of the time. 

 15 

 The switch between grid types involves changing a single line of code (see the logical test at lines 15–18). Note that 

although the total number of nodes and the number of rows and columns is identical in both cases, the hexagonal grid is 

rectangular rather than square due to the single axis of mirror symmetry present in a tessellation of regular hexagons. (The 

HexModelGrid class provides flags allowing control both of the orientation of this symmetry axis, and also the shape of the 

perimeter of the grid – rectangular or hexagonal.) 20 

 

 The addition of the linear diffusion component, LinearDiffuser, is performed simply by creating an instance that 

class, then incorporating its run method into the loop (code S4, lines 40 and 49).  As in previous examples, each component 

is responsible for managing its own internal numerical stability – in this case, if the LinearDiffuser run method receives an 

input dt that exceeds the Courant-Friedrichs-Lewy stability limit, that timestep will be internally subdivided as necessary 25 

within the component. 

 

 In this example, because diffusion can occur independently of stream incision, it is possible that diffusion can sever 

the flow paths of the FlowRouter and create internal basins. Because of this possibility, this version of the code also includes 

a lake-filling algorithm, implemented as the component DepressionFinderAndRouter. The lake-filling algorithm identifies 30 

closed depressions in the topography then reroutes flow across them, and is based on the algorithm of Tucker et al. (2001b). 

The final topography of the coupled stream power and linear diffusion model is shown in Fig. 12. 
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5.3 Landlab as a cellular automaton 

 Much of this manuscript focuses on Landlab as a tool for the implementation of numerical solutions to two-

dimensional partial differential equations, as many geomorphic process laws (sensu Dietrich et al., 2003) have been couched 

in the language of differential equations. However, Landlab can also act as a powerful environment for the implementation 

of cellular models. Landlab provides a set of tools for the construction of “continuous-time stochastic” (CTS) cellular 5 

automata (CA). This interface within the main body of Landlab is known as CellLab-CTS (Tucker et al., 2016). It enables 

efficient creation of CTS models: a user needs only to specify the states and transition rules, and write a short Python script 

to initialize and run a CellLabCTSModel object. Figure 13 shows output from a CellLab-CTS model implementing a lattice-

grain algorithm (Tucker et al., 2016). 

 10 

Landlab can also be used to construct traditional discrete-timestep cellular automata. An example is provided by 

developing an ecohydrology model in Landlab (Fig. 14a, code S5), which is in part an implementation of the Cellular 

Automata Tree-Grass-Shrub Simulator (CATGraSS) (Caracciolo et al., 2016a; 2016b; 2014; Zhou et al., 2013). CATGraSS 

couples local vegetation dynamics, which simulate biomass production based on local soil moisture and potential 

evapotranspiration, and plant establishment and mortality based on competition for resources and space at each cell of a 15 

gridded model domain. Each cell in the domain can be occupied by one Plant Functional Type (PFT): each cell is flagged as 

Tree, Shrub, Grass or Bare (left unoccupied).  

 

CATGraSS is driven by rainfall pulses and solar radiation. In Landlab, the model is implemented as a set of 

interacting components, each of which describes a different element of the coupled system: PrecipitationDistribution, 20 

Radiation, PotentialEvapotranspiration, SoilMoisture, Vegetation, and VegCA. This means that each process can also 

operate in isolation, outside the context of this example model. The PrecipitationDistribution component simulates the 

random arrival of storm pulses. Precipitation characteristics are based on the seasonal rainfall statistics of a region and 

characterized by exponential distributions of storm and inter-storm duration, and a gamma distribution of water depth as a 

function of storm duration. Storm pulses recharge the soil moisture storage, represented as a single bucket (Laio et al., 2001). 25 

The Radiation component calculates daily average extra-terrestrial and clear-sky shortwave radiation incident on a flat 

surface, based on latitude and day of the year (ASCE-EWRI, 2005). This component also calculates daily radiation ratio, 

defined as the ratio of cosine of solar angle of incidence for the true sloped surface to that for a flat surface (Bras, 1990). The 

Radiation component does not explicitly calculate diffused and reflected radiation. The PotentialEvapotranspiration 

component uses the radiation ratio to calculate spatial net radiation using daily maximum and minimum temperature, and 30 

potential evapotranspiration (ASCE-EWRI, 2005; Zhou et al., 2013). The SoilMoisture component models local root-zone 

soil moisture dynamics depending on the PFT that occupies the corresponding cell at a given time (Laio et al., 2001). The 

Vegetation component simulates temporal dynamics of above-ground live and dead biomass, as well as Leaf Area Index 
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(LAI). It does this by computing Net Primary Productivity (NPP) based on the concept of water-use efficiency (WUE) that 

relates NPP to actual evapotranspiration (ET) and vegetation foliage loss due to water stress and senescence (Istanbulluoglu 

et al., 2012; Zhou et al., 2013). The VegCA component handles the spatial organization of PFTs, through plant 

establishment, competition, and mortality, by combining deterministic and probabilistic rules. Plant establishment is driven 

by seed dispersal and water stress, while mortality is related to water stress, plant age, and disturbances (Zhou et al., 2013). 5 

 

 This example ecohydrology model and its constituent components can work both on grids imported from a Digital 

Elevation Model (DEM) using the read_esri_ascii utility (see also Section 5.4), and on synthetic grids created using 

the RasterModelGrid library. In the example illustrated in Figs. 14b and 14c, we use the example ecohydrology model (code 

S5) to simulate plant competition in a semi-arid basin in Sevilleta, New Mexico, USA, modelling the plant species found in 10 

this area (Zhou et al., 2013). Because of the stochastic nature of the simulations in this example, potential evapotranspiration 

is represented by a sinusoidal function of day of the year (Zhou et al., 2013). The domain is initialized with randomly 

assigned PFTs with random spatial distribution of ages (Fig. 14c(i)). All PFTs initially have an identical cover fraction in the 

domain. Local vegetation dynamics are simulated at inter-storm timesteps, and plant competition is modeled at annual 

timesteps. In the simulations, trees are outcompeted by drought-tolerant shrubs and grasses in the first few hundred years, 15 

consistent with regional observations in central New Mexico (Zhou et al., 2013). Shrubs and grasses coexist in the modeled 

domain with alternating periods of shrub and grass dominance. Note that shrubs cluster as they propagate in space due to 

seed dispersal from mature shrub plants. 

