Reviewer 1

1. In some paragraphs, the English writing may be slightly improved. **Changed in the manuscript:** we have re-edited the language question by the

Language Services of Elsevier.

2. In the field, how are placed the different experimental columns? Did you have a random position, mixing the different modalities?

Answer: we placed orderly the different treatments columns including replicated treatments.

Changed in the manuscript: we added "were labelled and placed orderly" to interpret this.

3. The authors mixed "perfectly" the chemical fertilizers with the sieved soils. It was not directly spread on the field/columns. This may be an artefact compared to the natural field, where fertilizers are spread on the soils, relatively far from the rock.

Answer: We agree that this design have difference from the natural field. But considering the uniformity of all treatments, the results we got are still convinced. We will consider the comparison research in terms of different way and amounts of fertilizer addition.

4. In the last part of the discussion, this point may be highlighted, as the authors compared their data with the literature... This way, their weathering rate may be (slightly) overestimated. This other point is that in the literature most studies approach the weathering estimate from riverine data as the authors discussed. **Answer:** we are pleased that you agree with that.

5 - L41 - 42: "(...) processes including the reaction between carbonates and the protons derived (...)".

Changed in the manuscript: We removed "the".

6 - L 45 and 47: you may be more specific on the origin of sulfuric acid, and the role of acidic soil in the carbonate – proton relationship. "Acidic soil" is still too broad.

Changed in the manuscript: changing into "sulfuric acid forming in the oxidation of reduced sulfuric minerals (mainly pyrite, FeS₂),..... acidic soil (such as red soil, yellow soil)"

7 - L55, you may add the increase proportion of mineral fertilizers (increase by 365%), in order to compare with the 3.3% worldwide increase... I was wondering what was the cause of such sharp increase in chemical fertilizers consumption. Is it just an effect of the increase of the size of agricultural land or is it a consequence of a change of fertilizer habit (more NO3 or NH4 fertilizers)?

Answer: The primary reasons why we set up the amount of added fertilizer in this study are: (1) the soil we used is untilled fresh soil which we sampled from B layer. Considering its low nutrition, we set up a higher fertilizer amount. (2)We just want to explore the different response of these different on carbonate weathering, and magnify

and quicken the short-term response. (3) It is a simple pre-study, but we think some findings are worthy published especially to CO_2 consumption via carbonate weathering at agricultural areas.

8 - L118 - 119: You worked on Guizhou area where the consumption of chemical fertilizers increased by about 26% (far less than the increase of fertilizer consumption at the scale of the whole country).

Answer: It is true that according to the 2014 Guizhou statistical yearbook.

9 - L121: Could you be more specific for the soil classification, more precise than B horizon?

Changed in the manuscript: we added "yellow-brown clay".

10 - L123: did you crush (ground) the sample before to pass it through 2 mm sieve? Or did you pass the air - dried soil through 2 mm sieve, and after you crushed it... this may seem to be a detail, but it is really important.

Answer: all of soil samplers we sampled were ground first, and then sieved.

11 - L141: Did you have any silt or clay loss with a 0.5 mm net at the bottom of your column? Did you add some quartz wool in addition to the sand "filter" above the PE net?

Answer: we didn't consider the clay loss with the smaller particle. We will consider the quartz wool material as the member of filters in future studies. Thank you so much for your suggestions.

12 - L142 - 143: "Two different carbonate rock tablets were buried in the bottom of each soil column"; by this, do you mean that you put only one tablet of two different carbonate rocks? So the carbonate rocks are different, or are they two aliquots of the same rock type?

Answer: yes, we placed only one tablet of each carbonate rock in one column, but we designed 3 columns for each treatment as replicates. The carbonate rocks are different absolutely got from different area.

13 - L145 - 150: How did you determine the weight of each chemical fertilizer applied on each soil experiment?

Answer: The primary reasons why we set up the amount of added fertilizer in this study are: (1) the soil we used is untilled fresh soil which we sampled from B layer. Considering its low nutrition, we set up a higher fertilizer amount. (2)We just want to explore the different response of these different on carbonate weathering, and magnify and quicken the short-term response. (3) It is a simple pre-study, but we think some findings are worthy published especially to CO_2 consumption via carbonate weathering at agricultural areas.

In order to short the time of this experiment, and also considering the low nutrients of the fresh soil, we have added the amount of N, P and K fertilizer in local practical use in this manuscript like this: (N fertilizer: 160 kg N \cdot ha-1; P fertilizer: 150 kg P2O5 \cdot ha-1; K fertilizer: 50 kg K \cdot ha-1). According to the chemical formula and the

molecular weight of each fertilizer, we finally calculated the amount of added fertilizer for each treatment.

14 - L151 - 152: you did mix each fertilizer with air - dried soils. So the fertilizer was not spread on the column? As soil and fertilizers were perfectly mixed, did you also crush the chemical fertilizers or did you leave them in their original shapes?

Answer: All the fertilizers are small granular with homogeneous size. They were perfectly mixed with soil. Undeniably speaking, the fertilizer may be spread partly on the wall of column in some cases, but we believe that its effect on our experiment results can be ignored. We will think it about in our further researches

15 - L158 - 159: you used 2 carbonate types: a limestone and a dolostone. Did you put one tablet of each carbonate in the same column, or did you put 2 tablets of the same carbonate (in order to have duplicates) in the same column?

16 - L176: This is at this point that we know that you have triplicates. How did you obtain these triplicates: did you use different columns for replicates, or are they in the same columns... It is important in order to understand on which data you performed a statistical analysis. How many columns did you in total?

Answer for 15 and 16: we placed only one tablet of each carbonate rock in one column, but we designed 3 columns for each treatment as replicates.

17 - You should add "respectively" at the end of your sentence when you're listing some results...

Changed in the manuscript: we added it.

18 - L189: the "rest treatments"? do you mean the other chemical fertilizers other than NH4NO3, NH4Cl, (NH4)2CO3, NH4HCO3?

Answer: yes, it is pointing the other chemical fertilizers than urea, NH4NO3, NH4Cl, (NH4)2CO3, NH4HCO3.

Changed in the manuscript: The English language editor in Elsevier suggested us changing it into the remaining treatment, we did it.

19 - L206: you explain that there is no difference in the weathering behavior of limestone and dolostone, however the control experiment show different behavior. Did you test this similarity?

Answer: yes, it is true that there is a difference between limestone and dolostone in control treatment. But we plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram, the results show that the Rw of limestone and dolostone exhibit a high positive correlation (R2=0.9773; see Fig. 4), indicating that the weathering of limestone and dolostone are similar under different treatments.

Changed in the manuscript: see the details in the manuscript.

20 - L213 - 215: you may present these 3 equations in the following order: (5) > (4) > (3), following an increasing pKa (or pH).

Changed in the manuscript: we changed it.

21 - L218: H2CO3 is not only formed in the soil, it is first formed in the atmosphere with the dissolution of atmospheric CO2(g) into rain droplets and rain, as CO2aq and then H2CO3. The concentration of H2CO3 is exacerbated into soil because of the presence of organic CO2 from respiration. And yes, one of the main control of carbonate dissolution is the amount of rainfall.

That's why is it important to know how the different columns were placed in the field, randomly or the same modalities were placed together (L223 - 224). If randomly, you can say that rainfall may not be consider a controlling effect for your experiment.

Answer: Thank you very much. It is true that the rainfall is a main controlling factor in the natural weathering processes. The rate of chemical weathering is higher in highprecipitation area. However, in this study, we placed orderly the different treatments columns including replicated treatments in one specific place of field. To each treatment, the precipitation is same. So we conclude that the difference in weathering rate in each treatment is not caused by the precipitation. That's what we are meaning. **Changed in the manuscript:** We changed it to make it clearer, see the manuscript.

22 - L231 - 232: you may be more precise for " CO_2 degassing"... Issued from carbonate dissolution? For respiration?

Answer: In theory, the source of CO_2 dissolved in water is from respiration (common cases), deep crust (tufa formation; areas where have thermal mineral spring), artificial source (CO2 capture and storage), etc. It is another big problem. No matter where they come from, these CO_2 usually keep in their balance status in specific stratum. Some of them keep their balance in H₂O-CO₂-HCO₃-carbonate system in water. Dramatic changes in the parameters of the CO₂ system such as T, pH and/or pCO₂ can cause CO_2 degassing. Here, we just listed some cases which can result in CaCO₃ precipitation.

Changed in the manuscript: we added some information like this "the degassing of dissolved CO_2 due to dramatic changes in the parameters of the CO_2 system (such as T, pH, pCO_2 , etc)"

23 - L244: the year of the publication from Singh et al is missing. **Changed in the manuscript:** it was added.

24 - L305: you did calculate the initial fertilizer –derived NH4 per unit. But it would be interesting to have the initial rate of fertilizer spread in the field and to compare it with what it is really applied in the Chinese agricultural watersheds.

Answer: The reason why Table 4 was given is mainly to better understand the N balance of these fertilizers in their own reactions listed in table 3, to interpret how many NO_3 derived from nitrification to further evaluate the effect of fertilizer on carbonate weathering.

Yes, we believe that the comparison between the addition amount of fertilizer in this study and that in practical agricultural activity of local area is very interesting question. But it is another interesting question. It has a little difficult to do it here and make it sense since it needs another experiment design. We will consider conducting some experiment to fill the gaps between them in the future.

25 - L396 - 397: - Table 2: what is the significance of a, b, c behind the numbers

(ANOVA)?

Answer: we deleted them and plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram (R2=0.9773; see Fig. 4) instead to further explain it. See the manuscript.

Reviewer 2

1. In the methods section, very few data seem to have been collected from the soils during the experiment. For example was pH monitored? This is an important parameter and would have helped the authors determine which mechanism is responsible for their results.

Answer: Before experiment, we tested the parameter of soil we used including soil pH organic matter (OM), NH_4 -N, NO_3 -N, available P, available K, available Ca, available Mg, available Fe, and available S. The results were listed in Table 1. As you mentioned, we regret pretty much that we didn't monitor their change by testing them after experiment.

The authors carry out experiments on soil columns in a field setting. What exactly does this mean? Some photos of the experimental setup might help explain.
 Answer: The shape and inner structure of columns in this study were described in Fig. 2. We orderly placed them (11treatments*3 triplicates= 33 columns) in field (on line and row). No suitable pictures here.

3. The authors should discuss the role played by bacteria in the system. Presumably the fertilizers could have stimulated bacteria which may have increased respiration and CO2 concentrations in the soil. This might account for some of the enhanced weathering. Can this mechanism be assessed?

Answer: Thank you for your comment on this, the probability truly exits more or less here, but we think the effect on nitrification is more distinct according to the results in the urea, NH_4NO_3 , NH_4HCO_3 , NH_4Cl , and $(NH_4)_2CO_3$ treatments. It is very difficult to distinguish and quantify their contribution in this study. We may try to do it by some isotope methods.

Changed in the manuscript: we added relative statements in Section 4.1. In theory, the fertilizers could stimulate bacteria, which may increase respiration and CO_2 concentrations in the soil, as a result, probable enhance carbonate weathering as Eq. (5).

4. There are no high resolution SEM images of the tablets before or after the experiment. This may help the authors understand the loss mechanisms a bit better. The authors focus solely on chemical dissolution, although recently it has been suggested that mechanical grain detachment in carbonate rocks is likely to be an important weathering pathway. Imaging might help identify such a process. **Answer:** Your suggestion about SEM is very inspiring for us. We will use this method in our future study. We appreciate.

5. Why was the reason for selecting the specific amounts of fertilizer? There is no explanation at all. Does this correspond to the amounts typically applied to crops? Also if this is to simulate the agricultural application does it make sense to mix the fertilizer thoroughly into the soil?

Answer: The primary reasons why we set up the amount of added fertilizer in this study are: (1) the soil we used is untilled fresh soil which we sampled from B layer. Considering its low nutrition, we set up a higher fertilizer amount. (2)We just want to explore the different response of these different on carbonate weathering, and magnify and quicken the short-term response. (3) It is a simple pre-study, but we think some

findings are worthy published especially to CO_2 consumption via carbonate weathering at agricultural areas.

The amount is just for this comparison experiment. Undeniably, it is not perfect for linking this experiment with practical agricultural activities in local area. We are fixing on that. Some data and papers are in preparation.

6. What kind of limestone and dolostone were used? What was the grain size and composition for example? Again, some SEM images here would help. **Answer:** As described in Methods section, the statement on carbonate rock tablets used in this study is that "Two different kinds of carbonate rock tablets ($2 \text{ cm} \times 1 \text{ cm} \times 0.5 \text{ cm}$ in size) were placed in the bottom of each soil column to examine the rate of carbonate weathering in the soil. The two different kinds of carbonate rock collected from the karst area of Huaxi District were: (1) limestone with 60-65 % micrite, 30-35 % microcrystalline calcite, and 2-3 % pyrite; and (2) dolostone with 98-99 % fine crystalline dolomite, 1 % pyrite, and trace quantities organic matter."

SEM image are a good advice for our further study. Thank you so much.

7. Although the authors use both limestone and dolostone they don't really discuss the differences in detail. For example, on the whole dolostone seems to weather more slowly than limestone, but there are some exceptions (ammonium carbonate for instance). Are the differences significant? If so, what do they mean? **Answer:** Thank you for your comment on it. We note it and added some statement on it. But there are no more points to discuss further, we think.

Changed in the manuscript: We added the following statements in Section 3.2. Fig. 3 shows that, on the whole, the ratios of dolostone weathering are smaller than those of limestone weathering except $(NH_4)_2CO_3$ treatment, exhibiting that dolostone weather more slowly than limestone under fertilization effects.

In Fig. 4, we plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram, in order to compare the weathering responses of limestone with dolostone. The results show that the Rw of limestone and dolostone exhibit a high positive correlation (R^2 =0.9773; see Fig. 4), indicating that the weathering of limestone and dolostone are similar under different treatments. Thus, we will explain the results in terms of carbonates, rather than by way of the individual dolostone and limestone.

8. In the conclusions, the authors state that the fact that the ammonium phosphate and sodium nitrate treatments did not impact the weathering rate raises a new question. But they don't explicitly state what this question is. A similar phrase is used in the Abstract.

The results of NaNO₃ treatment raise a new question: the negligible impact of nitrate on carbonate weathering may result in overestimation of the impact of N-fertilizer on CO_2 consumption by carbonate weathering at the regional/global scale, if the effects of NO₃ and NH₄ are not distinguished.

In conclusion part: we added a pointing expression like: The question is:

Changed in the manuscript: we noticed that and made it clearer, we used a colon instead of a full stop in Abstract section:

9. Figure 3 is a bit confusing because of all the lower case letters (a,b, bc etc) dotted all over. What do they mean? It's not explained in the caption. **Changed in the manuscript:** we deleted them and plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram (R2=0.9773; see Fig. 4) instead to further explain it. See the manuscript.

10. Finally, careful English language editing would significantly improve the paper. Apart from numerous grammatical errors, it may also help organize the discussion. For example the section 4.2 is a bit of a mess and does not flow at all. **Changed in the manuscript:** we have re-edited the language question by the

Language Services of Elsevier.

