Reviewer 1

1. In some paragraphs, the English writing may be slightly improved.

Changed in the manuscript: we have re-edited the language question by the Language Services of Elsevier.

2. In the field, how are placed the different experimental columns? Did you have a random position, mixing the different modalities?

Answer: we placed orderly the different treatments columns including replicated treatments.

Changed in the manuscript: we added “were labelled and placed orderly” to interpret this.

3. The authors mixed “perfectly” the chemical fertilizers with the sieved soils. It was not directly spread on the field/columns. This may be an artefact compared to the natural field, where fertilizers are spread on the soils, relatively far from the rock.

Answer: We agree that this design have difference from the natural field. But considering the uniformity of all treatments, the results we got are still convinced. We will consider the comparison research in terms of different way and amounts of fertilizer addition.

4. In the last part of the discussion, this point may be highlighted, as the authors compared their data with the literature… This way, their weathering rate may be (slightly) overestimated. This other point is that in the literature most studies approach the weathering estimate from riverine data as the authors discussed.

Answer: we are pleased that you agree with that.

5 - L41 – 42 : “(…) processes including the reaction between carbonates and the protons derived (…)”.

Changed in the manuscript: We removed “the”.

6 - L 45 and 47: you may be more specific on the origin of sulfuric acid, and the role of acidic soil in the carbonate – proton relationship. “Acidic soil” is still too broad.

Changed in the manuscript: changing into “sulfuric acid forming in the oxidation of reduced sulfuric minerals (mainly pyrite, FeS$_2$)……. acidic soil (such as red soil, yellow soil) ”

7 - L55, you may add the increase proportion of mineral fertilizers (increase by 365%), in order to compare with the 3.3% worldwide increase… I was wondering what was the cause of such sharp increase in chemical fertilizers consumption. Is it just an effect of the increase of the size of agricultural land or is it a consequence of a change of fertilizer habit (more NO3 or NH4 fertilizers)?

Answer: The primary reasons why we set up the amount of added fertilizer in this study are: (1) the soil we used is untilled fresh soil which we sampled from B layer. Considering its low nutrition, we set up a higher fertilizer amount. (2) We just want to explore the different response of these different on carbonate weathering, and magnify
and quicken the short-term response. (3) It is a simple pre-study, but we think some findings are worthy published especially to CO₂ consumption via carbonate weathering at agricultural areas.

8 - L118 - 119: You worked on Guizhou area where the consumption of chemical fertilizers increased by about 26% (far less than the increase of fertilizer consumption at the scale of the whole country).
Answer: It is true that according to the 2014 Guizhou statistical yearbook.

9 - L121: Could you be more specific for the soil classification, more precise than B horizon?
Changed in the manuscript: we added “yellow-brown clay”.

10 - L123: did you crush (ground) the sample before to pass it through 2 mm sieve? Or did you pass the air-dried soil through 2 mm sieve, and after you crushed it… this may seem to be a detail, but it is really important.
Answer: all of soil samplers we sampled were ground first, and then sieved.

11 - L141 - 143: “Two different carbonate rock tablets were buried in the bottom of each soil column”; by this, do you mean that you put only one tablet of two different carbonate rocks? So the carbonate rocks are different, or are they two aliquots of the same rock type?
Answer: yes, we placed only one tablet of each carbonate rock in one column, but we designed 3 columns for each treatment as replicates. The carbonate rocks are different absolutely got from different area.

12 - L145 - 150: How did you determine the weight of each chemical fertilizer applied on each soil experiment?
Answer: The primary reasons why we set up the amount of added fertilizer in this study are: (1) the soil we used is untilled fresh soil which we sampled from B layer. Considering its low nutrition, we set up a higher fertilizer amount. (2) We just want to explore the different response of these different on carbonate weathering, and magnify and quicken the short-term response. (3) It is a simple pre-study, but we think some findings are worthy published especially to CO₂ consumption via carbonate weathering at agricultural areas.

In order to short the time of this experiment, and also considering the low nutrients of the fresh soil, we have added the amount of N, P and K fertilizer in local practical use in this manuscript like this: (N fertilizer: 160 kg N· ha⁻¹; P fertilizer: 150 kg P₂O₅· ha⁻¹; K fertilizer: 50 kg K· ha⁻¹). According to the chemical formula and the
molecular weight of each fertilizer, we finally calculated the amount of added fertilizer for each treatment.

14 - L151 - 152: you did mix each fertilizer with air-dried soils. So the fertilizer was not spread on the column? As soil and fertilizers were perfectly mixed, did you also crush the chemical fertilizers or did you leave them in their original shapes? **Answer:** All the fertilizers are small granular with homogeneous size. They were perfectly mixed with soil. Undeniably speaking, the fertilizer may be spread partly on the wall of column in some cases, but we believe that its effect on our experiment results can be ignored. We will think it about in our further researches.

15 - L158 - 159: you used 2 carbonate types: a limestone and a dolostone. Did you put one tablet of each carbonate in the same column, or did you put 2 tablets of the same carbonate (in order to have duplicates) in the same column? **Answer for 15 and 16:** we placed only one tablet of each carbonate rock in one column, but we designed 3 columns for each treatment as replicates.

17 - You should add “respectively” at the end of your sentence when you’re listing some results… **Changed in the manuscript:** we added it.

18 - L189: the “rest treatments”? do you mean the other chemical fertilizers other than NH4NO3, NH4Cl, (NH4)2CO3, NH4HCO3? **Answer:** yes, it is pointing the other chemical fertilizers than urea, NH4NO3, NH4Cl, (NH4)2CO3, NH4HCO3. **Changed in the manuscript:** The English language editor in Elsevier suggested us changing it into the remaining treatment, we did it.

19 - L206: you explain that there is no difference in the weathering behavior of limestone and dolostone, however the control experiment show different behavior. Did you test this similarity? **Answer:** yes, it is true that there is a difference between limestone and dolostone in control treatment. But we plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram, the results show that the Rw of limestone and dolostone exhibit a high positive correlation (R2=0.9773; see Fig. 4), indicating that the weathering of limestone and dolostone are similar under different treatments. **Changed in the manuscript:** see the details in the manuscript.

20 - L213 - 215: you may present these 3 equations in the following order: (5) > (4) > (3), following an increasing pKa (or pH). **Changed in the manuscript:** we changed it.
L218: H2CO3 is not only formed in the soil, it is first formed in the atmosphere with the dissolution of atmospheric CO2(g) into rain droplets and rain, as CO2aq and then H2CO3. The concentration of H2CO3 is exacerbated into soil because of the presence of organic CO2 from respiration. And yes, one of the main control of carbonate dissolution is the amount of rainfall. That’s why it is important to know how the different columns were placed in the field, randomly or the same modalities were placed together (L223 - 224). If randomly, you can say that rainfall may not be consider a controlling effect for your experiment. Answer: Thank you very much. It is true that the rainfall is a main controlling factor in the natural weathering processes. The rate of chemical weathering is higher in high-precipitation area. However, in this study, we placed orderly the different treatments columns including replicated treatments in one specific place of field. To each treatment, the precipitation is same. So we conclude that the difference in weathering rate in each treatment is not caused by the precipitation. That’s what we are meaning. Changed in the manuscript: We changed it to make it clearer, see the manuscript.

L231 - 232: you may be more precise for “CO2 degassing”… Issued from carbonate dissolution? For respiration? Answer: In theory, the source of CO2 dissolved in water is from respiration (common cases), deep crust (tufa formation; areas where have thermal mineral spring), artificial source (CO2 capture and storage), etc. It is another big problem. No matter where they come from, these CO2 usually keep in their balance status in specific stratum. Some of them keep their balance in H2O-CO2-HCO3-carbonate system in water. Dramatic changes in the parameters of the CO2 system such as T, pH and/or pCO2 can cause CO2 degassing. Here, we just listed some cases which can result in CaCO3 precipitation. Changed in the manuscript: we added some information like this “the degassing of dissolved CO2 due to dramatic changes in the parameters of the CO2 system (such as T, pH, pCO2, etc)”

L244: the year of the publication from Singh et al is missing. Changed in the manuscript: it was added.

L305: you did calculate the initial fertilizer –derived NH4 per unit. But it would be interesting to have the initial rate of fertilizer spread in the field and to compare it with what it is really applied in the Chinese agricultural watersheds. Answer: The reason why Table 4 was given is mainly to better understand the N balance of these fertilizers in their own reactions listed in table 3, to interpret how many NO3 derived from nitrification to further evaluate the effect of fertilizer on carbonate weathering. Yes, we believe that the comparison between the addition amount of fertilizer in this study and that in practical agricultural activity of local area is very interesting question. But it is another interesting question. It has a little difficult to do it here and make it sense since it needs another experiment design. We will consider conducting some experiment to fill the gaps between them in the future.

L396 - 397: Table 2: what is the significance of a, b, c behind the numbers
(ANOVA)?

Answer: we deleted them and plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram (R²=0.9773; see Fig. 4) instead to further explain it. See the manuscript.
Reviewer 2

1. In the methods section, very few data seem to have been collected from the soils during the experiment. For example was pH monitored? This is an important parameter and would have helped the authors determine which mechanism is responsible for their results.

Answer: Before experiment, we tested the parameter of soil we used including soil pH organic matter (OM), NH4-N, NO3-N, available P, available K, available Ca, available Mg, available Fe, and available S. The results were listed in Table 1. As you mentioned, we regret pretty much that we didn’t monitor their change by testing them after experiment.

2. The authors carry out experiments on soil columns in a field setting. What exactly does this mean? Some photos of the experimental setup might help explain.

Answer: The shape and inner structure of columns in this study were described in Fig. 2. We orderly placed them (11 treatments*3 triplicates= 33 columns) in field (on line and row). No suitable pictures here.

3. The authors should discuss the role played by bacteria in the system. Presumably the fertilizers could have stimulated bacteria which may have increased respiration and CO2 concentrations in the soil. This might account for some of the enhanced weathering. Can this mechanism be assessed?

Answer: Thank you for your comment on this, the probability truly exits more or less here, but we think the effect on nitrification is more distinct according to the results in the urea, NH4NO3, NH4HCO3, NH4Cl, and (NH4)2CO3 treatments. It is very difficult to distinguish and quantify their contribution in this study. We may try to do it by some isotope methods.

Changed in the manuscript: we added relative statements in Section 4.1.

In theory, the fertilizers could stimulate bacteria, which may increase respiration and CO2 concentrations in the soil, as a result, probable enhance carbonate weathering as Eq. (5).

4. There are no high resolution SEM images of the tablets before or after the experiment. This may help the authors understand the loss mechanisms a bit better. The authors focus solely on chemical dissolution, although recently it has been suggested that mechanical grain detachment in carbonate rocks is likely to be an important weathering pathway. Imaging might help identify such a process.