 

5.4 Landlab as a hydrological modelling environment 20 

Landlab	also	contains	several	surface	water	flow	generators,	including	an	explicit	two-dimensional	solution	

for	 the	shallow	water	equations.	The	OverlandFlow	component	has	been	adapted	 from	the	 flood	 inundation	model	

described	 by	 de	 Almeida	 et	 al. (2012). Their	 algorithm	 was	 derived	 for	 use	 on	 structured	 grids,	 and	 the	 Landlab	

implementation	 only	 works	 with	 the	 RasterModelGrid	 library.	 Water	 discharge	 is	 calculated	 on	 each	 active	 link	

within	the	model	domain,	simulating	a	hydrograph	at	each	link	location.	25 

	

In	 many	 flood-wave	 routing	 models,	 a	 small	 timestep	 must	 be	 used	 to	 prevent	 instabilities,	 which	 often	

manifest	as	‘checkerboard’	patterns	of	water	depth,	from	emerging.	To	maximize	computational	performance	of	the	

OverlandFlow	component,	an	adaptive	timestep	is	used	to	find	the	largest	timestep	that	adheres	to	the	CFL	stability	

condition	 (Hunter et al., 2005). To	 further	 enhance	 the	 stability,	 the	OverlandFlow	 component	 also	 contains	 stability	30 

criteria	 so	 that	 the	 component	 can	 operate	 not	 only	 on	 low-slope,	 urban	 areas,	 but	 also	 steeper	 terrain,	 such	 as	

mountainous	watersheds (Adams et al., 2016).	 	The	OverlandFlow	component	was	designed	 for	 structured	grids,	and	



27 
 

it	 assumes	water	 can	 only	move	 in	 the	 four	 cardinal	 directions.	 This	 is	 easily	 accommodated	within	 Landlab,	 and	

several	other	components	(e.g.,	 the	FlowRouter,	and	others	in	the	example	presented	below)	can	also	be	optionally	

instructed	using	keywords	to	only	use	node	neighbors	in	these	cardinal	directions. 

 

An example script running the OverlandFlow component can be seen in the supplementary information as Script S6. 5 

It follows a similar pattern to scripts outlined in earlier parts of this section, with import of the Landlab and other Python 

classes and functions needed, followed by grid creation, component instantiation, component execution in a loop, then 

finalization and plotting. Notably, this script uses an imported digital elevation model (DEM) of a real landscape over which 

to route flow, which is ingested into Landlab using the read_esri_ascii	 function	 contained	 in	 Landlab’s	 input	 and	

output	 utilities. Use is made of Landlab’s native boundary handling system to designate nodes of the grid outside of the 10 

irregularly-shaped catchment as closed, excluding them from the calculations. 

 

This example combines the OverlandFlow component with the SinkFiller. The SinkFiller is run on the initial 

topography prior to the simulated storm, and fills any local depressions present in the surface. This has been done to enable 

full drainage of all the water from the network, and to permit evaluation of the full water budget at the outlet. However, in 15 

general the OverlandFlow component will happily run on landscapes that do contain pits. In	 this	 example,	 a	 rainfall	 rate	 of	

25	mm	h-1	was	run	over	the	watershed	DEM	for	one	hour.	The	resulting	hydrograph	(water	discharge	over	time)	is	

plotted	at	the	outlet.		Water	depth	across	the	domain	is	also	plotted	to	show	the	wave	front	propagating	downstream	

(Fig.	 15).	As	 expected,	 the	 total	 hydrograph	duration	 is	 several	 times	 the	 length	 of	 the	 storm,	 and	 the	peak	 in	 the	

hydrograph	lags	behind	the	storm	itself	significantly,	in	this	case	by	more	than	an	hour. 20 

6. Conclusions 

 Landlab is an open-source, Python-based software toolkit designed to accelerate the development of new process 

models. It consists of a gridding engine, a set of components describing individual surface processes, and a set of utilities for 

data input, output, and visualization. Landlab not only permits the creation of models by combination of existing 

components, but is also optimized to aid in the design of new process components. The code base is thoroughly documented 25 

both online and within the code itself, and each release undergoes an automated testing procedure to ensure its robustness. A 

set of tutorials and examples to help learn about Landlab is also provided.   

 

 Landlab is explicitly designed to interface with other software, and in particular, with other models of surface 

processes. It exposes a CSDMS Basic Model Interface. It can serve as a platform to develop both continuum-based and 30 

cellular-automaton-style models, and potentially to have the two model styles interact on the same grid. We illustrate some 
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of the functionality of Landlab and its existing components with a suite of examples drawn from geomorphology, ecology, 

and hydrology. The examples provided in this paper illustrate the wide diversity of scientific questions that can be addressed 

using Landlab-built models.  