1 2	Impact of different fertilizers on the carbonate weathering in a typical karst area ; Southwest China: a field column experiment	(Formatted: Centered
3	Chao Song ^{1, 2} , Changli Liu ¹ , Guilin Han ² , Congqiang Liu ²		
4	¹ -The Institute of Hydrogeology and Environmental Geology, Chinese Academy of		Formatted: Superscript
5	Geological Sciences, Shijiazhuang, 050803, Hebei, China		
6	² -School of Water Resources and Environment, China University of Geosciences	/	Formatted: Superscript
7	(Beijing), Beijing, 100083, China.		
8			
9	Corresponding Author: Chao Song		
10	Email: chao-song@qq.com		
11	Tel/Fax: +86-18931852527		
12			

14	Abstract: Carbonate weathering, as a significant vector for the movement of carbon
15	both between and within ecosystems, are is strongly influenced by anthropogenic
16	perturbations such as agricultural fertilization, <u>since the addition of fertilizers tends</u>
17	to change the chemical characteristics of soil such as the pH-value. Different
18	fertilizers may exert a different impact on carbonate weathering, but their-these
19	discrepanciesdifferences are as of yet not still-well-known-so-far. In this study, a field
20	column experiment was employed conducted to explore the responses of carbonate
21	weathering to the addition of different fertilizers addition. The eleven different
22	treatments with three replicates including control, NH4NO3, NH4HCO3, NaNO3,
23	NH4Cl, (NH4)2CO3, Ca3(PO4)2, (NH4)3PO4, fused calcium-magnesium phosphate
24	fertilizer (Ca-Mg-P), Urea and K2CO3 were established in this column experiment,
25	where limestone and dolostone tablets were buried at the bottom of each to determine
26	the weathering amount and ratio of carbonate in soil. We compared 11 different
27	treatments, including a control treatment, using 3 replicates per treatment. Carbonate
28	weathering was assessed by measuring the weight loss of limestone and dolostone
29	tablets buried at the bottom of thesoil-filled columns. The results showed that the
30	addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly increased
31	carbonate weathering, which was attributed to the nitrification of NH_4^+ , <u>, and t</u> he
32	addition of $Ca_3(PO_4)_2$, Ca-Mg-P and K_2CO_3 induced carbonate precipitation due to
33	the common ion effect. Whereas the The addition of (NH ₄) ₃ PO ₄ and NaNO ₃ addition
34	did not <u>significantly</u> impact significantly on carbonate weathering. The results of

Formatted: Font color: Red

35	NaNO ₃ treatment seem to be raisingraise a new question: the <u>negligible</u> little impact of	
36	nitrate on carbonate weathering may result in the overestimation of the impact of	
37	N-fertilizer on CO_2 consumption by carbonate weathering at the regional/global scale.	
38	if the effects of NO ₃ and NH ₄ are not distinguished. Moreover, in order to avoid	
39	misunderstanding more or less, the statement that nitrogenous fertilizer can aid	
40	carbonate weathering should be replaced by ammonium fertilizer.	
41	Keywords: Carbonate weathering; Column experiment; Nitrogenous fertilizer;	
42	Phosphate fertilizer; Southwest China	
43		
44		
45	1. Introduction	
46	Carbonate weathering plays a significant role in consumption of the elevated	
47	atmospheric CO ₂ <u>(Kump et al., 2000; Liu et al., 2010; Liu et al., 2011)(Kump et al.,</u>	Fie
48	2000; Liu et al., 2010; 2011)(Kump et al., 2000; Liu et al., 2010; 2011). The rRiverine	
49	hydro-chemical composition, such as the ratio of HCO_3^- and to $Ca^{2+} + Mg^{2+}$, is	
50	usually employed as an indicator to estimate the CO_2 consumption by <u>natural</u>	
51	carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li	Fie
52	et al., 2009)(Hagedorn and Cartwright, 2009; Li et al., 2009)(Hagedorn and	
53	Cartwright, 2009; Li et al., 2009). However, fluvial alkalinity may also be produced	
54	by other processes including the reaction between carbonates and the protons derived	
55	from: (i) from the nitrification of N-fertilizer a disturbance to CO ₂ consumption	
55 56	from: (i) from-the nitrification of N-fertilizer a disturbance to CO ₂ -consumption estimation is introduced because the fluvial alkalinity, Ca ²⁺ and Mg ²⁺ may also be	

Field Code Changed

Field Code Changed

57	produced due to the reaction between carbonate and the protons which can originate	
58	from the nitrification processes of N-fertilizer (Barnes and Raymond, 2009; Chao et	Field Code Changed
59	al., 2011; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin	
60	et al., 2008; Pierson-wWickmann et al., 2009; Semhi and Suchet, 2000; West and	
61	McBride, 2005)(Barnes and Raymond, 2009; Chao et al., 2011; Gandois et al., 2011;	
62	Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson wickmann	
63	et al., 2009; Semhi and Suchet, 2000; West and McBride, 2005)(Barnes and Raymond,	
64	2009; Chao et al., 2011; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond,	
65	2006; Perrin et al., 2008; Pierson-wickmann et al., 2009; Semhi and Suchet, 2000;	
66	West and McBride, 2005); (ii) from the sulfuric acid forming in the oxidation of	Formatted: Font color: Text 1
67	reduced sulfuric minerals (mainly pyrite, FeS ₂) (Lerman and Wu, 2006; Lerman et al.,	Formatted: Subscript
68	2007; Li et al., 2008; Li et al., 2009)(Lerman and Wu, 2006; Lerman et al., 2007; Li et	
69	al., 2008; Li et al., 2009)(Lerman and Wu, 2006; Lerman et al., 2007; Li et al., 2008;	
70	Li et al., 2009),; (iii)-from organic acid secreted by microorganisms (Lian et al.,	Field Code Changed
71	2008)(Lian et al., 2008)(Lian et al., 2008);, as well as and (iv) from acidic soil (such as	
72	red soil, yellow soil) (Chao et al., 2014; Chao et al., 2017)(Chao et al., 2014)(Chao et	Field Code Changed
73	al., 2014)Given the that atmospheric CO_2 is not the a_unique weathering agent,	
74	differentiating the agent of carbonate weathering is more and more significant to	
75	enableimportant for the accurate budgeting of the net CO ₂ consumption by carbonate	
76	weathering, especially in agricultural areas where mineral fertilizers are used area.	Formatted: Font: (Default) Times New Roman, 12 pt
77	The world global average annual increase in mineral fertilizer consumption was	
78	3.3_% from 1961 to 1997, and FAO's study predicts a 1_% increase per year until	

79	2030 (FAO, 2000). For-In_China, the consumption of chemical fertilizer increased
80	from 12.7 Mt in 1980 to 59.1 Mt in 2013 (Fig. 1). The Increasing increasing
81	consumption of chemical-mineral fertilizers is a significant disturbance factor of-in
82	carbonate weathering and the carbon cycle. Many Several studies have showed shown
83	that nitrogen fertilizer additions aided increased in the dissolution of lime weathering
84	rates, and also increased the total export of DIC from agricultural watersheds (Barnes
85	and Raymond, 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond,
86	2006; Perrin et al., 2008; Pierson-wWickmann et al., 2009; Probst, 1986; Semhi and
87	Suchet, 2000; West and McBride, 2005)(Barnes and Raymond, 2009; Gandois et al.,
88	2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008;
89	Pierson-wickmann et al., 2009; Probst, 1986; Semhi and Suchet, 2000; West and
90	McBride, 2005)(Barnes and Raymond, 2009; Gandois et al., 2011; Hamilton et al.,
91	2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson wickmann et al., 2009;
92	Probst, 1986; Semhi and Suchet, 2000; West and McBride, 2005). According to the
93	estimation fromestimates by Probst (1988) and Semhi et al. (2000), the contribution of
94	N-fertilizers to carbonate dissolution represents was 30_% and 12-26_%; respectively,
95	onin two small agricultural carbonate basins in south-western France, the Girou and
96	the Gers, respectively (subtributary and tributary of the Garonne riverRiver,
97	respectively). For In lager basin level, such as the Garonne river River basin Basin,
98	which is a larger basin (52,000 km ²), this contribution was estimated at 6 _. % by Semhi
99	et al. (2000). At national and global scales, Perrin et al. (2008) estimated that the
100	deficit-contribution of CO2-uptake due to-N-fertilizer addition (usually in form of

Field Code Changed

Formatted: Superscript

101	NH_4NO_3) represents up to 5.7-13.4_% and only 1.6-3.8_%of the total CO_2 flux		
102	naturally consumed bytoof the carbonate dissolution, forin France and across the on a		
103	<mark>gg</mark> lobal-scale, respectively.		
104	*		Format
104		\frown	Format
105	These estimated resultsestimates described above wereare usually largely based		
106	on calculations that assumeding that a single type of fertilizer (e.g. (NH ₄) ₂ SO ₄ ,		
107	<u>NH₄NO₃, or NH₄Cl) was used throughout the whole basin that was considered.</u>		
108	Howeverwere usually based on a hypothesis of individual fertilizer (e.g. (NH4)2SO4;		
109	NH4NO3, or NH4Cl) input into an agricultural basin. Nevertheless, in actual		
110	agricultural practices, at an agricultural basin, different fertilizers are usually added		
111	for different crops-in-actual agricultural practices. The impact of these fertilizers on		
112	carbonate weathering and riverine chemical composition may be different. For In the		
113	<u>case of nitrogenous fertilizer</u> , $100_{\%}$ NO ₃ ⁻ produced after the addition (NH ₄) ₂ SO ₄ and		
114	NH_4Cl is derived from the nitrification of NH_4^+ , whilst comparatively, it is only 50_%		
115	after the addition <u>of NH₄NO₃</u> . The <u>dD</u> ifference <u>s</u> of <u>in NO₃</u> source <u>s</u> may cause		
116	the produce an evaluated deviation of \underline{of} the impact of N-fertilizer addition on CO_2		
117	consumption by carbonate weathering. <u>Because, since</u> the addition of different		
118	<u>N-fertilizers (e.g. (NH₄)₂SO₄, NH₄NO₃, NH₄Cl, NaNO₃ or urea) may result in</u>		Format
119	different contributions to carbonate weathering and relative products such as HCO3.		Format
120	Ca^{2+} and Mg^{2+} . For phosphate fertilizer, the coprecipitation of phosphate ions with		Format Format
121	calcium carbonate may inhibit carbonate weathering <u>(Kitano et al., 1978)(Kitano et al.,</u>		Format
122	<u>1978)(Kitano et al., 1978)</u> . We suppose assume that the response of carbonate	l	
123	weathering to the addition of different fertilizers, such as N-fertilizer (NH ₄ and NO ₃),		
124	P-fertilizer and Ca/Mg fertilizer, may display differences, which is are so far poorly		
125	known, so far but likely significant. Here we sought to fully well-understand the		
	6		

ted: Font: 12 pt ted: Line spacing: Double

Formatted: Subscript
Formatted: Subscript
Formatted: Superscript
Formatted: Superscript
Formatted: Superscript
Field Code Changed

126	agricultural force impact on natural carbonate weathering, and to accurately evaluate	
127	the CO_2 consumption via carbonate weathering in agricultural areas.	
128	Moreover, TtThe carbonate-rock-tablet test is used to determine the weathering	
129	rate of carbonate rock/mineral from the laboratory to the field (Chao et al., 2011;	Field Code Changed
130	Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1981; Gams, 1985; Jiang and Yuan,	
131	1999; Liu and Dreybrodt, 1997; Plan, 2005; Trudgill, 1975)(Chao et al., 2014; Chao	
132	et al., 2011; Dreybrodt et al., 1996; Gams, 1981; Gams, 1985; Jiang and Yuan, 1999;	
133	Liu and Dreybrod, 1997; Plan, 2005; Trudgill, 1975)(Gams, 1981; Chao et al., 2011;	
134	Trudgill, 1975; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1985; Jiang and Yuan,	
135	1999; Liu and Dreybrod, 1997; Plan, 2005). In the laboratory, the	
136	carbonate-rock-tablet is employed to study the kinetics of calcite	
137	dissolution/precipitation (Dreybrodt et al., 1996; Liu and Dreybrodt, 1997)(Dreybrodt	Field Code Changed
138	et al., 1996; Liu and Dreybrod, 1997)(Dreybrodt et al., 1996; Liu and Dreybrod, 1997)	
139	and determine the rate of carbonate mineral weathering in the soil column (Chao et al.,	Field Code Changed
140	2011)(Chao et al., 2011)(Chao et al., 2011). However, in the field, it is also used to	
141	observe the rate of carbonate weathering and estimated CO2 consumption-by	
142	carbonate weathering (Chao et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013;	Field Code Changed
143	Plan, 2005)(Chao et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013; Plan,	
144	2005)(Chao et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013; Plan, 2005).	
145	Although-Liu (2011) argued that the carbonate-rock-tablet test may lead to-the	
146	deviations of in estimated CO2 consumption by carbonate weathering at the	
147	regional/global scale, in the cases of where there are insufficient representative data	
148	(Liu, 2011)(Liu, 2011)(Liu, 2011), our results show that yet in nonetheless	Field Code Changed
149	athe preferred optionmethod for the condition controlled contrastcomparative or	
150	stimulated experiment (Chao et al., 2011; Chao et al., 2014; Chao et al., 2017) (Chao	Field Code Changed

151	et al., 2014; Chao et al., 2011)(Chao et al., 2011; Chao et al., 2014), Where the result	
152	from the carbonate-rock-tablet test is consistent to the major element geochemical	
153	data of leachates from soil column(Chao et al., 2011).	
154	Thus <u>Therefore</u> , in order to observe their difference between the impacts of	
155	different fertilizer addition on carbonate weathering in soil, a A field column	
156	experiment that involved embedding carbonate-rock-tablets with eleven different	
157	treatments-was carried out in a typical karst area of southwest China, in order to	
158	observe the impacts of different fertilizer additions on carbonate weathering in soil.	
159	2. Materials and Methods	
160	2.1 The study site	
161	This study was carried out in a typical karst area, <u>namely</u> the <u>HuaXi-Huaxi</u>	
162	district-District of Guiyang cityCity, Guizhou provinceProvince, SW China (26°23'N,	
163	106°40'E, 1094 m aslASL). Guiyang, the capital city of Guizhou Province, is located	
164	in the central part of The the Province province, covering an area from 26°11'00" to	
165	26°54′20″N and 106°27′20″ to 107°03′00″E (aboutapproximately 8,000 km ²), with	/
166	elevations ranging from 875 to 1655 m above mean sea level <u>ASL</u> . Guiyang has a	
167	population of more than 1.5 million people, a high wide diversity of karstic landforms,	
168	a-high elevations and low latitude, with a subtropical warm-moist climate, and an	
169	average annual average temperature of 15.3 °C and annual precipitation of 1200 mm	
170	(Lang et al., 2006)(Lang et al., 2006)(Lang et al., 2006). A monsoonal climate often	/
171	results in high precipitation during summer, with and much less during winter,	
172	although the humidity is often high during throughout most of the year (Han and Jin,	/
173	1996)(Han and Jin, 1996)(Han and Jin, 1996). Agriculture is a major land use in order	

Formatted: Superscript

Field Code Changed

Field Code Changed

to produce the vegetables and foods in the suburbs of Guiyang (Liu et al., 2006)(Liu
et al., 2006)(Liu et al., 2006). The consumption of chemical fertilizer increased from
0.8-150 kg/ha Mt in 1980 to 1.0190 kg/ha Mt in 2013 (GBS, 2014)(GBS, 2014)(G

177 2014).

178 **2.2 Soil properties**

179 The soil used in this column experiment was -yellow-brown clay, which sampled from the B horizon (below 20 cm in depth) of yellow-brown soil profile infrom -dug 180 181 soil was air-dried, ground to pass through a 2-mm sieve, mixed thoroughly and used 182 183 for <u>the</u> soil columns. The <u>soil</u> pH (V_{soil} : $V_{water} = 1:2.5$) were was determined by pH meter. The chemical characteristics of the soil, in-cluding organic matter (OM), 184 NH₄-N, NO₃-N, available P, available K, available Ca, available Mg, available S and 185 186 available Fe, and available S were determined according to the Agro Services International (ASI) Mmethod- (Hunter, 1980)(Hunter, 1980)(Hunter, 1980), OM 187 was determined using an where the extracting solution used for O.M. containeding 0.2 188 mol l^{-1} NaOH, 0.01 mol l^{-1} EDTA, 2 % methanol, and 0.005 % Superfloc 127,-... 189 NH₄-N, NO₃-N, available Ca, and Mg were determined based using on an extraction 190 <u>extracting solution of by</u> $1 \mod 1^{-1}$ KCl solution, <u>whereas</u> available K, P and Fe were 191 determined using an extracted by extracting solution containing 0.25 mol 1^{-1} NaHCO₃, 192 0.01 mol l^{-1} EDTA, 0.01 mol l^{-1} NH₄F, and 0.005 % Superfloc 127, Finally, and 193 available S was determined using an extracting solution of ed by $0.1 \text{ mol } l^{-1}$ 194 $Ca(H_2PO_4)_2$ and 0.005 % Superfloc 127. The results are shown in Table 1. 195

Field Code Changed

Field Code Changed

Field Code Changed

196 2.3 Soil column and different fertilization treatments

In order to test the hypothesis that the responses of the impact of different 197 chemical fertilizers on carbonate weathering may be different, columns ($\emptyset = 20$ cm, 198 H= 15_cm) were constructed from 20-_cm diameter polyvinylchloride (PVC) pipe (Fig. 199 200 2). A hole (\emptyset_{-2} cm) were was established placed at the bottom of each column to discharge soil water from the of-soil column. A polyethylene net mesh-(Ø 0.5 mm) 201 was placed in the bottom of the columns to prevent the soil loss of the filter material. 202 203 A 2 cm thick filter-sand layer, with 2 cm thickness-including gravel, coarse sand and 204 fine sand, was spread onover the net.- Two different carbonate rock tablets were 205 buried in the bottom of each soil column (Fig-. 2). According to Based on the common kinds of chemical fertilizers and the main objective of this study, eleven fertilization 206 treatments, each with three replicates, were set up in the field column experiment. 207 208 There are were set up: (1) control without fertilizer (CK); (2) 43g NH₄NO₃ fertilizer (CF); (3)_85g NH₄HCO₃ fertilizer (NHC); (4)_91g NaNO₃ fertilizer (NN); (5)_57g 209 210 NH₄Cl fertilizer (NCL); (6) 51g (NH₄)₂CO₃ fertilizer (NC); (7) 52g Ca₃(PO₄)₂ fertilizer (CP); (8)_15g (NH₄)₃PO₄ fertilizer (NP); (9)_44g fused calcium-magnesium 211 phosphate fertilizer (Ca-Mg-P); (10) 32g Urea fertilizer (U); and (11) 10g K₂CO₃ 212 213 fertilizer (PP). To shorten the experiment time and enhance the effect of fertilization, 214 the added amount of fertilizers in these treatments motioned above was increased to 30 times than its local practical amount (N fertilizer: 160 kg N- ha⁺; P fertilizer: 50 kg 215 P- ha⁻¹; K fertilizer: 50 kg K ha⁻¹). TheAn aliquot of 6 kg of soil was weighed (bulk 216 density = 1.3 g/cm^3 , mixed perfect throughly with one of the above fertilizers, 217

Formatted: Superscript

Formatted: Superscript

218 respectively, and filled into its own column. This process was repeated for all three
219 replicates of the 11 fertilizer treatments. These soil columns were labelled and placed
220 orderly at the field experiment site in Huaxi District, Guiyang-of Southwestern China
221 for a whole year.

