Responses and revision descriptions

Dear Prof. Gerard Govers

Thank you very much for your comments and giving these great suggestions, which make this paper improved a lot.

We have done a major revision according to these suggestions, and the responses and revision descriptions are following below.

I. - The structure of the paper needs improvement. Now, there is still to much mixing of methods, results and discussion. Furrthermore, the results are not all well presented: you report that dolostone and limestone tables were used but only discuss the limestone results because the dolostone results were similar. I would suggest all available data should be presented, at least in tabular form in an appendix and that at least a graph is included showing that the results are indeed similar.

Changed: we added some contents of statistical analysis, and analyzed the relationship between dolostone and limestone weathering based on the results of ANOVA analysis.

2 - With respect to the structure of the paper, the following guidelines may be useful to you:

Introduction: explain the state of the art.

- Weathering may be impacted by mineral fertilization
- But impact of different types of fertilizers not known
- Therefore we conducted experiments

Changed: we revised the section like this

- 3. Materials and methods:
- Description of the experimental set up
- study area, including meteo data and more infor on the soil (grain size Ph, SOC content in a small table)
- columns : size, way of filling, resulting bulk density of the soil.....
- measurement procedure for the tablets and presentation of the way losses are calculated
- the description needs to include a justification of some or your decisions on the methods: why this size of columns? Why 30 times more fertilizer? Why did you choose this length for the measuring period?

Changed: we added the description mentioned above, including grain size, bulk density.

The primary reasons why we set up the amount of added fertilizer in this study are: (1) the soil we used is untilled fresh soil which we sampled from B layer. Considering its

low nutrition, we set up a higher fertilizer amount. (2)We just want to explore the different response of these different on carbonate weathering, and magnify and quicken the short-term response. (3) It is a simple pre-study, but we think some findings are worthy published especially to CO_2 consumption via carbonate weathering at agricultural areas.

Considering its misleading possibility, we decided to delete the relative (30 times) statement.

4. Results

- Presentation of the results: no discussion and no further justification of the study or certain decision taken
- Presentation of the weathering rates
- Statistical analysis: for which treatments are rates significantly different: this can be done with an ANOVA analysis. I suggest to include the type of tablet as a class variable here so that we can see whether or not the results for limestone and dolostone are similar

Changed: we added the relative ANOVA analysis.

5. Discussion

- A key element in the discussion are the weathering reactions: I suggest to have the generic weathering reactions in the text (paragraph 4.2) and then have the fertilizer-specific reactions in a table. In this table you can then also indicate the amount of NH4 per mole of fertilizer
- After having done this you can proceed to discuss the differences between the treatments. I think this is already more or less covered in the current version of the MS but it needs to be presented more clearly
- Then you may discuss the fact that CO2 consumption by weaterhing may be wrongly estimated if the contributions of (different) fertilizers is not accounted for
- Finally you have to compare your results with other data: now, there is no quantitative comparison whatsoever with results from other studies. Nevertheless, this is possible: you can calculate a weathering rate from your results and make than reasonable assumptions to make a calculation for larger areas that could be compared to the results of earlier studies which you already cite.

Changed: we rewrite the discussion section according to these suggestions above. Thank u again.

6. The English used is not yet up to international standards. The paper really needs a revision by a native speaker

Changed: we changed the mistakes you noted in pdf file and checked the language problems for several times. PLEASE correct it if conveniently.

8. We did the edition and correction in terms of the notes in pdf file.
Thank you SO much for your favor to improve our manuscript.
Best regards,
Song Chao etc.

- 1 Impact of different fertilizers on the carbonate weathering in a typical karst area,
- 2 Southwest China: a field column experiment
- 3 Chao Song ^{1, 2}, Changli Liu ¹, Guilin Han ²
- 4 1. The Institute of Hydrogeology and Environmental Geology, Chinese Academy of
- 5 Geological Sciences, Shijiazhuang, 050803, Hebei, China
- 6 2. School of Water Resources and Environment, China University of Geosciences
- 7 (Beijing), Beijing, 100083, China.

- 9 Corresponding Author:
- 10 1. Chao Song
- 11 Email: chao-song@qq.com
- 12 Tel/Fax: +86-18931852527

13 **Abstract:** Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, are strongly influenced by anthropogenic 14 perturbations such as agricultural fertilization. <u>since the addition of fertilizers tends</u> 15 16 to change the chemical characteristics of soil such as pH value. Different fertilizers may exert a different impact on carbonate weathering, but their these 17 discrepancies differences are not still well-known so far. In this study, a field column 18 19 experiment was employed conducted to explore the responses of carbonate weathering to the addition of different fertilizers addition. The eleven different 20 21 treatments with three replicates including control, NH4NO3, NH4HCO3, NaNO3, 22 NH₄Cl, (NH₄)₂CO₃, Ca₃(PO₄)₂, (NH₄)₃PO₄, fused calcium magnesium phosphate 23 fertilizer (Ca Mg P), Urea and K2CO3 were established in this column experiment, where limestone and dolostone tablets were buried at the bottom of each to determine 24 the weathering amount and ratio of carbonate in soil. We compared 11 different 25 treatments including a control treatment using 3 replicates per treatment. Carbonate 26 weathering was assessed by measuring the weight loss of carbonate and dolomite 27 28 tablets buried at the bottom of the columns. The result showed that the addition of urea, NH₄NO₃, NH₄HCO₃, NH₄Cl and (NH₄)₂CO₃ distinctly increased carbonate 29 30 weathering, which was attributed to the nitrification of NH₄+, and tThe addition of 31 Ca₃(PO₄)₂, Ca-Mg-P and K₂CO₃ induced carbonate precipitation due to common ion effect. Whereas the The addition of (NH₄)₃PO₄ and NaNO₃ addition did not 32 33 significantly impact significantly on carbonate weathering. The results of NaNO₃

带格式的:字体颜色:红色

treatment seem to be raising raise a new question: the negligible little impact of nitrate

35 on carbonate weathering may result in the overestimation of impact of N-fertilizer on CO₂ consumption by carbonate weathering at the regional/global scale if the effects of 36 NO₃ and NH₄ are not distinguished. Moreover, in order to avoid misunderstanding 37 more or less, the statement that nitrogenous fertilizer can aid carbonate weathering 38 should be replaced by ammonium fertilizer. 39 Keywords: Carbonate weathering; Column experiment; Nitrogenous fertilizer; 40 41 Phosphate fertilizer; Southwest China 42 43 Introduction 1. 44 Carbonate weathering plays a significant role in consumption of the elevated 45 域代码已更改 atmospheric CO₂ (Kump et al., 2000; Liu et al., 2010; 2011)(Kump et al., 2000; Liu et 46 al., 2010; 2011). The riverine hydro-chemical composition such as the ratio of HCO₃ 47 and to Ca²⁺+Mg²⁺ is usually employed as an indicator to estimate the CO₂ 48 域代码已更改 consumption by natural carbonate weathering at the regional/global scale (Hagedorn 49 50 and Cartwright, 2009; Li et al., 2009)(Hagedorn and Cartwright, 2009; Li et al., 2009). However, fluvial alkalinity may also be produced by other processes including the 51 reaction between carbonates and the protons derived (i) from the nitrification of 52 N-fertilizer a disturbance to CO₂-consumption estimation is introduced because the 53 fluvial alkalinity, Ca²⁺ and Mg²⁺ may also be produced due to the reaction between 54

carbonate and the protons which can originate from the nitrification processes of

N fertilizer (Barnes and Raymond, 2009; Chao et al., 2011; Gandois et al., 2011;

域代码已更改

55

Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-wickmann 57 et al., 2009; Semhi and Suchet, 2000; West and McBride, 2005)(Barnes and Raymond, 58 2009; Chao et al., 2011; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 59 2006; Perrin et al., 2008; Pierson wickmann et al., 2009; Semhi and Suchet, 2000; 60 带格式的:字体颜色:文字 1 West and McBride, 2005), (ii) from the sulfuric acid (Lerman and Wu, 2006; Lerman 61 域代码已更改 et al., 2007; Li et al., 2008; Li et al., 2009)(Lerman and Wu, 2006; Lerman et al., 62 63 2007; Li et al., 2008; Li et al., 2009), (iii) from organic acid secreted by 域代码已更改 microorganisms (Lian et al., 2008)(Lian et al., 2008), as well as (iv) from acidic soil 64 域代码已更改 65 (Chao et al., 2014)(Chao et al., 2014). Given the that atmospheric CO₂ is not the unique weathering agent, differentiating the agent of carbonate weathering is more 66 67 and more significant to enable important for the accurate budgeting of the net CO₂ **带格式的:**字体: New Roman, 小四 (默认) Times consumption by carbonate weathering, especially in agricultural areas where mineral 68 fertilizers are usedarea. 69 The world average annual increase in mineral fertilizer consumption was 3.3% 70 from 1961 to 1997, and FAO's study predicts a 1% increase per year until 2030 (FAO, 71 72 2000). For China, the consumption of chemical fertilizer increased from 12.7 Mt in 1980 to 59.1 Mt in 2013 (Fig. 1). The Increasing consumption of chemical-mineral 73 74 fertilizer is a significant disturbance factor of carbonate weathering and carbon cycle. Many Several studies showed that nitrogen fertilizer additions aided increased in the 75 dissolution of lime weathering rates and increased the total export of DIC from 76 域代码已更改 77 agricultural watersheds (Barnes and Raymond, 2009; Gandois et al., 2011; Hamilton

et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-wickmann et al.,

2009; Probst, 1986; Semhi and Suchet, 2000; West and McBride, 2005)(Barnes and Raymond, 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson wickmann et al., 2009; Probst, 1986; Semhi and Suchet, 2000; West and McBride, 2005). According to the estimation fromestimates by Probst (1988) and Semhi et al. (2000), the contribution of N-fertilizers to carbonate dissolution represents was 30% and 12-26%; respectively, onin two small agricultural carbonate basins in south-western France, the Girou and the Gers respectively (subtributary and tributary of the Garonne river, respectively). For lager basin level, such as the Garonne river basin, which is larger basin (52,000 km²), this contribution was estimated at 6% by Semhi et al. (2000). At national and global scales, Perrin et al. (2008) estimated that the deficit contribution of CO2 uptake due to N-fertilizer addition (usually in form of NH4NO3) represent up to 5.7-13.4% and only-1.6-3.8% of the total CO2 flux naturally consumed byto carbonate dissolution; for France and on a global scale, respectively.

带格式的:上标

带格式的:字体:小四 **带格式的**:行距:2 倍行距

These estimated results estimates described above were usually based on calculations assuming that a single type of fertilizer (e.g. (NH₄)₂SO₄, NH₄NO₃, or NH₄Cl) was used throughout the whole basin that was considered. Howeverwere usually based on a hypothesis of individual fertilizer (e.g. (NH₄)₂SO₄, NH₄NO₃, or NH₄Cl) input into an agricultural basin. Nevertheless, at an agricultural basin, different fertilizers are usually added for different crops in actual agricultural practices. The impact of these fertilizers on carbonate weathering and riverine chemical composition may be different. For nitrogenous fertilizer, 100% NO₃ produced after

102	the addition $(NH_4)_2SO_4$ and NH_4Cl derive from the nitrification of NH_4^+ ,	
103	comparatively, only 50% after the addition NH ₄ NO ₃ . The difference of NO ₃ source	
104	may cause the evaluated deviation of the impact of N-fertilizer addition on CO ₂	
105	consumption by carbonate weathering. Because the addition of different N-fertilizers	
106	(e.g. (NH ₄) ₂ SO ₄ , NH ₄ NO ₃ , NH ₄ Cl, NaNO ₃ or urea) may result in different	带格式的:下标
107	contributions to carbonate weathering and relative products such as HCO ₃ , Ca ²⁺ and	带格式的:下标
108	Mg ²⁺ . For phosphate fertilizer, the coprecipitaion of phosphate ions with calcium	带格式的: 上标 带格式的: 上标
109	carbonate may inhibit carbonate weathering (Kitano et al., 1978)(Kitano et al., 1978).	带格式的: 上标 域代码已更改
110	We suppose that the response of carbonate weathering to the addition of different	
111	fertilizer such as N-fertilizer (NH ₄ and NO ₃), P-fertilizer and Ca/Mg fertilizer may	
112	display difference, which is poorly known so far but significant to well understand the	
113	agricultural force on natural carbonate weathering and accurately evaluate the CO ₂	
114	consumption via carbonate weathering in agricultural area.	
115	Moreover, <u>Tthe carbonate-rock-tablet test is used to determine the weathering</u>	
116	rate of carbonate rock/mineral from laboratory to field (Chao et al., 2014; Chao et al.,	域代码已更改
117	2011; Dreybrodt et al., 1996; Gams, 1981; Gams, 1985; Jiang and Yuan, 1999; Liu	
118	and Dreybrod, 1997; Plan, 2005; Trudgill, 1975)(Gams, 1981; Chao et al., 2011;	
119	Trudgill, 1975; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1985; Jiang and Yuan,	
119 120	Trudgill, 1975; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1985; Jiang and Yuan, 1999; Liu and Dreybrod, 1997; Plan, 2005). In laboratory, the carbonate-rock-tablet is	
		域代码已更改
120	1999; Liu and Dreybrod, 1997; Plan, 2005). In laboratory, the carbonate-rock-tablet is	域代码已更改
120 121	1999; Liu and Dreybrod, 1997; Plan, 2005). In laboratory, the carbonate-rock-tablet is employed to study the kinetics of calcite dissolution/precipitation (Dreybrodt et al.,	域代码已更改域代码已更改
120 121 122	1999; Liu and Dreybrod, 1997; Plan, 2005). In laboratory, the carbonate-rock-tablet is employed to study the kinetics of calcite dissolution/precipitation (Dreybrodt et al., 1996; Liu and Dreybrod, 1997) (Dreybrodt et al., 1996; Liu and Dreybrod, 1997) and	

et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013; Plan, 2005)(Chao et al., 2014;

Jiang and Yuan, 1999; Jiang et al., 2013; Plan, 2005). Although Liu (2011) argue that the carbonate-rock-tablet test may lead to the deviation of estimated CO₂ consumption by carbonate weathering at the regional/global scale in the case of insufficient representative data (Liu, 2011)(Liu, 2011), our results show that yet it is a preferred option for the condition controlled contrast or stimulated experiment (Chao et al., 2014; Chao et al., 2011)(Chao et al., 2011; Chao et al., 2014), Where the result from the carbonate-rock-tablet test is consistent to the major element

Thus Therefore, in order to observe their difference between the impacts of different fertilizer addition on carbonate weathering in soil, a field column experiment embedding carbonate rock tablets with eleven different treatments—was carried out in a typical karst area of southwest China to observe the impacts of different fertilizer addition on carbonate weathering in soil.

geochemical data of leachates from soil column(Chao et al., 2011).