7. Code availability 

This text describes Landlab version 1.0.2 (“Rapunzel”), which was released in November 2016. The source code for this 5 

version is maintained in a git repository hosted on GitHub at https://github.com/landlab/landlab/releases/tag/v1.0.2 (the latest 

development version of Landlab is always available at http://github.com/landlab/landlab). Landlab can also be installed as a 

release version, including pre-compiled binary files containing Cython extensions, through the conda and pip Python 

package management systems, as described in the online documentation. Documentation and installation instructions for the 

most current release version of Landlab are provided at http://landlab.github.io. Software dependencies are listed at 10 

https://landlab.github.io under Install. To the best of our knowledge, Landlab will operate on any system that meets these 

software requirements; as of the time of writing, Landlab is known to work on, and is tested for, recent-generation Mac, 

Linux, and Windows platforms running Python 2.7, 3.4 and 3.5. Landlab and its components are distributed under an MIT 

open-source license. 

Acknowledgements 15 

This research was supported by the US National Science Foundation (ACI-1147454 (GET), ACI-1450409 (GET), ACI-

1450338 (NMG), ACI-1147519 (NMG) ACI-1450412 (EI), ACI-1148305 (EI), and EAR-1246761 (through an NCED2 

postdoctoral fellowship to DEJH)). We thank B. Campforts, W. Schwanghart, and A. Wickert for their helpful reviews of an 

earlier version of this manuscript, and S. Mudd for serving as editor on the manuscript. Landlab could not exist without the 

wider open source software in science movement, and particularly open-source enthusiasts who are members of the surface 20 

process modelling community. We are particularly indebted to the best practices put forward and advice offered by members 

of the CSDMS Integration Facility. 

References 

Adams, J. M., Gasparini, N. M., Hobley, D. E. J., Tucker, G. E., Hutton, E. W. H., Nudurupati, S. S. and Istanbulluoglu, E.: 
The Landlab OverlandFlow component: a Python library for computing shallow-water flow across watersheds, Geoscientific 25 
Model Development Discussions, 1–34, doi:10.5194/gmd-2016-277, 2016. 

Adams, J. M., Nudurupati, S. S., Gasparini, N. M., Hobley, D. E. J., Hutton, E., Tucker, G. E. and Istanbulluoglu, E.: 

Landlab: Sustainable Software Development in Practice, The Second Workshop on Sustainable Software for Science: 



29 
 

Practice and Experiences (WSSSPE2), New Orleans, LA USA, 16 November 2014, doi:10.6084/m9.figshare.1097629.v6, 

2014. 

ASCE-EWRI: The ASCE standardized reference evapotranspiration equation, in Standardization of Reference 
Evapotranspiration Task Committee Final Report, edited by R. G. Allen, I. A. Walter, R. L. Elliot, T. A. Howell, D. Itenfisu, 
M. E. Jensen, and R. L. Snyder, Technical Committee report to the Environmental and Water Resources Institute of the 5 
American Society of Civil Engineers from the Task Committee on Standardization of Reference Evapotranspiration, Reston, 
VA. 2005. 

Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N. and Venters, C. C.: Sustainability design 
and software: the karlskrona manifesto, in: IEEE/ACM 37th IEEE International Conference on Software Engineering, 
Florence, Italy, 16–24 May 2015, 467–476, doi:10.1109/ICSE.2015.179, 2015. 10 

Berger, K. P.: Surface water–groundwater interaction: the spatial organization of hydrologic processes over complex terrain, 
Ph.D. thesis, Massachusetts Institute of Technology, 242 pp., 2000. 

Bras, R. L.: Hydrology: an introduction to hydrologic science, Addison Wesley Publishing Company, Boston, Mass., 643 
pp., 1990. 

Braun, J. and Sambridge, M.: Modelling landscape evolution on geological time scales: a new method based on irregular 15 
spatial discretization, Basin Research, 9, 27–52, 1997. 

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing 
fluvial incision and landscape evolution, Geomorphology, 180-181, 170–179, doi:10.1016/j.geomorph.2012.10.008, 2013. 

Caracciolo, D., Istanbulluoglu, E. and Noto, L. V.: An Ecohydrological Cellular Automata Model Investigation of Juniper 
Tree Encroachment in a Western North American Landscape, Ecosystems, 2016a. 20 

Caracciolo, D., Istanbulluoglu, E., Noto, L. V. and Collins, S. L.: Mechanisms of shrub encroachment into Northern 
Chihuahuan Desert grasslands and impacts of climate change investigated using a cellular automata model, ADVANCES IN 
WATER RESOURCES, 91, 46–62, doi:10.1016/j.advwatres.2016.03.002, 2016b. 

Caracciolo, D., Noto, L. V., Istanbulluoglu, E., Fatichi, S. and Zhou, X.: Climate change and Ecotone boundaries: Insights 
from a cellular automata ecohydrology model in a Mediterranean catchment with topography controlled vegetation patterns, 25 
ADVANCES IN WATER RESOURCES, 73, 159–175, doi:10.1016/j.advwatres.2014.08.001, 2014. 

Chue Hong, N.: We are the 92%, The Second Workshop on Sustainable Software for Science: Practice and Experiences 
(WSSSPE2), New Orleans, LA USA, 16 November 2014, doi:10.6084/m9.figshare.1243288.v1, 2014. 

Crick, T., Hall, B. A. and Ishtiaq, S.: “Can I Implement Your Algorithm?”: A Model for Reproducible Research Software, 
The Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2), New Orleans, LA USA, 30 
16 November 2014, doi:arXiv:1407.5981v2, 2014. 