Answer: Your suggestion about SEM is very inspiring for us. We will use this method in our future study. We appreciate.

5. Why was the reason for selecting the specific amounts of fertilizer? There is no explanation at all. Does this correspond to the amounts typically applied to crops? Also if this is to simulate the agricultural application does it make sense to mix the fertilizer thoroughly into the soil?

Answer: The primary reasons why we set up the amount of added fertilizer in this study are: (1) the soil we used is un-tilled fresh soil which we sampled from B layer. Considering its low nutrition, we set up a higher fertilizer amount. (2) We just want to explore the different response of these different on carbonate weathering, and magnify and quicken the short-term response. (3) It is a simple pre-study, but we think some
findings are worthy published especially to CO₂ consumption via carbonate weathering at agricultural areas.

The amount is just for this comparison experiment. Undeniably, it is not perfect for linking this experiment with practical agricultural activities in local area. We are fixing on that. Some data and papers are in preparation.

6. What kind of limestone and dolostone were used? What was the grain size and composition for example? Again, some SEM images here would help.

Answer: As described in Methods section, the statement on carbonate rock tablets used in this study is that “Two different kinds of carbonate rock tablets (2 cm × 1 cm × 0.5 cm in size) were placed in the bottom of each soil column to examine the rate of carbonate weathering in the soil. The two different kinds of carbonate rock collected from the karst area of Huaxi District were: (1) limestone with 60-65 % micrite, 30-35 % microcrystalline calcite, and 2-3 % pyrite; and (2) dolostone with 98-99 % fine crystalline dolomite, 1 % pyrite, and trace quantities organic matter.”

SEM image are a good advice for our further study. Thank you so much.

7. Although the authors use both limestone and dolostone they don’t really discuss the differences in detail. For example, on the whole dolostone seems to weather more slowly than limestone, but there are some exceptions (ammonium carbonate for instance). Are the differences significant? If so, what do they mean?

Answer: Thank you for your comment on it. We note it and added some statement on it. But there are no more points to discuss further, we think.

Changed in the manuscript: We added the following statements in Section 3.2. Fig. 3 shows that, on the whole, the ratios of dolostone weathering are smaller than those of limestone weathering except (NH₄)₂CO₃ treatment, exhibiting that dolostone weather more slowly than limestone under fertilization effects. In Fig. 4, we plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram, in order to compare the weathering responses of limestone with dolostone. The results show that the Rw of limestone and dolostone exhibit a high positive correlation (R²=0.9773; see Fig. 4), indicating that the weathering of limestone and dolostone are similar under different treatments. Thus, we will explain the results in terms of carbonates, rather than by way of the individual dolostone and limestone.

8. In the conclusions, the authors state that the fact that the ammonium phosphate and sodium nitrate treatments did not impact the weathering rate raises a new question. But they don’t explicitly state what this question is. A similar phrase is used in the Abstract.

Changed in the manuscript: we noticed that and made it clearer, we used a colon instead of a full stop in Abstract section: The results of NaNO₃ treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in overestimation of the impact of N-fertilizer on CO₂ consumption by carbonate weathering at the regional/global scale, if the effects of NO₃ and NH₄ are not distinguished.

In conclusion part: we added a pointing expression like: The question is: ……..
9. Figure 3 is a bit confusing because of all the lower case letters (a,b, bc etc) dotted all over. What do they mean? It’s not explained in the caption. **Changed in the manuscript:** we deleted them and plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram (R2=0.9773; see Fig. 4) instead to further explain it. See the manuscript.

10. Finally, careful English language editing would significantly improve the paper. Apart from numerous grammatical errors, it may also help organize the discussion. For example the section 4.2 is a bit of a mess and does not flow at all. **Changed in the manuscript:** we have re-edited the language question by the Language Services of Elsevier.
Impact of different fertilizers on the carbonate weathering in a typical karst area, Southwest China: a field column experiment

Chao Song¹,², Changli Liu¹, Guilin Han², Congqiang Liu²

¹. The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050803, Hebei, China

². School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.

Corresponding Author: Chao Song
Email: chao-song@qq.com
Tel/Fax: +86-18931852527
Abstract: Carbonate weathering, as a significant vector for the movement of carbon both between and within ecosystems, are strongly influenced by anthropogenic perturbations such as agricultural fertilization. Since the addition of fertilizers tends to change the chemical characteristics of soil such as the pH value, different fertilizers may exert a different impact on carbonate weathering, but these discrepancies are as of yet not well-known so far. In this study, a field column experiment was employed to explore the responses of carbonate weathering to the addition of different fertilizers. The eleven different treatments with three replicates including control, NH$_4$NO$_3$, NH$_4$HCO$_3$, NaNO$_3$, NH$_4$Cl, (NH$_4$)$_2$CO$_3$, Ca$_3$(PO$_4$)$_2$, (NH$_4$)$_3$PO$_4$, fused calcium magnesium phosphate fertilizer (Ca-Mg-P), urea and K$_2$CO$_3$ were established in this column experiment, where limestone and dolostone tablets were buried at the bottom of each to determine the weathering amount and ratio of carbonate in soil. We compared 11 different treatments, including a control treatment, using 3 replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried at the bottom of the soil-filled columns. The results showed that the addition of urea, NH$_4$NO$_3$, NH$_4$HCO$_3$, NH$_4$Cl and (NH$_4$)$_2$CO$_3$ distinctly increased carbonate weathering, which was attributed to the nitrification of NH$_4$ \rightarrow NO_3^- and the common ion effect. Whereas the addition of Ca$_3$(PO$_4$)$_2$, Ca-Mg-P and K$_2$CO$_3$ induced carbonate precipitation due to the common ion effect. Whereas the addition of (NH$_4$)$_3$PO$_4$ and NaNO$_3$ addition did not significantly impact significantly on carbonate weathering. The results of
NaNO₃ treatment seem to be raising a new question: the negligible impact of nitrate on carbonate weathering may result in the overestimation of the impact of N-fertilizer on CO₂ consumption by carbonate weathering at the regional/global scale, if the effects of NO₃ and NH₄ are not distinguished. Moreover, in order to avoid misunderstanding more or less, the statement that nitrogenous fertilizer can aid carbonate weathering should be replaced by ammonium fertilizer.

Keywords: Carbonate weathering; Column experiment; Nitrogenous fertilizer; Phosphate fertilizer; Southwest China

1. Introduction

Carbonate weathering plays a significant role in consumption of elevated atmospheric CO₂ (Kump et al., 2000; Liu et al., 2010; Liu et al., 2011). The riverine hydro-chemical composition, such as the ratio of HCO₃⁻ and Ca²⁺ + Mg²⁺, is usually employed as an indicator to estimate the CO₂ consumption by natural carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). However, fluvial alkalinity may also be produced by other processes including the reaction between carbonates and the protons derived from: (i) the nitrification of N-fertilizer a disturbance to CO₂ consumption estimation is introduced because the fluvial alkalinity, Ca²⁺ and Mg²⁺ may also be
produced due to the reaction between carbonate and the protons which can originate from the nitrification processes of N fertilizer (Barnes and Raymond, 2009; Chao et al., 2011; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-Wickmann et al., 2009; Semhi and Suchet, 2000; West and McBride, 2005) (Barnes and Raymond, 2009; Chao et al., 2011; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-Wickmann et al., 2009; Semhi and Suchet, 2000; West and McBride, 2005) , (ii) from the sulfuric acid forming in the oxidation of reduced sulfuric minerals (mainly pyrite, FeS₂) (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009) (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009) (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009) (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009) (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009) (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009), (iii) from organic acid secreted by microorganisms (Lian et al., 2008; Lian et al., 2008; Lian et al., 2008; Lian et al., 2008) as well as and (iv) from acidic soil (such as red soil, yellow soil) (Chao et al., 2014; Chao et al., 2017) (Chao et al., 2014) (Chao et al., 2014). Given the that atmospheric CO₂ is not the a unique weathering agent, differentiating the agent of carbonate weathering is more and more significant to enable important for the accurate budgeting of the net CO₂ consumption by carbonate weathering, especially in agricultural areas where mineral fertilizers are used area. The world-global average annual increase in mineral fertilizer consumption was 3.3 % from 1961 to 1997, and FAO’s study predicts a 1 % increase per year until
2030 (FAO, 2000). For In China, the consumption of chemical fertilizer increased from 12.7 Mt in 1980 to 59.1 Mt in 2013 (Fig. 1). The increasing consumption of chemical mineral fertilizers is a significant disturbance factor of carbonate weathering and the carbon cycle. Many Several studies have showed that nitrogen fertilizer additions aided increased in the dissolution of lime weathering rates, and also increased the total export of DIC from agricultural watersheds (Barnes and Raymond, 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-w Wickmann et al., 2009; Probst, 1986; Semhi and Suchet, 2000; West and McBride, 2005). According to the estimation from estimates by Probst (1988) and Semhi et al. (2000), the contribution of N-fertilizers to carbonate dissolution represents was 30 % and 12-26 %, respectively, on two small agricultural carbonate basins in south-western France, the Girou and the Gers, respectively (subtributary and tributaries of the Garonne river, respectively). For In lager basin level, such as the Garonne river Basin, which is a larger basin (52,000 km²), this contribution was estimated at 6 % by Semhi et al. (2000). At national and global scales, Perrin et al. (2008) estimated that the deficit contribution of CO₂ uptake due to N-fertilizer addition (usually in form of
NH₄NO₃) represents up to 5.7-13.4% and only 1.6-3.8% of the total CO₂ flux naturally consumed by the carbonate dissolution, for in France and across the on a global scale, respectively.

These estimated results, estimates described above, were are usually largely based on calculations that assuming that a single type of fertilizer (e.g., (NH₄)₂SO₄, NH₄NO₃, or NH₄Cl) was used throughout the whole basin that was considered. However, were usually based on a hypothesis of individual fertilizer (e.g., (NH₄)₂SO₄, NH₄NO₃, or NH₄Cl) input into an agricultural basin. Nevertheless, in actual agricultural practices, at an agricultural basin, different fertilizers are usually added for different crops, in actual agricultural practices. The impact of these fertilizers on carbonate weathering and riverine chemical composition may be different. For nitrogenous fertilizer, 100% NO₃⁻ produced after the addition (NH₄)₂SO₄ and NH₄Cl is derived from the nitrification of NH₄⁺, whilst comparatively, it is only 50% after the addition of NH₄NO₃. The differences of in NO₃⁻ sources may cause the produce an evaluated deviation of the impact of N-fertilizer addition on CO₂ consumption by carbonate weathering. Because, since the addition of different N-fertilizers (e.g., (NH₄)₂SO₄, NH₄NO₃, NH₄Cl, NaNO₃ or urea) may result in different contributions to carbonate weathering and relative products such as HCO₃⁻, Ca²⁺ and Mg²⁺. For phosphate fertilizer, the coprecipitation of phosphate ions with calcium carbonate may inhibit carbonate weathering (Kitano et al., 1978). We suppose, assume, that the response of carbonate weathering to the addition of different fertilizers, such as N-fertilizer (NH₄ and NO₃), P-fertilizer and Ca/Mg fertilizer, may display differences, which are so far poorly known, but likely significant. Here we sought to fully well understand the
agricultural force impact on natural carbonate weathering and to accurately evaluate the CO₂ consumption via carbonate weathering in agricultural areas.