2. Materials and Methods

2.1 The study site

This study was carried out in a typical karst area, the HuaXi-Huaxi district of Guiyang city, Guizhou province, SW China (26°23′N, 106°40′E, 1094 m asl). Guiyang, the capital city of Guizhou Province, is located in the central part of The Province, covering an area from 26°11′00″ to 26°54′20″N and 106°27′20″ to 107°03′00″E (about 8,000 km²), with elevations ranging from 875 to 1655 m above mean sea level. Guiyang has a population of more than 1.5 million people, a high diversity of karstic landforms, a high elevation and low latitude, with a subtropical warm-moist climate, annual average temperature of 15.3 °C and annual precipitation of 1200 mm (Lang et al., 2006)(Lang et al., 2006). A monsoonal climate often results

域代码已更改

域代码已更改

带格式的: 上标

域代码已更改

in high precipitation during summer and much less during winter, although the humidity is often high during most of the year (Han and Jin, 1996)(Han and Jin, 1996). Agriculture is a major land use in order to produce the vegetables and foods in the suburb of Guiyang (Liu et al., 2006)(Liu et al., 2006). The consumption of chemical fertilizer increased from 0.8-150 kg/ha Mt-in 1980 to 1.0190 kg/ha-Mt in 2013 (GBS, 2014).

域代码已更改

域代码已更改

域代码已更改

2.2 Soil properties

The soil used in this column experiment was sampled from the B horizon (below 20 cm in depth) of yellow-brown soil in __dug from_a cabbage-corn or capsicum-corn rotation plantation in Huaxi district, It was air-dried, ground to pass through a 2-mm sieve, mixed thoroughly and used for soil columns. The pH (V_{soil}:V_{water} = 1:2.5) were determined by pH meter. The chemical characteristics of soil in_cluding organic matter (OM), NH₄-N, NO₃-N, available P, available K, available Ca, available Mg, available S and available Fe were determined according to the Agro Services International (ASI) Method_ (Hunter, 1980)(Hunter, 1980), where the extracting solution used for O₂M₇ contained 0.2 mol 1⁻¹ NaOH, 0.01 mol 1⁻¹ EDTA, 2% methanol and 0.005% Superfloc 127, NH₄-N, NO₃-N, available Ca and Mg were determined based on extraction by 1 mol 1⁻¹ KCl solution, available K, P and Fe were extracted by extracting solution containing 0.25 mol 1⁻¹ NaHCO₃, 0.01 mol 1⁻¹ EDTA, 0.01 mol 1⁻¹ NH₄F, and 0.005% Superfloc 127, and available S was extracted by 0.1 mol 1⁻¹ Ca(H₂PO₄)₂ and 0.005% Superfloc 127. The results are shown in Table 1.

域代码已更改

2.3 Soil column and different fertilization treatments

In order to test the hypothesis that the responses of the impact of different
chemical fertilizer on carbonate weathering may be different, columns (\emptyset =20cm, H=
15cm) were constructed from 20-cm diameter polyvinylchloride (PVC) pipe (Fig. 2).
A hole (Ø=2 cm) were established at the bottom of each column to discharge soil
water from of soil column. A polyethylene net mesh (Ø 0.5 mm) was placed in the
bottom of the columns to prevent the soil loss of the filter material. A filter sand layer
with 2 cm thickness including gravel, coarse sand and fine sand was spread on the
<u>net</u> Two different carbonate rock tablets were buried in the bottom of each <u>soil</u>
column (Fig .2). According to common kinds of chemical fertilizer and the main
objective of this study, eleven fertilization treatments with three replicates in the field
column experiment were set up: (1)control without fertilizer (CK); (2)43g NH ₄ NO ₃
fertilizer (CF); (3)85g NH ₄ HCO ₃ fertilizer (NHC); (4)91g NaNO ₃ fertilizer (NN);
$(5)57g\ NH_4Cl\ fertilizer\ (NCL);\ (6)51g\ (NH_4)_2CO_3\ fertilizer\ (NC);\ (7)52g\ Ca_3(PO_4)_2$
fertilizer (CP); (8)15g (NH ₄) ₃ PO ₄ fertilizer (NP); (9)44g fused calcium-magnesium
phosphate fertilizer (Ca-Mg-P); (10) 32g Urea fertilizer (U) and (11) $10g\ K_2CO_3$
fertilizer (PP). To shorten the experiment time and enhance the effect of fertilization,
the added amount of fertilizers in these treatments motioned above was increased to
30 times than its local practical amount (N fertilizer: 160 kg N - ha +; P fertilizer: 50 kg
P·ha ⁻¹ ; K fertilizer: 50 kg K·ha ⁻¹). The 6 kg soil was weighed (bulk density=1.3)
g/cm ³), mixed perfectly with above fertilizer, respectively, and filled in its own
column. These soil columns were placed at the field experiment site in Guiyang of
Southwestern China for a whole year.

带格式的: 上标

带格式的: 上标

2.4 The rate of carbonate weathering

Two different kinds of carbonate rock tablets (2 cm \times 1 cm \times 0.5 cm in size) were established in the bottom of each <u>soil</u> column to explore the rate of carbonate weathering in soil. The two different kinds of carbonate rock <u>collected from karst area</u> of <u>Huaxi district</u> were (1) limestone with 60-65% micrite, 30-35% microcrystalline calcite and 2-3% pyrite and (2) dolostone with 98-99% power crystal dolomite, 3-5% microcrystalline calcite, 1% pyrite and <u>little-trace quantities</u> organic matter. All of tablets were <u>baked-heated</u> at 80 °C for 4 hours then weighed in a 1/10000 electronic balance in the laboratory, tied to a label with fishing line and buried at the bottom of each soil column. They were taken out carefully, rinsed, baked and weighed after a whole year.

The amount of <u>weathering carbonate weathering</u> (Aew), the ratio of <u>earbonate</u> weathering _(Rew) and the rate of <u>earbonate</u> weathering (Rew) for limestone and <u>dolomite</u> were calculated according to the weight difference of the tablets using the following formulas:

Aew = (Wi-Wf) (1)

 $R_{ew} = (Wi-Wf)/Wi$ (2)

Raew = (Wi-Wf)/(S*T) (3)

where Wi is the initial weight of the carbonate rock tablets, Wf is their final weights, S is the surface area of carbonate weathering tablets, and T is the length of the experimental period.

2.4 Statistical analysis

带格式的:字体:倾斜

217	Statistical analysis was performed using IBM SPSS 20.0 (Statistical Graphics		厘米	细灯.	目11组区
218	Crop, Princeton, USA). All results of carbonate weathering were reported as the				
219	means±standard deviations (SD)means standard errors (SE) for the three replications.				
220	One-way analysis of variance (ANOVA) was used to determine the differences of				
221	weathering rate between limestone and dolostone. Statistical analysis was performed				
222	using IBM SPSS 20.0 (Statistical Graphics Crop, Princeton, USA).		带格式的:	字体:	加粗
223					
224	3. Results				
225	3.1 The weathering rate of carbonate under different fertilized treatments	***************************************	带格式的: 米	缩进:	首行缩进
226	weathering of under different treatments The amount (ARew), and the ratio				
227	(Raew_) and the rate (Raew) of limestone and dolostone earbonate weathering were		带格式的:	字体:	倾斜
228	listed _in Table 2. were listed The results showed that in Table 2, and the Rew were				
229	plotted in Fig. 3. The results in Table 2 and Fig. 3 The results showed Tthe Acward		带格式的:	字体:	倾斜
230	and Racw of carbonate weathering limestone and dolomite weathering under urea,		带格式的: 带格式的:		
231	NH ₄ NO ₃ , NH ₄ Cl, (NH ₄) ₂ CO ₃ NH ₄ HCO ₃ , NH ₄ Cl and NH ₄ HCO ₃ (NH ₄) ₂ CO ₃ -treatments				
232	were 8.48±0.96, 6.42±0.28, 5.54±0.64, 4.44±0.81 and 4.48±0.95‰ (mean±SD,				
233	p<0.05) positive, and much bigger than that under the control treatment $0.48\pm0.14\%$				
234	(see Fig. 3,-) as observed in dolomite (6.59±0.67, 5.30±0.87, 4.77±0.78, 4.94±1.91				
235	and 3.22±0.87‰ under these five fertilization treatments vs0.31±0.09‰ in control				
236	treatment). This suggesting manifested that the addition of these five fertilizers can				
237	aid and increased the rate of the chemical weathering of carbonate weathering.				
238					

ı		## LE _ LE
239	According to the results of ANOVA analysis, the rest treatments had no	带格式的 :缩进:首行缩进: 0 米
240	significant differences (p>0.05) in the Rw and Rcw of limestone and dolomite in	带格式的 :字体:倾斜 带格式的 :字体:倾斜
241	comparison with control treatment (Table 2). In (NH ₄) ₃ PO ₄ treatment, the AcwRw,	
242	and Raew were only 1.08±0.34% 0.0028g and 0.00070.75±0.21%g for limestone	带格式的:字体:倾斜
243	and dolomite, $\underline{4.00\pm1.15}$ g m ⁻² a ⁻¹ $\underline{1.08\%}$ and $\underline{1.00\pm1.01}$ $\underline{0.75}$ g m ⁻² a ⁻¹ $\underline{\%}$ for	带格式的:上标 带格式的:上标
244	limestone and dolomite, respectively, less than those under other four NH ₄ -fertilizers	带格式的 : 上标 带格式的 : 上标
245	as mentioned above. The Acw, Rew Rw and Raew in NaNO3 treatment failed to show	带格式的:字体:倾斜
246	a remarkable difference with the control treatment, implying exhibiting little effect of	
247	NaNO ₃ fertilizer addition on carbonate weathering (Fig. 3)	
248	However, eExcept the Rew of limestone in Ca ₃ (PO ₄) ₂ treatment approaching zero, all	
249	the values of the Acw, Rew and Racaw of two different carbonate in Ca-Mg-P-and,	带格式的: 字体: 倾斜 带格式的: 字体: 倾斜
250	K_2CO_3 and $Ca_3(PO_4)_2$ treatments showed a negative value, indicating that the addition	
251	of Ca-Mg-P , K_2CO_3 and $\text{Ca}_3(\text{PO}_4)_2$ fertilizers can lead to the precipitation at the	
252	surface of carbonate mineral, which can be explained by common ion effect.	
253	3.2 The comparison of limestone of dolomite	
254	The statistical significance result of the Rw between limestone and dolomite	带格式的: 缩进:首行缩进: 0 厘米
255	using one-way analysis of variance (ANOVA) was 0.320 (>0.05), suggesting that	带格式的 :字体:倾斜
256	ANOVA was use the the results between limestone and dolostone weathering under	
257	different treatments were similar. We will explain the results with carbonates instead	
258	of individual dolostone and limestone. was used to determine the differences of	
259	weathering rate between limestone and dolostone.	
260		

4.1 The carbonate rock tablet test: the validation of this experiment

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

The carbonate-rock-tablet test is used to determine the weathering rate of earbonate rock/mineral from laboratory to field (Gams, 1981; Chao et al., 2011; Trudgill, 1975; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1985; Jiang and Yuan, 1999; Liu and Dreybrod, 1997; Plan, 2005), In laboratory, the earbonate-rock-tablet is employed to study the kinetics of calcite dissolution/precipitation (Dreybrodt et al., 1996; Liu and Dreybrod, 1997), and determine the rate of carbonate mineral weathering in soil column (Chao et al., 2011). However, in field, it is also used to observe the rate of carbonate weathering and estimated CO₂-consumption by earbonate weathering (Chao et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013; Plan, 2005), Although Liu (2011) argue that the carbonate-rock-tablet test may lead to the deviation of estimated CO2 consumption by earbonate weathering at the regional/global scale in the case of insufficient representative data (Liu, 2011), our results show that it is a preferred option for the condition controlled contrast or stimulated experiment (Chao et al., 2011; Chao et al., 2014), where the result from the carbonate-rock-tablet test is consistent to the major element geochemical data of leachates from soil column(Chao et al., 2011).