Culling, W.: Soil creep and the development of hillside slopes, The Journal of Geology, 71, 127–161, 1963. 

de Almeida, G. A. M., Bates, P., Freer, J. E. and Souvignet, M.: Improving the stability of a simple formulation of the 
shallow water equations for 2-D flood modeling, Water Resources Research, 48, W05528, doi:10.1029/2011WR011570, 
2012. 35 



30 
 

Dietrich, W. E., Bellugi, D. G., Sklar, L. S., Stock, J. D., Heimsath, A. M. and Roering, J. J.: Geomorphic Transport Laws 
for Predicting Landscape Form and Dynamics, in: Prediction in Geomorphology, vol. 135, pp. 1–30, Geophysical 
Monograph-American Geophysical Union. 2003. 

Eagleson, P. S.: Climate, soil, and vegetation: 2. The distribution of annual precipitation derived from observed storm 
sequences, Water Resources Research, 14(5), 713–721, doi:10.1029/WR014i005p00713, 1978. 5 

Easterbrook, S. M.: Open code for open science? Nature Geosci, 7(11), 779–781, doi:10.1038/ngeo2283, 2014. 

Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments, 
Water Resources Research, 33(6), 1307–1318, doi:10.1029/97WR00534, 1997. 

Goren, L., Willett, S. D., Herman, F. and Braun, J.: Coupled numerical–analytical approach to landscape evolution 
modeling, Earth Surf. Process. Landforms, 39(4), 522–545, doi:10.1002/esp.3514, 2014. 10 

Granjeon, D. and Joseph, P.: Concepts and Applications of a 3-D Multiple Lithology, Diffusive Model in Stratigraphic 
Modeling, in: Numerical Experiments in Stratigraphy Recent Advances in Stratigraphic and Sedimentologic Computer 
Simulations, SEPM Special Publications No. 62, SEPM, Tulsa, OK USA, 197–210, 1999. 

Harel, M. A., Mudd, S. M. and Attal, M.: Global analysis of the stream power law parameters based on worldwide 10Be 
denudation rates, Geomorphology, 268, 184–196, doi:10.1016/j.geomorph.2016.05.035, 2016. 15 

Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free 
Surface, The Physics of Fluids, 8(12), 2182–2189, 1965. 

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M. and Cowie, P. A.: Field calibration of sediment flux dependent river incision, 
J. Geophys. Res, 116(F4), F04017, doi:10.1029/2010JF001935, 2011. 

Horritt, M. S. and Bates, P. D.: Evaluation of 1D and 2D numerical models for predicting river flood inundation, Journal of 20 
Hydrology, 268(1-4), 87–99, doi:10.1016/S0022-1694(02)00121-X, 2002. 

Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resources Research, 30(7), 2261–2285, 
1994. 

Howard, A. D.: Simulating the development of Martian highland landscapes through the interaction of impact cratering, 
fluvial erosion, and variable hydrologic forcing, Geomorphology, 91(3-4), 332–363, doi:10.1016/j.geomorph.2007.04.017, 25 
2007. 

Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D. and Werner, M. G. F.: An adaptive time step solution for raster-
based storage cell modelling of floodplain inundation, ADVANCES IN WATER RESOURCES, 28(9), 975–991, 2005. 

Hutton, E. W. H. and Syvitski, J. P. M.: Sedflux 2.0: An advanced process-response model that generates three-dimensional 
stratigraphy, Computers & Geosciences, 34(10), 1319–1337, doi:10.1016/j.cageo.2008.02.013, 2008. 30 

Hutton, E. W. H., Piper, M. D., Peckham, S. D., Overeem, I., Kettner, A. J. and Syvitski, J. P. M.: Building Sustainable 
Software - The CSDMS Approach, The Second Workshop on Sustainable Software for Science: Practice and Experiences 
(WSSSPE2), New Orleans, LA USA, 16 November 2014, doi:arxiv:1407.4106v2, 2014. 

Istanbulluoglu, E., Wang, T. and Wedin, D. A.: Evaluation of ecohydrologic model parsimony at local and regional scales in 
a semiarid grassland ecosystem, Ecohydrology, 5(1), 121–142, doi:10.1002/eco.211, 2012. 35 



31 
 

Itasca: FLAC: fast Lagrangian analysis of continua, Itasca Consulting Group Inc., Minneapolis, Version 4, 2000. 

Jenson, S. K. and Domingue, J. O.: Extracting Topographic Structure from Digital Elevation Data for Geographic 
Information System Analysis, Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600, 1988. 

Julien, P. Y., Saghafian, B. and Ogden, F. L.: Raster-based hydrologic modeling of spatially-varied surface runoff, JAWRA 
Journal of the American Water Resources Association, 31(3), 523–536, doi:10.1111/j.1752-1688.1995.tb04039.x, 1995. 5 

Katz, D. S., Choi, S.-C. T., Wilkins-Diehr, N., Hong, N. C., Venters, C. C., Howison, J., Seinstra, F., Jones, M., Cranston, K. 
A., Clune, T. L., De Val-Borro, M. and Littauer, R.: Report on the Second Workshop on Sustainable Software for Science: 
Practice and Experiences (WSSSPE2), Journal of Open Research Software, 30, doi:10.5334/jors.85, 2015. 

Kelfoun, K., Samaniego, P., Palacios, P. and Barba, D.: Testing the suitability of frictional behaviour for pyroclastic flow 
simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador), Bull Volcanol, 71(9), 1057–10 
1075, doi:10.1007/s00445-009-0286-6, 2009. 

Kessler, M. A., Anderson, R. S. and Stock, G. M.: Modeling topographic and climatic control of east-west asymmetry in 
Sierra Nevada glacier length during the Last Glacial Maximum, J. Geophys. Res, 111, 15, doi:10.1029/2005JF000365, 2006. 