Moreover, the carbonate-rock-tablet test is used to determine the weathering rate of carbonate rock/mineral from the laboratory to the field (Chao et al., 2011; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1981; Gams, 1985; Jiang and Yuan, 1999; Liu and Dreybrodt, 1997; Plan, 2005; Trudgill, 1975). In the laboratory, the carbonate-rock-tablet is employed to study the kinetics of calcite dissolution/precipitation (Dreybrodt et al., 1996; Liu and Dreybrodt, 1997) and determine the rate of carbonate mineral weathering in the soil column (Chao et al., 2011). However, in the field, it is also used to observe the rate of carbonate weathering and estimated CO₂ consumption by carbonate weathering (Chao et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013; Plan, 2005). Although Liu (2011) argued that the carbonate-rock-tablet test may lead to the deviations of estimated CO₂ consumption by carbonate weathering at the regional/global scale, in the cases where there are insufficient representative data (Liu, 2011; Liu, 2011), our results show that yet it is nonetheless the preferred option/method for the condition-controlled contrast/comparative or stimulated experiment (Chao et al., 2011; Chao et al., 2014; Chao et al., 2017).
et al., 2014; Chao et al., 2011; Chao et al., 2014). Where the result from the carbonate rock-tablet test is consistent to the major element geochemical data of leachates from soil column (Chao et al., 2011).

Therefore, in order to observe their difference between the impacts of different fertilizer addition on carbonate weathering in soil, a field column experiment that involved embedding carbonate-rock-tablets with eleven different treatments was carried out in a typical karst area of southwest China, in order to observe the impacts of different fertilizer additions on carbonate weathering in soil.

2. Materials and Methods

2.1 The study site

This study was carried out in a typical karst area, namely the Huaxi District of Guiyang City, Guizhou Province, SW China (26°23′N, 106°40′E, 1094 m asl). Guiyang, the capital city of Guizhou Province, is located in the central part of the Province, covering an area from 26°11′00″ to 26°54′20″N and 106°27′20″ to 107°03′00″E (approximately 8,000 km²), with elevations ranging from 875 to 1655 m above mean sea level. Guiyang has a population of more than 1.5 million people, a high diversity of karstic landforms, a high elevation and low latitude, with a subtropical warm-moist climate, and an average annual temperature of 15.3 °C and annual precipitation of 1200 mm (Lang et al., 2006). A monsoonal climate often results in high precipitation during summer, much less during winter, although the humidity is often high throughout most of the year (Han and Jin, 1996). Agriculture is a major land use in order
to produce the vegetables and foods in the suburbs of Guiyang (Liu et al., 2006)(Liu et al., 2006). The consumption of chemical fertilizer increased from 0.8-150 kg/ha Mt in 1980 to 1.0190 kg/ha Mt in 2013 (GBS, 2014)(GBS, 2014)(GBS, 2014).

2.2 Soil properties

The soil used in this column experiment was yellow-brown clay, which was sampled from the B horizon (below 20 cm in depth) of yellow-brown soil profile dug from a cabbage-corn or capsicum-corn rotation plantation in Huaxi District. The soil was air-dried, ground to pass through a 2-mm sieve, mixed thoroughly and used for the soil columns. The soil pH (Vsoil:Vwater = 1:2.5) was determined by pH meter. The chemical characteristics of the soil, including organic matter (OM), NH₄-N, NO₃-N, available P, available K, available Ca, available Mg, available S and available Fe, and available S were determined according to the Agro Services International (ASI) method (Hunter, 1980)(Hunter, 1980)(Hunter, 1980). OM was determined using an extracting solution containing 0.2 mol l⁻¹ NaOH, 0.01 mol l⁻¹ EDTA, 2 % methanol, and 0.005 % Superfloc 127. NH₄-N, NO₃-N, available Ca, and Mg were determined by extracting solution containing 0.25 mol l⁻¹ NaHCO₃, 0.01 mol l⁻¹ EDTA, 0.01 mol l⁻¹ NH₄F, and 0.005 % Superfloc 127. Finally, and available S was determined using an extracting solution containing 0.1 mol l⁻¹ Ca(H₂PO₄)₂ and 0.005 % Superfloc 127. The results are shown in Table 1.
2.3 Soil column and different fertilization treatments

In order to test the hypothesis that the responses of the impact of different chemical fertilizers on carbonate weathering may be different, columns (Ø = 20 cm, H = 15 cm) were constructed from 20-cm diameter polyvinylchloride (PVC) pipe (Fig. 2). A hole (Ø = 2 cm) was established at the bottom of each column to discharge soil water from the soil column. A polyethylene net mesh (Ø 0.5 mm) was placed in the bottom of the columns to prevent the soil loss of the filter material. A 2 cm thick filter sand layer, with 2 cm thickness including gravel, coarse sand and fine sand, was spread over the net. Two different carbonate rock tablets were buried in the bottom of each soil column (Fig. 2). According to the common kinds of chemical fertilizers and the main objective of this study, eleven fertilization treatments, each with three replicates, were set up in the field column experiment. There are were set up: (1) control without fertilizer (CK); (2) 43g NH4NO3 fertilizer (CF); (3) 85g NH4HCO3 fertilizer (NHC); (4) 91g NaNO3 fertilizer (NN); (5) 57g NH4Cl fertilizer (NCL); (6) 51g (NH4)2CO3 fertilizer (NC); (7) 52g Ca3(PO4)2 fertilizer (CP); (8) 15g (NH4)3PO4 fertilizer (NP); (9) 44g fused calcium-magnesium phosphate fertilizer (Ca-Mg-P); (10) 32g Urea fertilizer (U); and (11) 10g K2CO3 fertilizer (PP). To shorten the experiment time and enhance the effect of fertilization, the added amount of fertilizers in these treatments motioned above was increased to 30 times than its local practical amount (N fertilizer: 160 kg N·ha⁻¹; P fertilizer: 50 kg P·ha⁻¹; K fertilizer: 50 kg K·ha⁻¹). An aliquot of 6 kg of soil was weighed (bulk density = 1.3 g/cm³), mixed perfectly with one of the above fertilizers.
respectively, and filled into its own column. This process was repeated for all three replicates of the 11 fertilizer treatments. These soil columns were labelled and placed orderly at the field experiment site in Huaxi District, Guiyang of Southwestern China for a whole year.

2.4 The rate of carbonate weathering

Two different kinds of carbonate rock tablets (2 cm × 1 cm × 0.5 cm in size) were established placed in the bottom of each soil column to explore examine the rate of carbonate weathering in the soil. The two different kinds of carbonate rock collected from the karst area of Huaxi District were: (1) limestone with 60-65 % micrite, 30-35 % microcrystalline calcite, and 2-3 % pyrite; and (2) dolostone with 98-99 % power fine crystalline dolomite, 3-5 % microcrystalline calcite, 1 % pyrite, and little trace quantities organic matter. All of the tablets were baked heated at 80 °C for 4 hours, then weighed in a 1/10000 electronic balance in the laboratory, tied to a labeled by tying a label with fishing line, and then buried at the bottom of each soil column. After a whole year, the tablets were taken out removed carefully, rinsed, baked and weighed after a whole year.

The amount of weathering carbonate weathering (A_{cw}), the ratio of carbonate weathering (R_{cw}) and the rate of carbonate weathering (R_{acw}) for limestone and dolomite were calculated according to the weight difference of the tablets using the following formulas:

\[
A_{cw} = (W_i - W_f) \quad (1)
\]

\[
R_{cw} = \frac{(W_i - W_f)}{W_i} \quad (2)
\]
\[R_{cw} = (W_i - W_f)/(S \times T) \]

where \(W_i \) is the initial weight of the carbonate- rock- tablets, \(W_f \) is the final weights, \(S \) is the surface area of carbonate weathering rock tablets, and \(T \) is the length of the experimental period.

2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS 20.0 (Statistical Graphics Corp, Princeton, USA). All results of carbonate weathering were reported as the means ± standard deviations (SD) means ± standard errors (SE) for the three replications. Statistical analysis was performed using IBM SPSS 20.0 (Statistical Graphics Corp, Princeton, USA).

3. Results

3.1 Weathering rate of carbonate under different fertilized treatments

The amount (\(A_{cw} \)) and the ratio (\(R_{cw} \)) of limestone and dolostone carbonate weathering were listed in Table 2. The results showed that in Table 2, and the \(R_{cw} \) were plotted in Fig. 3. The results in Table 2 and Fig. 3 showed that the \(A_{cw} \), \(R_{cw} \) and \(R_{acw} \) of carbonate weathering limestone and dolomite weathering under urea, \(\text{NH}_4\text{NO}_3 \), \(\text{NH}_4\text{Cl} \), \((\text{NH}_4)_2\text{CO}_3 \), \(\text{NH}_4\text{HCO}_3 \), \(\text{NH}_4\text{Cl} \) and \(\text{NH}_4\text{HCO}_3 \) \((\text{NH}_4)_2\text{CO}_3 \) treatments were \(8.48 \pm 0.96, 6.42 \pm 0.28, 5.54 \pm 0.64, 4.44 \pm 0.81 \) and \(4.48 \pm 0.95 \% \) (mean±SD, \(p<0.05 \)) positive, respectively, and much bigger significantly greater than that under the control treatment \(0.48 \pm 0.14 \% \) (see Fig. 3). In addition, the observed \(R_w \) of as
observed in dolomite stone were (6.59 ± 0.67, 5.30 ± 0.87, 4.77 ± 0.78, 4.94 ± 1.91 and 3.22 ± 0.87 ‰ respectively, under these same five fertilization treatments, in contrast to vs. -0.31 ± 0.09 ‰ in the control treatment). This suggesting manifested clearly demonstrates that the addition of these five fertilizers can aid and increased the rate of the chemical weathering of carbonate weathering.

The remaining st treatments had made no significant differences in the R_w and R_{cw} of limestone and dolomite stone in comparison with to the control treatment (Fig. 3). ln (NH₄)₃PO₄ treatment, the A_{cw} and R_{cw} were only 1.08 ± 0.34 ‰, -0.028g and -0.0070.75 ± 0.21‰ g for limestone and dolomite, respectively, while the R_w were 4.00 ± 1.15 g·m⁻²·a⁻¹, 1.08% and 1.00 ± 1.01-0.75 g·m⁻²·a⁻¹‰ for limestone and dolomite, respectively. These values are less than those under the other four NH₄-fertilizers, as mentioned above. The A_{cw}, R_{cw} and R_{caw} in the NaNO₃ treatments failed to show a remarkable notable differences with the control treatment, implying exhibiting little effect of the NaNO₃ fertilizer addition on carbonate weathering (Fig. 3).