222 2.4 The rate of carbonate weathering

223 Two different kinds of carbonate rock tablets ($2 \text{ cm} \times 1 \text{ cm} \times 0.5 \text{ cm}$ in size) were 224 established placed in the bottom of each soil column to explore examine the rate of 225 carbonate weathering in the soil. The two different kinds of carbonate rock collected 226 from the karst area of Huaxi dDistrict were: (1) limestone with 60-65_% micrite, 227 30-35_% microcrystalline calcite, and 2-3_% pyrite; and (2) dolostone with 98-99_% power-fine_crystalline_dolomite, 3-5% microcrystalline_calcite, 1_% pyrite, and little 228 trace quantities organic matter. All of the tablets were baked heated at 80 °C for 4 229 230 hours, then weighed in a 1/10000 electronic balance in the laboratory, tied to a labeled by tying a label with fishing line, and then buried at the bottom of each soil column. 231 232 After a whole year, -Tthey tablets were taken outremoved carefully, rinsed, baked and weighed after a whole year. 233 The amount of weathering carbonate weathering (Aew), the ratio of carbonate 234 235 weathering_-(Rew) and the rate of carbonate-weathering (Raew) for limestone and 236 dolomite were calculated according to the weight difference of the tablets using the 237 following formulas:

- Aew = (Wi-Wf)
- Rew = (Wi-Wf)/Wi(2)

Formatted: Font: Italic

(1)

11

240	$R_{aew} = (Wi - Wf)/(S^*T) $ (3)		Formatted: Font: Italic
241	where Wi is the initial weight of the carbonate-rock-tablets, Wf is the triangle final weights,		
242	S is the surface area of carbonate weathering rock tablets, and T is the length of the		
243	experiment <u>al</u> period.		
244	2.5 Statistical analysis		
245	Statistical analysis was performed using IBM SPSS 20.0 (Statistical Graphics	(Formatted: Indent: First line: 0.74 cm
246	Crorp, Princeton, USA). All results of carbonate weathering were reported as the		
247	means ± standard deviations (SD)means standard errors (SE) for the three		
248	replicationes. as Statistical analysis was performed using IBM SPSS 20.0 (Statistical		
249	Graphics Crop, Princeton, USA).		Formatted: Font: Bold
250			
251	3. Results		
252	3.1 The wWeathering rate of carbonate under different fertilized treatments	(Formatted: Indent: First line: 0 cm
253	weathering of under different treatments The amount (ARew), and the ratio		
254	(Raew) and the rate (Raew) of limestone and dolostone carbonate weathering weare		Formatted: Font: Italic
254 255	(R <u>aew_) and the rate (Racw) of limestone and dolostone</u> carbonate weathering <u>weare</u> listedin Table 2. were listed The results showed that in Table 2, and the Rcw were		Formatted: Font: Italic
254 255 256	(R <u>aew_) and the rate (Racw) of limestone and dolostone</u> carbonate weatheringweare listedin Table 2. were listed The results showed that in Table 2, and the Rew were plotted in Fig. 3. The results in Table 2 and Fig. 3 The results showed Tthe Acw, Rew		Formatted: Font: Italic Formatted: Font: Italic
254 255 256 257	(R <u>aew_) and the rate (Racw) of limestone and dolostone</u> carbonate weathering <u>weare</u> <u>listedin Table 2.</u> were listed <u>The results showed that in Table 2, and the Rcw were</u> plotted in Fig. 3. The results in Table 2 and Fig. 3 <u>The results showed Tthe Acw, Rew</u> and R <u>acw</u> of carbonate weatheringlimestone and dolomite weathering under urea,		Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic
254 255 256 257 258	(R <u>aew_) and the rate (Racw) of limestone and dolostone</u> carbonate weatheringweare listed - <u>in Table 2. were listed The results showed that in Table 2, and the Rcw were</u> plotted in Fig. 3. The results in Table 2 and Fig. 3 <u>The results showed Tthe Acw, Rew</u> and Racw of carbonate weatheringlimestone and dolomite weathering under urea, NH4NO ₃ , <u>NH4Cl</u> , (<u>NH4</u>) ₂ CO ₃ NH4 HCO ₃ ; NH4Cl and <u>NH4HCO₃ (NH4</u>) ₂ CO ₃ -treatments		Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic
254 255 256 257 258 259	(R_{aew}) and the rate $(Racw)$ of limestone and dolostone carbonate weathering weare listedin Table 2. were listed The results showed that in Table 2, and the Rcw were plotted in Fig. 3. The results in Table 2 and Fig. 3 The results showed Tthe Acw, Rcw and Racw of carbonate weathering limestone and dolomite weathering under urea, NH4NO3, NH4Cl, $(NH_4)_2CO_3NH_4HCO_3$; NH4Cl and NH_4HCO_3 (NH4) ₂ CO ₃ -treatments were 8.48 ± 0.96, 6.42 ± 0.28, 5.54 ± 0.64, 4.44 ± 0.81 and 4.48 ± 0.95 ‰ (mean±SD,		Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic
254 255 256 257 258 259 260	(R <u>aew_) and the rate (Racw) of limestone and dolostone</u> carbonate weatheringweare listedin Table 2. were listed The results showed that in Table 2, and the Rew were plotted in Fig. 3. The results in Table 2 and Fig. 3 The results showed Tthe Acw, -Rew and Racw-of carbonate weatheringlimestone and dolomite weathering-under urea, NH4NO ₃ , NH4Cl, (NH4) ₂ CO ₃ NH4HCO ₃ ; NH4Cl-and NH4HCO ₃ (NH4) ₂ CO ₃ -treatments were 8.48 ± 0.96 , 6.42 ± 0.28 , 5.54 ± 0.64 , 4.44 ± 0.81 and 4.48 ± 0.95 ‰ (mean±SD, p<0.05) positive, respectively, and much biggersignificantly greater than that under		Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic
2254 2255 2256 2257 2258 2259 2260 2261	(R <u>aew_) and the rate (Racw) of limestone and dolostone</u> carbonate weathering <u>weare</u> listedin Table 2. were listed The results showed that in Table 2, and the Rew were plotted in Fig. 3. The results in Table 2 and Fig. 3 <u>The results showed Tthe Acw</u> , Rew and Raew of carbonate weatheringlimestone and dolomite weathering under urea, NH ₄ NO ₃ , NH ₄ Cl, (NH ₄) ₂ CO ₃ NH ₄ HCO ₃ ; NH ₄ Cl-and NH ₄ HCO ₃ (NH ₄) ₂ CO ₃ -treatments were 8.48 ± 0.96 , 6.42 ± 0.28 , 5.54 ± 0.64 , 4.44 ± 0.81 and 4.48 ± 0.95 ‰ (mean±SD, p<0.05) positive, respectively, and much biggersignificantly greater than that under the control treatment 0.48 ± 0.14 ‰ (see Fig. 3,-). In addition, the observed Rw of as		Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic

262	<u>observed in dolomitestone were (6.59 \pm 0.67, 5.30 \pm 0.87, 4.77 \pm 0.78, 4.94 \pm 1.91</u>		
263	and 3.22 ± 0.87 ‰ respectively, under these same five fertilization treatments, in		
264	contrast to vs. -0.31 ± 0.09 ‰ in the control treatment. This suggesting		
265	manifested clearly demonstrates that the addition of these five fertilizers can aid and		
266	increased the rate of the chemical weathering of carbonate weathering.		
267			
269	The remaining of treatments hadmade no significant differences in the Duy and		Formatted: Font: Italic
208	The remaining st-treatments had had no significant differences in the <u>Nw and</u>	\frown	Formatted: Indent: First line: 0 cm
269	Reaw of limestone and dolomitestone in comparison with to the control treatment (Fig.		Formatted: Font: Italic
209	Keyw of milestone and dolomitestone in comparison with to the control deathent (Fig.)		Formatted: Font: Italic
270	3). In In the $(NH_4)_2PO_4$ treatment, the AcwRw and Racw were only 1.08 +		Formatted: Font: Italic
/ 0	$\underline{}{}$		
271	<u>0.34 ‰, 0.0028g</u> and <u>-0.00070.75 \pm 0.21‰g</u> for limestone and dolomite, <u>respectively</u> ,		
272	while the Raw were 4.00 ± 1.15 g m ⁻² a ⁻¹ $\pm 0.08\%$ and $1.00 \pm 1.01 \pm 0.75$ g m ⁻² a ⁻¹ % for		Formatted: Superscript
272	$\frac{1}{100} \frac{1}{100} \frac{1}$		Formatted: Superscript
273	limestone and dolomite, respectively,	\backslash	Formatted: Superscript
_			Formatted: Superscript
274	other four NH ₄ -fertilizers, as mentioned above. The Acw, Rew Rw and Raew in the		Formatted: Font: Italic
275	NaNO ₃ treatment <u>s</u> failed to show <u>a remarkable notable</u> differences with the control		
276	treatment, implying exhibiting little effect of the NaNO ₃ fertilizer addition on		
277	carbonate weathering (Fig. 3)		
278	However, e <u>E</u> xcept <u>for</u> the Rew of limestone <u>approaching zero</u> in the $Ca_3(PO_4)_2$		
279	treatment approaching zero, all the values of the Acw, Rew and $Recard according to the two$		Formatted: Font: Italic
			Formatted: Font: Italic
280	different carbonate in Ca-Mg-P-and, K_2CO_3 and $Ca_3(PO_4)_2$ treatments showed a		
281	negative values. This indicating indicates that the addition of Ca-Mg-P-, K_2CO_3 and		
282	$Ca_3(PO_4)_2$ fertilizers <u>can lead</u> to <u>the precipitation</u> at the surface of <u>the carbonate</u>		
283	mineral, which can be explained by common ion effect.		

284	3.2 The cComparison of limestone of dolomite		
285	Fig. 3 shows that, on the whole, the ratios of dolostone weathering are smaller	(Formatted: Indent: First line: 0.74 cm
286	than those of limestone weathering except (NH ₄) ₂ CO ₃ treatment, exhibiting that		Formatted: Subscript
287	dolostone weather more slowly than limestone under fertilization effects.		Formatted: Subscript
288	In Fig. 4, we plotted the Rw of In order to compare The result of limestone with vs.		Formatted: Font: Italic
289	dolomitestone tablets in a, we plotted Fig. 4, a linear correclation diagram, in order to	l	Formatted: Font: Not Italic
290	compare the weathering responses of with the Rw of limestone vs. dolostone	1	Formatted: Font: Italic
291	tablets limestone with dolostone. The results shows that the Rw of limestone and		
292	dolostone exhibits a high positive correlaction ($R_{2}^{2}=0.9773_{7}$; see Fig. 4),	1	Formatted: Superscript
293	suggestindicating that the weathering of ANOVA was use the limestone and		
294	dolostone are similar under different treatments-were similar. Thus, we will explain		
295	the results with in terms of carbonates, rather than instead of by way of the individual		
296	dolostone and limestone was used to determine the differences of weathering rate		
297	between limestone and dolostone.		
298			
299	4. Discussion		
300	4.1 The carbonate rock tablet test: the validation of this experiment		
301	The carbonate rock-tablet test is used to determine the weathering rate of		Formatted: Font: Bold
302	carbonate rock/mineral from laboratory to field (Cams, 1981; Chao et al., 2011;		Formatted: Font: Bold Field Code Changed
303	Trudgill, 1975; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1985; Jiang and		
304	Yuan, 1999; Liu and Dreybrod, 1997; Plan, 2005)<u>. In laboratory, the</u>	1	Formatted: Font: Bold
305	carbonate-rock-tablet is employed to study the kinetics of calcite	λ	Formatted: Font: Bold
306	dissolution/precipitation (Drevbrodt et al., 1996: Liu and Drevbrod, 1997) and		Field Code Changed
	and an and a second a se		Formatted: Font: Bold

		_
307	determine the rate of carbonate mineral weathering in soil column (Chao et al.,	
308	2011), However, in field, it is also used to observe the rate of carbonate	
309	weathering and estimated CO ₂ consumption by carbonate weathering <u>(Chao et</u>	
310	al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013; Plan, 2005) <u>, Although Liu</u>	
311	(2011) argue that the carbonate rock tablet test may lead to the deviation of	
312	estimated CO ₂ -consumption by carbonate weathering at the regional/global scale	
313	in the case of insufficient representative data (Liu, 2011), our results show that it	
314	is a preferred option for the condition controlled contrast or stimulated	
315	experiment (Chao-et-al., 2011; Chao-et-al., 2014), where the result from the	
316	carbonate-rock-tablet test is consistent to the major element geochemical data of	
317	leachates from soil column(Chao et al., 2011).	
318	In this study, every procedure to establish soil column with carbonate rock	C
319	tablets in the bottom of each was strictly same, including the size of column, the	
320	preparation and column filling of soil sample, the setting and test of carbonate	
321	rock tablets, etc. Moreover, three replicates of each treatment were designed. We	
322	consider the experiment design can meet the objective of this study and the	
323	results of carbonate-rock-tablet test are therefore valid and credible.	
324	4.1 The kK inetics of carbonate dissolution/precipitation: controlling factors	
325	Experimental studies of carbonate dissolution kinetics have shown metal	
326	carbonate weathering usually depends upon three parallel reactions occurring at the	
327	carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al.,	
328	2009) (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009) :	
	1	

Formatted: Font: Bold Field Code Changed Formatted: Font: Bold

Formatted: Font: Bold
Field Code Changed
Formatted: Font: Bold

Formatted: Font: Bold Field Code Changed Formatted: Font: Bold

Formatted: Font: Bold Field Code Changed Formatted: Font: Bold

Formatted: Font: Bold
Field Code Changed
Formatted: Font: Bold

Formatted: Font: Bold

Field Code Changed

352	treatment (Table 2). Thus, these increases are strongly relativeted to the effect of the	
353	proton released from the nitrification of NH_4^+ . OnIn the contraryst, the carbonate	
354	precipitation will occur as due to the backward reaction of the Eq. (5) in the following	
355	cases: (1) the degassing of dissolved CO_2 due to dramatic changes in the parameters	
356	of the CO ₂ system (such as T, pH, pCO ₂ , etc); (2) soil evapotranspiration; or (3) the	Formatted: Subscript Formatted: Font: Italic
357	common ion effect: the increase of Ca^{2+} , Mg^{2+} or CO_3^{2-} in a weathering-system with	Formatted: Subscript
358	equilibrium between water and calcite (Calmels et al., 2014; Dreybrodt,	Field Code Changed
359	<u>1988)(Calmels et al., 2014; Dreybrodt, 1988).</u>	
360	4.2 The mMain reactions and effects in different treatments	
361	The main reactions and effects of every treatment in this study weare listed in	 Formatted: Indent: First line: 0.74 cm
362	Table 3.	
363	(1) The nNitrification in NH ₄ -fertilizer: NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl, (NH ₄) ₂ CO ₃	
364	and urea	
365	In urea (CO(NH ₂) ₂) treatment, the enzyme urease rapidly hydrolyzes the urea-N \leftarrow	Formatted: Indent: First line: 0.74 cm
366	(CO(NH ₂) ₂) to NH ₄ ⁺ ions (Eq. (7)) when urea is applied to the soil (Soares et al.,	Field Code Changed
367	<u>2012)(Soares et al., 2012).</u>	
368	$\underline{\text{CO}(\text{NH}_2)_2 + 3\text{H}_2\text{O}} \rightarrow 2\text{NH}_4^+ + 2\text{OH}^- + \text{CO}_2 $ (7)	
369	Although the study from of Singh et al. (2013) showed that a part of NH_4^+ may be	 Formatted: Indent: First line: 0.74 cm
370	lost as ammonia (NH ₃) and subsequently as nitrous oxide (N ₂ O) (Singh et al.,	Field Code Changed
371	<u>2013)(Singh et al., 2013)</u> , yet-the restremaining ammonium (NH ₄ ⁺) is mainly oxidized	
372	during nitrification in soil by autotrophic bacteria (, likesuch as Nitrosomonas,) during	
373	<u>nitrification</u> , resulting in nitrite NO_2^- and H ⁺ ions. Nitrite is, -in turn, oxidized by	
374	another bacterium, such as Nitrobacter, resulting in nitrate (NO ₃) (Eq. (8)) (Perrin et	Field Code Changed