Lague, D.: The stream power river incision model: evidence, theory and beyond, Earth Surf. Process. Landforms, 39(1), 38–
61, doi:10.1002/esp.3462, 2014. 15 

Laio, F., Porporato, A., Ridolfi, L. and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic 
processes and response to water stress II. Probabilistic soil moisture dynamics, ADVANCES IN WATER RESOURCES, 
24(7), 707–723, doi:10.1016/S0309-1708(01)00005-7, 2001. 

Lambeck, K.: Geophysical Geodesy, The Slow Deformations of the Earth, Clarendon Press, Oxford, 718 pp., 1988. 

Mitas, L. and Mitasova, H.: Distributed soil erosion simulation for effective erosion prevention, Water Resources Research, 20 
34(3), 505–516, doi:10.1029/97WR03347, 1998. 

Narteau, C., Le Mouël, J. L., Poirier, J. P., Sepúlveda, E. and Shnirman, M.: On a small-scale roughness of the core–mantle 
boundary, Earth Planet. Sci. Lett., 191(1-2), 49–60, doi:10.1016/S0012-821X(01)00401-0, 2001. 

Narteau, C., Zhang, D., Rozier, O. and Claudin, P.: Setting the length and time scales of a cellular automaton dune model 
from the analysis of superimposed bed forms, J. Geophys. Res. Earth Surf., 114(F3), F03006, doi:10.1029/2008JF001127, 25 
2009. 

NSF: A vision and strategy for software for science engineering and education, available from: 
https://www.nsf.gov/pubs/2012/nsf12113/nsf12113.pdf, 2012. 

Overeem, I., Berlin, M. M. and Syvitski, J. P. M.: Strategies for integrated modeling: The community surface dynamics 
modeling system example, Environmental Modelling & Software, 39, 314–321, doi:10.1016/j.envsoft.2012.01.012, 2013. 30 

Peckham, S. D.: The CSDMS Standard Names: Cross-Domain Naming Conventions for Describing Process Models, Data 
Sets and Their Associated Variables, in: International Environmental Modelling and Software Society (iEMSs) 7th Intl. 
Congress on Env. Modelling and Software, San Diego, CA USA, 15-19 June 2014, D. P. Ames, N. W. T. Quinn, and A. E. 
Rizzoli (Eds.), available from: http://www.iemss.org/society/index.php/iemss-2014-proceedings, 2014. 

Peckham, S. D., Hutton, E. W. H. and Norris, B.: A component-based approach to integrated modeling in the geosciences: 35 



32 
 

The design of CSDMS, Computers & Geosciences, 53, 3–12, doi:10.1016/j.cageo.2012.04.002, 2013. 

Perron, J. T.: Numerical methods for nonlinear hillslope transport laws, J. Geophys. Res, 116(F2), F02021, 
doi:10.1029/2010JF001801, 2011. 

Perron, J. T. and Royden, L.: An integral approach to bedrock river profile analysis, Earth Surf. Process. Landforms, 38(6), 
570–576, doi:10.1002/esp.3302, 2012. 5 

Piper, M., Hutton, E. W. H., Overeem, I. and Syvitski, J. P.: WMT: The CSDMS Web Modelling Tool, 2015 Fall Meeting, 
AGU, San Francisco, CA USA, 14-18 December 2015, IN13B–1841, 2015. 

Polakow, D. A. and Dunne, T. T.: Modelling fire-return interval T: stochasticity and censoring in the two-parameter Weibull 
model, Ecological Modelling, 121(1), 79–102, 1999. 

Prechelt, L.: An empirical comparison of C, C++, Java, Perl, Python, Rexx and Tcl for a search/string-processing program, 10 
Technical Report 2000-5, University of Karlsruhe, Germany, 34 pp., 2000. 

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M. and Hobley, D.: Model simulations of flood and debris flow 
timing in steep catchments after wildfire, Water Resour Res, 52(8), 6041-6061, doi: 10.1002/2015WR018176, 2016. 

Slingerland, R. L. and Kump, L.: Mathematical Modeling of Earth's Dynamical Systems, Princeton University Press, 
Princeton, NJ USA, 231 pp., 2011. 15 

Slingerland, R. L., Harbaugh, J. W. and Furlong, K.: Simulating Clastic Sedimentary Basins: Physical Fundamentals and 
Computer Programs for Creating Dynamic Systems, Prentice-Hall, Englewood Cliffs, NJ USA, 220 pp., 1994. 

Stewart, C. A., Almes, G. T. and Wheeler, B. C. (Eds.): Cyberinfrastructure Software Sustainability and Reusability: Report 
from an NSF-funded workshop, Indiana University, Bloomington, IN USA, available from: http://hdl.handle.net/2022/6701, 
2010. 20 

Tucker, G. E. and Bras, R. L.: A stochastic approach to modeling the role of rainfall variability in drainage basin evolution, 
Water Resources Research, 36, 1953–1964, 2000. 

Tucker, G. E. and Hancock, G. S.: Modelling landscape evolution, Earth Surf. Process. Landforms, 35, 28–50, 
doi:10.1002/esp.1952, 2010. 

Tucker, G. E. and Whipple, K. X.: Topographic outcomes predicted by stream erosion models: Sensitivity analysis and 25 
intermodel comparison, J. Geophys. Res, 107(B9), 2179, doi:10.1029/2001JB000162, 2002. 

Tucker, G. E., Hobley, D. E. J., Hutton, E., Gasparini, N. M., Istanbulluoglu, E., Adams, J. M. and Nudurupati, S. S.: 
CellLab-CTS 2015: continuous-time stochastic cellular automaton modeling using Landlab, Geoscientific Model 
Development, 9(2), 823–839, doi:10.5194/gmd-9-823-2016, 2016. 