However, except for the R_w of limestone approaching zero in the Ca₃(PO₄)₂ treatment approaching zero, all the values of the A_{cw}, R_{cw} and R_{caw} of two different carbonate in Ca-Mg-P and K₂CO₃ and Ca₃(PO₄)₂ treatments showed a negative values. This indicating indicates that the addition of Ca-Mg-P, K₂CO₃ and Ca₃(PO₄)₂ fertilizers can lead to the precipitation at the surface of the carbonate mineral, which can be explained by common ion effect.
3.2 Comparison of limestone of dolomite

Fig. 3 shows that, on the whole, the ratios of dolostone weathering are smaller than those of limestone weathering except (NH₄)₂CO₃ treatment, exhibiting that dolostone weather more slowly than limestone under fertilization effects.

In Fig. 4, we plotted the R_w of limestone with vs. dolostone tablets in order to compare the weathering responses of limestone with dolostone. The result of limestone vs. dolostone tablets limestone with dolostone tablets exhibits a high positive correlation ($R^2=0.9773$; see Fig. 4), indicating that the weathering of ANOVA was used the limestone and dolostone are similar under different treatments were similar. Thus, we will explain the results with in terms of carbonates, rather than by way of the individual dolostone and limestone. R_w was used to determine the differences of weathering rate between limestone and dolostone.

4. Discussion

4.1 The carbonate rock tablet test: the validation of this experiment

The carbonate rock tablet test is used to determine the weathering rate of carbonate rock/mineral from laboratory to field (Gams, 1981; Chao et al., 2011; Trudgill, 1975; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1985; Jiang and Yuan, 1999; Liu and Dreybrod, 1997; Plan, 2005). In laboratory, the carbonate rock tablet is employed to study the kinetics of calcite dissolution/precipitation (Dreybrodt et al., 1996; Liu and Dreybrod, 1997) and...
determine the rate of carbonate mineral weathering in soil column (Chao et al., 2011). However, in field, it is also used to observe the rate of carbonate weathering and estimated CO₂ consumption by carbonate weathering (Chao et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013; Plan, 2005). Although Liu (2011) argue that the carbonate rock tablet test may lead to the deviation of estimated CO₂ consumption by carbonate weathering at the regional/global scale in the case of insufficient representative data (Liu, 2011), our results show that it is a preferred option for the condition-controlled contrast or stimulated experiment (Chao et al., 2011; Chao et al., 2014), where the result from the carbonate rock tablet test is consistent to the major element geochemical data of leachates from soil column (Chao et al., 2011).

In this study, every procedure to establish soil column with carbonate rock tablets in the bottom of each was strictly same, including the size of column, the preparation and column filling of soil sample, the setting and test of carbonate rock tablets, etc. Moreover, three replicates of each treatment were designed. We consider the experiment design can meet the objective of this study and the results of carbonate rock tablet test are therefore valid and credible.

4.1 The kinetics of carbonate dissolution/precipitation: controlling factors

Experimental studies of carbonate dissolution kinetics have shown metal carbonate weathering usually depends upon three parallel reactions occurring at the carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009) (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009):
MeCO₃ ↔ Me²⁺ + CO₃²⁻ (4)
MeCO₃ + H₂CO₃ ↔ Me²⁺ + 2HCO₃⁻ (5)
MeCO₃ + H⁺ ↔ Me²⁺ + HCO₃⁻ (46)
MeCO₃ + H₂CO₃ ↔ Me²⁺ + 2HCO₃⁻ (5)
MeCO₃ ↔ Me²⁺ + CO₃²⁻ (6)

where Me = Ca, Mg. As Eq. (5) describes, atmospheric/soil CO₂ is usually regarded as the natural weathering agent of carbonate. In watersheds with calcite- and dolomite-containing bedrock, H₂CO₃ formed in the soil zone usually reacts with carbonate minerals, resulting in dissolved Ca, Mg, and HCO₃⁻ as described in Eq. (5) (Andrews and Schlesinger, 2001; Shin et al., 2014). Although it has been proven that the reaction of carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), in this study, we consider that the effect of rainfall is equal in each soil column, and hence is disregarded as a controlling factor in weathering rate differences among these treatments in this study. In theory, the fertilizers could stimulate bacteria, which may increase respiration and CO₂ concentrations in the soil, as a result, probable enhance carbonate weathering as Eq. (5). However, The Eq. (46) suggests that the proton from other origins, such as the nitrification processes of NH₄⁺, as mentioned in the Introduction section, can play the role of weathering agent in agricultural areas. In this study, the urea, NH₄NO₃, NH₄HCO₃, NH₄Cl, and (NH₄)₂CO₃ amendments increased (10 to 17-fold) the natural weathering rate from 2.00 g·m⁻²·a⁻¹ for limestone tablets.
treatment (Table 2). Thus, these increases are strongly related to the effect of the proton released from the nitrification of NH$_4^+$. On the contrary, the carbonate precipitation will occur due to the backward reaction of the Eq. (5) in the following cases: (1) the degassing of dissolved CO$_2$ due to dramatic changes in the parameters of the CO$_2$ system (such as T, pH, pCO$_2$, etc.); (2) soil evapotranspiration; or (3) the common ion effect: the increase of Ca$^{2+}$, Mg$^{2+}$ or CO$_3^{2-}$ in a weathering-system with equilibrium between water and calcite (Calmels et al., 2014; Dreybrodt, 1988).

4.2 The main reactions and effects in different treatments

The main reactions and effects of every treatment in this study are listed in Table 3.

(1) Nitrification in NH$_4$-fertilizer: NH$_4$NO$_3$, NH$_4$HCO$_3$, NH$_4$Cl, (NH$_4$)$_2$CO$_3$ and urea

In urea (CO(NH$_2$)$_2$) treatment, the enzyme urease rapidly hydrolyzes the urea-N (CO(NH$_2$)$_2$) to NH$_4^+$ ions (Eq. (7)) when urea is applied to the soil (Soares et al., 2012).

\[
\text{CO(H}_2\text{N)}_2 + 3\text{H}_2\text{O} \rightarrow 2\text{NH}_4^+ + 2\text{OH}^- + \text{CO}_2 \quad (7)
\]

Although the study from of Singh et al. (2013) showed that a part of NH$_4^+$ may be lost as ammonia (NH$_3$) and subsequently as nitrous oxide (N$_2$O) (Singh et al., 2013), yet the remaining ammonium (NH$_4^+$) is mainly oxidized during nitrification in soil by autotrophic bacteria (like, such as Nitrosomonas) during nitrification, resulting in nitrite NO$_2^-$ and H$^+$ ions. Nitrite is, in turn, oxidized by another bacterium, such as Nitrobacter, resulting in nitrate (NO$_3^-$) (Eq. (8)) (Perrin et
The protons (H\(^ +\)) produced by nitrification can be neutralized in two ways:

(i) either by exchange process with base cations in the soil exchange complex

\[
\text{Soil – Ca} + 2\text{H}^+ \rightarrow \text{Soil – 2H}^+ + \text{Ca}^{2+} \quad (9)
\]

or (ii) via carbonate mineral dissolution (Eq.(10))

\[
\text{Ca}_{(1-x)Mg_xCO_3} + \text{H}^+ \rightarrow (1-x)\text{Ca}^{2+} + x\text{Mg}^{2+} + \text{HCO}_3^- \quad (10)
\]

Consequently, after combining Eq. (8) and Eq. (10) are combined, carbonate weathering by protons produced by nitrification is supposedly be expressed as to becomes (Eq. 11) (See details in Perrin et al., 2008 and Gandois et al., 2011).

\[
2\text{Ca}_{(1-x)Mg_xCO_3} + \text{NH}_4^+ + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + 2\text{NO}_3^- + \text{H}_2\text{O} + 2\text{HCO}_3^- \quad (11)
\]

As discussed above, provided that the loss as ammonia (NH\(_3\)) and nitrous oxide (N\(_2\)O) after hydrolyzation is unconsidered disregarded in this study, the final equation of carbonate weathering in NH\(_4\)NO\(_3\), NH\(_4\)HCO\(_3\), NH\(_4\)Cl, (NH\(_4\))\(_2\)CO\(_3\) and urea treatments will be as followeds as, respectively:

\[
2\text{Ca}_{(1-x)Mg_xCO_3} + \text{NH}_4\text{NO}_3 + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + 2\text{NO}_3^- + \text{H}_2\text{O} + 2\text{HCO}_3^- \quad (12)
\]

\[
2\text{Ca}_{(1-x)Mg_xCO_3} + \text{NH}_4\text{HCO}_3 + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + \text{NO}_3^- + \text{H}_2\text{O} + 3\text{HCO}_3^- \quad (13)
\]

\[
2\text{Ca}_{(1-x)Mg_xCO_3} + \text{NH}_4\text{Cl} + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + \text{NO}_3^- + \text{Cl}^- + \text{H}_2\text{O} + 2\text{HCO}_3^- \quad (14)
\]

\[
3\text{Ca}_{(1-x)Mg_xCO_3} + (\text{NH}_4)_2\text{CO}_3 + 4\text{O}_2 \rightarrow 3(1-x)\text{Ca}^{2+} + 3x\text{Mg}^{2+} + 2\text{NO}_3^- + 2\text{H}_2\text{O} + 4\text{HCO}_3^- \quad (15)
\]
$3\text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + \text{CO(NH}_2\text{)}_2 + 4\text{O}_2 \rightarrow 3(1-x)\text{Ca}^{2+} + 3x\text{Mg}^{2+} + 2\text{NO}_3^- + 4\text{HCO}_3^- \quad (16)$

(2) No effect of NO$_3$-fertilizer treatment: NaNO$_3$ treatment

In the NaNO$_3$ treatment, the reaction occurs according to Eq. (17), indicating that the addition of NO$_3$-fertilizer does not significantly influence carbonate weathering.

$\text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + \text{NaNO}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow (1-x)\text{Ca}^{2+} + x\text{Mg}^{2+} + \text{Na}^+ + \text{NO}_3^- + 2\text{HCO}_3^- \quad (17)$

(3) The common ion effect: K$_2$CO$_3$ treatment

In the K$_2$CO$_3$ treatment, CO$_3^{2-}$ and HCO$_3^-$ will be produced after the addition of K$_2$CO$_3$ according to Eq. (18), hence resulting in carbonate precipitation as described in Eq. (19), due to the common ion effect.