In this study, every procedure to establish soil column with carbonate rock tablets in the bottom of each was strictly same, including the size of column, the preparation and column filling of soil sample, the setting and test of carbonate rock tablets, etc. Moreover, three replicates of each treatment were designed. We

带格式的:字体:加粗

带格式的:字体:加粗 域代码已更改

带格式的:字体:加粗

带格式的:字体:加粗

域代码已更改

带格式的:字体:加粗 **带格式的**:字体:加粗

域代码已更改

√ 带格式的: 字体: 加粗

带格式的:字体:加粗

域代码已更改

带格式的:字体:加粗

带格式的:字体:加粗 **带格式的:**字体:加粗 **域代码已更改**

带格式的:字体:加粗

域代码已更改

带格式的:字体:加粗

带格式的:字体:加粗 域代码已更改

带格式的:字体:加粗

consider the experiment design can meet the objective of this study and the results of carbonate-rock-tablet test are therefore valid and credible. 4.1 The kinetics of carbonate dissolution/precipitation: controlling factors Experimental studies of carbonate dissolution kinetics have shown metal carbonate weathering usually depends upon three parallel reactions occurring at the carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009): $MeCO_3 + H^+ \leftrightarrow Me^{2+} + HCO_3^ \underline{\text{MeCO}_3 + \text{H}_2\text{CO}_3} \leftrightarrow \underline{\text{Me}^{2+} + 2\text{HCO}_3}^{-}$ (5) $MeCO_3 \leftrightarrow Me^{2+} + CO_3^{2-}$ where Me=Ca, Mg. As Eq. (5) describes, atmospheric/soil CO₂ is usually regard as

带格式的: 非突出显示

the natural weathering agent of carbonate. In watersheds with calcite- and dolomite-containing bedrock, H₂CO₃ formed in the soil zone usually reacts with carbonate minerals, resulting in dissolved Ca, Mg, and HCO₃ as described in Eq. (5)(Andrews and Schlesinger, 2001; Shin et al., 2014). Although it has been proven that the reaction of carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), we consider that the effect of rainfall is equal in each soil column and hence unconsidered as a controlling factor in this study. The Eq. (4) suggests that the proton from other origins such as the nitrification processes of NH₄⁺, as mentioned in introduction section, can play the role of weathering agent in agricultural areas. In this study, the urea, NH₄NO₃, NH₄HCO₃, NH₄Cl and (NH₄)₂CO₃ amendment increased (10 to 17-fold) the natural weathering rate of 2.00 g m⁻² a⁻¹ from limestone tablets in control treatment (table 2).

306	Thus these increases are strongly relative to the effect of the proton released from the			
307	nitrification of NH_4^+ . On the contrary, the carbonate precipitation will occur as due to			
308	the backward reaction of the Eq. (5) in following cases: (1) the degassing of dissolved			
309	CO ₂ , (2) soil evapotranspiration or (3) common ion effect: the increase of Ca ²⁺ , Mg ²⁺			
310	or CO ₃ ²⁻ in a weathering-system with equilibrium between water and calcite (Calmels			
311	et al., 2014; Dreybrodt, 1988).			
312	4.2 The main reactions and effects in different treatments			
313	The main reactions and effects of every treatment in this study were listed in	 带格式的: 厘米	缩进:	首行缩进:
314	Table 3.			
315	(1) The nitrification in NH ₄ -fertilizer: NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl, (NH ₄) ₂ CO ₃			
316	and urea			
317	In urea $(CO(NH_2)_2)$ treatment, the enzyme urease rapidly hydrolyzes the urea-N-	 带格式的 : 厘米	缩进:	首行缩进:
318	(CO(NH ₂) ₂) to NH ₄ ⁺ ions (Eq. (7)) when urea is applied to the soil (Soares et al.,			
319	<u>2012).</u>			
320	$\underline{\text{CO(NH}_2)_2 + 3\text{H}_2\text{O} \to 2\text{NH}_4^+ + 2\text{OH}^- + \text{CO}_2} $ (7)			
321	Although the study from Singh et al showed that a part of NH ₄ ⁺ may be lost as	 带格式的: 厘米	缩进:	首行缩进:
322	ammonia (NH ₃) and subsequently as nitrous oxide (N ₂ O) (Singh et al., 2013), yet the			
323	rest ammonium (NH ₄ ⁺) is mainly oxidized in soil by autotrophic bacteria (like			
324	Nitrosomonas) during nitrification, resulting in nitrite NO ₂ and H ⁺ ions. Nitrite is, in			
325	turn, oxidized by another bacterium, such as Nitrobacter, resulting in nitrate (NO ₃)			
326	(Eq. (8)) (Perrin et al., 2008).			
327	$NH_{4}^{+} + 2O_{2} \rightarrow NO_{3}^{-} + H_{2}O + 2H^{+} $ (8)			
328	The protons (H ⁺) produced by nitrification can be neutralized in two ways:	 带格式的: 厘米	缩进:	首行缩进:

329	(i) either by exchange process with base cations in the soil exchange complex	带格式的: 缩进:悬挂缩进:0. 字符,左 2.02 字符
330	(Eq. (9)) $\text{Soil} - \text{Ca} + 2\text{H}^+ \rightarrow \text{Soil} - 2\text{H}^+ + \text{Ca}^{2+}$ (9)	
331	(ii) or via carbonate mineral dissolution (Eq.(10))	带格式的: 缩进:首行缩进: 0
332	$\underline{Ca_{(1-x)}Mg_{x}CO_{3} + H^{+} \rightarrow (1-x) Ca^{2+} + xMg^{2+} + HCO_{3}^{-}} $ (10)	
333	Consequently, after Eq. (8) and Eq. (10) are combined, carbonate weathering by	
334	protons produced by nitrification is supposed to becomes (Eq. 11) (See details in	
335	Perrin et al., 2008 and Gandois et al., 2011).	
336	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}^{+} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2HCO_{3}^{-}}$	
337	<u>(11)</u>	
338	As discussed above, provided that the loss as ammonia (NH ₃) and nitrous oxide	带格式的 :缩进:首行缩进: 0 厘米
339	(N ₂ O) after hydrolyzation is unconsidered in this study, the final equation of	
340	carbonate weathering in NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl, (NH ₄) ₂ CO ₃ and urea treatments	
341	will be followed as, respectively:	
342	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}NO_{3} + 2O_{2} \rightarrow 2(1-x) Ca^{2+} + 2xMg^{2+} + 2NO_{3}^{-} + H_{2}O + 4(1-x)^{2} + 2(1-x)^{2} + 2(1$	
343	$2HCO_3^-$ (12)	
344	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}HCO_{3} + 2O_{2} \rightarrow 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + NO_{$	
345	$3HCO_3$ (13)	
346	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}Cl + 2O_{2} \rightarrow 2(1-x) \ Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + Cl^{-} + H_{2}O + 2Ca_{2}^{-} + Ca_{2}^{-} + Ca_{2}^{-$	
347	$\underline{2HCO_3}$ (14)	
348	$\underline{3Ca_{(1-x)}Mg_{x}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 2H_{2}O + 2NO_{3}^{-} $	
349	$\underline{\text{4HCO}_3}^{-} \tag{15}$	
350	$\underline{3Ca_{(1-x)}Mg_{x}CO_{3} + CO(NH_{2})_{2} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 4HCO_{3}^{-}}$	
351	<u>(16)</u>	
352	(2) No effect of NO ₃ -fertilizer treatment: NaNO ₃ treatment	
353	In NaNO ₃ treatment, the reaction occurs as Eq. (17), indicating that the addition	带格式的: 缩进:首行缩进: 0 厘米

354	of NO ₃ -fertilizer does not significantly influence carbonate weathering.	
355	$\underline{Ca_{(1-x)}Mg_{x}CO_{3} + NaNO_{3} + CO_{2} + H_{2}O \rightarrow (1-x) Ca^{2+} + xMg^{2+} + Na^{+} + NO_{3}^{-} +$	
356	<u>2HCO₃</u> (17)	
357	(3) The common ion effect: K ₂ CO ₃ treatment	
358	In K ₂ CO ₃ treatment, CO ₃ ²⁻ and HCO ₃ ⁻ will produce according to Eq. (18) after ←	带格式的 :缩进:首行缩进: 厘米
359	adding K ₂ CO ₃ , hence resulting in carbonate precipitation described in Eq. (19) due to	
360	the common ion effect.	
361	$K_2CO_3 + H_2O \rightarrow 2K^+ + HCO_3^- + OH^-$ (18)	带格式的 :缩进:左侧: 0.74 米
362	$(1-x) Ca^{2+} + xMg^{2+} + 2HCO_3^{-} \rightarrow Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O $ (19)	
363	(4) Complex effects: Nitrification versus Inhibition effect of PO ₄ in (NH ₄) ₃ PO ₄	
364	<u>treatments</u>	
365	For (NH ₄) ₃ PO ₄ treatment, the reaction of carbonate weathering will occur	带格式的 :缩进:首行缩进: 厘米
366	according to Eq. (11) due to the nitrification of NH ₄ ⁺ ionized from (NH ₄) ₃ PO ₄	
367	fertilizer will occur the nitrification. Whilst the PO ₄ ³⁻ anion will exert an inhibition to	
368	calcite dissolution: calcium orthophosphate (Ca-P) precipitation produces on the	
369	surface of calcite after the addition of PO ₄ ³⁻ in soil, resulting in inhibiting the	
370	dissolution of calcite.	
371	(5) Complex effects: Common ion effect versus Inhibition effect of PO ₄ in	
372	Ca ₃ (PO ₄) ₂ and Ca-Mg-P treatments	
373	In Ca ₃ (PO ₄) ₂ and Ca-Mg-P treatments, on the one hand, the Ca _(1-x) Mg _x CO ₃	带格式的 :缩进:首行缩进: 厘米
374	produces when the concentrations of Ca ²⁺ (or/and Mg ²⁺) increases as following Eq.	
375	(19). On the other hand, the inhibition effect of phosphate will cause that calcium	
376	phosphate precipitation produces on the surface of carbonate mineral after the	

addition of P in soil, correspondingly resulting in inhibiting the carbonate precipitation.

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

4.3 The difference between NH₄⁺ and NO₃⁻ in impacts on carbonate weathering and the implication on the estimation of CO₂ consumption

In order to further compare the difference between NH₄⁺ and NO₃⁻ effects on carbonate weathering, the initial molar amount of fertilizer-derived NH₄ per unit in every treatment were calculated and listed in Table 4. The results show that the amount of NH₄⁺ hydrolyzed from urea is 1.06 mole, while NH₄⁺ ionized from NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and (NH₄)₃PO₄ is 0.54 mole, 1.08 mole, 1.07 mole, 1.06 mole and 0.03 mole, respectively (Table 3). The Rw of limestone tablets and the initial amount of NH₄⁺ are plotted in Fig. 4. A distinct relationship between them is observed: the Rw in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments are bigger than in control treatment, where the initial amount of NH₄[±] displays similar results (Fig. 4). This suggests that carbonate weathering in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments are mainly attributed to the dissolution reaction described as Eq. (11). This process of carbonate weathering by protons from nitrification has been proven by many studies, from laboratory to field (Barnes and Raymond, 2009; Bertrand et al., 2007; Biasi et al., 2008; Chao et al., 2011; Errin et al., 2006; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Semhi and Suchet, 2000; West and McBride, 2005). We have noted that the Rw values in NH₄HCO₃ and (NH₄)₂CO₃ treatment are lower than even half of those in urea treatment in spite of adding the same amount of fertilizer-derived NH₄ (about 1.07 mole). This is probably because the two fertilizers, NH₄HCO₃ and (NH₄)₂CO₃, are easier to decompose and produce the NH₃ and CO₂ gases as following Eq. (20) and (21), resulting in the amount of fertilizer-derived NH₄

of lower than 1.07 moles.

 $NH_4HCO_3 \rightarrow NH_3 \uparrow + H_2O + CO_2 \uparrow \qquad (20)$

带格式的: 右, 缩进: 首行缩进 0.74 厘米

 $(NH_4)_2CO_3 \rightarrow 2NH_3 \uparrow + H_2O + CO_2 \uparrow$ (21)

带格式的:缩进:首行缩进: ^{厘米}

The Aw and Rw in (NH₄)₃PO₄ treatment, unlike in other NH₄-fertlizer treatments, had not a significant increase comparing with control treatment, which is not only owing to the low amount of added NH₄⁺ in (NH₄)₃PO₄ treatment (0.3 mole, see Table 4) but also more or less relative to the inhibition of phosphate (Chien et al., 2011; Wang et al., 2012). After the addition of (NH₄)₃PO₄ in soil, calcium orthophosphate (Ca-P) precipitation will form on calcite surface which is initiated with the aggregation of clusters leading to the nucleation and subsequent growth of Ca-P phases, at various pH values and ionic strengths relevant to soil solution conditions (Chien et al., 2011; Wang et al., 2012).

However, in Fig. 3, the Rw without significant difference with control treatment in NaNO₃ treatment indicates that the addition of NO₃-fertilizer does not significantly influence carbonate weathering.

A notable issue herein is that the NaNO₃ treatment produces the same amount of NO₃⁻ (1.07 mole) as other NH₄ fertilizer (NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea), but it fails to impact on carbonate weathering, which is raising a new problem. Eq. (5), usually as an expression for the natural weathering process of carbonate, is an important reaction for understanding the kinetics process of carbonate dissolution in carbonate-dominated areas, where the molar ratio of HCO₃⁻ and Me²⁺ in the river as an indicator is usually used to make estimations of CO₂ consumption by carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). At agricultural areas, the relationship between (Ca+Mg)/HCO₃⁻ and NO₃⁻

is usually employed to estimate the contribution of N-fertilizer to riverine Ca ²⁺ , Mg ²⁺
and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et
al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described as Eq.
(8) is usually considered as the unique origin of NO ₃ . According to the result of
NaNO ₃ treatment in this study, the contribution of protons from nitrification to
carbonate weathering may be overestimated if anthropogenic NO ₃ is neglected, since
the anthropogenic NO ₃ ⁻ does not release the proton described as Eq. (8). For NH ₄ NO ₃
fertilizer, the (Eq. (12)) show that the two moles of Ca ²⁺ +Mg ²⁺ , NO ₃ ⁻ and HCO ₃ ⁻ will
be produced when one mole NH ₄ NO ₃ react with 2 moles of carbonate, where only
half of NO ₃ originate from nitrification described as Eq. (8). This will result in a
double overestimation on the contribution of the nitrification to carbonate weathering
and thus mislead the estimation of CO ₂ consumption therein.