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L. and Rybarczyk, S. M.: An object-oriented framework for 30 
distributed hydrologic and geomorphic modeling using triangulated irregular networks, Computers and Geosciences, 27, 
959–973, 2001a. 

Tucker, G., Lancaster, S., Gasparini, N. and Bras, R.: The Channel-Hillslope Integrated Landscape Development Model 
(CHILD), in: Landscape Erosion and Evolution Modeling, Springer US, Boston, MA USA, 349–388, 2001b. 



33 
 

van Rossum, G. and Drake, F. L.: Python reference manual, available from: http://www.python.org, 2001. 

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications for height limits of 
mountain ranges, landscape response timescales and research needs, J. Geophys. Res, 104, 17661–17674, 1999. 

Wickert, A. D.: Open-source modular solutions for flexural isostasy: gFlex v1.0, Geoscientific Model Development, 9(3), 
997–1017, doi:10.5194/gmd-9-997-2016, 2016. 5 

Willgoose, G., Bras, R. L. and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 1. 
Theory, Water Resources Research, 27(7), 1671–1684, doi:10.1029/91WR00935, 1991a. 

Willgoose, G., Bras, R. L. and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 2. 
Nondimensionalization and applications, Water Resources Research, 27(7), 1685–1696, doi:10.1029/91WR00936, 1991b. 

Wobus, C. W., Whipple, K. X., Kirby, E., Snyder, N. P., Johnson, J., Spyropolou, K., Crosby, B. T. and Sheenan, D.: 10 
Tectonics from topography: Procedures, promise, and pitfalls, in: Tectonics, Climate, and Landscape Evolution, S. D. 
Willett, N. Hovius, M. T. Brandon, and D. Fisher (Eds.), Geological Society of America Special Paper 398, Geological 
Society of America, Boulder, CO USA, 55–74, 2006. 

Zhou, X., Istanbulluoglu, E. and Vivoni, E. R.: Modeling the ecohydrological role of aspect-controlled radiation on tree-
grass-shrub coexistence in a semiarid climate, Water Resources Research, 49(5), 2872–2895, doi:10.1002/wrcr.20259, 2013. 15 

 

 

  



34 
 

 

Table 1a. One-to-one mappings of Landlab grid elements. 

Element 1 Element 2 Behaviour at grid perimeter 
Node Cell Perimeter nodes lack cells 
Link Face Perimeter links lack faces 
Patch Corner Neither element defines the perimeter 
 

Table 1b. Primary one-to-many mappings of Landlab grid elements. 

Element Connected elements Number of each connected element in by grid type: 
Raster Voronoi-Delaunay Hexagonal 

Node Link, patch 1:4 Variable 1:6 
Link Node, patch 1:2 1:2 1:2 
Patch Node, link 1:4 1:3 1:3 
Cell Face, corner 1:4 Variable 1:6 
Face Cell, corner 1:2 1:2 1:2 
Corner Face, cell 1:4 1:3 1:3 
 5 
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Table 2. Currently implemented grid types in Landlab 

Grid type Grid parent Notes 

Base None The base class; a grid defining the elements but 
without any internal geometry or topologic 
connectivity imposed. 

Raster Base Regular grid with identical, square or rectangular 
cells. 

Rectilinear Raster Regular grid with quasi-rectangular cells whose 
size can vary across the grid. 

D8 Raster Raster As for raster, but with diagonal connections 
between nodes. 

D8 Rectilinear Rectilinear As for rectilinear, but with diagonal connections 
between nodes. 

Voronoi-Delaunay Base Irregular grid with polygonal cells and triangular 
patches. Each node has n>=3 links. 

Radial Voronoi-
Delaunay 

Irregular grid where nodes form concentric, 
evenly spaced rings around a central node. 

Hex Voronoi-
Delaunay 

Regular grid with identical, regular hexagonal 
cells and equilateral triangle patches. Each core 
node has exactly 6 links. 
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Table 3. Standard grid method and property naming conventions, listed in approximate order of operation speed. 

Name 
contains 

Refers to Operation speed 

at Connectivity of grid elements Lookup 
of Property of grid or grid element Lookup (may require 

allocation on 1st use) 
has, is, are Logical test on grid property Memory allocation 
get, create Memory allocation of grid property Memory allocation 
set Update boundary conditions Calculation; internal 

consistency checks 
map Map several pieces of data from several 

elements onto a single element to which 
they all connect 

Several calculations & 
memory allocations 

calc Perform a calculation using data defined on 
grid elements 

Several calculations & 
memory allocations 
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Table 4a. Link boundary condition status as dictated by node boundary condition status. 

Nodes at link ends Link status Carries flux? 
Core – Core Active Yes 
Core – Fixed value Active Yes 
Core – Fixed gradient Fixed Yes 
Core – Looped Active Yes 
Core – Closed Inactive No 
Boundary-Boundary Inactive No 
 

Table 4b. Integer values associated with each boundary condition status. 