$\text{K}_2\text{CO}_3 + \text{H}_2\text{O} \rightarrow 2\text{K}^+ + \text{HCO}_3^- + \text{OH}^- \quad (18)$

$(1-x)\text{Ca}^{2+} + x\text{Mg}^{2+} + 2\text{HCO}_3^- \rightarrow \text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O} \quad (19)$

(4) Complex effects: Nitrification versus inhibition effect of PO$_4$ in (NH$_4$)$_3$PO$_4$ treatments

For the (NH$_4$)$_3$PO$_4$ treatment, the reaction of carbonate weathering will occur according to Eq. (11) due to the nitrification of NH$_4^+$ ionized from the (NH$_4$)$_3$PO$_4$ fertilizer, which will occur the nitrification. Whilst the PO$_4^{3-}$ anion will exert an inhibition to calcite dissolution, as calcium orthophosphate (Ca-P) precipitation is produced on the surface of calcite after the addition of PO$_4^{3-}$ in soil (reaction: Ca + PO$_4^{3-}$ → Ca-P), resulting in inhibition of the calcite dissolution of calcite.

(5) Complex effects: Common ion effect versus inhibition effect of PO$_4$ in Ca$_3$(PO$_4$)$_2$ and Ca-Mg-P treatments
In the Ca₃(PO₄)₂ and Ca-Mg-P treatments, on the one hand, the Ca₁₋ₓMgxCO₃ is produced when the concentrations of Ca²⁺ (or/and Mg²⁺) increases as according to following Eq. (19). On the other hand, the inhibition effect of phosphate will cause that calcium phosphate precipitation to be produced on the surface of carbonate minerals after the addition of P in soil (reaction: Ca + PO₄ → Ca-P), correspondingly resulting in inhibiting the carbonate precipitation.

4.3 The difference between NH₄⁺ and NO₃⁻ in impacts on carbonate weathering and the implication on the estimation of CO₂ consumption

In order to further compare the difference between NH₄⁺ and NO₃⁻ effects on carbonate weathering, the initial molar amount of fertilizer-derived NH₄⁺ per unit in every treatment were calculated, and are listed in Table 4. The results show that the amount of NH₄⁺ hydrolyzed from urea is 1.06 mole, while NH₄⁺ ionized from NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and (NH₄)₃PO₄ is 0.54 mole, 1.08 mole, 1.07 mole, 1.06 mole, and 0.03 mole, respectively (Table 4). The Rw of limestone tablets and the initial amount of NH₄⁺ per treatment are plotted in Fig. 45. A distinct relationship between them is observed, in that the Rw values in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments are bigger larger than in the control treatment, where the initial amount of NH₄⁺ displays similar results (Fig. 45). This suggests that carbonate weathering in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments are mainly attributed to the dissolution reaction described as Eq. (11). This process of carbonate weathering by protons released from nitrification has been proven by many studies, from the laboratory to the field (Barnes and Raymond, 2009; Bertrand et al., 2007; Biasi et al., 2008; Chao et al., 2011; Errin et al., 2006; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Semhi and Suchet, 2000; West and McBride, 2005) (Barnes and Raymond, 2009; Bertrand et
al., 2007; Biasi et al., 2008; Chao et al., 2011; Errin et al., 2006; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Semhi and Suchet, 2000; West and McBride, 2005). We have noted that the R_w values in NH$_4$HCO$_3$ and (NH$_4$)$_2$CO$_3$ treatments are lower than even half of those in urea treatment in despite of adding the same amount of fertilizer-derived NH$_4$ (about approximately 1.07 mole). This is probably because the two fertilizers, NH$_4$HCO$_3$ and (NH$_4$)$_2$CO$_3$, are easier to decompose and produce the NH$_3$ and CO$_2$ gases as following according to Eq. (20) and (21), resulting in the amounts of fertilizer-derived NH$_3$ of that are lower than 1.07 moles.

$$\text{NH}_4\text{HCO}_3 \rightarrow \text{NH}_3 \uparrow + \text{H}_2\text{O} + \text{CO}_2 \uparrow \quad (20)$$

$$\text{(NH}_4\text{)}_2\text{CO}_3 \rightarrow 2\text{NH}_3 \uparrow + \text{H}_2\text{O} + \text{CO}_2 \uparrow \quad (21)$$

The A_w and R_w in the (NH$_4$)$_3$PO$_4$ treatment, unlike in other NH$_4$-fertilizer treatments, had not show a significant increase comparing to the control treatment, which is not only owing to the low amount of added NH$_4^+$ in (NH$_4$)$_3$PO$_4$ treatment (0.3 mole; see Table 4), but also more or less relative to the inhibition of phosphate (Chien et al., 2011; Wang et al., 2012). After the addition of (NH$_4$)$_3$PO$_4$ in soil, calcium orthophosphate (Ca-P) precipitation will form on calcite surfaces, which is initiated with the aggregation of clusters leading to the nucleation and subsequent growth of Ca-P phases, at various pH values and ionic strengths relevant to soil solution conditions (Chien et al., 2011; Wang et al., 2012). However, in Fig. 3, there is no significant different between the R_w without significant difference with control treatment in the NaNO$_3$ treatment compared to the control treatment, indicating that the addition of NO$_3$-fertilizer does not
significantly influence carbonate weathering.

A notable issue herein is that the NaNO₃ treatment produces the same amount of NO₃⁻ (1.07 mole) as other NH₄ fertilizer (NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea), but it fails to impact on carbonate weathering, which raises a new problem. Eq. (5), usually considered as an expression for the natural weathering process of carbonate, is an important reaction for understanding the kinetics of carbonate dissolution in carbonate-dominated areas, where the molar ratio of HCO₃⁻ and Me²⁺ in the river as an indicator is usually used as an indicator to make estimations of CO₂ consumption by carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). In agricultural areas, the relationship between (Ca+Mg)/HCO₃⁻ and NO₃⁻ is usually employed to estimate the contribution of N-fertilizer to riverine Ca²⁺, Mg²⁺, and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described as in Eq. (8) is usually considered as the unique origin of NO₃⁻.

According to the results of the NaNO₃ treatment in this study, the contribution of protons from nitrification to carbonate weathering may be overestimated, if anthropogenic NO₃⁻ is neglected, since the anthropogenic NO₃⁻ does not release the proton described as in Eq. (8). For NH₄NO₃ fertilizer, the (Eq. (12)) shows that the two moles of Ca²⁺+Mg²⁺, NO₃⁻, and HCO₃⁻ will be produced when one mole NH₄NO₃ reacts with 2 moles of carbonate, where only half of the NO₃⁻ originates from nitrification described as Eq. (8). This will result in a double overestimation of the contribution of the nitrification to carbonate weathering, and thus thereby mislead the estimation of CO₂ consumption therein.
At regional scales, if different fertilizers are added simultaneously to an agricultural area, the estimation of CO$_2$ consumption by carbonate weathering might become more complicated, since the mole ratios of Ca$^+$Mg, HCO$_3^-$, and/or NO$_3^-$ between different fertilization treatments are different (see Table 3). Thus, the related anthropogenic inputs (e.g., Ca$^+$Mg, NH$_4^+$, NO$_3^-$, HCO$_3^-$, etc.) need to be investigated to more accurately estimate the impact of fertilization on carbonate weathering and its CO$_2$ consumption.

4.4 The comparison with other studied results

The R_w and R_{aw} of limestone in the control treatment in this study were 0.48 ‰ and 2.00 g·m$^{-2}$·a$^{-1}$, respectively, which are generally consistent with the observations of 0.51-32.97 g·m$^{-2}$·a$^{-1}$ (for R_{aw}) in Nongla, Guangxi, a karst area of Southwestern China (Zhang, 2011), and with the results of 0.05-5.06 ‰ (for R_w) and 1.08-136.90 g·m$^{-2}$·a$^{-1}$ (for R_{aw}) from the north slope of the Hochschwab Massif in Australia (Plan, 2005), as determined using the limestone tablet method. But the R_{aw} of 2.00 g·m$^{-2}$·a$^{-1}$ is lower than the results (of 7.0-63.5 g·m$^{-2}$·a$^{-1}$ for R_{aw}) from Jinfo Mountain in Chongqing, China (Zhang, 2011). These differences in carbonate weathering are mainly attributed to the different types of carbonate rock tablets, climate, micro-environments of soil, etc. The R_w of limestone in the N-fertilizers treatments are 20.57-34.71 g·m$^{-2}$·a$^{-1}$, similar to the weathering rate of carbonate in an orchard (32.97 g·m$^{-2}$·a$^{-1}$) at Nongla, Manshan, Guangxi, China, which usually involves in fertilization activities.

At larger scales, such as watersheds, the weathering rate is usually estimated by using the riverine hydro-chemical method, which is inconsistent with the results from the carbonate-rock-tablet test. The estimation of Zeng, et al. (2014) estimates that the carbon sink intensity calculated by the carbonate-rock-tablet
The carbonate-rock-tablet test is only one sixth of that estimated by using the riverine hydro-chemical method, due to its own limits in methodology (Zeng et al., 2014). The results from Semhi, et al. (2000) shows that weathering rates of carbonate rock by using riverine hydro-chemical method are approximately 77.5 g·m⁻²·a⁻¹ and 50.4 g·m⁻²·a⁻¹ in the upstream and downstream, respectively, of the Garonne river, France, respectively, which are approximately 25-35 and 2-3 times greater than that in the control treatment (2.00 g·m⁻²·a⁻¹ for natural weathering rate) and 2-3 times greater than in the N-fertilizer treatment (20.57-34.71 g·m⁻²·a⁻¹ for anthropic weathering rate) in this study. The global natural weathering rate of carbonate reported by Amiotte Suchet, et al. (2003) is 47.8 g·m⁻²·a⁻¹, which is much higher than that we observed. Thus, we conclude that it is difficult to compare between the results from the carbonate-rock-tablet test and the riverine hydro-chemical method. The carbonate-rock-tablet test is suitable for the research on the condition controlled comparative contrast or stimulated experiments, while the riverine hydro-chemical method is appropriate for the regional investigations and estimations.

According to the estimation from Yue et al. (2015), the enhanced HCO₃⁻ flux due to nitrification of NH₄⁺ at Houzhai catchment of Guizhou province would be 3.72 × 10⁵ kg C/year and account for 18.7% of this flux in the entire catchment (Yue et al., 2015). This is similar to estimates from other small agricultural carbonate basins (12–26%) in Southwest France (Perrin et al., 2008; Semhi and Suchet, 2000).