375	<u>al., 2008)(Perrin et al., 2008).</u>	
376	$\underline{\mathrm{NH}_{4}^{+} + 2\mathrm{O}_{2}} \longrightarrow \mathrm{NO}_{3}^{-} + \mathrm{H}_{2}\mathrm{O} + 2\mathrm{H}^{+}} $ (8)	
377	The protons (H^+) produced by nitrification can be neutralized in two ways:	Formatted: Indent: First line: 0.74 cm
378	(i) either by exchange process with base cations in the soil exchange complex \leftarrow	Formatted: Indent: Hanging: 0.01 cm, Left 2.02 ch
379	(Eq. (9)) Soil – Ca + 2H ⁺ \rightarrow Soil – 2H ⁺ + Ca ²⁺ (9)	
380	or (ii)-or via carbonate mineral dissolution (Eq.(10))	Formatted: Indent: First line: 0.74 cm
381	<u>$Ca_{(1-x)}Mg_xCO_3 + H^+ \rightarrow (1-x)Ca^{2+} + xMg^{2+} + HCO_3^-$ (10)</u>	
382	Consequently, afterby combining Eq. (8) and Eq. (10)-are combined, carbonate	
383	weathering by protons produced by nitrification iscan supposedly be expressed as-to	
384	becomes (Eq. 11) (See details in Perrin et al., 2008 and Gandois et al., 2011).	
385	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}^{+} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2HCO_{3}^{-}}$	
386	<u>(11)</u>	
387	As discussed above, provided that the loss as ammonia (NH ₃) and nitrous oxide	Formatted: Indent: First line: 0.74 cm
388	(N_2O) after hydrolyzation is unconsidered disregarded in this study, the final equation	
389	of carbonate weathering in NH4NO3, NH4HCO3, NH4Cl, (NH4)2CO3 and urea	
390	treatments will be as followeds as, respectively:	
391	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}NO_{3} + 2O_{2} \rightarrow 2(1-x) Ca^{2+} + 2xMg^{2+} + 2NO_{3}^{-} + H_{2}O + 2MG_{3}^{-} + M_{2}O_{3} + M_$	
392	<u>2HCO₃ (12)</u>	
393	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}HCO_{3} + 2O_{2} \rightarrow 2(1-x) Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) Ca^{2+} + 2(1-x) Ca^{2+} + 2(1-x) Ca^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) Ca^{2+} + 2(1-x) Ca^{2+} + 2(1-x) Ca^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) Ca^{2+} + 2(1-x) Ca^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) Ca^{2+} + 2(1-x) Ca^{2+} + 2(1-x) Ca^{2+} + NO_{3}^{-} + H_{2}O + 2(1-x) Ca^{2+} +$	
394	<u>3HCO₃ (13)</u>	
395	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}Cl + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + Cl^{-} + H_{2}O + Cl^{-} + Cl$	
396	<u>2HCO₃ (14)</u>	
397	$\underline{3Ca_{(1-x)}Mg_{x}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 2H_{2}O + 2NO_{3}^{-} + 2NO_{3}^{-} + 2H_{2}O + 2NO_{3}^{-} + 2NO_{3}^{-} + 2H_{2}O + 2NO_{3}^{-} + 2NO_{3}^$	
398	<u>4HCO₃ (15)</u>	

399	$\underline{3Ca_{(1-x)}Mg_{x}CO_{3} + CO(NH_{2})_{2} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 4HCO_{3}^{-}}$	
400	<u>(16)</u>	
401	(2) No effect of NO ₃ -fertilizer treatment: NaNO ₃ treatment	
402	In the NaNO ₃ treatment, the reaction occurs according to as Eq. (17), indicating \leftarrow	 Formatted: Indent: First line: 0.74 cm
403	that the addition of NO ₃ -fertilizer does not significantly influence carbonate	
404	weathering.	
405	$\underline{Ca_{(1-x)}Mg_{x}CO_{3}+NaNO_{3}+CO_{2}+H_{2}O \rightarrow (1-x)Ca^{2+}+xMg^{2+}+Na^{+}+NO_{3}^{-}+$	
406	<u>2HCO₃ (17)</u>	
407	(3) The eCommon ion effect: K ₂ CO ₃ treatment	
408	In the K_2CO_3 treatment, $CO_3^{2^-}$ and HCO_3^- will be produced after the addition of	Formatted: Indent: First line: 0.74 cm
409	<u>K_2CO_3 according to Eq. (18) after adding K_2CO_3, hence resulting in carbonate</u>	Formatted: Subscript
410	precipitation as described in Eq. (19), due to the common ion effect.	Formatted: Subscript
411	$\underline{K_2CO_3 + H_2O} \rightarrow 2K^+ + HCO_3^- + OH^- $ (18)	 Formatted: Indent: Left: 0.74 cm
412	$(1-x) Ca^{2+} + xMg^{2+} + 2HCO_3^{-} \rightarrow Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O $ (19)	
413	(4) Complex effects: Nitrification versus Hinhibition effect of PO ₄ in (NH ₄) ₃ PO ₄	
414	treatments	
415	ForIn the $(NH_4)_3PO_4$ treatment, the reaction of carbonate weathering will occur	 Formatted: Indent: First line: 0.74 cm
44.6	$\frac{1}{1}$	
416	according to Eq. (11) due to the mirification of NH_4 forized from the $(NH_4J_3PO_4)$	
417	fertilizer-will occur the nitrification. Whilst tThe PO_4^{3-} anion will exert an inhibition	
418	to calcite dissolution:, as calcium orthophosphate (Ca-P) precipitation is producesd on	
419	the surface of calcite after the addition of PO_4^{3-} in soil (reaction: <u>Ca + PO_4</u> \rightarrow Ca-P),	Formatted: Font: 12 pt
420	resulting in inhibitingion of the calcite dissolution-of calcite.	
421	(5) Complex effects: Common ion effect versus L inhibition effect of PO ₄ in	
422	Ca ₃ (PO ₄₎₂ and Ca-Mg-P treatments	
	19	

423	In the Ca ₃ (PO ₄) ₂ and Ca-Mg-P treatments, on the one hand, the Ca _(1-x) Mg _x CO _{3 is}	Formatted: Indent: First line: 0.74 cm
424	produceds when the concentrations of Ca ²⁺ (or/and Mg ²⁺) increases according to	
425	following Eq. (19). On the other hand, the inhibition effect of phosphate will cause	
426	that-calcium phosphate precipitation to be producesd on the surface of carbonate	
427	minerals after the addition of P in soil (reaction: $Ca + PO_4 \rightarrow Ca-P$), correspondingly	Formatted: Subscript
428	resulting in inhibitingion the carbonate precipitation.	
429	4.3 The dD ifference between NH ₄ ⁺ and NO ₃ ⁻ in impacts on carbonate weathering	
430	and the-implication on the estimation of CO ₂ consumption	
431	In order to further compare the difference S between NH_4^+ and NO_3^- effects on	Formatted: Indent: First line: 0.74 cm
432	carbonate weathering, the initial molar amount of fertilizer-derived NH ₄ per unit in	
433	every treatment were calculated, and are listed in Table 4. The results show that the	
434	amount of NH_4^+ hydrolyzed from urea is 1.06 mole, while NH_4^+ ionized from	
435	<u>NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and (NH₄)₃PO₄ is 0.54 mole, 1.08 mole,</u>	
436	1.07 mole, 1.06 mole, and 0.03 mole, respectively (Table 4). The Rw of limestone	
437	tablets and the initial amount of NH_4^+ per treatment are plotted in Fig. 45. A distinct	
438	relationship between them is observed, in that: the Rw values in NH_4NO_3 , NH_4HCO_3 ,	
439	<u>NH₄Cl, (NH₄)₂CO₃ and urea treatments are bigg larger than in the control treatment,</u>	
440	where the initial amount of NH_4^+ displaysyields similar results (Fig. 45). This	
441	suggests that carbonate weathering in NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl, (NH ₄) ₂ CO ₃ and	
442	urea treatments are mainly attributed to the dissolution reaction described as Eq. (11).	
443	This process of carbonate weathering by protons released from nitrification has been	
444	proven by many studies, from the laboratory to the field (Barnes and Raymond, 2009;	Field Code Changed
445	Bertrand et al., 2007; Biasi et al., 2008; Chao et al., 2011; Errin et al., 2006; Gandois	
446	et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Semhi	
447	and Suchet, 2000; West and McBride, 2005)(Barnes and Raymond, 2009; Bertrand et 20	

448	al., 2007; Biasi et al., 2008; Chao et al., 2011; Errin et al., 2006; Gandois et al., 2011;	
449	Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Semhi and Suchet,	
450	$\frac{2000}{2000}$; West and McBride, 2005). We have noted that the Rw values in NH ₄ HCO ₃ and	
451	$(NH_4)_2CO_3$ treatments are lowerless than even half of those in urea treatment in	
452	despite-of adding the same amount of fertilizer-derived NH ₄ (about-approximately	
453	1.07 mole). This is probably because the two fertilizers, NH_4HCO_3 and $(NH_4)_2CO_3$,	
454	are easier to decompose and produce the NH3 and CO2 gases as followingaccording to	
455	Eq. (20) and (21), resulting in the amounts of fertilizer-derived NH ₄ of that are lower	
456	<u>than 1.07 moles.</u>	
457	$\underline{\text{NH}_{4}\text{HCO}_{3}} \rightarrow \underline{\text{NH}_{3}} \uparrow + \underline{\text{H}_{2}\text{O}} + \underline{\text{CO}_{2}} \uparrow \tag{20}$	Formatted: Right, Indent: First line: 0.74 cm
458	$(NH_4)_2CO_3 \rightarrow 2NH_3 \uparrow + H_2O + CO_2 \uparrow $ (21)	
459	The Aw and Rw in the $(NH_4)_3PO_4$ treatment, unlike in other NH ₄ -fertlizer-	Formatted: Indent: First line: 0.74 cm
460	treatments, had not do not show a significant increase comparinged to-wi the control	
461	treatment, which is not only owing to the low amount of added NH_4^+ in $(NH_4)_3PO_4$	
462	treatment (0.3 mole; see Table 4), but also more or less relative to the inhibition of	
463	phosphate (Chien et al., 2011; Wang et al., 2012)(Chien et al., 2011; Wang et al.,	Field Code Changed
464	<u>2012</u>). After the addition of $(NH_4)_3PO_4$ in soil, calcium orthophosphate (Ca-P)	
465	precipitation will form on calcite surfaces, which is initiated with the aggregation of	
466	clusters leading to the nucleation and subsequent growth of Ca-P phases, at various	
467	pH values and ionic strengths relevant to soil solution conditions (Chien et al., 2011;	Field Code Changed
468	<u>Wang et al., 2012)(Chien et al., 2011; Wang et al., 2012).</u>	
469	However, in Fig. 3, there is no significant different between the Rw without	
470	significant difference with control treatment in the NaNO3 treatment compared to the	
471	control treatment, indicatinges that the addition of NO3-fertilizer does not	
	21	

472	significantly influence carbonate weathering.	
473	A notable issue herein is that the NaNO ₃ treatment produces the same amount of	
474	NO ₃ (1.07 mole) as other NH ₄ fertilizer (NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl, (NH ₄) ₂ CO ₃	
475	and urea), but it fails to impact on carbonate weathering, which is-raisinges a new	
476	problem. Eq. (5), usually considered as an expression for the natural weathering	
477	process of carbonate, is an important reaction-for in understanding the kinetics	
478	process of carbonate dissolution in carbonate-dominated areas, where the molar ratio	
479	of HCO ₃ and Me ²⁺ in the river as an indicator-is usually used as an indicator to make	
480	estimationes of CO ₂ consumption by carbonate weathering at the regional/global scale	
481	(Hagedorn and Cartwright, 2009; Li et al., 2009)(Hagedorn and Cartwright, 2009; Li	Field Co
482	et al., 2009). AtIn agricultural areas, the relationship between (Ca+Mg)/HCO3 ⁻ and	
483	<u>NO₃ is usually employed to estimate the contribution of N-fertilizer to riverine Ca²⁺,</u>	
484	Mg ²⁺ , and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009;	Field Co
485	Perrin et al., 2008; Semhi and Suchet, 2000)(Etchanchu and Probst, 1988; Jiang, 2013;	
486	Jiang et al., 2009; Perrin et al., 2008; Semhi and Suchet, 2000). In these studies, the	
487	nitrification described as in Eq. (8) is usually considered as the unique origin of NO_3^{-} .	
488	According to the results of the NaNO ₃ treatment in this study, the contribution of	
489	protons from nitrification to carbonate weathering may be overestimated, if	
490	anthropogenic NO ₃ ⁻ is neglected, since the anthropogenic NO ₃ ⁻ does not release the	
491	proton described asin Eq. (8). For NH_4NO_3 fertilizer, the (Eq. (12)) shows that the two	
492	moles of $Ca^{2+}+Mg^{2+}$, NO_3^{-} , and HCO_3^{-} will be produced when one mole $NH_4NO_3^{-}$	
493	reacts with 2 moles of carbonate, where only half of the NO ₃ originates from	
494	nitrification described as Eq. (8). This will result in a double overestimation onf the	
495	contribution of the nitrification to carbonate weathering, and thus thereby mislead the	
496	estimation of CO ₂ consumption therein.	
	l l l l l l l l l l l l l l l l l l l	

Field Code Changed

497	At regional scales, Hif different fertilizers are-added simultaneously added to an		
498	agricultural area, the estimation of CO ₂ consumption by carbonate weathering might		
499	became more complicated, since the mole ratios of Ca+Mg, HCO3 ⁻ , and/or NO3 ⁻		
500	between different fertilization treatments isare different (see Table 3). Thus, the		
501	related anthropogenic inputs (e.g. Ca+Mg, NH ₄ , NO ₃ ⁻ , HCO ₃ ⁻ , etc.) need to be		
502	investigated to more accurately estimate the impact of fertilization on carbonate		
503	weathering and its CO ₂ consumption.		
504	4.4 The comparison with other studied results		
505	The Rw and Raw of limestone in the control treatment in this study is were 0.48 $\%$	<u>o</u> Fo	rmatted: Indent: First line: 0.74 cm
506	and 2.00 $g \cdot m^{-2} \cdot a^{-1}$, respectively.—which These are—is generally consistent with the		
507	observations of 0.51-32.97 g·m ⁻² ·a ⁻¹ (for Raw) in Nongla, Guangxi, a karst area of		
508	Southwestern China (Zhang, 2011)(Zhang, 2011), and with the results of 0.05-5.06 %	Fie	eld Code Changed
509	(for Rw) and 1.08-136.90 g·m ⁻² ·a ⁻¹ (for Raw) from the north slope of the Hochschwab		
510	mMassif in Australia (Plan, 2005)(Plan, 2005), as determined -using the limestone	Fie	eld Code Changed
511	tablet method. But the Raw of 2.00 g·m ⁻² ·a ⁻¹ is lower than the results (of 7.0-63.5)		
512	g·m ⁻² ·a ⁻¹ for Raw) from Jinfo Mountiain in Chongqing-of, China (Zhang,	Fie	eld Code Changed
513	2011)(Zhang, 2011). These differences in carbonate weathering are mainly attributed		
514	to the different types of carbonate rock tablets, climate, micro-environments of soil,		
515	etc. The Raw of limestone in the N-fertilizers treatments is are 20.57-34.71 g·m ⁻² ·a ⁻¹ ,		
516	similar to the weathering rate of carbonate in Θ or chard (32.97 g·m ⁻² ·a ⁻¹) at Nongla,		
517	Manshan, Guangxi-of-, China, whereich usually involves in fertilization activities.		
518	At larger scales, such as -like watersheds, the weathering rate is usually		
519	estimated by using the riverine hydro-chemical method, which is inconsistent with the		
520	results from the carbonate-rock-tablet test. The estimation of Zeng, et al. (2014)		
521	estimateviews that the carbon sink intensity calculated by the carbonaterocktablet		

522	test is only one sixth of that estimated by using the riverine hydro-chemical method,	
523	due to its own limits in methodology (Zeng et al., 2014)(Zeng et al., 2014). The	Field Code Changed
524	results from Semhi, et al. (2000) shows theat weathering rates of carbonate rock by	
525	using riverine hydro-chemical method are- about approximately 77.5 $g \cdot m^{-2} \cdot a^{-1}$ and	
526	50.4 g·m ⁻² ·a ⁻¹ in the upstream and downstream, respectively, of the Garonne river,	
527	France, respectively, which are about approximately 25-35 and 2-3-times greater than	
528	that in the control treatment (2.00 g·m ⁻² ·a ⁻¹ for natural weathering rate-) and 2-3 times	
529	greater than in the N-fertilizer treatment (20.57-34.71 g·m ⁻² ·a ⁻¹ for anthropic	
530	weathering rate) in this study. The global natural weathering rate of carbonate	
531	reported by Amiotte Suchet, et al. (2003) is 47.8 g·m ⁻² ·a ⁻¹ , which is much higher than	
532	that we observed. Thus, we conclude that it is difficult to compare between-the results	
533	from the carbonate-rock-tablet test and the riverine hydro-chemical method. The	
534	carbonate-rock-tablet test is suitable for the research on the condition	
535	controlledcomparative contrast or stimulated experiments, while the riverine	
536	hydro-chemical method is appropriate for the regional investigations and estimations.	
537	According to the estimation from Yue et al. (2015), T the enhanced HCO ₃ ⁻ flux due to	
538	<u>nitrification of $NH_{4^{+}}$ at Houzhai catchment of Guizhou pProvince would be 3.72×10^{5}</u>	
539	kg C/year and account for 18.7 % of this flux in the entire catchment(Yue et al.,	Field Code Changed
540	2015)(Yue et al., 2015). This is similar to estimates from other small agricultural	
541	carbonate basins (12-26 %) in Southwest France (Perrin et al., 2008; Semhi and	Field Code Changed
542	Suchet, 2000)(Perrin et al., 2008; Semhi and Suchet, 2000).	
543	5. Conclusions	
544	The impact of the addition of different fertilizers (NH ₄ NO ₃ , NH ₄ HCO ₃ , NaNO ₃ ,	
545	NH ₄ Cl, (NH ₄) ₂ CO ₃ , Ca ₃ (PO ₄) ₂ , (NH ₄) ₃ PO ₄ , Ca-Mg-P, Uurea, and K ₂ CO ₃) on	
546	carbonate weathering was studied in a field column experiment withusing carbonate 24	