Element type Status Integer Value 
Node Core 0 
Node Fixed value 1 
Node Fixed gradient 2 
Node Looped 3 
Node Closed 4 
Link Active 0 
Link Fixed 2 
Link Inactive 4 
 

  5 
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Table 5. Components available in Landlab v.1.0.  
Component name Process simulated/Analysis performed Key reference 
LinearDiffuser Linear diffusion of topography Culling (1963) 
PerronNLDiffuse Nonlinear hillslope diffusion Perron (2011) 
Flexure Simple lithospheric flexure under loading Lambeck (1988), Hutton & 

Syvitski (2008) 
gFlex A more complex flexure model, utilizing gFlex Wickert (2016) 
FlowRouter A convergent flow router, following the Fastscape algorithms Braun & Willett (2013) 
DepressionFinderAndRouter A lake filler that can route flow across depressions Tucker et al. (2001a) 
SinkFiller An algorithm to fill depressions in a surface Tucker et al. (2001b) 
OverlandFlow A shallow overland flow approximation de Almeida et al. (2012), 

Adams et al. (2016) 
KinematicWaveRengers A solution to the depth varying Manning equation for surface 

flow 
Julien et al. (1995), 
Rengers et al. (2016) 

SoilInfiltrationGreenAmpt Infiltrate surface water into a soil following the Green-Ampt 
method 

Julien et al. (1995), 
Rengers et al. (2016) 

SoilMoisture Compute local inter-storm water balance and root-zone soil 
moisture saturation fraction 

Laio et al. (2001) 

PotentialEvapotraspiration Calculate potential evapotranspiration across a surface Snyder (2005), 
Zhou et al. (2013) 

Radiation Calculate total incident shortwave solar radiation Bras (1990) 
Vegetation Calculate above-ground live and dead biomass, and Leaf Area 

Index 
Istanbulluoglu et al. (2012), 
Zhou et al. (2013) 

VegCA Cellular Automata algorithm to simulate spatial organisation of 
PFTs 

Zhou et al. (2013) 

PrecipitationDistribution Generate a storm sequence of intervals and intensities Eagleson (1978) 
FireGenerator Produces intervals between fire events, following a Weibull 

distribution 
Polakow & Dunne (1999) 

StreamPowerEroder Implements fluvial erosion according to stream power, using 
the Fastscape algorithms 

Braun & Willett (2013) 

FastscapeEroder An alternative implementation of the Fastscape stream power 
algorithms 

Braun & Willett (2013) 

DetachmentLtdErosion An implementation of stream power erosion not based on 
Fastscape 

Howard (1994) 

SedDepEroder Sediment-flux dependent shear stress based fluvial incision Hobley et al. (2011) 
SteepnessFinder Calculates steepness indices for a channel network Wobus et al. (2006) 
ChiFinder Calculates the chi index along a channel network Perron & Royden (2012) 
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Figure captions: 

 

Figure 1: Examples of surface-process models. (a) Computed depth-to-groundwater, from the GSEM coupled 

groundwater-surface water model (Berger, 2000, image courtesy D. Entekhabi). (b) Computed patterns of soil erosion and 

sedimentation on agricultural fields, using the SIMWE soil erosion model (Mitas and Mitasova, 1998). (c) Model of ice-age 5 

glacier extent over the Sierra Nevada Mountains, using the GC2D iceflow model (Kessler et al., 2006). (d) Simulation of 

canyon erosion and fan-delta progradation in a region of active uplift (top) and subsidence (bottom), using the CHILD 

landscape evolution model (Tucker and Hancock, 2010). (e) Model of simultaneous cratering and fluvial erosion on the 

ancient Mars surface, with the MARSSIM model (Howard, 2007). (f) Simulation of pyroclastic flows at Tungurahua 

volcano, Ecuador, using the VolcFlow model (Kelfoun et al., 2009). 10 

 

Figure 2: Schematic illustration of the structure of Landlab 1.0. The three main divisions of the code are the grid, the 

components, and supporting utilities. Structure within these three main divisions is discussed in the main text. 

 

Figure 3: Geometry and topology of grid elements on various Landlab grids. Only one patch and its bounding links are 15 

shown for each example to prevent the diagram from becoming cluttered. Links always point into the upper right semicircle, 

as described in the text.  

 

Figure 4: Standard ordering schemes and conventions in Landlab. Examples are shown for both a small 

RasterModelGrid (a) and a small VoronoiDelaunayGrid (b). Point elements (nodes, corners) are numbered in black plain 20 

text, areas (patches, cells) in black italics, and linear elements (links, faces) in gray italics. Symbols are as in Fig. 3. In all 

grid types, elements are ordered by y then x according to their geometric centers. Directional elements (links, faces) always 

point towards the top right quadrant. Rotational ordering is always counter-clockwise from the positive x-axis (right/east). 

This includes angle measurements. Examples of calls to grid properties are shown alongside each grid type to illustrate the 

expression of these ordering rules in practice. Note that corners, faces, and cells are not shown in (b) for clarity. 25 

 

Figure 5: Interplay of node and link boundary conditions on a Landlab example grid. Because nodes rather than 

corners define the outer margin of the grid structure, the perimeter nodes lack cells, and the perimeter links lack faces (see 

main text). These aberrant nodes and links are automatically set as boundary elements. Landlab defaults to setting the 

condition of any such node to FIXED_VALUE_BOUNDARY and any such link to INACTIVE.  30 

 

Figure 6: Interaction of timescales between a Landlab driver and a set of components. In this example, a driver that 

implements components 1–4 has a time loop of length dt, and dt is the timescale that is passed to the components. 

Components 1 and 2 implement numerical schemes that have maximum stable timesteps shorter than dt. In these cases, the 
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imposed dt interval is internally subdivided to ensure the model remains stable. Here, we see two possible ways a component 

might do this, either always taking the largest timestep possible then a short timestep to finish (component 1), or by dividing 

the imposed timestep into the minimum number of equal length internal steps, dtint, where dtint < dtstable (component 2). Even 

if a component could run for a timestep longer than dt (e.g., components 3 and 4), under an explicit-time Landlab driver 

script like this, its steps will be truncated at dt. Once all the components have run for dt, they sequentially update their output 5 

fields in the grid with their changes. This is the only time that information can be passed actively between each component 

(and the driving script, if it also makes changes to the grid fields within the loop); each component cannot “feel” changes 

being made by any other until dt has elapsed. Hence dt is best thought of as the “coupling timescale”. 