5. Conclusions

The impact of the addition of different fertilizers (NH₄NO₃, NH₄HCO₃, NaNO₃, NH₄Cl, (NH₄)₂CO₃, Ca₃(PO₄)₂, (NH₄)₃PO₄, Ca-Mg-P, urea, and K₂CO₃) on carbonate weathering was studied in a field column experiment with using carbonate
-rock–tablets at the bottom of each. The amount of weathering amount and the ratio of
weathering of carbonate rock tablets showed that the addition of urea, \(\text{NH}_2\text{NO}_2 \),
\(\text{NH}_2\text{HCO}_3 \), \(\text{NH}_4\text{Cl} \), and \(\text{(NH}_4\text{)}_2\text{CO}_3 \) distinctly increased carbonate weathering, which
was attributed to the nitrification of \(\text{NH}_4^+ \), and while the addition of \(\text{Ca}_3(\text{PO}_4)_2 \),
\(\text{Ca-Mg-P} \) and \(\text{K}_2\text{CO}_3 \) induced carbonate precipitation due to the common ion effect.
While the addition of \(\text{(NH}_4\text{)}_3\text{PO}_4 \) and \(\text{NaNO}_3 \) addition did not impact significantly
on carbonate weathering, where the former can be attributed to the low added amount
of \(\text{(NH}_4\text{)}_3\text{PO}_4 \) and may be related to the inhibition of phosphate, and while the
latter seemed to be raising a new question. The question is: The little minor impact
of nitrate on carbonate weathering may result in the overestimation of the impact of
\(\text{N-fertilizer} \) on \(\text{CO}_2 \) consumption by carbonate weathering at the regional/global scale.
if the effects of \(\text{NO}_3^- \) and \(\text{NH}_3 \) are not distinguished. Thus, the related anthropogenic
inputs (e.g. \(\text{Ca}^+, \text{Mg}^+, \text{NH}_4^+, \text{NO}_3^-, \text{HCO}_3^- \), etc.) need to be investigated to more
accurately estimate the impact of fertilization on carbonate weathering and its
consumption of \(\text{CO}_2 \)–\consumption. 4.2 The kinetics and controlled factors of
carbonate weathering

Experimental studies of carbonate dissolution kinetics have shown metal
carbonate weathering usually depends upon three parallel reactions occurring at the
carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009):
\[
\text{MeCO}_3 + \text{H}^+ \rightarrow \text{Me}^{2+} + \text{HCO}_3^- \tag{4}
\]
\[
\text{MeCO}_3 + \text{H}_2\text{CO}_3 \rightarrow \text{Me}^{2+} + 2\text{HCO}_3^- \tag{5}
\]
\[
\text{MeCO}_3 \rightarrow \text{Me}^{2+} + \text{CO}_3^{2-} \tag{6}
\]

25
where $M_e = Ca, Mg$. As Eq. (5) describes, atmospheric/soil CO$_2$ is usually regarded as the natural weathering agent of carbonate, whereas many studies have exposed that carbonate weathering can occur due to the reaction (Eq. (4)) between carbonate and the other proton contributors, as mentioned in introduction section, which can originate from the nitrification processes of N-fertilizer H$_4^+$ (Semhi and Suchet, 2000; West and McBrine, 2005; Oh and Raymond, 2006; Hamilton et al., 2007; Perrin et al., 2008; Barnes and Raymond, 2009; Pierson-Wickmann et al., 2009; Chao et al., 2011; Gandois et al., 2011), from the sulfuric acid acid, (Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009), from organic acid secreted by microorganisms (Lian et al., 2008), as well as from acidic soil (Chao et al., 2014) the role of.

In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO$_2$ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, $NH_4NO_3, NH_4HCO_3, NH_4Cl$ and $(NH_4)_2CO_3$ amendment increased (10 to 17-fold) the natural weathering rate of 2.00 g·m$^{-2}$·a$^{-1}$ from limestone tablets in control treatment (table 2). These increases may be, in the one hand, attributed to the effect of the proton released from the nitrification of NH_4^+. On the other hand, it may be, in theory, related to enhanced microbiogenic CO$_2$ due to nitrogenous nutrients stimulation (Eq(5)), because fertilizer application can increase soil CO$_2$ flux (Sainju et al., 2008; Bhattacharyya et al., 2013), the increased CO$_2$ can enhance carbonate dissolution rate at near neutral or alkali pH (Andrews and...
According to the added amount of different fertilization treatment, the molar amount of added nitrogen nutrient in NaNO₃ treatment is 1.07 mol, much bigger than in NH₄NO₃, equivalent to NH₄HCO₃ and NH₄Cl treatment. However, the Acw and Rew, and Rcw of NaNO₃ treatment is far less (Fig. 3 and table 2), inhibiting that the increases of carbonate weathering rate in urea, NH₄NO₃, NH₄HCO₃, NH₄Cl and (NH₄)₂CO₃ amendment have no distinct relationship with enhanced microbiogenic CO₂ due to nitrogenous fertilizer amendment.

4.3 The effect of nitrification of NH₄-fertilizer

In urea (CO(NH₂)₂) treatment, the enzyme urease rapidly hydrolyzes the urea-N (CO(NH₂)₂) to NH₄⁺ ions (Eq. (7)) when urea is applied to the soil (Soares et al., 2012).

\[
\text{CO(NH₂)₂} + 3\text{H₂O} \rightarrow 2\text{NH}_4^+ + 2\text{OH}^- + \text{CO}_2 \quad (7)
\]

Table 3 shows that the amount of NH₄⁺ hydrolyzed from urea is 1.06 mol, while NH₄⁺ ionized from NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and (NH₄)₃PO₄ is 0.54 mol, 1.08 mol, 1.07 mol, 1.06 mol and 0.03 mol, respectively (Table 3). Although the study from Singh et al. showed that a part of NH₄⁺ may be lost as ammonia (NH₃) and subsequently as nitrous oxide (N₂O) (Singh et al., 2013), yet the rest ammonium (NH₄⁺) is mainly oxidized in soil by autotrophic bacteria (like Nitrosomonas) during nitrification, resulting in nitrite NO₂⁻ and H⁺ ions. Nitrite is, in turn, oxidized by another bacterium, such as Nitrobacter, resulting in nitrate (NO₃⁻) (Eq. (8)) (Perrin et al., 2008).
\[\text{NH}_4^+ + 2\text{O}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+ \] (8)

The protons (H\(^+\)) produced by nitrification can be neutralized in two ways:

(i) either by exchange process with base cations in the soil exchange complex

(Eq. (9)) \[\text{Soil} - \text{Ca} + 2\text{H}^+ \rightarrow \text{Soil} - 2\text{H}^+ + \text{Ca}^{2+} \] (9)

(ii) or via carbonate mineral dissolution (Eq.(10))

\[\text{Ca}_{1-x}\text{Mg}_x\text{CO}_3 + \text{H}^+ \rightarrow (1-x)\text{Ca}^{2+} + x\text{Mg}^{2+} + \text{HCO}_3^- \] (10)

Consequently, after Eq. (8) and Eq. (10) are combined, carbonate weathering by protons produced by nitrification is supposed to becomes (Eq. (11)) (See details in Perrin et al., 2008 and Gandois et al., 2011).

\[2\text{Ca}_{1-x}\text{Mg}_x\text{CO}_3 + \text{NH}_4^+ + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + \text{NO}_3^- + \text{H}_2\text{O} + 2\text{HCO}_3^- \] (11)

The R_{cw} of limestone tablets and the initial concentration of NH\(_4^+\) are plotted in Fig. 4. A distinct relationship between them is observed: the A_{cw} and R_{cw} in NH\(_4\)NO\(_3\), NH\(_4\)HCO\(_3\), NH\(_4\)Cl, (NH\(_4\))\(_2\)CO\(_3\) and urea treatments are bigger than in control treatment, where the initial concentration of NH\(_4^+\) displays similar results (Fig. 4). This suggests that carbonate weathering in NH\(_4\)NO\(_3\), NH\(_4\)HCO\(_3\), NH\(_4\)Cl, (NH\(_4\))\(_2\)CO\(_3\) and urea treatments are mainly attributed to the dissolution reaction described as Eq. (11). This process of carbonate weathering by protons from nitrification has been proven by many studies, from laboratory to field (Semhi and Suchet, 2000; Bertrand et al., 2007; Oh and Raymond, 2006; Errin et al., 2006; Hamilton et al., 2007; Biasi et al., 2008; Perrin et al., 2008; Barnes and Raymond, 2009; Chao et al., 2011; West and McBride, 2005; Gandois et al., 2011). According to the estimation from Yue et al. (2015), The enhanced HCO\(_3^-\)-flux due to nitrification of NH\(_4^+\) at Houzhai catchment...
of Guizhou province would be 3.72×10^5 kg C/year and account for 18.7% of this flux in the entire catchment (Yue et al., 2015). This is similar to estimates from other small agricultural carbonate basins (12–26%) in Southwest France (Semhi and Suchet, 2000; Perrin et al., 2008).

As discussed above, provided that the loss as ammonia (NH$_3$) and nitrous oxide (N$_2$O) after hydrolyzation is unconsidered in this study, the final equation of carbonate weathering in NH$_2$NO$_2$, NH$_4$HCO$_3$, NH$_4$Cl, (NH$_4$)$_2$CO$_3$ and urea treatments will be followed as, respectively:

$2\text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + \text{NH}_4\text{NO}_3 + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + 2\text{NO}_3^- + \text{H}_2\text{O} + 2\text{HCO}_3^- $ (12)

$2\text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + \text{NH}_4\text{HCO}_3 + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + \text{NO}_3^- + \text{H}_2\text{O} + 3\text{HCO}_3^- $ (13)

$2\text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + \text{NH}_4\text{Cl} + 2\text{O}_2 \rightarrow 2(1-x)\text{Ca}^{2+} + 2x\text{Mg}^{2+} + \text{NO}_3^- + \text{Cl}^- + \text{H}_2\text{O} + 2\text{HCO}_3^- $ (14)

$3\text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + (\text{NH}_4)_2\text{CO}_3 + 4\text{O}_2 \rightarrow 3(1-x)\text{Ca}^{2+} + 3x\text{Mg}^{2+} + 2\text{NO}_3^- + 2\text{H}_2\text{O} + 4\text{HCO}_3^- $ (15)

$3\text{Ca}(1-x)\text{Mg}_x\text{CO}_3 + \text{CO(NH}_2)_2 + 4\text{O}_2 \rightarrow 3(1-x)\text{Ca}^{2+} + 3x\text{Mg}^{2+} + 2\text{NO}_3^- + 4\text{HCO}_3^- $ (16)

The A_{cw} and R_{cw} in (NH$_4$)$_3$PO$_4$ treatment, unlike in other NH$_4$-fertilizer treatments, had not a significant increase comparing with control treatment, which is not only owing to the low amount of added NH$_4^+$ in (NH$_4$)$_3$PO$_4$ treatment (0.3 mol, see Table 3) but also relative to the inhibition of phosphate. After the addition of (NH$_4$)$_2$PO$_4$ in soil, calcium orthophosphate (Ca-P) precipitation will form on calcite surface which is initiated with the aggregation of clusters leading to the nucleation
and subsequent growth of Ca-P phases, at various pH values and ionic strengths relevant to soil solution conditions (Chien et al., 2011; Wang et al., 2012).