At regional scales, If different fertilizers are added simultaneously to an agricultural area, the estimation of CO₂ consumption by carbonate weathering might became more complicated, since the mole ratio of Ca+Mg, HCO₃⁻ and/or NO₃⁻ between different fertilization treatment is different (see Table 3). Thus, the related anthropogenic inputs (e.g. Ca+Mg, NH₄, NO₃⁻, HCO₃⁻, etc.) need to be investigated to more accurately estimate the impact of fertilization on carbonate weathering and its CO₂ consumption.

4.4 The comparison with other studied results

The Rw and Raw of limestone in control treatment in this study is 0.48‰ and 2.00 g m⁻² a⁻¹, which is consistent with the observations of 0.51-32.97 g m⁻² a⁻¹ (for Raw) in Nongla, Guangxi, a karst area of Southwestern China (Zhang, 2011) and the results of 0.05-5.06‰ (for Rw) and 1.08-136.90 g m⁻² a⁻¹ (for Raw) from the north slope of the Hochschwab massif in Australia (Plan, 2005) using limestone tablet

method. But the Raw of 2.00 g m⁻² a⁻¹ is lower than the results (7.0-63.5 g m⁻² a⁻¹ for Raw) from Jinfo Mountian in Chongqing of China (Zhang, 2011). These differences in carbonate weathering are mainly attributed to the different type of carbonate rock tablet, climate, micro-environment of soil, etc. The Raw of limestone in N-fertilizers treatment is 20.57-34.71 g m⁻² a⁻¹, similar to the weathering rate of carbonate in Orchard (32.97 g m⁻² a⁻¹) at Nongla, Manshan, Guangxi of China where usually involves in fertilization activities.

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

At larger scales like watershed, the weathering rate is usually estimated by using the riverine hydro-chemical method, which is inconsistent with the results from carbonate-rock-tablet test. The estimation of Zeng, et al. (2014) views that the carbon sink intensity calculated by carbonate rock tablet test is only one sixth of that estimated by using the riverine hydro-chemical method due to its own limits in methodology (Zeng et al., 2014). The results from Semhi, et al. (2000) shows the weathering rates of carbonate rock by using riverine hydro-chemical method are about 77.5 g m⁻² a⁻¹ and 50.4 g m⁻² a⁻¹ in upstream and downstream of the Garonne river, France, respectively, which are about 25-35 and 2-3 times than that in control treatment (2.00 g m⁻² a⁻¹ for natural weathering rate) and the N-fertilizer treatment (20.57-34.71 g m⁻² a⁻¹ for anthropic weathering rate) in this study. The global natural weathering rate of carbonate reported by Amiotte Suchet, et al. (2003) is 47.8 g m⁻² a⁻¹, is much higher than that we observed. Thus, we conclude that it is difficult to compare between the results from the carbonate-rock-tablet test and the riverine hydro-chemical method. The carbonate-rock-tablet test is suitable for the research on the condition controlled contrast or stimulated experiment, while the riverine hydro-chemical method is appropriate for the regional investigation and estimation. According to the estimation from Yue et al. (2015), The enhanced HCO₃ flux due to

476	<u>nitrification of NH_4^+ at Houzhai catchment of Guizhou province would be 3.72×10^5</u>
477	kg C/year and account for 18.7% of this flux in the entire catchment(Yue et al., 2015).
478	This is similar to estimates from other small agricultural carbonate basins (12–26%)
479	in Southwest France (Perrin et al., 2008; Semhi and Suchet, 2000).
480	5. Conclusion
481	The impact of the addition of different fertilizer (NH ₄ NO ₃ , NH ₄ HCO ₃ , NaNO ₃ , NH ₄ Cl,
482	$(NH_4)_2CO_3$, $Ca_3(PO_4)_2$, $(NH_4)_3PO_4$, $Ca-Mg-P$, $Urea$ and K_2CO_3) on carbonate
483	weathering was studied in a field column experiment with carbonate rock tablets at its
484	bottom of each. The weathering amount and ratio of carbonate rock tablets showed
485	that the addition of urea, NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl and (NH ₄) ₂ CO ₃ distinctly
486	increased carbonate weathering, which was attributed to the nitrification of NH ₄ ⁺ , and
487	the addition of Ca ₃ (PO ₄) ₂ , Ca-Mg-P and K ₂ CO ₃ induced carbonate precipitation due
488	to common ion effect. While the (NH ₄) ₃ PO ₄ and NaNO ₃ addition did not impact
489	significantly on carbonate weathering, where the former can be attributed to low
490	added amount of (NH4) ₃ PO ₄ , may be related to the inhibition of phosphate, and the
491	latter seemed to be raising a new question. The little impact of nitrate on carbonate
492	weathering may result in the overestimation of impact of N-fertilizer on CO ₂
493	consumption by carbonate weathering at the regional/global scale if the effect of NO ₃
494	and NH ₄ are not distinguished. Thus, the related anthropogenic inputs (e.g. Ca+ Mg,
495	NH ₄ , NO ₃ , HCO ₃ , etc.) need to be investigated to more accurately estimate the
496	impact of fertilization on carbonate weathering and its CO ₂ consumption. 4.2 The
497	kinetics and controlled factors of carbonate weathering
400	Experimental studies of corbonate dissolution kinetics have shown motal

carbonate weathering usually depends upon three parallel reactions occurring at the carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009): $MeCO_3 + H^+ \rightarrow Me^{2+} + HCO_3^ MeCO_3 + H_2CO_3 \rightarrow Me^{2+} + 2HCO_3$ $MeCO_3 \rightarrow Me^{2+} + CO_3^2$ where Me=Ca, Mg. As Eq. (5) describes, atmospheric/soil CO2 is usually regard as the natural weathering agent of carbonate, whereas many studies have exposed that carbonate weathering can occur due to the reaction (Eq. (4)) between carbonate and the other proton contributors, as mentioned in introduction section: s which can originate from the nitrification processes of N fertilizer H₄[±] (Semhi and Suchet, 2000; West and McBride, 2005; Oh and Raymond, 2006; Hamilton et al., 2007; Perrin et al., 2008; Barnes and Raymond, 2009; Pierson wickmann et al., 2009; Chao et al., 2011; Gandois et al., 2011), from the sulfuric acid acid, (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009), from organic acid secreted by microorganisms (Lian et al., 2008), as well and as from acidic soil (Chao et al., 2014)the role of. In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO₂ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH₄NO₃, NH₄HCO₃, NH₄Cl and (NH₄)₂CO₃ amendment increased (10 to 17 fold) the natural weathering rate of 2.00 g m²-a⁻¹ from limestone tablets in control treatment (table 2). These increases may be,

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

带格式的:下标 带格式的:上标

带格式的:缩进:首行缩进: 0 米

in the one hand, attributed to the effect of the proton released from the nitrification of 521 NH₄⁺. On the other hand, it may be, in theory, related to enhanced microbiogenic CO₂ 522 due to nitrogenous nutrients stimulation (Eq(5)), because fertilizer application can 523 524 increase soil CO2 flux (Sainju et al., 2008; Bhattacharyya et al., 2013), the increased CO2 can enhance carbonate dissolution rate at near neutral or alkali pH (Andrews and 525 Schlesinger, 2001). 526 527 According to the added amount of different fertilization treatment, the molar amount of added nitrogen nutrient in NaNO₃ treatment is 1.07mol, much bigger than in 528 529 NH₄NO₃, equivalent to NH₄HCO₃ and NH₄Cl treatment. However, the Acw and Rcw, and Racw of NaNO₃ treatment is far less (Fig. 3 and table 2), inhibiting that the 530 increases of carbonate weathering rate in urea, NH4NO3, NH4HCO3, NH4Cl and 531 (NH₄)₂CO₃ amendment have no distinct relationship with enhanced microbiogenic 532 CO₂ due to nitrogenous fertilizer amendment. 533 4.3 The effect of nitrification of NH₄-fertilizer 534 In urea (CO(NH₂)₂) treatment, the enzyme urease rapidly hydrolyzes the urea N 535

带格式的:字体:倾斜

带格式的:缩进:首行缩进: 符,定义网格后不调整右缩进, 调整西文与中文之间的空格, 调整中文和数字之间的空格

In urea (CO(NH₂)₂) treatment, the enzyme urease rapidly hydrolyzes the urea N (CO(NH₂)₂) to NH₄⁺ ions (Eq. (7)) when urea is applied to the soil (Soares et al., 2012).

$$CO(NH_2)_2 + 3H_2O \rightarrow 2NH_4^+ + 2OH^- + CO_2$$
 (7)

536

537

538

539

540

541

542

Table 3 shows that the amount of NH₄⁺ hydrolyzed from urea is 1.06 mol, while NH₄⁺ ionized from NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and (NH₄)₃PO₄ is 0.54 mol, 1.08 mol, 1.07 mol, 1.06 mol and 0.03 mol, respectively (Table 3). Although the study from Singh et al showed that a part of NH₄⁺ may be lost as ammonia (NH₃) and

subsequently as nitrous oxide (N_2O) (Singh et al., 2013), yet the rest ammonium (NH_4^+) is mainly oxidized in soil by autotrophic bacteria (like Nitrosomonas) during nitrification, resulting in nitrite NO_2^- and H^+ ions. Nitrite is, in turn, oxidized by another bacterium, such as Nitrobacter, resulting in nitrate (NO_3^-) (Eq. (8)) (Perrin et al., 2008).

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$$
 (8)

The protons (H⁺) produced by nitrification can be neutralized in two ways:

- (i) either by exchange process with base cations in the soil exchange complex
- $\frac{\text{(Eq. (9))}}{\text{Soil} \text{Ca} + 2\text{H}^+ \rightarrow \text{Soil} 2\text{H}^+ + \text{Ca}^{2+}}$ (9)
- 552 (ii) or via carbonate mineral dissolution (Eq.(10))

553
$$Ca_{(1-x)}Mg_{x}CO_{3} + H^{+} \rightarrow (1-x)Ca^{2+} + xMg^{2+} + HCO_{3}^{-}$$
 (10)

Consequently, after Eq. (8) and Eq. (10) are combined, carbonate weathering by

protons produced by nitrification is supposed to becomes (Eq. 11) (See details in

Perrin et al., 2008 and Gandois et al., 2011).

$$\frac{2\text{Ca}_{(1-x)}\text{Mg}_{x}\text{CO}_{3} + \text{NH}_{4}^{+} + 2\text{O}_{2} \rightarrow 2(1-x)\text{ Ca}^{2+} + 2x\text{Mg}^{2+} + \text{NO}_{3}^{-} + \text{H}_{2}\text{O} + 2\text{HCO}_{3}^{-}}{(11)}$$

The Rew of limestone tablets and the initial concentration of NH₄⁺-are plotted in Fig. 4. A distinct relationship between them is observed: the Aew and Rew in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments are bigger than in control treatment, where the initial concentration of NH₄⁺-displays similar results (Fig. 4). This suggests that carbonate weathering in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments are mainly attributed to the dissolution reaction described as Eq. (11). This process of carbonate weathering by protons from nitrification has been

proven by many studies, from laboratory to field (Semhi and Suchet, 2000; Bertrand et al., 2007; Oh and Raymond, 2006; Errin et al., 2006; Hamilton et al., 2007; Biasi et al., 2008; Perrin et al., 2008; Barnes and Raymond, 2009; Chao et al., 2011; West and McBride, 2005; Gandois et al., 2011). According to the estimation from Yue et al. (2015), The enhanced HCO₃ flux due to nitrification of NH₄ at Houzhai catchment of Guizhou province would be 3.72 × 10⁵ kg C/year and account for 18.7% of this flux in the entire catchment(Yue et al., 2015). This is similar to estimates from other small agricultural carbonate basins (12-26%) in Southwest France (Semhi and Suchet, 2000; Perrin et al., 2008). As discussed above, provided that the loss as ammonia (NH₃) and nitrous oxide (N2O) after hydrolyzation is unconsidered in this study, the final equation of carbonate weathering in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments will be followed as, respectively: $2C_{3(1-x)}Mg_{x}CO_{3} + NH_{4}NO_{3} + 2O_{2} \rightarrow 2(1-x)C_{3}^{2+} + 2xMg^{2+} + 2NO_{3}^{-} + H_{2}O +$ 2HCO₃-_____ (12) $2Ca_{(1-x)}Mg_xCO_3 + NH_4HCO_3 + 2O_2 \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_3 + H_2O +$ 3HCO₃- $2Ca_{(1-x)}Mg_xCO_3 + NH_4Cl + 2O_2 \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_3^{-} + Cl^{-} + H_2O +$ 2HCO₂- $3Ca_{(1-x)}Mg_{*}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 2H_{2}O + 3Ca_{(1-x)}Mg_{*}CO_{3} + 2Ca_{(1-x)}Mg_{*}CO_{3} + 2Ca_{(1-x)}Mg_$ 4HCO₃--(15) $3Ca_{(1-x)}Mg_xCO_3 + CO(NH_2)_2 + 4O_2 \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_3 + 4HCO_3$ (16)

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

The Acw and Rcw in (NH₄)₂PO₄ treatment, unlike in other NH₄ fertlizer treatments, had not a significant increase comparing with control treatment, which is not only owing to the low amount of added NH₄⁺ in (NH₄)₃PO₄ treatment (0.3 mol, see Table 3) but also relative to the inhibition of phosphate. After the addition of (NH₄)₃PO₄ in soil, calcium orthophosphate (Ca P) precipitation will form on calcite surface which is initiated with the aggregation of clusters leading to the nucleation and subsequent growth of Ca-P phases, at various pH values and ionic strengths relevant to soil solution conditions (Chien et al., 2011; Wang et al., 2012). 4.4 Little/no effect of NO₃-fertilizer on carbonate weathering and its implication to the evaluation of CO2 consumption by carbonate weathering In Fig. 3, the Acw and Rcw without significant difference with control treatment in NaNO₃ treatment indicates that the addition of NO₃ fertilizer does not significantly influence carbonate weathering. This result is raising a new problem.