547	-rocktablets-at-its bottom of each. The amount of weathering amount and the ratio of
547	Took subjects at his bottom of each. The anothe of weathering amount and the facto of
548	weathering of carbonate rock tablets showed that the addition of urea, NH ₄ NO ₃ ,
549	<u>NH₄HCO₃, NH₄Cl, and (NH₄)₂CO₃ distinctly increased carbonate weathering, which</u>
550	was attributed to the nitrification of NH_4^+ , and while the addition of $Ca_3(PO_4)_2$,
551	Ca-Mg-P and K ₂ CO ₃ induced carbonate precipitation due to the common ion effect.
552	<u>While tThe addition of $(NH_4)_3PO_4$ and $NaNO_3$ addition did not impact significantly</u>
553	on carbonate weathering, where the former can be attributed to the low added amount
554	of $(NH4)_3PO_4$, - and may be related to the inhibition of phosphate, and while the
555	latter seemed to be-raisinge a new question. The question is: The littleminor impact
556	of nitrate on carbonate weathering may result in the overestimation of the impact of
557	<u>N-fertilizer on CO₂ consumption by carbonate weathering at the regional/global scale,</u>
558	if the effects of NO ₃ and NH ₄ are not distinguished. Thus, the related anthropogenic
559	inputs (e.g. Ca+ Mg, NH ₄ , NO ₃ ⁻ , HCO ₃ ⁻ , etc.) need to be investigated to more
560	accurately estimate the impact of fertilization on carbonate weathering and its
561	consumption of CO ₂ -consumption. 4.2 The kinetics and controlled factors of
562	carbonate weathering
563	Experimental studies of carbonate dissolution kinetics have shown metal
564	carbonate weathering usually depends upon three parallel reactions occurring at the
565	carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009):
566	$\frac{\text{MeCO}_3 + \text{H}^+ \rightarrow \text{Me}^{2+} + \text{HCO}_3}{(4)}$
567	$MeCO_3 + H_2CO_3 \rightarrow Me^{2+} + 2HCO_3^{-} $ (5)
568	$\frac{\text{MeCO}_{3} \longrightarrow \text{Me}^{2+} + \text{CO}_{3}^{2-}}{(6)}$

569	where Me=Ca, Mg. As Eq. (5) describes, atmospheric/soil CO_2 is usually regard as	
570	the natural weathering agent of carbonate, whereas many studies have exposed that	
571	carbonate weathering can occur due to the reaction (Eq. (4)) between carbonate and	
572	the other proton contributors, as mentioned in introduction section: s which can	
573	originate from the nitrification processes of N-fertilizerH ₄ [±] (Semhi and Suchet, 2000;	Formatted: Subscript Formatted: Superscript
574	West and McBride, 2005; Oh and Raymond, 2006; Hamilton et al., 2007; Perrin et al.,	
575	2008; Barnes and Raymond, 2009; Pierson wickmann et al., 2009; Chao et al., 2011;	
576	Gandois et al., 2011), from the sulfuric acid acid, (Lerman and Wu, 2006; Lerman et	
577	al., 2007; Li et al., 2008; Li et al., 2009), from organic acid secreted by	
578	microorganisms (Lian et al., 2008), as well and as from acidic soil (Chao et al.,	
579	2014)<u>the role of</u>	
		Eormattad: Indont: First
580	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte	Formatted. Indent. First
580 581	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil	Formatteu. Indent. Fist
580 581 582	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO ₂ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each	Formatteu. Indent. Fist
580 581 582 583	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO ₂ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl and	Formatteu. Indent. Fist
580 581 582 583 584	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO ₂ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl and (NH ₄) ₂ CO ₃ amendment increased (10 to 17 fold) the natural weathering rate of 2.00	Formatteu. Indent. Fist
580 581 582 583 584 585	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO ₂ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl and (NH ₄) ₂ CO ₃ amendment increased (10 to 17 fold) the natural weathering rate of 2.00 g m ⁻² -a ⁻¹ from limestone tablets in control treatment (table 2). These increases may be,	Formatted. Indent. Fist
580 581 582 583 584 585 586	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO ₂ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl and (NH ₄) ₂ CO ₃ amendment increased (10 to 17 fold) the natural weathering rate of 2.00 g·m ⁻² -a ⁻⁴ from limestone tablets in control treatment (table 2). These increases may be, in the one hand, attributed to the effect of the proton released from the nitrification of	Poiniatteu. indent. Fist
580 581 582 583 584 585 586 586	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO ₂ (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl and (NH ₄) ₂ CO ₃ -amendment increased (10 to 17 fold) the natural weathering rate of 2.00 g m ⁻² -a ⁻⁴ -from limestone tablets in control treatment (table 2). These increases may be, in the one hand, attributed to the effect of the proton released from the nitrification of NH ₄ ⁺ . On the other hand, it may be, in theory, related to enhanced microbiogenic CO ₂	Pointateu. Intent. Fist
580 581 582 583 584 585 586 587 588	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO ₂ .(Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH ₄ NO ₃ , NH ₄ HCO ₃ , NH ₄ Cl and (NH ₄) ₂ CO ₃ amendment increased (10 to 17 fold) the natural weathering rate of 2.00 g m ⁻² -a ⁻⁴ from limestone tablets in control treatment (table 2). These increases may be, in the one hand, attributed to the effect of the proton released from the nitrification of NH ₄ ⁺ . On the other hand, it may be, in theory, related to enhanced microbiogenic CO ₂ due to nitrogenous nutrients stimulation (Eq(5)), because fertilizer application can	Formatted. Indent. Fist
580 581 582 583 584 585 586 587 588	In field, carbonate dissolution is mainly controlled by the amount of rainfall (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted of soil CO_2 (Andrews and Schlesinger, 2001). We consider that the effect of rainfall on each soil column is same. In this study, the urea, NH_4NO_3 , NH_4HCO_3 , NH_4CI and $(NH_4)_2CO_3$ -amendment increased (10 to 17 fold) the natural weathering rate of 2.00 g m ⁻² -a ⁻¹ from limestone tablets in control treatment (table 2). These increases may be, in the one hand, attributed to the effect of the proton released from the nitrification of NH_4^+ . On the other hand, it may be, in theory, related to enhanced microbiogenic CO_2 due to nitrogenous nutrients stimulation (Eq(5)), because fertilizer application can increase soil CO_2 flux (Sainju et al., 2008; Bhattacharyya et al., 2013), the increased	romateu. muent, rist

line: 0 cm

591	Schlesinger, 2001).	
592	According to the added amount of different fertilization treatment, the molar amount	
593	of added nitrogen nutrient in NaNO3 treatment is 1.07mol, much bigger than in	
594	NH4NO3, equivalent to NH4HCO3 and NH4Cl treatment. However, the Acw and Rcw,	
595	and Racw of NaNO3 treatment is far less (Fig. 3 and table 2), inhibiting that the	Format
596	increases of carbonate weathering rate in urea, NH4NO3, NH4HCO3, NH4CI and	
597	(NH4)2CO3-amendment have no distinct relationship with enhanced microbiogenic	
598	CO ₂ due to nitrogenous fertilizer amendment	
599	4.3 The effect of nitrification of NH ₄ -fertilizer	Format
600	In urea (CO(NH ₂) ₂) treatment, the enzyme urease rapidly hydrolyzes the urea N	Asian t betwee
601	(CO(NH ₂) ₂) to NH ₄ ⁺ ions (Eq. (7)) when urea is applied to the soil (Soares et al.,	
602	2012).	
603	$\frac{\text{CO}(\text{NH}_2)_2 + 3\text{H}_2\text{O} \rightarrow 2\text{NH}_4^+ + 2\text{OH}^- + \text{CO}_2}{(7)}$	
604	Table 3 shows that the amount of NH_4^+ hydrolyzed from urea is 1.06 mol, while	
605	NH4 ⁺ -ionized from NH4NO3, NH4HCO3, NH4Cl, (NH4)2CO3-and (NH4)3PO4-is 0.54	
606	mol, 1.08 mol, 1.07 mol, 1.06 mol and 0.03 mol, respectively (Table 3). Although the	
607	study from Singh et al showed that a part of NH4 ⁺ may be lost as ammonia (NH3) and	
608	subsequently as nitrous oxide (N_2O) (Singh et al., 2013), yet the rest ammonium	
609	(NH4 ⁺) is mainly oxidized in soil by autotrophic bacteria (like Nitrosomonas) during	
610	nitrification, resulting in nitrite NO_2^- and H^+ ions. Nitrite is, in turn, oxidized by	
611	another bacterium, such as Nitrobacter, resulting in nitrate (NO ₃ -) (Eq. (8)) (Perrin et	
612	al., 2008).	

Formatted: Font: Italic

Formatted: Indent: First line: 0 ch, Don't adjust space between Latin and Asian text, Don't adjust space Detween Asian text and numbers

613	$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+ $ (8)
614	The protons (\mathbf{H}^{+}) produced by nitrification can be neutralized in two ways:
615	(i) either by exchange process with base cations in the soil exchange complex
616	$(Eq. (9)) \qquad Soil Ca + 2H^+ \rightarrow Soil 2H^+ + Ca^{2+} $ (9)
617	(ii) or via carbonate mineral dissolution (Eq.(10))
618	$Ca_{(1-x)}Mg_{x}CO_{3} + H^{+} \rightarrow (1-x)Ca^{2+} + xMg^{2+} + HCO_{3}^{-} $ (10)
619	
620	protons produced by nitrification is supposed to becomes (Eq. 11) (See details in
621	Perrin et al., 2008 and Gandois et al., 2011).
622	$\frac{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}^{+} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2HCO_{3}^{-}}{H_{2}O + 2HCO_{3}^{-}}$
623	(11)
624	The Rcw of limestone tablets and the initial concentration of NH_4^+ are plotted in
625	Fig. 4. A distinct relationship between them is observed: the Acw and Rcw in NH4NO3,
626	NH_4HCO_3 , NH_4Cl , $(NH_4)_2CO_3$ and urea treatments are bigger than in control
627	treatment, where the initial concentration of NH4 ⁺ displays similar results (Fig. 4).
628	This suggests that carbonate weathering in NH4NO3, NH4HCO3, NH4Cl, (NH4)2CO3
629	and urea treatments are mainly attributed to the dissolution reaction described as Eq.
630	(11). This process of carbonate weathering by protons from nitrification has been
631	proven by many studies, from laboratory to field (Semhi and Suchet, 2000; Bertrand
632	et al., 2007; Oh and Raymond, 2006; Errin et al., 2006; Hamilton et al., 2007; Biasi et
633	al., 2008; Perrin et al., 2008; Barnes and Raymond, 2009; Chao et al., 2011; West and
634	McBride, 2005; Gandois et al., 2011). According to the estimation from Yue et al.
635	(2015), The enhanced HCO ₃ ⁻ flux due to nitrification of NH ₄ ⁺ at Houzhai catchment

636	of Guizhou province would be 3.72×10^5 kg C/year and account for 18.7% of this
637	flux in the entire catchment(Yue et al., 2015). This is similar to estimates from other
638	small agricultural carbonate basins (12-26%) in Southwest France (Semhi and Suchet,
639	2000; Perrin et al., 2008).
640	As discussed above, provided that the loss as ammonia (NH ₃) and nitrous oxide
641	(N_2O) after hydrolyzation is unconsidered in this study, the final equation of
642	carbonate weathering in NH4NO3, NH4HCO3, NH4Cl, (NH4)2CO3 and urea treatments
643	will be followed as, respectively:
644	$\frac{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}NO_{3} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + 2NO_{3} + H_{2}O + H_{2}O_{3}}{2}$
645	2HCO ₃ -(12)
646	$\frac{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}HCO_{3} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3} + H_{2}O + CO_{3}}{2}$
647	3HCO₃ (13)
648	$\frac{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}CI + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + CI^{-} + H_{2}O + CI^{-} + CI$
649	2HCO₃ (14)
650	$\frac{3Ca_{(1-x)}Mg_{*}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3} + 2H_{2}O + 6}{3Ca_{(1-x)}Mg_{*}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3} + 2H_{2}O + 6}{3Ca_{(1-x)}Mg_{*}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3} + 2H_{2}O + 6}{3Ca_{(1-x)}Mg_{*}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3} + 2H_{2}O + 6}{3Ca_{(1-x)}Mg_{*}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3} + 2H_{2}O + 6}{3Ca_{(1-x)}Mg_{*}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3} + 2H_{2}O + 6}{3Ca_{(1-x)}Mg_{*}CO_{3} + 2H_{2}O + 6}{3Ca_{(1-x)}Mg_{*}OO_{3} + 2H_{2}O + 2}{3Ca_{(1-x)}Mg_{*}OO_{3} + 2H_{2}O +$
651	4HCO ₃ -(15)
652	$\frac{3Ca_{(1-x)}Mg_{x}CO_{3} + CO(NH_{2})_{2} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 4HCO_{3}^{-}}{}$
653	(16)
654	The Acw and Rcw in (NH4)3PO4 treatment, unlike in other NH4-fertlizer
655	treatments, had not a significant increase comparing with control treatment, which is
656	not only owing to the low amount of added NH4 ⁺ in (NH4)3PO4 treatment (0.3 mol,
657	see Table 3) but also relative to the inhibition of phosphate. After the addition of
658	(NH ₄) ₃ PO ₄ -in soil, calcium orthophosphate (Ca-P) precipitation will form on calcite
659	surface which is initiated with the aggregation of clusters leading to the nucleation
	20

and subsequent growth of Ca P phases, at various pH values and ionic strengths 660 relevant to soil solution conditions (Chien et al., 2011; Wang et al., 2012).-661 662 4.4 Little/no effect of NO₃-fertilizer on carbonate weathering and its implication to the evaluation of CO₂ consumption by carbonate weathering 663 In Fig. 3, the Acw and Rcw without significant difference with control treatment 664 in NaNO3 treatment indicates that the addition of NO3 fertilizer does not significantly 665 influence carbonate weathering. This result is raising a new problem. 666 Eq. (5), usually as an expression for the natural weathering process of carbonate, 667 is an important reaction for understanding the kinetics process of carbonate 668 dissolution in carbonate dominated areas, where the molar ratio of HCO₃ and Me²⁺ in 669 670 the river as an indicator is usually used to make estimations of CO₂-consumption by carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li 671 et al., 2009). At agricultural areas, the relationship between (Ca+Mg)/HCO₃ and NO₃ 672 673 is usually employed to estimate the contribution of N-fertilizer to riverine Ca²⁺, Mg²⁺ and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et 674 al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described as Eq. 675 676 (8) is usually considered as the unique origin of NO3. According to the result of NaNO3 treatment in this study, the contribution of protons from nitrification to 677 678 carbonate weathering may be overestimated if anthropogenic NO3 is neglected, since 679 the anthropogenic NO₃⁻ does not release the proton described as Eq. (8). For NH₄NO₃ fertilizer, the (Eq. (12)) show that the two moles of Ca²⁺+Mg²⁺, NO₃⁻ and HCO₃⁻ will 680 be produced when one mole NH4NO3 react with 2 moles of carbonate, where only 681 half of NO3- originate from nitrification described as Eq. (8). This will result in 682 doubled overestimation on the true contribution of the nitrification to CO2 683 684 consumption by carbonate weathering.