4.4 Little/no effect of NO$_3$-fertilizer on carbonate weathering and its implication to the evaluation of CO$_2$ consumption by carbonate weathering

In Fig. 3, the A_{cw} and R_{cw} without significant difference with control treatment in NaNO$_3$ treatment indicates that the addition of NO$_3$-fertilizer does not significantly influence carbonate weathering. This result is raising a new problem.

--- Eq. (5), usually as an expression for the natural weathering process of carbonate, is an important reaction for understanding the kinetics process of carbonate dissolution in carbonate dominated areas, where the molar ratio of HCO$_3^-$ and Me$^{2+}$ in the river as an indicator is usually used to make estimations of CO$_2$ consumption by carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). At agricultural areas, the relationship between (Ca+Mg)/HCO$_3^-$ and NO$_3^-$ is usually employed to estimate the contribution of N-fertilizer to riverine Ca$^{2+}$, Mg$^{2+}$ and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described as Eq. (8) is usually considered as the unique origin of NO$_3^-$: According to the result of NaNO$_3$-treatment in this study, the contribution of protons from nitrification to carbonate weathering may be overestimated if anthropogenic NO$_3^-$ is neglected, since the anthropogenic NO$_3^-$ does not release the proton described as Eq. (8). For NH$_4$NO$_3$ fertilizer, the (Eq. (12)) show that the two moles of Ca$^{2+}$+Mg$^{2+}$, NO$_3^-$ and HCO$_3^-$ will be produced when one mole NH$_4$NO$_3$ react with 2 moles of carbonate, where only half of NO$_3^-$ originate from nitrification described as Eq. (8). This will result in doubled overestimation on the true contribution of the nitrification to CO$_2$ consumption by carbonate weathering---
At regional scales, if different fertilizers are added to an agricultural area, the estimation of CO$_2$ consumption by carbonate weathering might become more complicated, since the mole ratio of Ca$^{2+}$, Mg$^{2+}$, HCO$_3^-$, and/or NO$_3^-$ between different fertilization treatment is different (see Eq. (8)-(12)). Thus, the related anthropogenic inputs (e.g., Ca$^{2+}$, Mg$^{2+}$, NH$_4^+$, NO$_3^-$, HCO$_3^-$, etc.) need to be investigated to more accurately estimate the impact of fertilization on carbonate weathering and its CO$_2$ consumption. Moreover, the statement that nitrogenous fertilizer can aid carbonate weathering may result in misunderstanding more or less, it should not be nitrogenous fertilizer but, rather, ammonium fertilizer.

5. Conclusion

The impact of the addition of different fertilizer (NH$_4$NO$_3$, NH$_4$HCO$_3$, NaNO$_3$, NH$_4$Cl, (NH$_4$)$_2$CO$_3$, Ca$_3$(PO$_4$)$_2$, (NH$_4$)$_3$PO$_4$, Ca-Mg-P, Urea and K$_2$CO$_3$) on carbonate weathering was studied in a field column experiment with carbonate rock tablets at its bottom of each. The weathering amount and ratio of carbonate rock tablets showed that the addition of urea, NH$_4$NO$_3$, NH$_4$HCO$_3$, NH$_4$Cl and (NH$_4$)$_2$CO$_3$ distinctly increased carbonate weathering, which was attributed to the nitrification of NH$_4^+$, and the addition of Ca$_3$(PO$_4$)$_2$, Ca-Mg-P and K$_2$CO$_3$ induced carbonate precipitation due to common ion effect. While the (NH$_4$)$_3$PO$_4$ and NaNO$_3$ addition did not impact significantly on carbonate weathering, where the former can be attributed to low added amount of (NH$_4$)$_3$PO$_4$, may be related to the inhibition of phosphate, and the latter seemed to be raising a new question. The little impact of nitrate on carbonate weathering may result in the overestimation of impact of N-fertilizer on CO$_2$ consumption by carbonate weathering at the regional/global scale if the effect of NO$_3^-$
and NH$_4$ are not distinguished. Thus, the related anthropogenic inputs (e.g. Ca$^+$, Mg,
NH$_4$–NO$_3$–HCO$_3$–, etc.) need to be investigated to more accurately estimate the
impact of fertilization on carbonate weathering and its CO$_2$ consumption. Moreover,
in order to avoid misunderstanding more or less, the statement that nitrogenous
fertilizer can aid carbonate weathering should be replaced by ammonium fertilizer.

6. Acknowledgements

This study is supported jointly by the Basic Science Research Fund from the
Institute of Hydrogeology and Environmental Geology (Grant No. SK201208), and
the Chinese National Natural Science Foundation (No. 41403107 and No. 41325010).

References:

lithology: Implications for the atmospheric/soil CO$_2$ uptake by continental weathering and alkalinity
weathering in a temperate forest with experimental CO$_2$ enrichment. Global Biogeochemical Cycles,
15: 149-162.
Barnes, R.T., and Raymond, P.A., 2009. The contribution of agricultural and urban activities to
inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327.
Bertrand, I., Delfosse, O., and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and
calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1):
276-288.
Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J. et al., 2008. Direct experimental evidence
for the contribution of lime to CO$_2$ release from managed peat soil. Soil Biology and Biochemistry,
40(10): 2660-2669.
Calmels, D., Gaillardet, J. and Francois, L., 2014. Sensitivity of carbonate weathering to soil CO$_2$
production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86.
Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a
Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied
Geochemistry, 26(S): 170-173.
Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a
Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied
Geochemistry, 26(S): 170-173.

Dreybrodt, W., Lauckner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the reaction CO$_2$ + H$_2$O \rightarrow H$^+$ + HCO$_3^-$ as one of the rate limiting steps for the dissolution of calcite in the system H$_2$O-CO$_2$-CaCO$_3$. Geochimica et Cosmochimica Acta, 60(18): 3375-3381.

affecting the groundwater quality in the Nandong karst underground river system in Yunan, China.

Plummer, L.N., Wigley, T. and Parkhurst, D.L., 1978. The kinetics of calcite dissolution in CO\textsubscript{2}-water systems at 5 to 60 °C and 0.0 to 1 atm CO\textsubscript{2}. American Journal of Science, 278: 179-216.

References:
lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity
weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochem. Cycles
15:149-162.
Barnes, R.T., and P.A. Raymond. 2009. The contribution of agricultural and urban activities to
inorganic carbon fluxes within temperate watersheds. Chem Geol 266:218-227.
Bertrand, L.O. Delfoss, and B. Mary. 2007. Carbon and nitrogen mineralization in acidic, limed and
Martikainen. 2008. Direct experimental evidence for the contribution of lime to CO₂ release from
managed peat soil. Soil Biology and Biochemistry 40:2660-2669.
Calmo, D., J. Gaillardet, and L. François. 2014. Sensitivity of carbonate weathering to soil CO₂
production by biological activity along a temperate climate transect. Chem Geol 390:74-86.
Chao, S., L. Changl, Z. Yun, and H. Houbing. 2014. Impact of animal manure addition on
agricultural lime weathering in acidic soil: pH dependence and CO₂ independence of agricultural lime
Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Appl
Geochim 26:170-173.
Chien, S.H., L.I. Prochnow, S. Tu, and C.S. Snyder. 2011. Agronomic and environmental aspects of
phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosys
89:229-255.
Choo, S., R.M. Garrels, and R. Wollast. 1989. Comparative study of the kinetics and mechanisms of
Berlin Heidelberg.
reaction CO₂ + H₂O → H⁺ + HCO₃⁻ as one of the rate limiting steps for the dissolution of calcite in the
Egli, M., and P. Fitze. 2001. Quantitative aspects of carbonate leaching of soils with differing ages and
processes - Evident role on CO₂ consumption. The oxygen isotopic composition of Precambrian cherts,

Liu, C., K. Li, Y. Lang, and H. Xie. 2006. Using δ¹⁵N and δ¹⁸O Values To Identify Nitrate

References:

Dreybrodt, W., Laukner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the reaction CO2+H2O→H++HCO3 as one of the rate limiting steps for the dissolution of calcite in the

Liu, C., Li, S., Leng, Y. and Xiao, H., 2006. Using δ^{15}N- and δ^{18}O-Values To Identify Nitrate Sources in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology, 40(22): 6928-6933.

Liu, Z. et al., 2010. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for climatic reconstruction. Chemical Geology, 273(3-4): 258-266.

Liu, Z. and Dreybrodt, W., 1997. Dissolution kinetics of calcium carbonate minerals in H$_2$O-CO$_2$ solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H$_2$O + CO$_2$ \leftrightarrow H$^+$ + HCO$_3^-$ Geochimica et Cosmochimica Acta, 61(14): 2879-2889.

Sainju, U.M., Jabro, J.D. and Stevens, W.B., 2008. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental

Table 1 Chemical composition of soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>6.94</td>
</tr>
<tr>
<td>Content of particles (<0.01mm)</td>
<td>%</td>
<td>74</td>
</tr>
<tr>
<td>Content of particles (<0.001mm)</td>
<td>%</td>
<td>45</td>
</tr>
<tr>
<td>Organic matter</td>
<td>%</td>
<td>0.99</td>
</tr>
<tr>
<td>NH$_4^+$-N</td>
<td>mg/kg</td>
<td>339.87</td>
</tr>
<tr>
<td>NO$_3$-N</td>
<td>mg/kg</td>
<td>569.05</td>
</tr>
<tr>
<td>Available P</td>
<td>mg/kg</td>
<td>8.18</td>
</tr>
<tr>
<td>Available K</td>
<td>mg/kg</td>
<td>56.88</td>
</tr>
<tr>
<td>Available Ca</td>
<td>mg/kg</td>
<td>3041.06</td>
</tr>
<tr>
<td>Available Mg</td>
<td>mg/kg</td>
<td>564.83</td>
</tr>
<tr>
<td>Available S</td>
<td>mg/kg</td>
<td>100.72</td>
</tr>
<tr>
<td>Available Fe</td>
<td>mg/kg</td>
<td>24.41</td>
</tr>
</tbody>
</table>
Table 2 Carbonate weathering under different fertilizer treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Limestone</th>
<th>Dolostone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_{cw}</td>
<td>R_{cw}</td>
</tr>
<tr>
<td>Control</td>
<td>$0.0014^{±}$</td>
<td>$2.00 ± 0.58g$</td>
</tr>
<tr>
<td>NH$_4$NO$_3$</td>
<td>$0.01^{±}$</td>
<td>$24.86 ± 2.01^{b}$</td>
</tr>
<tr>
<td>NH$_4$HCO$_3$</td>
<td>$0.01^{±}$</td>
<td>$21.00 ± 3.45^{b}$</td>
</tr>
<tr>
<td>NaNO$_3$</td>
<td>$0.00^{±}$</td>
<td>$4.43 ± 1.73^{b}$</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>$0.01^{±}$</td>
<td>$21.29 ± 2.45^{b}$</td>
</tr>
<tr>
<td>(NH$_4$)$_2$CO$_3$</td>
<td>$0.01^{±}$</td>
<td>$20.57 ± 4.46^{b}$</td>
</tr>
<tr>
<td>Ca$_3$(PO$_4$)$_2$</td>
<td>$0.00^{±}$</td>
<td>$4.38 ± 0.86$</td>
</tr>
<tr>
<td>(NH$_4$)$_3$PO$_4$</td>
<td>$0.00^{±}$</td>
<td>$4.00 ± 1.15^{b}$</td>
</tr>
<tr>
<td>Ca-Mg-P</td>
<td>$0.0013^{±}$</td>
<td>$-1.86 ± 0.45^{b}$</td>
</tr>
<tr>
<td>Urea</td>
<td>$0.02^{±}$</td>
<td>$34.71 ± 4.32^{b}$</td>
</tr>
<tr>
<td>K$_2$CO$_3$</td>
<td>$0.0008^{±}$</td>
<td>$8.48 ±$</td>
</tr>
</tbody>
</table>

* A_{cw} - the amount of carbonate weathering; R_{cw} - the ratio of carbonate weathering; $R_{cw} = (W_i-W_f)/(S*T)$,
 where W_i is the initial weight of the carbonate rock tablets, and W_f is the final weight. S is the surface area of carbonate weathering rock tablets (in this study, we used a same $S = 7$ cm2 for every tablets), and T is the experiment period. Values are reported as means ± standard deviations, n = 3.