 

Figure 7: Schematic illustration showing how Landlab’s grid geometry may be used to construct a finite-volume 10 

numerical scheme. White squares represent nodes, with example node IDs given for a 5x5 raster grid. Gray ovals show the 

centre points of the links, with the link IDs given. In this example, we assume that we have a node field called “elev” whose 

values represent the altitude of the land surface at various node locations (example values shown in italics next to each 

node). Black arrows indicate direction of soil flow (in the down-hill direction). A finite-volume solution for a diffusion 

model can be implemented by (1) calculating the gradient at each pair of adjacent nodes and assigning it to the 15 

corresponding link (lines 1–3 in the code snippet below), (2) multiplying by a transport-rate coefficient (and -1) to obtain 

unit flux (lines 4–6), and (3) multiplying the unit flux at each cell face by the width of that face, and adding up the inflows 

and outflows, and dividing by cell area to obtain flux divergence (lines 7 and 8). 

 

Figure 8: A simple finite-volume hillslope diffusion model implemented in Landlab. Values adopted here are within 20 

typical terrestrial ranges for hillslope length (~100 m, controlled from line 3), hillslope diffusivity (0.01 m2 y-1, line 6) 

(Fernandes and Dietrich, 1997), total time of run (around a million years, since dt ~ 1833 y, lines 7-8), and uplift rate relative 

to base level (0.001 m y-1, line 9). 

 

Figure 9: Hillslope diffusion implemented in Landlab using a component. Compare to Fig. 8. Note that this version is 25 

more concise, and that timestep stability is now handled internally within the component. 

 

Figure 10: Performance of a Landlab-built model of landform evolution, using the StreamPowerEroder, FlowRouter, 

and PrecipitationDistribution components on grids of different types and sizes. Runs were performed on a Mid-2014 

Macbook Pro, and each data point represents the mean of five runs. (a) Total time for a simulation of 3 million years, 30 

implementing a stochastic storm sequence of around 3000 distinct stormy intervals. Both the total time to run and the time 

spent in the loop in the code that iterates forward in time are shown, and are practically indistinguishable in most cases. The 

time to run the components is close to linear with number of nodes, as expected for the Fastscape algorithms (see main text). 

(b) The time spent initializing the grids and components in each case (i.e., the total time less the time spent in loop from (a)). 
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Setting up a Voronoi-based grid is more computationally expensive than a raster, but both are quick in absolute terms, and 

both are close to linearly scaled with the number of nodes. In both graphs, small deviations from linear scaling occur, 

probably related to the interaction of Python’s dynamic memory management with the size of the random access memory on 

the individual machine. 

 5 

Figure 11: Simulated topographies produced from a simple stream power-based fluvial incision rule, combining the 

StreamPowerEroder, FlowRouter, and PrecipitationDistribution components. The same model set up is implemented 

on both a RasterModelGrid (a) and a HexModelGrid (b), using the same random seed to generate the topography. Note the 

vertical-horizontal asymmetry in channel network planform visible in (b), an expected outcome of the three axes of mirror 

symmetry running though a hexagonal grid. The linearity of these catchment planforms is enhanced by the presence of an 10 

erosion threshold. 

 

Figure 12: Simulated topographies produced from a coupled hillslope and channel evolution model, combining the 

StreamPowerEroder, FlowRouter, and LinearDiffuser components. A storm sequence is provided by the 

PrecipitationDistribution component, and discharge is routed across depressions in topography using 15 

DepressionFinderAndRouter. Stream-power parameters are identical to those in Fig. 11. The same model setup is 

implemented on both a RasterModelGrid (a) and a HexModelGrid (b), using the same random seed to generate the 

topography. Despite the differences in grid organization, planform drainage pattern remains fairly similar between the two 

cases. 

 20 

Figure 13: Example of a CellLab-CTS model. Here the CellLab-CTS framework has been used to implement a model of 

granular mechanics. The model has eight node states, representing air (white), a resting grain (light grey), and a grain 

moving in each of the six lattice directions (all coded as dark grey). Grid edges and immobile walls are treated as 

CLOSED_BOUNDARY Landlab boundary conditions (black). Transition rules are used to model grain motion, grain collision, 

and gravity (from Tucker et al., 2016). 25 

 

Figure 14: Implementation of an ecohydrology model in Landlab. (a) Schematic illustration of coupling among different 

Landlab components for the CaTGraSS application. (b) Demonstration of the model on a flat surface with semi-arid climate 

similar to that of Sevilleta, New Mexico, USA (Zhou et al., 2013). This figure plots percentage of space occupied by each 

PFT with time. (c) Spatial organization of PFTs at different times during the model run. These plots illustrate competition 30 

between different PFTs for space and resources. Trees die early within the first 300 years due to unfavorable climatic 

conditions and competition from shrubs and grass. The ecosystem swings between shrub-dominant and grass dominant states 

for the next 1600 years. 
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Figure	 15:	 Demonstration	 of	 OverlandFlow	 component	 capabilities.	 The	 example	 shows	 development	 of	 a	

hydrograph	 in	 a	 catchment	 drawn	 from	 an	 airborne	 Lidar-derived	 DEM	 of	 the	 Spring	 Creek	 catchment	 in	 central	

Colorado,	 USA.	 The	 run	 uses	 a	 constant	 rainfall	 rate	 of	 25	mm	 h-1	 and	 a	 storm	 duration	 of	 1	 h.	 The	 hydrograph	

persists	for	almost	8	model	hours,	and	water	depth	as	plotted	at	several	intervals	after	the	start	of	the	precipitation	

event:	1	h	(the	end	of	the	storm),	2	h,	3	h,	and	8	h.	 5 
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