Eq. (5), usually as an expression for the natural weathering process of carbonate, is an important reaction for understanding the kinetics process of carbonate dissolution in carbonate dominated areas, where the molar ratio of HCO₃ and Me²⁺ in the river as an indicator is usually used to make estimations of CO₂ consumption by carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). At agricultural areas, the relationship between (Ca+Mg)/HCO₃ and NO₃ is usually employed to estimate the contribution of N fertilizer to riverine Ca²⁺, Mg²⁺ and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described as Eq. (8) is usually considered as the unique origin of NO₃. According to the result of NaNO₃ treatment in this study, the contribution of protons from nitrification to carbonate weathering may be overestimated if anthropogenic NO₃ is neglected, since

the anthropogenic NO₃⁻does not release the proton described as Eq. (8). For NH₄NO₃ fertilizer, the (Eq. (12)) show that the two moles of Ca²⁺+Mg²⁺, NO₃⁻ and HCO₃⁻ will be produced when one mole NH₄NO₃ react with 2 moles of carbonate, where only half of NO₃⁻ originate from nitrification described as Eq. (8). This will result in doubled overestimation on the true contribution of the nitrification to CO₂ consumption by carbonate weathering.

At regional scales, If different fertilizers are added to an agricultural area, the estimation of CO₂ consumption by carbonate weathering might became more complicated, since the mole ratio of Ca+Mg, HCO₃ and/or NO₃ between different fertilization treatment is different (see Eq. (8) (12)). Thus, the related anthropogenic inputs (e.g. Ca+Mg, NH₄, NO₃, HCO₃, etc.) need to be investigated to more accurately estimate the impact of fertilization on carbonate weathering and its CO₂ consumption. Moreover, the statement that nitrogenous fertilizer can aid carbonate weathering may result in misunderstanding more or less, it should not be nitrogenous fertilizer but, rather, ammonium fertilizer.

5. Conclusion

The impact of the addition of different fertilizer (NH₄NO₃, NH₄HCO₃, NaNO₃, NH₄Cl, (NH₄)₂CO₃, Ca₃(PO₄)₂, (NH₄)₃PO₄, Ca-Mg P, Urea and K₂CO₃) on carbonate weathering was studied in a field column experiment with carbonate rock tablets at its bottom of each. The weathering amount and ratio of carbonate rock tablets showed that the addition of urea, NH₄NO₃, NH₄HCO₃, NH₄Cl and (NH₄)₂CO₃ distinctly increased carbonate weathering, which was attributed to the nitrification of NH₄⁺, and the addition of Ca₃(PO₄)₂, Ca Mg P and K₂CO₃ induced carbonate precipitation due to common ion effect. While the (NH₄)₃PO₄ and NaNO₃ addition did not impact

significantly on carbonate weathering, where the former can be attributed to low
added amount of (NH4) ₃ PO ₄ , may be related to the inhibition of phosphate, and the
latter seemed to be raising a new question. The little impact of nitrate on carbonate
weathering may result in the overestimation of impact of N fertilizer on CO2
consumption by carbonate weathering at the regional/global scale if the effect of NO ₃
and NH ₄ are not distinguished. Thus, the related anthropogenic inputs (e.g. Ca+ Mg,
NH ₄ , NO ₃ -, HCO ₃ -, etc.) need to be investigated to more accurately estimate the
impact of fertilization on carbonate weathering and its CO ₂ consumption. Moreover,
in order to avoid misunderstanding more or less, the statement that nitrogenous
fertilizer can aid carbonate weathering should be replaced by ammonium fertilizer.

6. Acknowledgements

This study is supported jointly by the Basic Science Research Fund from the Institute of Hydrogeology and Environmental Geology (Grant No. SK201208), the Chinese National Natural Science Foundation (No. 41403107 and No. 41325010), and the China Geological Survey Projects (No. 12120113005900).

References:

> Amiotte Suchet, P., J.L. Probst, and W. Ludwig. 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem Cy 17:1-13.

带格式的:字体:小四

带格式的: 两端对齐

Andrews, J.A., and W.H. Schlesinger. 2001. Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochem. Cycles 15:149-162.

Barnes, R.T., and P.A. Raymond. 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chem Geol 266:318-327.

Bertrand, I., O. Delfosse, and B. Mary. 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry 39:276-288.

Biasi, C., S.E. Lind, N.M. Pekkarinen, J.T. Huttunen, N.J. Shurpali, N.P. Hyvönen, M.E. Repo, and P.J.

- Martikainen. 2008. Direct experimental evidence for the contribution of lime to CO₂ release from
- 668 managed peat soil. Soil Biology and Biochemistry 40:2660-2669.
- 669 Calmels, D., J. Gaillardet, and L. François. 2014. Sensitivity of carbonate weathering to soil CO₂
- production by biological activity along a temperate climate transect. Chem Geol 390:74-86.
- 671 Chao, S., L. Changli, Z. Yun, and H. Hongbing. 2014. Impact of animal manure addition on
- agricultural lime weathering in acidic soil: pH dependence and CO₂ independence of agricultural lime
- weathering. Procedia Earth and Planetary Science:405-409.
- 674 Chao, S., L. Changli, W. Junkun, Z. Yun, and H. Hongbing. 2011. Impact of the Addition of a
- 675 Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Appl
- 676 Geochem 26:170-173.
- 677 Chien, S.H., L.I. Prochnow, S. Tu, and C.S. Snyder. 2011. Agronomic and environmental aspects of
- phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosys
- 679 89:229-255.
- 680 Chou, L., R.M. Garrels, and R. Wollast. 1989. Comparative study of the kinetics and mechanisms of
- dissolution of carbonate minerals. Chem Geol 78:269-282.
- 682 Dreybrodt, W. 1988. Processes in karst systems: physics, chemistry, and geology Springer-Verlag
- Berlin Heidelberg.
- 684 Dreybrodt, W., J. Lauckner, L. Zaihua, U. Svensson, and D. Buhmann. 1996. The kinetics of the
- reaction $CO_2 + H_2O \rightarrow H^+ + HCO_3$ as one of the rate limiting steps for the dissolution of calcite in the
- 686 <u>system H₂O-CO₂-CaCO₃. Geochim Cosmochim Ac 60:3375-3381.</u>
- Egli, M., and P. Fitze. 2001. Quantitative aspects of carbonate leaching of soils with differing ages and
- 688 <u>climates. Catena 46:35-62.</u>
- 689 Errin, A.S.P., A.P. Robst, and J.L.P. Robst. 2006. Impact of nitrogen fertilizers on natural weathering
- processes: Evident role on CO₂ consumption The oxygen isotopic composition of Precambrian cherts,
- 691 pp. 2332-2332 Goldschmidt Conference, Vol. 58.
- 692 Etchanchu, D., and J. Probst. 1988. Evolution of the chemical composition of the Garonne River water
- during the period 1971-1984. Hydrological sciences journal 33:243-256.
- 694 (ed.) 1981. Proceedings of the 8th International Congress of Speleology Bowling Green, Kentucky.
- 695 Gams, I. 1985. International comparative measurements of surface solution by means of standard
- 696 <u>limestone tablets. Razpr IV Razeda Sazu 26:361-386.</u>
- 697 Gandois, L., A.S. Perrin, and A. Probst. 2011. Impact of nitrogenous fertiliser-induced proton release
- 698 on cultivated soils with contrasting carbonate contents: A column experiment. Geochim Cosmochim
- 699 <u>Ac 75:1185-1198.</u>
- 700 GBS. 2014. 2014 Guizhou Statistical Yearbook Statistical Press of China, Beijing.
- 701 Hagedorn, B., and I. Cartwright. 2009. Climatic and lithologic controls on the temporal and spatial
- 702 variability of CO₂ consumption via chemical weathering: An example from the Australian Victorian
- 703 Alps. Chem Geol 260:234-253.
- 704 Hamilton, S.K., A.L. Kurzman, C. Arango, L. Jin, and G.P. Robertson. 2007. Evidence for carbon
- 705 sequestration by agricultural liming. Global Biogeochem Cy 21:1-12.
- 706 Han, Z., and Z. Jin. 1996. Hydrogeology of Guizhou Province, China Seismic Publication, Beijing.
- 707 Hunter, A.H. 1980. Laboratory and greenhouse techniques for nutrient survey to determine the soil
- 708 amendments required for optimum plant growth. Mimeograph. Agro Service International (ASI),
- 709 Florida, USA.
- 710 Jiang, Y. 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst

- 711 underground river system: Evidence from major elements and δ ¹³C_{DIC} in Nandong, Southwest China.
- 712 <u>J Contam Hydrol 152:1-11.</u>
- 713 Jiang, Y., Y. Wu, C. Groves, D. Yuan, and P. Kambesis. 2009. Natural and anthropogenic factors
- 714 affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J
- 715 Contam Hydrol 109:49-61.
- 716 Jiang, Z., and D. Yuan. 1999. CO₂ source-sink in karst processes in karst areas of China. Episodes
- 717 22:33-35
- 718 Jiang, Z., Y. Lian, and X. Qin. 2013. Carbon cycle in the epikarst systems and its ecological effects in
- 719 South China. Environ Earth Sci 68:151-158.
- 720 Kiefer, R.H. 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surf Proc
- 721 <u>Land 19:213-232.</u>
- 722 Kitano, Y., M. Okumura, and M. Idogaki. 1978. Uptake of phosphate ions by calcium carbonate.
- 723 <u>Geochem J:29-37.</u>
- 724 Kump, L.R., S.L. Brantley, and M.A. Arthur. 2000. Chemical weathering, atmospheric CO₂, and
- 725 <u>climate. Annu Rev Earth Pl Sc 28:611-667.</u>
- 726 Lang, Y., C. Liu, Z. Zhao, S. Li, and G. Han. 2006. Geochemistry of surface and ground water in
- 727 Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Appl Geochem
- 728 <u>21:887-903.</u>
- 729 Lerman, A., and L. Wu. 2006. CO₂ and sulfuric acid controls of weathering and river water
- 730 <u>composition. J Geochem Explor 88:427-430.</u>
- 731 Lerman, A., L. Wu, and F.T. Mackenzie. 2007. CO₂ and H₂SO₄ consumption in weathering and
- 732 material transport to the ocean, and their role in the global carbon balance. Mar Chem 106:326-350.
- 733 Li, S., D. Calmels, G. Han, J. Gaillardet, and C. Liu. 2008. Sulfuric acid as an agent of carbonate
- 734 weathering constrained by δ ¹³C_{DIC}: Examples from Southwest China. Earth Planet Sc Lett
- 735 <u>270:189-199.</u>
- 736 Li, S., Z. Xu, H. Wang, J. Wang, and Q. Zhang. 2009. Geochemistry of the upper Han River basin,
- 737 China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chem Geol 264:89-95.
- 738 Lian, B., Y. Chen, L. Zhu, and R. Yang. 2008. Effect of Microbial Weathering on Carbonate Rocks.
- 739 Earth Science Frontiers 15:90-99.
- 740 Liu, C., S. Li, Y. Lang, and H. Xiao. 2006. Using δ^{15} N- and δ^{18} O-Values To Identify Nitrate
- 741 Sources in Karst Ground Water, Guiyang, Southwest China. Environ Sci Technol 40:6928-6933.
- 742 Liu, Z. 2011. "Method of maximum potential dissolution" to calculate the intensity of karst process
- 743 and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test.
- 744 <u>Carsologica Sinica 30:79-82.</u>
- 745 Liu, Z., and W. Dreybrod. 1997. Dissolution kinetics of calcium carbonate minerals in H₂O-CO₂
- 346 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction $H_2O + CO_2$
- 747 $\leftrightarrow \text{H}^+ + \text{HCO}_3$. Geochim Cosmochim Ac 61:2879-2889.
- 748 Liu, Z., W. Dreybrodt, and H. Liu. 2011. Atmospheric CO₂ sink: silicate weathering or carbonate
- 749 weathering? Appl Geochem 26:292-294.
- 750 Liu, Z., H. Sun, L. Baoying, L. Xiangling, Y. Wenbing, and Z. Cheng. 2010. Wet-dry seasonal
- 751 <u>variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at</u>
- 752 <u>Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for</u>
- 753 <u>climatic reconstruction. Chem Geol 273:258-266.</u>
- NBS. 2014. 2014 Statistical Yearbook. Statistical Press of China, Beijing.