Values in each column followed by different letters are significantly (p < 0.05) different based on one-way ANOVA.
Table 3: The main reaction and effects in fertilized treatments, and the potential nitrogenous transformation (The amount of generated NH$_4^+$ - NO$_3^-$) at the initial phase of the experiment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Main reactions and effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Control</td>
<td>Ca$_{1-x}$Mg$_x$CO$_3$ + CO$_2$ + H$_2$O \rightarrow (1-x)Ca$^{2+}$ + xMg$^{2+}$ + 2HCO$_3^-$</td>
</tr>
<tr>
<td>2. NH$_4$NO$_3$</td>
<td>2Ca$_{1-x}$Mg$_x$CO$_3$ + NH$_3$NO$_3$ + 2O$_2$ \rightarrow (1-x)Ca$^{2+}$ + xMg$^{2+}$ + 2NO$_3^-$ + H$_2$O + 3HCO$_3^-$</td>
</tr>
<tr>
<td>3. NH$_4$HCO$_3$</td>
<td>2Ca$_{1-x}$Mg$_x$CO$_3$ + NH$_4$HCO$_3$ + CO$_2$ \rightarrow (1-x)Ca$^{2+}$ + xMg$^{2+}$ + 2NH$_4^+$ + NO$_3^-$ + HCO$_3^-$</td>
</tr>
<tr>
<td>4. NaNO$_3$</td>
<td>Ca$_{1-x}$Mg$_x$CO$_3$ + NaNO$_3$ + CO$_2$ + H$_2$O \rightarrow (1-x)Ca$^{2+}$ + xMg$^{2+}$ + Na$^+$ + NO$_3^-$ + HCO$_3^-$</td>
</tr>
<tr>
<td>5. NH$_4$Cl</td>
<td>Ca$_{1-x}$Mg$_x$CO$_3$ + CO$_2$ + H$_2$O \rightarrow (1-x)Ca$^{2+}$ + xMg$^{2+}$ + Cl$^-$ + HCO$_3^-$</td>
</tr>
<tr>
<td>6. (NH$_4$)$_2$CO$_3$</td>
<td>2Ca$_{1-x}$Mg$_x$CO$_3$ + (NH$_4$)$_2$CO$_3$ + 4O$_2$ \rightarrow (1-x)Ca$^{2+}$ + xMg$^{2+}$ + 3NH$_4^+$ + 2NO$_3^-$ + 2H$_2$O + 4HCO$_3^-$</td>
</tr>
</tbody>
</table>
| 7. K$_2$CO$_3$ | (1) Common ion effect: The Ca$_{1-x}$Mg$_x$CO$_3$ produces when the concentrations of Ca$^{2+}$ and Mg$^{2+}$ increase.
(2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation produces on the surface of calcite after the addition of PO$_4^{3-}$ in soil, resulting in inhibiting the precipitation of calcite |
| 8. (NH$_4$)$_3$PO$_4$ | 3Ca$_{1-x}$Mg$_x$CO$_3$ + CO(NH$_2$)$_2$ + 4O$_2$ \rightarrow 3(1-x)Ca$^{2+}$ + 3xMg$^{2+}$ + 2NH$_4^+$ + 4NO$_3^-$ + 3HCO$_3^-$ |
| 9. Ca-Mg-P | (1) Common ion effect: The Ca$_{1-x}$Mg$_x$CO$_3$ produces when the concentrations of Ca$^{2+}$ and Mg$^{2+}$ increase.
(2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation produces on the surface of calcite after the addition of PO$_4^{3-}$ in soil, resulting in inhibiting the precipitation of calcite |
| 10. Urea | 3Ca$_{1-x}$Mg$_x$CO$_3$ + CO(NH$_2$)$_2$ + 4O$_2$ \rightarrow 3(1-x)Ca$^{2+}$ + 3xMg$^{2+}$ + 2NH$_4^+$ + 4NO$_3^-$ + 3HCO$_3^-$ |
| 11. K$_2$CO$_3$ | (1) Common ion effect: The Ca$_{1-x}$Mg$_x$CO$_3$ produces when the concentrations of Ca$^{2+}$ and Mg$^{2+}$ increase.
(2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation produces on the surface of calcite after the addition of PO$_4^{3-}$ in soil, resulting in inhibiting the precipitation of calcite |

Table 3: The main reaction and effects in these 11 fertilized treatments.
(ii) $\text{K}_2\text{CO}_3 + \text{H}_2\text{O} \rightarrow 2\text{K}^+ + \text{HCO}_3^- + \text{OH}^-$

Note: (1) Common ion effect: The Ca^{2+},Mg^{2+},CO_3^{2-} produced when the concentrations of Ca^{2+}, Mg^{2+} and/or HCO_3^- increases (for Treatment 7, 9 and 11): $(1-x)\text{Ca}^{2+} + x\text{Mg}^{2+} + 2\text{HCO}_3^- \rightarrow \text{Ca}^{1-x}\text{Mg}_x\text{CO}_3 + \text{CO}_2 + \text{H}_2\text{O}$

(2) Inhibition of phosphate to calcite dissolution/precipitation by phosphate: calcium orthophosphate (Ca-P) precipitation produces on the surface of calcite after the addition of PO_4^{3-} in soil, resulting in the inhibition of the dissolution/precipitation of calcite (for Treatment 7, 8 and 9): $\text{Ca} + \text{PO}_4^3- \rightarrow \text{Ca-P}$
Table 4: The amount of fertilizer-derived NH$_4^+$ at the initial phase of the experiment and the potential nitrogenous transformation (NH$_4^+$-NO$_3^-$)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Molecular mass g/mol</th>
<th>Amount of added fertilizer /g</th>
<th>Molar amount /mole</th>
<th>Amount of fertilizer-derived NH$_4^+$ /mole</th>
<th>The maximum of N products /mole</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4$NO$_3$</td>
<td>80</td>
<td>43</td>
<td>0.54</td>
<td>0.54</td>
<td>1.08</td>
</tr>
<tr>
<td>NH$_4$HCO$_3$</td>
<td>79</td>
<td>85</td>
<td>1.08</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>NaNO$_3$</td>
<td>85</td>
<td>91</td>
<td>1.07</td>
<td>0.00</td>
<td>1.07</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>53.5</td>
<td>57</td>
<td>1.07</td>
<td>1.07</td>
<td>1.07</td>
</tr>
<tr>
<td>(NH$_4$)$_2$CO$_3$</td>
<td>96</td>
<td>51</td>
<td>0.53</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Ca$_3$(PO$_4$)$_2$</td>
<td>310</td>
<td>52</td>
<td>0.17</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(NH$_4$)$_2$PO$_4$</td>
<td>149</td>
<td>15</td>
<td>0.10</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>Ca-Mg-P</td>
<td>-nd</td>
<td>44</td>
<td>-nd</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Urea</td>
<td>60</td>
<td>32</td>
<td>0.53</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>K$_2$CO$_3$</td>
<td>138</td>
<td>10</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*nd = without data. The amount of added fertilizer (g) divided by its molecular mass (g/mol) was the molar amount of fertilizer (mole). Gadd = gram amount of added fertilizers (g); Maafof = added fertilizers (mol). The amounts of fertilizer-derived NH$_4^+$ were calculated by their own ionization or hydrolysis processes. The maximum of N products is estimated by their main reactions in Table 3.
Fig. 1 The change of chemical fertilizer consumption in China during the 1980-2013 period. The data were collected from National Bureau of Statistics of the People’s Republic of China (NBS, 2014) (http://www.stats.gov.cn/tjsj/ndsj/).
Fig. 2 Sketch map of the soil column with rock tablets
Fig. 3 The ratio of carbonate weathering R_w (%) of limestone and dolostone under different fertilization-fertilizer treatments

(a) limestone; (b) dolostone. Treatment 1 - Control; 2 - NH$_4$NO$_3$; 3 - NH$_4$HCO$_3$; 4 - NaNO$_3$; 5 - NH$_4$Cl; 6 - (NH$_4$)$_2$CO$_3$; 7 - Ca$_3$(PO$_4$)$_2$; 8 - (NH$_4$)$_3$PO$_4$; 9 - Ca-Mg-P; 10 - Urea; 11 - K$_2$CO$_3$.

$R_w = \frac{1000(W_i - W_f)}{W_i}$, where W_i is the initial weight of the carbonate rock tablets, and W_f is their final weight. Values in each column followed by different letters are significantly ($p < 0.05$) different based on one-way ANOVA.
$R_w = 1000(W_i - W_f)/W_i$, where W_i is the initial weight of the limestone tablets, and W_f is their final weight.

Fig. 4 The linear correlation of R_w (%) of limestone and dolostone
Fig. 4.5 The R_w (%) of limestone ratio of limestone weathering and the molar amount of produced NH$_4^+$ under different fertilization fertilizer treatments.

Treatment 1. Control; 2. NH$_4$NO$_3$; 3. NH$_4$HCO$_3$; 4. NaNO$_3$; 5. NH$_4$Cl; 6. (NH$_4$)$_2$CO$_3$; 7. Ca$_3$(PO$_4$)$_2$; 8. (NH$_4$)$_3$PO$_4$; 9. Ca-Mg-P; 10. Urea; 11. K$_2$CO$_3$. $R_w = \frac{1000(W_i-W_f)}{W_i}$, where W_i is the initial weight of the limestone tablets, and W_f is the final weight.