685	At regional scales, If different fertilizers are added to an agricultural area, the
686	estimation of CO ₂ consumption by carbonate weathering might became more
687	complicated, since the mole ratio of Ca+Mg, HCO3 ⁻ and/or NO3 ⁻ between different
688	fertilization treatment is different (see Eq. (8) (12)). Thus, the related anthropogenic
689	inputs (e.g. Ca+Mg, NH4, NO3, HCO3, etc.) need to be investigated to more
690	accurately estimate the impact of fertilization on carbonate weathering and its CO_2
691	consumption. Moreover, the statement that nitrogenous fertilizer can aid carbonate
692	weathering may result in misunderstanding more or less, it should not be nitrogenous
693	fertilizer but, rather, ammonium fertilizer.
694	5. Conclusion
695	The impact of the addition of different fertilizer (NH4NO3, NH4HCO3, NaNO3,
696	NH ₄ Cl, (NH ₄) ₂ CO ₃ , Ca ₃ (PO ₄) ₂ , (NH ₄) ₃ PO ₄ , Ca-Mg-P, Urea and K ₂ CO ₃) on carbonate
697	weathering was studied in a field column experiment with carbonate rock tablets at its
698	bottom of each. The weathering amount and ratio of carbonate rock tablets showed
699	that the addition of urea, NH4NO3, NH4HCO3, NH4Cl and (NH4)2CO3 distinctly
700	increased carbonate weathering, which was attributed to the nitrification of NH4 ⁺ , and
701	the addition of Ca ₃ (PO ₄) ₂ , Ca Mg P and K ₂ CO ₃ induced carbonate precipitation due
702	to common ion effect. While the $(NH_4)_3PO_4$ and $NaNO_3$ -addition did not impact
703	significantly on carbonate weathering, where the former can be attributed to low
704	added amount of (NH4) ₃ PO ₄ , may be related to the inhibition of phosphate, and the
705	latter seemed to be raising a new question. The little impact of nitrate on carbonate
706	weathering may result in the overestimation of impact of N-fertilizer on CO2
707	consumption by carbonate weathering at the regional/global scale if the effect of NO ₃

708	and NH4 are not distinguished. Thus, the related anthropogenic inputs (e.g. Ca+ Mg,			
709	NH4, NO3, HCO3, etc.) need to be investigated to more accurately estimate the			
710	impact of fertilization on carbonate weathering and its CO ₂ consumption. Moreover,			
711	in order to avoid misunderstanding more or less, the statement that nitrogenous			
712	fertilizer can aid carbonate weathering should be replaced by ammonium fertilizer.			
713	6. Acknowledgements			
714	This study is was supported jointly by the Basic Science Research Fund from the			
715	Institute of Hydrogeology and Environmental Geology (Grant No. SK201208), and			
716	the Chinese National Natural Science Foundation (No. 41403107 and No. 41325010).			
717				
/18			Formatta	d. Cont: 16 nt
719	References:	\prec	Formatte	d. Left
			Formattee	
720	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock	$\overline{}$	Formatte	d . Font: 10 5 nt
720 721	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO ₂ uptake by continental weathering and alkalinity		Formattee	d: Font: 10.5 pt
720 721 722	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO ₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13.		Formattee	d: Font: 10.5 pt
720 721 722 723	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock <u>lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity</u> <u>river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13.</u> Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO ₂ dynamics, acidification, and chemical		Formattee	d: Font: 10.5 pt
720 721 722 723 724	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO ₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO ₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO ₂ enrichment. Global Biogeochemical. Cycles,		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO ₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO ₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO ₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162.		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO ₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO ₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO ₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO ₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO ₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO ₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327.		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and 		Formattee	d: Font: 10.5 pt
 720 721 722 723 724 725 726 727 728 729 	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et-al., 2008. Direct experimental evidence 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et-al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO₂ 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO₂ production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86. 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO₂ production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86. Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO₂ production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86. Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO₂ production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86, Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied Geochemistry, 26(S): 170-173. 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 738 739	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO₂ production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86. Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment, Applied Geochemistry, 26(S): 170-173. Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment, Applied Geochemistry, 26(S): 170-173. 		Formattee	d: Font: 10.5 pt
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740	 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13. Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO₂ enrichment. Global Biogeochemical. Cycles, 15: 149-162. Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327. Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1): 276-288. Biasi, C., Lind, S.E., Pekkarinen, N.M. and Martikainen, P.J.et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669. Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO₂ production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86. Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied Geochemistry, 26(S): 170-173. 		Formattee	d: Font: 10.5 pt

742	Chao, S., Changli, L., Yun, Z. and Hongbing, H., 2014. Impact of animal manure addition on
743	agricultural lime weathering in acidic soil: pH dependence and CO2 independence of agricultural lime
744	weathering. Procedia Earth and Planetary Science(, 10): 405-409.
745	Chao, S., Chang-li, L., Yun, Z. and Hong-bing, H., 2017. Impact of animal manure addition on the
746	weathering of agricultural lime in acidic soils: The agent of carbonate weathering. Journal of
747	Groundwater Science and Engineering, 5(2): 202-212.
748	Chien, S.H., Prochnow, L.I., Tu, S. and Snyder, C.S., 2011. Agronomic and environmental aspects of
749	phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling in
750	Agroecosystems, 89(2): 229-255.
751	Chou, L., Garrels, R.M. and Wollast, R., 1989. Comparative study of the kinetics and mechanisms of
752	dissolution of carbonate minerals. Chemical Geology, 78(3-4): 269-282.
753	Dreybrodt, W., 1988. Processes in karst systems: physics, chemistry, and geology. Springer-Verlag
754	Berlin Heidelberg, 0-288 pp.
755	Dreybrodt, W., Lauckner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the
756	reaction $CO_2 + H_2O \rightarrow H^+ + HCO_3$ as one of the rate limiting steps for the dissolution of calcite in
757	the system H ₂ O-CO ₂ -CaCO ₃ . Geochimica et Cosmochimica Acta, 60(18): 3375-3381.
758	Egli, M. and Fitze, P., 2001. Quantitative aspects of carbonate leaching of soils with differing ages and
759	<u>climates. Catena, 46(1): 35-62.</u>
760	Errin, A.S.P., Robst, A.P. and Robst, J.L.P., 2006. Impact of nitrogen fertilizers on natural weathering
761	processes : Evident role on CO ₂ consumption The oxygen isotopic composition of Precambrian cherts,
762	Goldschmidt Conference, pp. 2332-2332.
763	Etchanchu, D. and Probst, J., 1988. Evolution of the chemical composition of the Garonne River water
764	during the period 1971-1984. Hydrological sSciences Journal, 33(3): 243-256.
765	Gams, I., 1981. Comparative research of limestone solution by means of standard tablets, Proceedings
766	of the 8th International Congress of Speleology, Bowling Green, Kentucky, ppUSA, 1:- 273-275.
767	Gams, I., 1985. International comparative measurements of surface solution by means of standard
768	limestone tablets. Razprave IV, Razreda Sazu, 26: 361-386.
769	Gandois, L., Perrin, A.S. and Probst, A., 2011. Impact of nitrogenous fertiliser-induced proton release
770	on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et
771	Cosmochimica Acta, 75: 1185-1198.
772	<u>GBS</u> , 2014. 2014 Guizhou Ss tatistical Y yearbook. Statistical Press of China, Beijing.
773	Hagedorn, B. and Cartwright, I., 2009. Climatic and lithologic controls on the temporal and spatial
774	variability of CO ₂ consumption via chemical weathering: An example from the Australian Victorian
//5	Alps. Chemical Geology, 260(3-4): 234-253.
776	Hamilton, S.K., Kurzman, A.L., Arango, C., Jin, L. and Robertson, G.P., 2007. Evidence for carbon
///	sequestration by agricultural liming. Global Biogeochemical Cycles, 21(GB2021): 1-12.
778	Han, Z. and Jin, Z., 1996. Hydrogeology of Guizhou Province, China. Seismic Publication, Beijing.
779	Hunter, A.H., 1980. Laboratory and greenhouse techniques for nutrient survey to determine the soil
780	amendments required for optimum plant growth. Mimeograph. Agro Service International (ASI),
/81	<u>Florida, USA.</u>
782	Jiang, Y., 2015. The contribution of human activities to dissolved inorganic carbon fluxes in a karst
/83 70/	underground river system: Evidence from major elements and <u>o C_{DIC} in Nandong, Southwest China.</u>
784 795	Journal of Contaminant Hydrology, 152 (0) : 1-11.
/85	Jiang, L., Wu, L., Groves, C., Luan, D. and Kampesis, P., 2009. Natural and anthropogenic factors

786	affecting the groundwater quality in the Nandong karst underground river system in Yunan, China.
787	Journal of Contaminant Hydrology, 109(1-4): 49-61.
788	Jiang, Z. and Yuan, D., 1999. CO ₂ source-sink in karst processes in karst areas of China. Episodes,
789	<u>22(1): 33-35.</u>
790	Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in
791	South China. Environmental eEarth sSciences, 68(1): 151-158.
792	Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface
793	Processes and Landforms, 19(3): 213-232.
794	Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate.
795	Geochemical Journal (, 12): 29-37.
796	Kump, L.R., Brantley, S.L. and Arthur, M.A., 2000. Chemical weathering, atmospheric CO2, and
797	climate. Annual Review of Earth and Planetary Sciences, 28(1): 611-667.
798	Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in
799	Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Applied
800	Geochemistry, 21(6): 887-903.
801	Lerman, A. and Wu, L., 2006. CO2 and sulfuric acid controls of weathering and river water
802	composition. Journal of Geochemical Exploration, 88(1-3): 427-430.
803	Lerman, A., Wu, L. and Mackenzie, F.T., 2007. CO2 and H2SO4 consumption in weathering and
804	material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2):
805	<u>326-350.</u>
806	Li, S., Calmels, D., Han, G., Gaillardet, J. and Liu, C., 2008. Sulfuric acid as an agent of carbonate
807	weathering constrained by $\delta^{13}C_{DIC}$: Examples from Southwest China. Earth and Planetary Science
808	Letters, 270(3-4): 189-199.
809	Li, S., Xu, Z., Wang, H., Wang, J. and Zhang, Q., 2009. Geochemistry of the upper Han River basin,
810	China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chemical Geology,
811	<u>264(1-4): 89-95.</u>
812	Lian, B., Chen, Y., Zhu, L. and Yang, R., 2008. Effect of Mmicrobial Wweathering on Carbonate
813	Rrocks. Earth Science Frontiers, 15(6): 90-99.
814	Liu, C., Li, S., Lang, Y. and Xiao, H., 2006. Using δ^{15} N- and δ^{18} O-¥values ∓to Hidentify Nnitrate
815	Sources in Kkarst Gground Wwater, Guiyang, Southwest China. Environmental Science &
816	Technology, 40(22): 6928-6933.
817	Liu, Z. Sun, H., Lu, B., Liu, X., Ye, W. and Zeng, C.et al., 2010. Wet-dry seasonal variations of
818	hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan,
819	SW China: Implications for the formation of biannual laminae in travertine and for climatic
820	reconstruction. Chemical Geology, 273(3-4): 258-266.
821	Liu, Z., 2011. "-Method of maximum potential dissolution" to calculate the intensity of karst process
822	and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test.
823	<u>Carsologica Sinica, 30(4): 379-382.</u>
824	Liu, Z. and Dreybrod, W., 1997. Dissolution kinetics of calcium carbonate minerals in H ₂ O-CO ₂
825	solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction $H_2O + CO_2$
826	\leftrightarrow H ⁺ + HCO ₃ ⁻ . Geochimica et Cosmochimica Acta, 61(14): 2879-2889.
827	Liu, Z., Dreybrodt, W. and Liu, H., 2011. Atmospheric CO ₂ sink: silicate weathering or carbonate
828	weathering? Applied Geochemistry, 26(S): 292-294.
070	NIDE 2014 2014 Cetetletical Versilie als Cetetletical David of China Datting

829 <u>NBS</u>, 2014. 2014 Sstatistical Yyearbook. Statistical Press of China, Beijing.

830	Oh, N. and Raymond, P.A., 2006. Contribution of agricultural liming to riverine bicarbonate export and
831	CO2 sequestration in the Ohio River basin. Global Biogeochemical Cycles, 20(3): 1-17.
832	Perrin, A., Probst, A. and Probst, J., 2008. Impact of nitrogenous fertilizers on carbonate dissolution in
833	small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales.
834	Geochimica et Cosmochimica Acta, 72(13): 3105-3123.
835	Pierson-wickmann, A., Aquilina, L., Martin, C., Ruiz, L. and Molénat, J., 2009. High chemical
836	weathering rates in first-order granitic catchments induced by agricultural stress. Chemical Geology,
837	<u>265: 369-380.</u>
838	Plan, L., 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
839	<u>aAlps. Geomorphology, 68(3-4): 201-212.</u>
840	Plummer, L.N., Wigley, T. and Parkhurst, D.L., 1978. The kinetics of calcite dissolution in CO ₂ -water
841	systems at 5 to 60 °C and 0.0 to 1 atm CO2. American Journal of Science, 278: 179-216.
842	Pokrovsky, O.S., Golubev, S.V., Schott, J. and Castillo, A., 2009. Calcite, dolomite and magnesite
843	dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm
844	pCO ₂ : New constraints on CO ₂ sequestration in sedimentary basins. Chemical Geology, 265(1-2):
845	<u>20-32.</u>
846	Probst, J., 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical
847	and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal, 31(1): 61-79.
848	Semhi, K. and Suchet, A., 2000. Impact of nitrogen fertilizers on the natural weathering-erosion
849	processes and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6): 865-878.
850	Shin, W., Ryu, J., Mayer, B., Lee, K. and Lee, S., 2014. Natural and anthropogenic sources and
851	processes affecting water chemistry in two South Korean streams. Science of T the Total Environment,
852	<u>485: 270-280.</u>
853	Singh, J., Kunhikrishnan, A., Bolan, N.S. and Saggar, S., 2013. Impact of urease inhibitor on ammonia
854	and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
855	Science of T the Total Environment, 465 (0) : 56-63.
856	Soares, J.R., Cantarella, H. and Menegale, M.L.D.C., 2012. Ammonia volatilization losses from
857	surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52(0):
858	<u>82-89.</u>
859	Trudgill, S.T., 1975. Measurement of erosional weight loss of rock tablets. British Geomorphological
860	Research Group Technical Bulletin, 17: 13-2019.
861	Wang, L., Ruiz-Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A., 2012. Kinetics of Calcium
862	Pphosphate Anucleation and Ggrowth on Ccalcite: Implications for Ppredicting the Ffate of Adissolved
863	Pphosphate Sspecies in Aalkaline Ssoils. Environmental Science & Technology, 46(2): 834-842.
864	West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
865	in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
866	Environment, 108(2): 145-154.
867	Yue, F.J., Li, S.L., Liu, C.Q., Lang, Y.C. and Ding, H., 2015. Sources and transport of nitrate
868	constrained by the isotopic technique in a karst catchment: an example from Southwest China.
809 970	Hydrological Processes, 29(8): 1885-1895.
0/0	Zeng, C., Zhao, M., Yang, K. and Liu, Z., 2014. Comparison of Karst processes-related carbon sink
0/1	Intensity calculated by carbonate rock tablet test and solute load method: a case study in the Chenqi
ŏ/2	karst spring system. Hydrogeology & Engineering Geology, 41(1): 106-111.

873 Zhang, C., 2011. Carbonate rock dissolution rates in different landuses and their carbon sink effect.

874 Chinese Science Bulletin, 56(35): 3759-3765.

	And the Constant D. LL. Darker and W. Landards. 2002. W. 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
	Amiotte Suchet, P., J.L. Probst, and W. Ludwig. 2005. Worldwide distribution of continental rocl
	https://www.interview.com/int
	river transport to the oceans. Global Biogeochem Cy 17:1–13.
1	Andrews, J.A., and W.H. Schlesinger. 2001. Soil CO ₂ dynamics, aciditication, and chemica
	weathering in a temperate forest with experimental CO ₂ enrichment. Global Biogeochem, Cycle
	<u>15:149-162.</u>
	Barnes, R.T., and P.A. Raymond. 2009. The contribution of agricultural and urban activities to
	inorganic carbon fluxes within temperate watersheds. Chem Geol 266:318-327.
	Bertrand, I., O. Delfosse, and B. Mary. 2007. Carbon and nitrogen mineralization in acidic, limed and
1	ealcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry 39:276-288.
	Biasi, C., S.E. Lind, N.M. Pekkarinen, J.T. Huttunen, N.J. Shurpali, N.P. Hyvönen, M.E. Repo, and P.
	Martikainen. 2008. Direct experimental evidence for the contribution of lime to CO2 release from
	managed peat soil. Soil Biology and Biochemistry 40:2660-2669.
	Calmels, D., J. Gaillardet, and L. François. 2014. Sensitivity of carbonate weathering to soil CO
	production by biological activity along a temperate climate transect. Chem Geol 390:74-86.
	Chao, S., L. Changli, Z. Yun, and H. Hongbing. 2014. Impact of animal manure addition of
	agricultural lime weathering in acidic soil: pH dependence and CO2 independence of agricultural lim
	weathering. Procedia Earth and Planetary Science: 405-409.
	Chao, S., L. Changli, W. Junkun, Z. Yun, and H. Hongbing. 2011. Impact of the Addition of
	Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. App
	Geochem 26:170-173.
	Chien, S.H., L.I. Prochnow, S. Tu, and C.S. Snyder. 2011. Agronomic and environmental aspects of
	phosphate fertilizers varying in source and solubility: an update review. Nutr Cycl Agroecosy
	<u>89:229-255.</u>
	Chou, L., R.M. Garrels, and R. Wollast. 1989. Comparative study of the kinetics and mechanisms of
	dissolution of carbonate minerals. Chem Geol 78:269-282.
	Dreybrodt, W. 1988. Processes in karst systems: physics, chemistry, and geology Springer-Verla
	Berlin Heidelberg.
	Dreybrodt, W., J. Lauckner, L. Zaihua, U. Svensson, and D. Buhmann. 1996. The kinetics of th
	reaction $CO_2 + H_2O \rightarrow H^+ + HCO_3^-$ as one of the rate limiting steps for the dissolution of calcite in the
	system H2O CO2-CaCO2- Geochim Cosmochim Ac 60:3375-3381.
	Egli, M., and P. Fitze. 2001. Quantitative aspects of carbonate leaching of soils with differing ages an
	climates. Catena 46:35-62.
	Errin, A.S.P., A.P. Robst, and J.L.P. Robst. 2006. Impact of nitrogen fertilizers on natural weatherin
	processes : Evident role on CO ₂ consumption The oxygen isotopic composition of Precambrian cherts
	pp. 2332 2332 Goldschmidt Conference, Vol. 58.
	Etchanchu, D., and J. Probst. 1988. Evolution of the chemical composition of the Garonne River water
	during the period 1971-1984. Hydrological sciences journal 33:243-256.
	(ed.) 1981. Proceedings of the 8th International Congress of Speleology Bowling Green, Kentucky.
	-