- 755 Oh, N., and P.A. Raymond. 2006. Contribution of agricultural liming to riverine bicarbonate export and
- 756 CO₂ sequestration in the Ohio River basin. Global Biogeochem Cy 20:1-17.
- 757 Perrin, A., A. Probst, and J. Probst. 2008. Impact of nitrogenous fertilizers on carbonate dissolution in
- 758 small agricultural catchments: Implications for weathering CO₂ uptake at regional and global scales.
- 759 Geochim Cosmochim Ac 72:3105-3123.
- 760 Pierson-wickmann, A., L. Aquilina, C. Martin, L. Ruiz, and J. Molénat. 2009. High chemical
- 761 weathering rates in first-order granitic catchments induced by agricultural stress. Chem Geol
- 762 265:369-380.
- 763 Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
- 764 alps. Geomorphology 68:201-212.
- 765 Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂-water
- 766 systems at 5 to 60 °C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216.
- 767 Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite
- 768 dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 C and 1 to 55 atm
- 769 pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32.
- 770 Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical
- 771 and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79.
- 772 Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering-erosion
- 773 processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878.
- 774 Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes
- 775 affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280.
- 776 Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on ammonia
- 777 and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
- 778 Sci Total Environ 465:56-63.
- 779 Soares, J.R., H. Cantarella, and M.L.D.C. Menegale. 2012. Ammonia volatilization losses from
- 780 surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry 52:82-89.
- 781 Trudgill, S.T. 1975. Measurement of erosional weight loss of rock tablets. British Geomorphological
- 782 Research Group Technical Bulletin 17:13-20.
- 783 Wang, L., E. Ruiz-Agudo, C.V. Putnis, M. Menneken, and A. Putnis. 2012. Kinetics of Calcium
- 784 Phosphate Nucleation and Growth on Calcite: Implications for Predicting the Fate of Dissolved
- 785 Phosphate Species in Alkaline Soils. Environ Sci Technol 46:834-842.
- 786 West, T.O., and A.C. McBride. 2005. The contribution of agricultural lime to carbon dioxide emissions
- 787 in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
- 788 Environment 108:145-154.
- Yue, F.J., S.L. Li, C.Q. Liu, Y.C. Lang, and H. Ding. 2015. Sources and transport of nitrate constrained 789
- 790 by the isotopic technique in a karst catchment: an example from Southwest China. Hydrol Process
- 791 29:1883-1893.
- 792 Zeng, C., M. Zhao, R. Yang, and Z. Liu. 2014. Comparison of karst processes-related carbon sink
- 793 intensity calculated by carbonate rock tablet test and solute load method: a case study in the Chenqi
- 794 karst spring system. Hydrogology & Engineering Geology 41:106-111.
- 795 Zhang, C. 2011. Carbonate rock dissolution rates in different landuses and their carbon sink effect.
- 796 Chinese Sci Bull 56:3759-3765.
- 797

- 799 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock
- 800 lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity
- 801 river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13.
- 802 Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical
- 803 <u>weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical Cycles,</u>
- 804 15(1): 149-162.
- 805 Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical
- 806 <u>weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochem. Cycles, 15:</u>
- 807 149-162.
- 808 Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to
- 809 inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327.
- 810 Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and
- 811 ealearcous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1):
- 812 276-288.
- 813 Bhattacharyya, P. et al., 2013. Greenhouse gas emission in relation to labile soil C, N pools and
- 814 <u>functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical</u>
- 815 rice. Soil and Tillage Research, 129: 93-105.
- 816 Biasi, C. et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from
- 817 managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669.
- 818 Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a
- 819 Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied
- 820 <u>Geochemistry</u>, 26(S): 170-173.
- 821 Chao, S., Changli, L., Yun, Z. and Hongbing, H., 2014. Impact of animal manure addition on
- 822 <u>agricultural lime weathering in acidic soil: pH dependence and CO₂ independence of agricultural lime</u>
- weathering. Procedia Earth and Planetary Science(10): 405-409.
- 824 Chien, S.H., Prochnow, L.I., Tu, S. and Snyder, C.S., 2011. Agronomic and environmental aspects of
- 825 phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling in
- 826 Agroecosystems, 89(2): 229-255.
- 827 Chou, L., Garrels, R.M. and Wollast, R., 1989. Comparative study of the kinetics and mechanisms of
- 828 dissolution of carbonate minerals. Chemical Geology, 78(3-4): 269-282.
- 829 Dreybrodt, W., Lauckner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the
- 830 reaction $CO_2 + H_2O \rightarrow H^+ + HCO_3$ as one of the rate limiting steps for the dissolution of calcite in the
- 831 <u>system H₂O · CO₂ · CaCO₃ · Geochimica et Cosmochimica Acta, 60(18): 3375-3381.</u>
- 832 Egli, M. and Fitze, P., 2001. Quantitative aspects of carbonate leaching of soils with differing ages and
- 833 <u>climates. Catena, 46(1): 35-62.</u>
- 834 Errin, A.S.P., Robst, A.P. and Robst, J.L.P., 2006. Impact of nitrogen fertilizers on natural weathering
- 835 processes: Evident role on CO₂ consumption The oxygen isotopic composition of Precambrian cherts,
- 836 Goldschmidt Conference, pp. 2332-2332.
- 837 Etchanchu, D. and Probst, J., 1988. Evolution of the chemical composition of the Garonne River water
- 838 during the period 1971-1984. Hydrological sciences journal, 33(3): 243-256.
- 839 Gams, I., 1981. Comparative research of limestone solution by means of standard tablets, Proceedings
- 840 of the 8th International Congress of Speleology Bowling Green, Kentucky, pp. 273-275.
- 841 Gams, I., 1985. International comparative measurements of surface solution by means of standard
- 842 <u>limestone tablets. Razpr IV Razeda Sazu, 26: 361-386.</u>

- 843 Gandois, L., Perrin, A.S. and Probst, A., 2011. Impact of nitrogenous fertiliser induced proton release
- 844 on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et
- 845 Cosmochimica Acta, 75: 1185-1198.
- 846 GBS, 2014. 2014 Guizhou Statistical Yearbook. Statistical Press of China, Beijing.
- 847 Hagedorn, B. and Cartwright, I., 2009. Climatic and lithologic controls on the temporal and spatial
- 848 variability of CO₂ consumption via chemical weathering: An example from the Australian Victorian
- 849 Alps. Chemical Geology, 260(3-4): 234-253.
- 850 Hamilton, S.K., Kurzman, A.L., Arango, C., Jin, L. and Robertson, G.P., 2007. Evidence for carbon
- 851 sequestration by agricultural liming. Global Biogeochemical Cycles, 21(GB2021): 1-12.
- 852 Han, Z. and Jin, Z., 1996. Hydrogeology of Guizhou Province, China. Seismic Publication, Beijing.
- 853 Hunter, A.H., 1980. Laboratory and greenhouse techniques for nutrient survey to determine the soil
- 854 amendments required for optimum plant growth. Mimeograph. Agro Service International (ASI),
- 855 Florida, USA.
- 856 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst
- 857 underground river system: Evidence from major elements and δ ¹³C_{DIC} in Nandong, Southwest China.
- 858 Journal of Contaminant Hydrology, 152(0): 1-11.
- 859 Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors
- 860 affecting the groundwater quality in the Nandong karst underground river system in Yunan, China.
- 861 <u>Journal of Contaminant Hydrology, 109(1-4): 49-61.</u>
- 862 Jiang, Z. and Yuan, D., 1999. CO₂ source sink in karst processes in karst areas of China. Episodes,
- 863 22(1): 33-35.
- 864 Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in
- 865 South China. Environmental earth sciences, 68(1): 151-158.
- 866 Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface
- 867 Processes and Landforms, 19(3): 213-232.
- 868 Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate.
- 869 Geochemical Journal(12): 29-37.
- 870 Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in
- 871 Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Applied
- 872 Geochemistry, 21(6): 887-903.
- 873 Lerman, A. and Wu, L., 2006. CO₂ and sulfuric acid controls of weathering and river water
- 874 composition. Journal of Geochemical Exploration, 88(1-3): 427-430.
- 875 Lerman, A., Wu, L. and Mackenzie, F.T., 2007. CO₂ and H₂SO₄ consumption in weathering and
- 876 material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2):
- 877 326-350.
- 878 Li, S., Calmels, D., Han, G., Gaillardet, J. and Liu, C., 2008. Sulfuric acid as an agent of carbonate
- 879 <u>weathering constrained by δ ¹³C_{DIC} : Examples from Southwest China. Earth and Planetary Science</u>
- 880 <u>Letters, 270(3-4): 189-199.</u>
- 881 Li, S., Xu, Z., Wang, H., Wang, J. and Zhang, Q., 2009. Geochemistry of the upper Han River basin,
- 882 China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chemical Geology.
- 883 <u>264(1-4): 89-95.</u>
- 884 Lian, B., Chen, Y., Zhu, L. and Yang, R., 2008. Effect of Microbial Weathering on Carbonate Rocks.
- 885 <u>Earth Science Frontiers</u>, 15(6): 90-99.
- 886 Liu, C., Li, S., Lang, Y. and Xiao, H., 2006. Using & 15N- and & 18O-Values To Identify Nitrate

- 887 Sources in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology,
- 888 40(22): 6928-6933.
- 889 Liu, Z. et al., 2010. Wet dry seasonal variations of hydrochemistry and carbonate precipitation rates in
- 890 a travertine depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of
- 891 biannual laminae in travertine and for climatic reconstruction. Chemical Geology, 273(3-4): 258-266.
- 892 <u>Liu, Z., 2011. "Method of maximum potential dissolution" to calculate the intensity of karst process</u>
- 893 and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock tablet test.
- 894 <u>Carsologica Sinica, 30(4): 79-82.</u>
- 895 Liu, Z. and Dreybrod, W., 1997. Dissolution kinetics of calcium carbonate minerals in H₂O-CO₂
- 896 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H₂O + CO₂
- 897 $\longleftrightarrow H^+ + HCO_3^-$. Geochimica et Cosmochimica Acta, 61(14): 2879-2889.
- 898 Liu, Z., Dreybrodt, W. and Liu, H., 2011. Atmospheric CO₂ sink: silicate weathering or carbonate
- 899 <u>weathering? Applied Geochemistry, 26(S): 292-294.</u>
- 900 NBS, 2014. 2014 Statistical Yearbook. Statistical Press of China, Beijing.
- 901 Oh, N. and Raymond, P.A., 2006. Contribution of agricultural liming to riverine bicarbonate export and
- 902 CO₂ sequestration in the Ohio River basin. Global Biogeochemical Cycles, 20: 1-17.
- 903 Perrin, A., Probst, A. and Probst, J., 2008. Impact of nitrogenous fertilizers on carbonate dissolution in
- 904 small agricultural catchments: Implications for weathering CO₂ uptake at regional and global scales.
- 905 Geochimica et Cosmochimica Acta, 72(13): 3105-3123.
- 906 Pierson-wickmann, A., Aquilina, L., Martin, C., Ruiz, L. and Molénat, J., 2009. High chemical
- 907 weathering rates in first-order granitic catchments induced by agricultural stress. Chemical Geology,
- 908 265: 369-380.
- 909 Plan, L., 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
- 910 <u>alps. Geomorphology, 68(3-4): 201-212.</u>
- 911 Plummer, L.N., Wigley, T. and Parkhurst, D.L., 1978. The kinetics of calcite dissolution in CO₂-water
- 912 systems at 5 to 60 °C and 0.0 to 1 atm CO₂. American Journal of Science, 278: 179-216.
- 913 Pokrovsky, O.S., Golubev, S.V., Schott, J. and Castillo, A., 2009. Calcite, dolomite and magnesite
- 914 dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm
- 915 pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chemical Geology, 265(1-2):
- 916 20-32.
- 917 Probst, J., 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical
- 918 and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal, 31(1): 61-79.
- 919 Sainju, U.M., Jabro, J.D. and Stevens, W.B., 2008. Soil carbon dioxide emission and carbon content as
- 920 affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental
- 921 Quality, 37(1): 98-106.
- 922 Semhi, K. and Suchet, A., 2000. Impact of nitrogen fertilizers on the natural weathering erosion
- processes and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6): 865-878.
- 924 Singh, J., Kunhikrishnan, A., Bolan, N.S. and Saggar, S., 2013. Impact of urease inhibitor on ammonia
- 925 and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
- 926 Science of The Total Environment, 465(0): 56-63.
- 927 Soares, J.R., Cantarella, H. and Menegale, M.L.D.C., 2012. Ammonia volatilization losses from
- 928 surface applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52(0):
- 929 <u>82-89.</u>
- 930 Trudgill, S.T., 1975. Measurement of erosional weight loss of rock tablets. British Geomorphological

- 931 Research Group Technical Bulletin, 17: 13-20.
- 932 Wang, L., Ruiz Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A., 2012. Kinetics of Calcium
- 933 Phosphate Nucleation and Growth on Calcite: Implications for Predicting the Fate of Dissolved
- 934 Phosphate Species in Alkaline Soils. Environmental Science & Technology, 46(2): 834-842.
- 935 West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
- 936 in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
- 937 Environment, 108(2): 145-154.
- 938 Yue, F.J., Li, S.L., Liu, C.O., Lang, Y.C. and Ding, H., 2015. Sources and transport of nitrate
- 939 constrained by the isotopic technique in a karst catchment: an example from Southwest China.
- 940 Hydrological Processes, 29(8): 1883-1893.

References:

- 943 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock
- 944 lithology: Implications for the atmospheric/soil CO₂-uptake by continental weathering and alkalinity
- 945 river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13.
- 946 Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical
- 947 weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical Cycles,
- 948 15(1): 149-162.
- 949 Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical
- 950 weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochem. Cycles, 15:
- 951 149-162.
- 952 Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to
- 953 inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327.
- 954 Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and
- 955 calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1):
- 956 276-288.
- 957 Bhattacharyya, P. et al., 2013. Greenhouse gas emission in relation to labile soil C, N pools and
- 958 functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical
- 959 rice. Soil and Tillage Research, 129: 93-105.
- 960 Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a
- 961 Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied
- 962 Geochemistry, 26(S): 170-173.
- 963 Chao, S., Changli, L., Yun, Z. and Hongbing, H., 2014. Impact of animal manure addition on
- 964 agricultural lime weathering in acidic soil: pH dependence and CO2 independence of agricultural lime
- 965 weathering. Procedia Earth and Planetary Science(10): 405-409.
- 966 Chien, S.H., Prochnow, L.I., Tu, S. and Snyder, C.S., 2011. Agronomic and environmental aspects of
- 967 phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling in
- 968 Agroecosystems, 89(2): 229-255.
- 969 Chou, L., Garrels, R.M. and Wollast, R., 1989. Comparative study of the kinetics and mechanisms of
- 970 dissolution of carbonate minerals. Chemical Geology, 78(3-4): 269-282.
- 971 Dreybrodt, W., Lauckner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the
- 972 reaction CO₂+ H₂O → H⁺+ HCO₃ as one of the rate limiting steps for the dissolution of calcite in the
- 973 system H₂O-CO₂-CaCO₃. Geochimica et Cosmochimica Acta, 60(18): 3375-3381.
- 974 Egli, M. and Fitze, P., 2001. Quantitative aspects of carbonate leaching of soils with differing ages and

- 975 climates. Catena, 46(1): 35-62.
- 976 Errin, A.S.P., Robst, A.P. and Robst, J.L.P., 2006. Impact of nitrogen fertilizers on natural weathering
- 977 processes: Evident role on CO₂-consumption The oxygen isotopic composition of Precambrian cherts,
- 978 Goldschmidt Conference, pp. 2332-2332.
- 979 Etchanchu, D. and Probst, J., 1988. Evolution of the chemical composition of the Garonne River water
- 980 during the period 1971-1984. Hydrological sciences journal, 33(3): 243-256.
- 981 Gams, I., 1985. International comparative measurements of surface solution by means of standard
- 982 limestone tablets. Razpr IV Razeda Sazu, 26: 361-386.
- 983 Gandois, L., Perrin, A.S. and Probst, A., 2011. Impact of nitrogenous fertiliser-induced proton release
- 984 on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et
- 985 Cosmochimica Acta, 75: 1185-1198.
- 986 GBS, 2014. 2014 Guizhou Statistical Yearbook. Statistical Press of China, Beijing.
- 987 Hagedorn, B. and Cartwright, I., 2009. Climatic and lithologic controls on the temporal and spatial
- 988 variability of CO₂ consumption via chemical weathering: An example from the Australian Victorian
- 989 Alps. Chemical Geology, 260(3-4): 234-253.
- 990 Hamilton, S.K., Kurzman, A.L., Arango, C., Jin, L. and Robertson, G.P., 2007. Evidence for carbon
- 991 sequestration by agricultural liming. Global Biogeochemical Cycles, 21(GB2021): 1-12.
- 992 Han, Z. and Jin, Z., 1996. Hydrogeology of Guizhou Province, China. Seismic Publication, Beijing.
- 993 Hunter, A.H., 1980. Laboratory and greenhouse techniques for nutrient survey to determine the soil
- 994 amendments required for optimum plant growth. Mimeograph. Agro Service International (ASI),
- 995 Florida, USA.
- 996 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst
- 997 underground river system: Evidence from major elements and & ¹³C_{DIC} in Nandong, Southwest China.
- 998 Journal of Contaminant Hydrology, 152(0): 1-11.
- 999 Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors
- 1000 affecting the groundwater quality in the Nandong karst underground river system in Yunan, China.
- 1001 Journal of Contaminant Hydrology, 109(1-4): 49-61.
- 1002 Jiang, Z. and Yuan, D., 1999. CO₂ source-sink in karst processes in karst areas of China. Episodes,
- 1003 22(1): 33-35.
- 1004 Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in
- 1005 South China. Environmental earth sciences, 68(1): 151-158.
- 1006 Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface
- 1007 Processes and Landforms, 19(3): 213-232.
- 1008 Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate.
- 1009 Geochemical Journal(12): 29-37.
- 1010 Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in
- 1011 Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Applied
- 1012 Geochemistry, 21(6): 887-903.
- 1013 Lerman, A. and Wu, L., 2006. CO₂ and sulfuric acid controls of weathering and river water
- 1014 composition. Journal of Geochemical Exploration, 88(1-3): 427-430.
- 1015 Lerman, A., Wu, L. and Mackenzie, F.T., 2007. CO₂ and H₂SO₄ consumption in weathering and
- 1016 material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2):
- 1017 326-350.
- 1018 Li, S., Calmels, D., Han, G., Gaillardet, J. and Liu, C., 2008. Sulfuric acid as an agent of carbonate

- 1019 weathering constrained by δ ¹²C_{DIC}: Examples from Southwest China. Earth and Planetary Science
- 1020 Letters, 270(3-4): 189-199.
- 1021 Li, S., Xu, Z., Wang, H., Wang, J. and Zhang, Q., 2009. Geochemistry of the upper Han River basin,
- 1022 China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chemical Geology,
- 1023 264(1-4): 89-95.
- 1024 Lian, B., Chen, Y., Zhu, L. and Yang, R., 2008. Effect of Microbial Weathering on Carbonate Rocks.
- 1025 Earth Science Frontiers, 15(6): 90-99.
- 1026 Liu, C., Li, S., Lang, Y. and Xiao, H., 2006. Using δ¹⁵N and δ¹⁸O Values To Identify Nitrate
- 1027 | Sources in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology,
- 1028 40(22): 6928-6933.
- 1029 Liu, Z. et al., 2010. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in
- 1030 a travertine depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of
- 1031 biannual laminae in travertine and for climatic reconstruction. Chemical Geology, 273(3-4): 258-266.
- 1032 Liu, Z., 2011. "Method of maximum potential dissolution" to calculate the intensity of karst process
- 1033 and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock tablet test.
- 1034 Carsologica Sinica, 30(4): 79-82.
- 1035 Liu, Z. and Dreybrod, W., 1997. Dissolution kinetics of calcium carbonate minerals in H₂O-CO₂
- 1036 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H₂O + CO₂
- 1037 $\leftrightarrow H^+ + HCO_3^-$. Geochimica et Cosmochimica Acta, 61(14): 2879-2889.
- 1038 Liu, Z., Dreybrodt, W. and Liu, H., 2011. Atmospheric CO₂ sink: silicate weathering or carbonate
- 1039 weathering? Applied Geochemistry, 26(S): 292-294.
- 1040 NBS, 2014. 2014 Statistical Yearbook. Statistical Press of China, Beijing.
- 1041 Oh, N. and Raymond, P.A., 2006. Contribution of agricultural liming to riverine bicarbonate export and
- 1042 CO₂ sequestration in the Ohio River basin. Global Biogeochemical Cycles, 20: 1-17.
- 1043 Perrin, A., Probst, A. and Probst, J., 2008. Impact of nitrogenous fertilizers on carbonate dissolution in
- 1044 small agricultural catchments: Implications for weathering CO₂ uptake at regional and global scales.
- 1045 Geochimica et Cosmochimica Acta, 72(13): 3105-3123.
- 1046 Pierson-wickmann, A., Aquilina, L., Martin, C., Ruiz, L. and Molénat, J., 2009. High chemical
- 1047 weathering rates in first order granitic catchments induced by agricultural stress. Chemical Geology,
- 1048 265: 369-380.
- 1049 Plan, L., 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
- 1050 alps. Geomorphology, 68(3-4): 201-212.
- 1051 Plummer, L.N., Wigley, T. and Parkhurst, D.L., 1978. The kinetics of calcite dissolution in CO₂-water
- 1052 systems at 5 to 60 ℃ and 0.0 to 1 atm CO₂. American Journal of Science, 278: 179-216.
- 1053 Pokrovsky, O.S., Golubev, S.V., Schott, J. and Castillo, A., 2009. Calcite, dolomite and magnesite
- 1054 dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 € and 1 to 55 atm
- 1055 PCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chemical Geology, 265(1-2):
- 1056 20-32.
- 1057 Probst, J., 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical
- and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal, 31(1): 61-79.
- 1059 Sainju, U.M., Jabro, J.D. and Stevens, W.B., 2008. Soil carbon dioxide emission and carbon content as
- 1060 affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental
- 1061 Quality, 37(1): 98-106.
- 1062 Semhi, K. and Suchet, A., 2000. Impact of nitrogen fertilizers on the natural weathering erosion

1063	processes and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6): 865-878.
1064	Singh, J., Kunhikrishnan, A., Bolan, N.S. and Saggar, S., 2013. Impact of urease inhibitor on ammonia
1065	and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
1066	Science of The Total Environment, 465(0): 56-63.
1067	Soares, J.R., Cantarella, H. and Menegale, M.L.D.C., 2012. Ammonia volatilization losses from
1068	surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52(0):
1069	82-89.
1070	Wang, L., Ruiz-Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A., 2012. Kinetics of Calcium
1071	Phosphate Nucleation and Growth on Calcite: Implications for Predicting the Fate of Dissolved
1072	Phosphate Species in Alkaline Soils. Environmental Science & Technology, 46(2): 834-842.
1073	West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
1074	in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
1075	Environment, 108(2): 145-154.
1076	West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
1077	in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
1078	Environment, 108(2): 145-154.
1079	Yue, F.J., Li, S.L., Liu, C.Q., Lang, Y.C. and Ding, H., 2015. Sources and transport of nitrate
1080	constrained by the isotopic technique in a karst catchment: an example from Southwest China.
1081	Hydrological Processes, 29(8): 1883-1893.
1082	

Table 1 Chemical composition of soil

带格式表格

Parameter	Unit	Values
pН	-	6.94
Content of particle (<0.01mm)	<u>%</u>	<u>74</u>
Content of particle (<0.001mm)	<u>%</u>	<u>45</u>
Organic matter	%	0.99
$\mathrm{NH_4}^+\mathrm{-N}$	mg/kg	339.87
NO_3 -N	mg/kg	569.05
Available P	mg/kg	8.18
Available K	mg/kg	56.88
Available Ca	mg/kg	3041.06
Available Mg	mg/kg	564.83
Available S	mg/kg	100.72
Available Fe	mg/kg	24.41

1090

1091

1092

1093

1094

10951096

Table 2 Carbonate weathering under different fertilizer treatments

	Limestone		Dolostone	
Treatment	Acw <u>Rw</u> / <u>%</u> g	Raw/	Acw <u>Rw</u> / <u>‰</u> g	Raw
rreatment		$g m^{-2} a^{-1} Rcw / \%$		/g m ⁻² a ⁻¹ Rcw
				/%0
Control	0. 0014<u>48</u>±	2.00±0.58a0.48	-0. 0011 31 <u>±0.09a</u>	-1.57±0.86a-0.31
	<u>0.14a</u>			
NH_4NO_3	0.0174 <u>6.42±</u>	24.86±2.01b 6.42	<u>0.01445.30</u> <u>±</u>	20.57±1.15b 5.30
	<u>0.28c</u>		<u>0.87c</u>	
NH_4HCO_3	0.0147 <u>4.44</u> ±	21.00±3.45b_4.44	0.0096 3.22 <u>±</u>	13.71±3.88b3.22
	<u>0.81b</u>		<u>0.87b</u>	
$NaNO_3$	0.0031 <u>0.86±</u>	4.43±1.73a0.86	$0.002253 \pm 0.26a$	3.14±1.73a0.53
	<u>0.17a</u>			
NH ₄ Cl	0.0149 <u>5.54±</u>	21.29±2.45b 5.54	0.01314.77 <u>±</u>	18.71±0.86b
	<u>0.64bc</u>		<u>0.78bc</u>	4.77
$(NH_4)_2CO_3$	0.0144 <u>4.48±</u>	20.57±4.46b_4.84	0.01864.94 <u>±</u>	26.57±7.62b4.94
	<u>0.95bc</u>		<u>1.91bc</u>	
$Ca_3(PO_4)_2$	0.0003 <u>0.01±</u>	0.43±0.86a0.01	-0. 001355_±	<u>-1.86±1.29a</u> -0.55
	<u>0.04a</u>		<u>0.25a</u>	
$(NH_4)_3PO_4$	0.0028 <u>1.08±</u>	4.00±1.15a1.08	0.0007 <u>0.75</u> ±	1.00±1.01a0.75
	<u>0.34a</u>		<u>0.21a</u>	
Ca-Mg-P	-0.0013 <u>-0.31</u> ±	-1.86±0.43a-0.31	-0. 0022 97 <u>±</u>	<u>-3.14±0.72a</u> -0.97
	<u>0.12a</u>		<u>0.38a</u>	
Urea	0.0243 <u>8.48±</u>	34.71±4.32c 8.48	0.0185 <u>6.59</u> ±	26.43±2.73c 6.59
	<u>0.96d</u>		<u>0.67d</u>	
K_2CO_3	-0. 0008 26±	<u>-1.14±0.58a</u> -0.26	-0. 001859_±	<u>-2.57±0.43a</u> - 0.59
	<u>0.15a</u>		<u>0.15a</u>	