Formatted: Font: 12 pt Formatted: Justified

918	Gandois, L., A.S. Perrin, and A. Probst. 2011. Impact of nitrogenous fertiliser-induced proton release
919	on cultivated soils with contrasting carbonate contents: A column experiment. Geochim Cosmochim
920	<u>Ac 75:1185-1198.</u>
921	GBS. 2014. 2014 Guizhou Statistical Yearbook Statistical Press of China, Beijing.
922	Hagedorn, B., and I. Cartwright. 2009. Climatic and lithologic controls on the temporal and spatial
923	variability of CO2-consumption via chemical weathering: An example from the Australian Victorian
924	<u>Alps. Chem Geol 260:234-253.</u>
925	Hamilton, S.K., A.L. Kurzman, C. Arango, L. Jin, and G.P. Robertson. 2007. Evidence for carbon
926	sequestration by agricultural liming. Global Biogeochem Cy 21:1-12.
927	Han, Z., and Z. Jin. 1996. Hydrogeology of Guizhou Province, China Seismic Publication, Beijing.
928	Hunter, A.H. 1980. Laboratory and greenhouse techniques for nutrient survey to determine the soil
929	amendments required for optimum plant growth. Mimeograph. Agro Service International (ASI),
930	Florida, USA.
931	Jiang, Y. 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst
932	underground river system: Evidence from major elements and <u>⁶</u> ⁴³ C _{DIC} in Nandong, Southwest China.
933	<u>J Contam Hydrol 152:1-11.</u>
934	Jiang, Y., Y. Wu, C. Groves, D. Yuan, and P. Kambesis. 2009. Natural and anthropogenic factors
935	affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. J
936	Contam Hydrol 109:49-61.
937	Jiang, Z., and D. Yuan. 1999. CO2-source sink in karst processes in karst areas of China. Episodes
938	<u>22:33 35.</u>
939	Jiang, Z., Y. Lian, and X. Qin. 2013. Carbon cycle in the epikarst systems and its ecological effects in
940	South China. Environ Earth Sci 68:151-158.
941	Kiefer, R.H. 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surf Proc
942	Land 19:213-232.
943	Kitano, Y., M. Okumura, and M. Idogaki. 1978. Uptake of phosphate ions by calcium carbonate.
944	Geochem J:29-37.
945	Kump, L.R., S.L. Brantley, and M.A. Arthur. 2000. Chemical weathering, atmospheric CO2, and
946	elimate. Annu Rev Earth Pl Sc 28:611-667.
947	Lang, Y., C. Liu, Z. Zhao, S. Li, and G. Han. 2006. Geochemistry of surface and ground water in
948	Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Appl Geochem
949	<u>21:887-903.</u>
950	Lerman, A., and L. Wu. 2006. CO2 and sulfuric acid controls of weathering and river water
951	composition. J Geochem Explor 88:427-430.
952	Lerman, A., L. Wu, and F.T. Mackenzie. 2007. CO2 and H2SO4 consumption in weathering and
953	material transport to the ocean, and their role in the global carbon balance. Mar Chem 106:326-350.
954	Li, S., D. Calmels, G. Han, J. Gaillardet, and C. Liu. 2008. Sulfuric acid as an agent of carbonate
955	weathering constrained by ^{6,13} C _{DE} : Examples from Southwest China. Earth Planet Sc Lett
956	<u>270:189_199.</u>
957	Li, S., Z. Xu, H. Wang, J. Wang, and Q. Zhang. 2009. Geochemistry of the upper Han River basin,
958	China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chem Geol 264:89-95.
959	Lian, B., Y. Chen, L. Zhu, and R. Yang. 2008. Effect of Microbial Weathering on Carbonate Rocks.
960	Earth Science Frontiers 15:90-99.
0.01	L'es C. C. L'. V. Lene and H. Vies 2006 Heirs S ¹⁵ N and S ¹⁸ O Melans Te Handler Nitrate

961 Liu, C., S. Li, Y. Lang, and H. Xiao. 2006. Using -⁶⁻⁴⁵N- and -⁶⁻⁴⁵O-Values To Identify Nitrate

962	Sources in Karst Ground Water, Guiyang, Southwest China. Environ Sci Technol 40:6928-6933.
963	Liu, Z. 2011. " Method of maximum potential dissolution" to calculate the intensity of karst process
964	and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test.
965	Carsologica Sinica 30:79-82.
966	Liu, Z., and W. Dreybrod. 1997. Dissolution kinetics of calcium carbonate minerals in H2O CO2
967	solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction $H_2O + CO_2$
968	\leftrightarrow H ⁺ + HCO ₃ ⁻ . Geochim Cosmochim Ac 61:2879–2889.
969	Liu, Z., W. Dreybrodt, and H. Liu. 2011. Atmospheric CO2 sink: silicate weathering or carbonate
970	weathering? Appl Geochem 26:292-294.
971	Liu, Z., H. Sun, L. Baoying, L. Xiangling, Y. Wenbing, and Z. Cheng. 2010. Wet dry seasonal
972	variations of hydrochemistry and carbonate precipitation rates in a travertine depositing canal at
973	Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for
974	elimatic reconstruction. Chem Geol 273:258-266.
975	NBS. 2014. 2014 Statistical Yearbook. Statistical Press of China, Beijing.
976	Oh, N., and P.A. Raymond. 2006. Contribution of agricultural liming to riverine bicarbonate export and
977	CO2 sequestration in the Ohio River basin. Global Biogeochem Cy 20:1-17.
978	Perrin, A., A. Probst, and J. Probst. 2008. Impact of nitrogenous fertilizers on carbonate dissolution in
979	small agricultural catchments: Implications for weathering CO2 uptake at regional and global scales.
980	Geochim Cosmochim Ac 72:3105-3123.
981	Pierson wickmann, A., L. Aquilina, C. Martin, L. Ruiz, and J. Molénat. 2009. High chemical
982	weathering rates in first order granitic catchments induced by agricultural stress. Chem Geol
	0.55,0.50,000
983	<u>265:369_380.</u>
983 984	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
983 984 985	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.
983 984 985 986	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water
983 984 985 986 987	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sci 278:179-216.
983 984 985 986 987 988	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sci 278:179-216. Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite
983 984 985 986 987 988 988 989	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sci 278:179-216. Pokrovsky, O.S., S.V. Golubey, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm
983 984 985 986 987 988 989 990	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sci 278:179-216. Pokrovsky, O.S., S.V. Golubey, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO ₂ : New constraints on CO ₂ sequestration in sedimentary basins. Chem Geol 265:20-32.
983 984 985 986 987 988 988 989 990 991	<u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian</u> <u>alps. Geomorphology 68:201 212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂ water <u>systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sei 278:179-216.</u> <u>Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite</u> <u>dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm</u> <u>pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32.</u> <u>Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical</u> </u>
983 984 985 986 987 988 989 989 990 991 992	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sei 278:179-216. Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO ₂ : New constraints on CO ₂ sequestration in sedimentary basins. Chem Geol 265:20-32. Probst, J. 1986. Dissolved and suspended matter transported by the Girou-River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79.
983 984 985 986 987 988 989 990 991 992 993	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sci 278:179-216. Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO ₂ : New constraints on CO ₂ sequestration in sedimentary basins. Chem Geol 265:20-32. Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79. Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering crossion
983 984 985 986 987 988 989 990 991 992 993 994	<u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂ water systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216. Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32. Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79. Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering-crossion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878. </u>
983 984 985 986 987 988 989 990 991 992 993 994 995	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sei 278:179-216. Pokrovsky, O.S., S.V. Golubey, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO ₂ : New constraints on CO ₂ sequestration in sedimentary basins. Chem Geol 265:20-32. Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79. Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878. Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes
983 984 985 986 987 988 989 990 991 992 993 993 994 995 996	 <u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂ water systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216.</u> <u>Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32.</u> <u>Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical crossion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79.</u> <u>Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering crossion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878.</u> <u>Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280.</u>
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997	 <u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂-water systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216.</u> <u>Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO₂: New constraints on CO₂-sequestration in sedimentary basins. Chem Geol 265:20-32.</u> Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79. Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering erosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878. Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280. Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on ammonia
983 984 985 986 987 988 989 990 991 992 993 994 995 995 996 997 998	265:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ -water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sci 278:179-216. Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO ₂ : New constraints on CO ₂ sequestration in sedimentary basins. Chem Geol 265:20-32. Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical crosion rates in a calcarcous molasse basin. Hydrological Sciences Journal 31:61-79. Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878. Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280. Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
983 984 985 986 987 988 989 990 991 992 993 994 995 995 996 997 998 999	263:369-380. Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212. Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO ₂ -water systems at 5 to 60°C and 0.0 to 1 atm CO ₂ . Am J Sci 278:179-216. Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO ₂ : New constraints on CO ₂ -sequestration in sedimentary basins. Chem Geol 265:20-32. Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79. Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering-erosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878. Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280. Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci Total Environ 465:56-63.
983 984 985 986 987 988 989 990 991 992 993 994 995 995 996 997 998 999	 <u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂-water systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216.</u> <u>Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO₂. New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32.</u> <u>Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79.</u> <u>Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering crosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878.</u> <u>Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280.</u> <u>Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on annonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci Total Environ 465:56-63.</u> <u>Soares, J.R., H. Cantarella, and M.L.D.C. Menegale. 2012. Ammonia volatilization losses from temperate pasture soil cores receiving and catteling and cattle urine.</u>
983 984 985 986 987 988 989 990 991 992 993 994 995 995 995 995 995 995 995 995	 <u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂-water systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216.</u> <u>Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH. 25 to 150°C and 1 to 55 atm pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32.</u> <u>Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical crosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79.</u> <u>Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering crosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878.</u> <u>Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280.</u> <u>Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci Total Environ 465:56-63.</u> <u>Soares, J.R., H. Cantarella, and M.L.D.C. Menegale. 2012. Ammonia volatilization losses from surface applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry 52:82-89.</u>
983 984 985 986 987 988 990 991 992 993 994 995 995 995 996 997 998 999 1000 1001	 <u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂ water systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216.</u> <u>Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32.</u> <u>Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical crossion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79.</u> <u>Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering erosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878.</u> <u>Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280.</u> <u>Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci Total Environ 465:56-63.</u> <u>Soares, J.R., H. Cantarella, and M.L.D.C. Menegale. 2012. Ammonia volatilization losses from surface applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry 52:82-89.</u> <u>Trudgill, S.T. 1975. Measurement of erosional weight loss of rock tablets. British Geomorphological</u>
983 984 985 986 987 988 989 990 991 992 993 995 994 995 995 995 996 997 998 999 1000 1001	 <u>Plan, L. 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps. Geomorphology 68:201-212.</u> <u>Plummer, L.N., T. Wigley, and D.L. Parkhurst. 1978. The kinetics of calcite dissolution in CO₂ water systems at 5 to 60°C and 0.0 to 1 atm CO₂. Am J Sci 278:179-216.</u> <u>Pokrovsky, O.S., S.V. Golubev, J. Schott, and A. Castillo. 2009. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chem Geol 265:20-32.</u> <u>Probst, J. 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal 31:61-79.</u> <u>Semhi, K., and A. Suchet. 2000. Impact of nitrogen fertilizers on the natural weathering erosion processes and fluvial transport in the Garonne basin. Appl Geochem 15:865-878.</u> <u>Shin, W., J. Ryu, B. Mayer, K. Lee, and S. Lee. 2014. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams. Sci Total Environ 485:270-280.</u> <u>Singh, J., A. Kunhikrishnan, N.S. Bolan, and S. Saggar. 2013. Impact of urease inhibitor on ammonia and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine. Sci Total Environ 465:56-63.</u> <u>Soares, J.R., H. Cantarella, and M.L.D.C. Menegale. 2012. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry 52:82-89.</u> <u>Trudgill, S.T. 1975. Measurement of erosional weight loss of rock tablets. British Geomorphological Research Group Technical Bulletin 17:13-20.</u>

1005 Phosphate Nucleation and Growth on Calcite: Implications for Predicting the Fate of Dissolved

1006	Phosphate Species in Alkaline Soils. Environ Sci Technol 46:834-842.
1007	West, T.O., and A.C. McBride. 2005. The contribution of agricultural lime to carbon dioxide emissions
1008	in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
1009	Environment 108:145-154.
1010	Yue, F.J., S.L. Li, C.Q. Liu, Y.C. Lang, and H. Ding. 2015. Sources and transport of nitrate constrained
1011	by the isotopic technique in a karst catchment: an example from Southwest China. Hydrol Process
1012	<u>29:1883-1893.</u>
1013	Zeng, C., M. Zhao, R. Yang, and Z. Liu. 2014. Comparison of karst processes related carbon sink
1014	intensity calculated by carbonate rock tablet test and solute load method: a case study in the Chenqi
1015	karst spring system. Hydrogology & Engineering Geology 41:106-111.
1016	Zhang, C. 2011. Carbonate rock dissolution rates in different landuses and their carbon sink effect.
1017	Chinese Sei Bull 56:3759-3765.
1018	
1019	References:
1020	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock
1021	lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity
1022	river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13.
1023	Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO2 dynamics, acidification, and chemical
1024	weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochemical Cycles,
1025	15(1): 149-162.
1026	Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO2 dynamics, acidification, and chemical
1027	weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem. Cycles, 15:
1028	149-162.
1029	Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to
1030	inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327.
1031	Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and
1032	ealcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1):
1033	276-288.
1034	Bhattacharyya, P. et al., 2013. Greenhouse gas emission in relation to labile soil C, N pools and
1035	functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical
1036	rice. Soil and Tillage Research, 129: 93-105.
1037	Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a
1038	Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied
1039	Geochemistry, 26(S): 170-173.
1040	Chao, S., Changli, L., Yun, Z. and Hongbing, H., 2014. Impact of animal manure addition on
1041	agricultural lime weathering in acidic soil: pH dependence and CO2 independence of agricultural lime
1042	weathering. Procedia Earth and Planetary Science(10): 405-409.
1043	Chien, S.H., Prochnow, L.I., Tu, S. and Snyder, C.S., 2011. Agronomic and environmental aspects of
1044	phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling in
1045	Agroecosystems, 89(2): 229-255.
1046	Chou, L., Garrels, R.M. and Wollast, R., 1989. Comparative study of the kinetics and mechanisms of
1047	dissolution of carbonate minerals. Chemical Geology, 78(3-4): 269-282.
1048	Dreybrodt, W., Lauckner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the

1049 reaction $CO_2 + H_2 O \Rightarrow -H^+ + HCO_3^-$ as one of the rate limiting steps for the dissolution of calcite in the

1050	system H2O-CO2-CaCO3- Geochimica et Cosmochimica Acta, 60(18): 3375-3381.
1051	Egli, M. and Fitze, P., 2001. Quantitative aspects of carbonate leaching of soils with differing ages and
1052	elimates. Catena, 46(1): 35-62.
1053	Errin, A.S.P., Robst, A.P. and Robst, J.L.P., 2006. Impact of nitrogen fertilizers on natural weathering
1054	processes : Evident role on CO2 consumption The oxygen isotopic composition of Precambrian cherts,
1055	Goldschmidt Conference, pp. 2332 2332.
1056	Etchanchu, D. and Probst, J., 1988. Evolution of the chemical composition of the Garonne River water
1057	during the period 1971-1984. Hydrological sciences journal, 33(3): 243-256.
1058	Gams, I., 1985. International comparative measurements of surface solution by means of standard
1059	limestone tablets. Razpr IV Razeda Sazu, 26: 361-386.
1060	Gandois, L., Perrin, A.S. and Probst, A., 2011. Impact of nitrogenous fertiliser induced proton release
1061	on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et
1062	Cosmochimica Acta, 75: 1185-1198.
1063	GBS, 2014. 2014 Guizhou Statistical Yearbook. Statistical Press of China, Beijing.
1064	Hagedorn, B. and Cartwright, I., 2009. Climatic and lithologic controls on the temporal and spatial
1065	variability of CO2 consumption via chemical weathering: An example from the Australian Victorian
1066	Alps. Chemical Geology, 260(3-4): 234-253.
1067	Hamilton, S.K., Kurzman, A.L., Arango, C., Jin, L. and Robertson, G.P., 2007. Evidence for carbon
1068	sequestration by agricultural liming. Global Biogeochemical Cycles, 21(GB2021): 1-12.
1069	Han, Z. and Jin, Z., 1996. Hydrogeology of Guizhou Province, China. Seismic Publication, Beijing.
1070	Hunter, A.H., 1980. Laboratory and greenhouse techniques for nutrient survey to determine the soil
1071	amendments required for optimum plant growth. Mimeograph. Agro Service International (ASI),
1072	Florida, USA.
1073	Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst
1073 1074	Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and $\delta^{13}C_{DIC}$ in Nandong, Southwest China.
1073 1074 1075	Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and $-\delta^{-13}C_{DIC}$ in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11.
1073 1074 1075 1076	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{& 13}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1–11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors
1073 1074 1075 1076 1077	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -δ.¹³C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China.
1073 1074 1075 1076 1077 1078	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -δ.¹³C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49-61.
1073 1074 1075 1076 1077 1078 1079	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{& +3}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1–11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49–61. Jiang, Z. and Yuan, D., 1999. CO₂ source-sink in karst processes in karst areas of China. Episodes,
1073 1074 1075 1076 1077 1078 1079 1080	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{& 13}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49-61. Jiang, Z. and Yuan, D., 1999. CO₂-source-sink in karst processes in karst areas of China. Episodes, 22(1): 33-35.
1073 1074 1075 1076 1077 1078 1079 1080 1081	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -δ.⁴³C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49-61. Jiang, Z. and Yuan, D., 1999. CO₂-source-sink in karst processes in karst areas of China. Episodes, 22(1): 33-35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{& +3}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1–11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49–61. Jiang, Z. and Yuan, D., 1999. CO₂-source-sink in karst processes in karst areas of China. Episodes, 22(1): 33–35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151–158.
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{&, 13}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49-61. Jiang, Z. and Yuan, D., 1999. CO₂-source sink in karst processes in karst areas of China. Episodes, 22(1): 33-35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151-158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{& +3}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst-underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49-61. Jiang, Z. and Yuan, D., 1999. CO₂- source-sink in karst-processes in karst areas of China. Episodes, 22(1): 33-35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151-158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213-232.
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{& +3}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1–11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49–61. Jiang, Z. and Yuan, D., 1999. CO₂ source sink in karst processes in karst areas of China. Episodes, 22(1): 33–35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151–158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213–232. Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate.
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{&, 13}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49-61. Jiang, Z. and Yuan, D., 1999. CO₂ source sink in karst processes in karst areas of China. Episodes, 22(1): 33-35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151-158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213-232. Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate. Geochemical Journal(12): 29-37.
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{&, 13}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1–11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49–61. Jiang, Z. and Yuan, D., 1999. CO₂-source-sink in karst processes in karst areas of China. Episodes, 22(1): 33–35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151–158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213–232. Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate. Geochemical Journal(12): 29–37. Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and ^{-8,43}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49–61. Jiang, Z. and Yuan, D., 1999. CO₂ source sink in karst processes in karst areas of China. Episodes, 22(1): 33–35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151–158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213–232. Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate. Geochemical Journal(12): 29–37. Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Applied
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and ⁸/₁⁴³C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenie factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49-61. Jiang, Z. and Yuan, D., 1999. CO₂ source sink in karst processes in karst areas of China. Episodes, 22(1): 33-35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151-158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213-232. Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate. Geochemical Journal(12): 29-37. Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Applied Geochemistry, 21(6): 887-903.
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{& 13}C_{DIC}-in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1–11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49–61. Jiang, Z. and Yuan, D., 1999. CO₂-source-sink in karst processes in karst areas of China. Episodes, 22(1): 33–35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151–158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213–232. Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate. Geochemical Journal(12): 29–37. Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in Guiyang. China: Water/rock interaction and pollution in a karst hydrological system. Applied Geochemistry, 21(6): 887-903. Lerman, A. and Wu, L., 2006. CO₂ and sulfuric acid controls of weathering and river water
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091	 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system: Evidence from major elements and -^{6, 13}C_{DIC} in Nandong, Southwest China. Journal of Contaminant Hydrology, 152(0): 1-11. Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenie factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109(1-4): 49–61. Jiang, Z. and Yuan, D., 1999. CO₂-source-sink in karst processes in karst areas of China. Episodes, 22(1): 33–35. Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in South China. Environmental earth sciences, 68(1): 151–158. Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface Processes and Landforms, 19(3): 213–232. Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate. Geochemical Journal(12): 29–37. Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. Applied Geochemistry, 21(6): 887-903. Lerman, A. and Wu, L., 2006. CO₂ and sulfurie acid controls of weathering and river water composition. Journal of Geochemical Exploration, 88(1-3): 427-430.