Acw—the amount of carbonate weathering; Rew - the ratio of carbonate weathering; Raew - the rate of carbonate weathering; Acw—Rw = 1000 (Wi-Wf)/Wi; Rew = 1000 (Wi-Wf)/Wi; Rew = 1000 (Wi-Wf)/Wi; Rew = 1000 (Wi-Wf)/Wi; Rew = 1000 (Wi-Wf)/Wi; Raew = 1000 (Wi-Wf)/Wi; R

带格式的:字体: Times New Rome

带格式表格

带格式的:字体: Times New Rom 带格式的:字体: Times New Rom 带格式的:字体: Times New Rom 带格式的:字体: Times New Rom 带格式的:字体: Times New Rom

带格式的: 字体: Times New Rom 带格式的: 字体: Times New Rom 带格式的: 字体: Times New Rom

带格式的:字体:TimesNewRod带格式的:字体:TimesNewRod带格式的:字体:TimesNewRod

带格式的: 字体: Times New Roo **带格式的:** 字体: Times New Roo

一带格式的:两端对齐

带格式的:两端对齐,定义网格 自动调整右缩进,孤行控制,调 整中文与西文文字的间距,调整 文与数字的间距

带格式的: 左侧: 3.17 厘米, 7侧: 3.17 厘米, 顶端: 2.54 厘米, 底端: 2.54 厘米, 宽度: 厘米, 高度: 29.7 厘米 transformation (The amount of generated NH₄+NO₃) at the initial phase of the experiment **Treatment** Main reactions and effects 带格式的:下标 带格式的: 上标 $Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O \rightarrow (1-x)Ca^{2+} + xMg^{2+} + 2HCO_3^{2-}$ 1.Control 带格式表格 $\frac{2Ca_{(1-x)}Mg_xCO_3 + NH_4NO_3 + 2O_2 \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + 2NO_3^{-} + H_2O + 2HCO_3^{-}}{2}$ 2.NH₄NO₃ 带格式的: 居中 $2Ca_{(1-x)}Mg_xCO_3 + NH_4HCO_3 + 2O_2 \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_3^{-} + H_2O + 3HCO_3^{-}$ 3. H₄HCO₃ 带格式的: 居中 $Ca_{(1-x)}Mg_xCO_3 + NaNO_3 + CO_2 + H_2O \rightarrow (1-x)Ca^{2+} + xMg^{2+} + Na^+ + NO_3^- + 2HCO_3^-$ 4. NaNO₃ 带格式的: 居中 $2Ca_{(1-x)}Mg_xCO_3 + NH_4CI + 2O_2 \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_3^{-} + CI^{-} + H_2O + 2HCO_3^{-}$ 带格式的: 居中 5. NH₄Cl 带格式的: 居中 $\frac{3\text{Ca}_{(1-x)}\text{Mg}_x\text{CO}_3 + (\text{NH}_4)_2\text{CO}_3 + 4\text{O}_2 \rightarrow 3(1-x)\text{ Ca}^{2+} + 3x\text{Mg}^{2+} + 2\text{NO}_3^{-} + 2\text{H}_2\text{O} + 4\text{HCO}_3^{-}}{2}$ 6. (NH₄)₂CO₃ 4 带格式的: 居中 (1) Common ion effect: The Ca_(1-x)Mg_xCO₃ produces when the concentrations of Ca²⁺ and Mg²⁺ increases 带格式的: 居中 7. Ca₃(PO₄)₂ (2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation produces calcite after the addition of PO43- in soil, resulting in inhibiting the precipitation of calcite $(1) 2Ca_{(1-x)}Mg_xCO_3 + NH_4^+ + 2O_2 \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_3^- + H_2O + 2HCO_3^-$

(2) Inhibition of phosphate to calcite dissolution: calcium orthophosphate (Ca-P) precipitation produces on 带格式的: 居中

带格式的:缩进:首行缩进:0

带格式的: 居中, 缩进: 首行缩键

0 厘米

带格式的: 居中

带格式的: 居中

	surface of calcite after the addition of PO ₄ in soil, resulting in inhibiting the dissolution of calcite	
9. Ca Mg P	(1) Common ion effect: The Ca _(1-x) Mg _{&} CO ₂ produces when the concentrations of Ca ²⁺ and Mg ²⁺ interest	reases
	(2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation produces on the	surface
	calcite after the addition of P in soil, resulting in inhibiting the precipitation of calcite	
10. Urea	$\frac{3Ca_{(1-x)}Mg_{x}CO_{x} + CO(NH_{2})_{2} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{x}^{2} + 4HCO_{x}^{2}}{4}$	(
	Common ion effect: The Ca _(1-x) Mg _x CO ₃ produces when the concentration of HCO ₃ increases—	
11. K ₂ CO ₃	$\frac{\text{(i)} (1-x) \text{Ca}^{2+} + x\text{Mg}^{2+} + 2\text{HCO}_{2}^{-} \rightarrow \text{Ca}_{(1-x)}\text{Mg}_{\underline{x}}\text{CO}_{2} + \text{CO}_{\underline{x}} + \text{H}_{\underline{x}}\text{O}}{2}$	(
	$(ii) K_2CO_2 + H_2O \rightarrow 2K^+ + HCO_2^- + OH^-$	
	Table 3: The main reaction and effects in these fertilized treatments	

Table 3: The main reaction and effects in fertilized treatments, and the potential nitrogenous

1101

8. (NH₄)₃PO₄

Table 3: The main reaction and effects in these fertilized treatments			
Treatment	Main reactions and effects		
1. Control	$\underline{Ca_{(1-x)}Mg_{x}CO_{3} + CO_{2} + H_{2}O \rightarrow (1-x)Ca^{2+} + xMg^{2+} + 2HCO_{2}^{2-}}$		
2. NH ₄ NO ₃	$\underline{2Ca_{(1-x)}Mg_{x}CO_{\underline{3}} + NH_{\underline{4}}NO_{\underline{3}} + 2O_{\underline{2}} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + 2NO_{\underline{3}}^{-} + H_{\underline{2}}O + 2HCO_{\underline{3}}^{-}}$		
2 NILLICO	$\underline{NH_{\underline{4}}HCO_{\underline{3}} \rightarrow NH_{\underline{3}}\uparrow + \underline{H_{\underline{2}}O} + \underline{CO_{\underline{2}}}\uparrow}$		
3. NH ₄ HCO ₃	$\underline{2Ca_{(1-x)}Mg_xCO_3 + NH_4HCO_3 + 2O_2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_3 + H_2O + 3HCO_3$		
4. NaNO ₃	$\underline{Ca_{(1-x)}Mg_{x}CO_{3} + NaNO_{3} + CO_{2} + H_{2}O} \rightarrow (1-x)Ca^{2+} + xMg^{2+} + Na^{+} + NO_{3}^{-} + 2HCO_{3}^{-}$		
<u>5. NH₄Cl</u>	$\underline{2Ca_{(1-x)}Mg_{x}CO_{\underline{3}} + NH_{\underline{4}}Cl + 2O_{\underline{2}} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{\underline{3}}^{-} + Cl^{-} + H_{\underline{2}}O + 2HCO_{\underline{3}}^{-}}$		
((NII) CO	$(NH_4)_2CO_3 \rightarrow 2NH_3 \uparrow + H_2O + CO_2 \uparrow$		
<u>6. (NH₄)₂CO₃</u>	$\underline{3Ca_{(1-x)}Mg_{x}CO_{\underline{3}} + (NH_{\underline{4}})_{\underline{2}CO_{\underline{3}} + 4O_{\underline{2}}} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{\underline{3}}^{-} + 2H_{\underline{2}O} + 4HCO_{\underline{3}}^{-}$		
	(1) Common ion effect: The $Ca_{(1-x)}Mg_xCO_3$ produces when the concentrations of Ca^{2+} and Mg^{2+}		
	increases		
7. Co (BO.)	$(1-x) Ca^{2+} + xMg^{2+} + 2HCO_{\underline{3}} \rightarrow Ca_{(1-x)}Mg_{\underline{x}}CO_{\underline{3}} + CO_{\underline{2}} + H_{\underline{2}}O$		
7. Ca ₃ (PO ₄) ₂	(2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation produces on		
	$\underline{\text{the surface of calcite after the addition of PO}_{\underline{4}}^{3-} \text{ in soil, resulting in inhibiting the precipitation of }$		
	calcite		
	$(1) 2Ca_{\underline{(1-x)}}Mg_{\underline{x}}CO_{\underline{3}} + NH_{\underline{4}}^{+} + 2O_{\underline{2}} \rightarrow 2(1-x) Ca^{2+} + 2xMg^{2+} + NO_{\underline{3}}^{-} + H_{\underline{2}}O + 2HCO_{\underline{3}}^{-}$		
8. (NH ₄) ₃ PO ₄	(2) Inhibition of phosphate to calcite dissolution: calcium orthophosphate (Ca-P) precipitation		
	produces on the surface of calcite after the addition of PO_4^{3-} in soil, resulting in inhibiting the		
·	42		

	dissolution of calcite				
	(1) Common ion effect: The $Ca_{(1-x)}Mg_xCO_3$ produces when the concentrations of Ca^{2+} and Mg^{2+}				
	<u>increases</u>				
0.6.14.5	$(1-x) Ca^{2+} + xMg^{2+} + 2HCO_3^{-} \rightarrow Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O$				
9. Ca-Mg-P	(2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation proc				
	the surface of calcite after the addition of P in soil, resulting in inhibiting the precipitation of				
	calcite				
10. Urea	$\underline{3Ca_{(1-x)}Mg_xCO_3 + CO(NH_2)_2 + 4O_2} \rightarrow 3(1-x) Ca^{2+} + 3xMg^{2+} + 2NO_3^{-} + 4HCO_3^{-}$				
	Common ion effect: The Ca _(1-x) Mg _x CO ₃ produces when the concentration of HCO ₃ ⁻ increases				
11. K ₂ CO ₃	(i) $(1-x) Ca^{2+} + xMg^{2+} + 2HCO_3 \rightarrow Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O$				
	(ii) $K_2CO_3 + H_2O \rightarrow 2K^+ + HCO_3^- + OH^-$				

Table 4: The amount of fertilizer-derived NH_4^+ at the initial phase of the experiment and the potential nitrogenous transformation $(NH_4^+-NO_3^-)$

	Molecular	Amount of	Molar	amount of	The maximum
Treatment	mass	<u>added</u>	amount	fertilizer-derived	of N products
	<u>g/mol</u>	fertilizer/g	/mole	$NH_{\underline{4}}^+/mole$	/mole
NH_4NO_3	<u>80</u>	<u>43</u>	<u>0.54</u>	<u>0.54</u>	1.08
NH ₄ HCO ₃	<u>79</u>	<u>85</u>	1.08	<u>1.08</u>	<u>1.08</u>
NaNO ₃	<u>85</u>	<u>91</u>	<u>1.07</u>	0.00	1.07
<u>NH₄Cl</u>	<u>53.5</u>	<u>57</u>	1.07	1.07	<u>1.07</u>
$(NH_4)_2CO_3$	<u>96</u>	<u>51</u>	<u>0.53</u>	<u>1.06</u>	<u>1.06</u>
$Ca_3(PO_4)_2$	<u>310</u>	<u>52</u>	<u>0.17</u>	0.00	0.00
$(NH_4)_3PO_4$	<u>149</u>	<u>15</u>	<u>0.10</u>	0.30	0.30
Ca-Mg-P	<u>/</u>	<u>44</u>	0.00	0.00	0.00
<u>Urea</u>	<u>60</u>	<u>32</u>	<u>0.53</u>	<u>1.06</u>	<u>1.06</u>
$\underline{K_2CO_3}$	<u>138</u>	<u>10</u>	0.07	<u>0.00</u>	0.00

Gadf-gram amount of added fertilizers (g); Maafof added fertilizers (mol).

Fig. 1 The change of chemical fertilizer consumption in China during 1980-2013

The data were collected from National Bureau of Statistics of the People's Republic of China (NBS, 2014)(NBS, 2014) (http://www.stats.gov.cn/tjsj/ndsj/)

域代码已更改

Fig. 2 Sketch map of the soil column

Fig. 3 The ratio of carbonate weathering Rw (%) of limestone and dolostone _under different fertilization treatment

(a) limestone; (b) dolostone. Treatment 1-Control; 2-NH₄NO₃; 3-NH₄HCO₃; 4-NaNO₃; 5-NH₄Cl; 6-(NH₄)₂CO₃; 7-Ca₃(PO₄)₂; 8-(NH₄)₃PO₄; 9-Ca-Mg-P; 10-Urea; 11-K₂CO₃. Rew = $\frac{1000}{Wi}$ -Wi/i/Wi, where Wi is the initial weight of the carbonate rock tablets, and Wi is their final weight. Different letters on each column are significantly (p <0.05) different based on one-way ANOVA. Values in each column followed by different letters are significantly (p <0.05) different based on one-way ANOVA.

带格式的:字体:倾斜

带格式的:缩进:首行缩进:

带格式的: 居中

Fig. 4 The $\underbrace{\text{Rw}}_{\text{(\%)}}$ of limestone ratio of limestone weathering and the molar amount of produced $N\text{H}_4^+$ under different fertilization treatment

Treatment 1-Control; 2-NH₄NO₃; 3-NH₄HCO₃; 4-NaNO₃; 5-NH₄Cl; 6-(NH₄)₂CO₃; 7-Ca₃(PO₄)₂; 8-(NH₄)₃PO₄; 9-Ca-Mg-P; 10-Urea; 11-K₂CO₃. $Rew = \frac{1000}{4}(Wi-Wf)/Wi$, where Wi is the initial weight of limsestone tablets, and Wf is their final weight. Different letters on each column are significantly (p <0.05) different based on one-way ANOVA.

带格式的:字体:倾斜