1093 material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2):

1094	326-350
1095	Li S. Colmels D. Hon G. Goillordet L and Lin C. 2008 Sulfuric acid as an agent of carbonate
1096	weathering constrained by $-\delta^{-12}C_{proc}$: Examples from Southwest China. Farth and Planetary Science
1097	Letters 270(2-4)- 180-100
1098	Li S Xu Z Wang H Wang L and Zhang O 2009 Geochemistry of the upper Han River basin
1099	Chips: 3: Anthropogenic inputs and chemical weathering to the discolved load. Chemical Geology
1100	$26A(1 A) \cdot 80.05$
1101	Lian B. Chen V. Zhu L. and Vang P. 2008. Effect of Microbial Weathering on Carbonate Pocks.
1102	Earth Science Frontiers 15(6): 90.90
1103	Lin C Li S Long V and Xiao H 2006 Using $\delta^{15}N$ and $\delta^{18}O$ Values To Identify Nitrate
1104	Sources in Karst Ground Water, Guivang, Southwest China, Environmental Science & Technology
1105	An(22)- 6022 6022
1106	Lip. 7 at al. 2010. Wat dry cases and variations of hydrochemistry and carbonate precipitation rates in
1107	e traverting depositing conel at Reichuitei. Vunnen, SW Chine: Implications for the formation of
1107	hispopulation in transmission and for alimatic reconstruction. Chamical Goology, 272(2,4): 258-266.
1100	Lip 7 2011 " Mathed of maximum potential dissolution" to calculate the intensity of karst process
1110	and the relevant earbon sink: With discussions on matheds of colute load and earbonate rock tablet test.
1110	Corsologion Sinica 20(4): 70.82
1112	Liu Z and Drawbrod W 1007 Dissolution kinatics of calcium carbonate minorals in $H \cap CO$
1112	solutions in turbulant flow: The role of the diffusion boundary layer and the slow reaction H $\Omega + C\Omega$
1117	\rightarrow H ⁺ + HCO ⁻ Geochimics at Cosmochimics Acta 61(14): 2870-2880
1114	Liu Z Dreybrodt W and Liu H 2011 Atmospheric CO sink: silicate weatharing or carbonate
1115	weathering? Applied Geochemistry 26(S): 202 204
1117	NRS 2014 2014 Statistical Vearbook Statistical Press of China Reijing
1110	Ob N and Raymond P.A. 2006 Contribution of agricultural liming to riverine bicarbonate export and
1110	CO conjustration in the Ohio Piver basin. Clobel Piercechamical Cycles, 20: 1–17.
1120	Darrin A Project A and Project I 2008 Impact of nitrographics fartilizers on carbonate dissolution in
1120	small agricultural astehmants: Implications for weathering CO, uptake at ragional and global scales
1121	Sman agreentural calcuments. Implications for weathering \cos_2 uptake at regional and grobal scales.
1122	Diesson wielmann A Aquiling L Martin C Duiz L and Molénet L 2000 High abamical
1125	Herson-wickmann, A., Aquinna, E., Martin, C., Kuiz, E. and Molenar, J., 2009. High chemical
1124	weathering rates in first-order granitic cateninents induced by agricultural sitess. Chemical Geology,
1125	203. 307-300.
1120	Plan, L., 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
1127	alps. Geomorphology, 66(5-4). 201-212.
1120	Frommer, L.N., wigney, 1. and Farkhurst, D.L., 1970. The kinetics of calculation in CO_2 water
1129	Systems at 5 to 60 C and 0.0 to 1 atm CO ₂ . American journal of Science, 278, 179-210.
1130	Pokrovsky, O.S., Goldoev, S. v., Schott, J. and Castino, A., 2009. Calcile, dolohinte and magnesite
1131	dissolution kinetics in aqueous solutions at acid to circuminetural pri, 25 to 150 C and 1 to 55 atim
1122	$p \in O_2$. New constraints on O_2 sequestration in sedimentary basins. Chemical Geology, 265(1-2):
1124	20-32.
1125 1125	riousi, J., 1900. Dissolved and suspended matter transported by the Girou Kiver (Prance): mechanical
1135	and chemical crosion rates in a calcareous molasse basin. Hydrological Sciences Journal, 31(1): 61-79.
1130	Samju, U.WI., Jabro, J.D. and Stevens, W.B., 2008. Soil carbon dioxide emission and carbon content as

1137 affected by irrigation, tillage, cropping system, and nitrogen fertilization. Journal of Environmental

1138	Quality, 37(1): 98-106.
1120	Sampi V and Suchet

1139	Semhi, K. and Suchet, A., 2000. Impact of nitrogen fertilizers on the natural weathering-erosion
1140	processes and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6): 865-878.
1141	Singh, J., Kunhikrishnan, A., Bolan, N.S. and Saggar, S., 2013. Impact of urease inhibitor on ammonia
1142	and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
1143	Science of The Total Environment, 465(0): 56-63.
1144	Soares, J.R., Cantarella, H. and Menegale, M.L.D.C., 2012. Ammonia volatilization losses from
1145	surface applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52(0):
1146	<u>82-89.</u>
1147	Wang, L., Ruiz Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A., 2012. Kinetics of Calcium
1148	Phosphate Nucleation and Growth on Calcite: Implications for Predicting the Fate of Dissolved
1149	Phosphate Species in Alkaline Soils. Environmental Science & Technology, 46(2): 834-842.
1150	West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
1151	in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
1152	Environment, 108(2): 145-154.
1153	West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
1154	in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
1155	Environment, 108(2): 145-154.
1156	Yue, F.J., Li, S.L., Liu, C.Q., Lang, Y.C. and Ding, H., 2015. Sources and transport of nitrate
1157	constrained by the isotopic technique in a karst catchment: an example from Southwest China.
1158	Hydrological Processes, 29(8): 1883-1893.
1159	

52	Table 1 Chemical composition of soil				
	Parameter	Unit	Values		
	рН	-	6.94		
	Content of particles (<0.01mm)	<u>%</u>	<u>74</u>		
	Content of particles	0/	45		
	<u> </u>	<u>%</u>	<u>45</u>		
	Organic matter	%	0.99		
	$\mathbf{NH_4}^+$ -N	mg/kg	339.87		
	NO ₃ ⁻ -N	mg/kg	569.05		
	Available P	mg/kg	8.18		
	Available K	mg/kg	56.88		
	Available Ca	mg/kg	3041.06		
	Available Mg	mg/kg	564.83		
	Available S	mg/kg	100.72		
	Available Fe	mg/kg	24.41		

Formatted Table

Table 2 Carbonate weathering under different fertilizer treatments

	Limestone		Dolostone	
Turnet	Acw- <u>Rw / ‰</u> g	<u>Raw /</u>	<u>Acw-Rw/_‰</u> g	<u>Raw /</u>
Treatment		$\underline{g \cdot m^{-2} \cdot a^{-1}} \mathbf{R} c w / \mathbf{\%}$		$\underline{\mathbf{g}}\cdot\underline{\mathbf{m}}^{-2}\cdot\underline{\mathbf{a}}^{-1}\mathbf{\mathbf{R}}\underline{\mathbf{c}}\underline{\mathbf{w}}^{-1}$
				/%o
Control	0. 0014<u>48</u>_±	$\underline{2.00\pm0.58a}0.48$	-0. 0011<u>31</u>±	<u>-1.57 ±</u>
	<u>0.14a</u>		<u>.0.09a</u>	<u>0.86a-0.31</u>
NH ₄ NO ₃	<u>0.01746.42 _±</u>	<u>24.86 ± 2.01b</u>	<u>0.01445.30±</u>	<u>20.57 ±</u>
	<u>0.28e</u>	6.42	<u>0.87e</u>	<u>1.15b5.30</u>
NH ₄ HCO ₃	<u>0.01474.44 _±_</u>	<u>21.00 ± 3.45</u> b	0.0096<u>3.22</u>±	<u>13.71 ±</u>
	<u>0.81b</u>	4.44	<u>0.87b</u>	<u>3.88b3.22</u>
NaNO ₃	<u>0.00310.86 _±_</u>	<u>4.43 ± 1.73a0.86</u>	0. 0022<u>53</u>_±	<u>3.14 ±</u>
	<u>0.17a</u>		<u>0.26a</u>	<u>1.73a0.53</u>
NH ₄ Cl	<u>0.01495.54 _±</u>	<u>21.29 ± 2.45</u>	<u>0.01314.77 _±</u>	<u>18.71 ± 0.86</u>
	<u>0.64bc</u>	5.5 4	<u>0.78bc</u>	4.77
$(NH_4)_2CO_3$	0.0144 <u>4.48 ±</u>	<u>20.57 ± 4.46b</u>	<u>0.01864.94 _±</u>	<u>26.57 ±</u>
	<u>0.95be</u>	4.84	<u>1.91be</u>	<u>7.62b4.94</u>
$Ca_3(PO_4)_2$	<u>0.00030.01 _±_</u>	<u>0.43 ± 0.86a0.01</u>	-0. 0013<u>55</u>_±_	<u>-1.86 ±</u>
	<u>0.04a</u>		<u>0.25a</u>	<u>1.29a-0.55</u>
$(NH_4)_3PO_4$	<u>0.00281.08 _±_</u>	<u>4.00 ± 1.15a1.08</u>	<u>0.00070.75 _±</u>	<u>1.00 ±</u>
	<u>0.34a</u>		<u>0.21a</u>	<u>1.01a0.75</u>
Ca-Mg-P	-0.0013-0.31 <u>+</u>	<u>-1.86 ± 0.43a-0.31</u>	-0. 0022 97 <u>+</u>	<u>-3.14 ±</u>
	<u>0.12a</u>		<u>0.38a</u>	<u>0.72a 0.97</u>
Urea	<u>0.02438.48 _±_</u>	<u>34.71 ± 4.32</u> e	0.0185 6.59 <u>,</u> ±	<u>26.43 ±</u>
	<u>0.96d</u>	8.48	<u>0.674</u>	<u>2.73c6.59</u>
K_2CO_3	-0. 0008<u>26</u>_±_	<u>-1.14 ± 0.58a 0.26</u>	-0. 0018<u>59</u>_±_	<u>-2.57 ±</u>
	<u>0.15a</u>		<u>0.15a</u>	<u>0.43a 0.59</u>
Acw the amoun	t of carbonate weath	ering; Rew - the ratio	of carbonate weather	ring; Raew - the rate of
carbonate weathe	ring; <u>A<i>cw</i>-R<i>w</i> =100</u>	0 (Wi-Wf)/Wi;and	$\mathbf{R}_{cw} = (\mathbf{W}_i \ \mathbf{W}_f) / \mathbf{W}_i, \mathbf{W}_i$	Raew = (Wi-Wf)/(S*T),
where W_i is the initial weight of the carbonate rock tablets, and W_f is the initial weight. S is the surface				
area of carbonate weathering rock tablets (In this studyhere, we used a same S = 7 cm ² for every				
ablets), and T is the experiment period. Values are reported as means \pm standard deviations, n = 3.				

1170 <u>tablets</u>), and T is the experiment period. <u>Values are reported as means</u> \pm standard deviations, n = blumn followed by different letters are significantly (p <0.05) different letters are significant letter 1171 Val oneach

1172

one way ANOVA.

1166

1167

1168

1169

1173 1174

Formatted: Font: Times New Roman
Formatted: Font: Times New Roman
Formatted: Superscript
Formatted: Widow/Orphan control, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted Table

Formatted: Font: Times New Roman Formatted: Font: Times New Roman 1175 | 1176 | _____

Formatted: Left

1177	
1178	

Table 3: <u>1</u> transform	he main reaction and effects in fertilized treatments, and the potential nitrogenous at ion (The amount of generated NH_4^+ NO_6) at the initial phase of the experiment		Forma cm, To Width	atted: Left: op: 2.54 cm	3.17 cm, Right: , Bottom: 2.54	: 3.17 cm,
Treatment	Main reactions and effects		Formatted: Subscript			••••
1 Control	$C_{2,1}$, $M\alpha C_{2,1} + C_{2,1} + H_{2,2} \rightarrow (1-x) C_{2}^{2+} + xM\alpha^{2+} + 2HC_{2}^{2-}$		Formatted: Superscript			
<u>2 NH.NO</u>	$\frac{\cos_{1}\cos_{2}\cos_{2}\cos_{2}\cos_{2}\cos_{2}\cos_{2}\cos_{2}\cos_{2$		Forma	atted Table		
<u>3.H.HCO.</u>	$\frac{2Ca_{1+1}m_{2}Co_{2}}{2Ca_{2}} = \frac{Ma_{1}Co_{2}}{Ma_{2}Ca_{2}} + \frac{2Ca_{2}}{2Ca_{2}} + \frac{Ma_{2}Ca_{2}}{Ma_{2}Ca_{2}} + \frac{Ma_{2}Ca_{2}}{Ma_{2}} + \frac{Ma_{2}Ca_{2}}{Ma_{2}Ca_{2}} + \frac{Ma_{2}Ca_{2}}{Ma_{2}Ca_{2}} + \frac{Ma_{2}Ca_{2}}{Ma_{2}Ca_{2}} + \frac{Ma_{2}Ca_{2}}{Ma_{2}} + \frac{Ma_{2}Ca_{2}}{M$	•	Formatted: Centered			
<u>5. NaNO.</u>	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	•	Formatted: Centered			
5_NH_Cl	$\cos(1+1)\cos($	•	Formatted: Centered			
6_(NH_)_CO.	$\frac{2Ca_{1+1}}{2Ca_{2}} = \frac{Ma_{2}Ca_{2}}{Ma_{2}Ca_{2}} + \frac{Ma_{2}Ca_{2}}{2Ca_{2}} = \frac{2(1 \times)Ca_{2}}{2(1 \times)Ca_{2}} + \frac{2Ma_{2}}{2(1 \times)Ca_{2}} + \frac{2Ma_{2}}{2$	•	Forma	atted: Cente	ered	
	5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	2626910	Forma	atted: Cente	ered	
	$(1 \times) C_{0}^{2+} \times M_{0}^{2+} + 2HCO_{1}^{-} = C_{0}, M_{0}^{2} C_{0} + CO_{1}^{-} H_{0}^{2}$	creases	Forma	atted: Cente	ered	
<u>7. Ca₃(PO₄)₂</u>	$(1 \times)$ Cal + x_{init} = 211003 - Calcium recipitation recipitation produces on the second secon	e surfac	Forma	atted: Cente	ered	
	calcite after the addition of PO ²⁻ in soil, resulting in inhibiting the precipitation of calcite	<u>o surrao</u>				
	$\frac{1}{(1) 2Ca_{0,1}} \frac{Me_{0,CO_{2}}}{Me_{0,CO_{2}}} + \frac{NH}{2} + \frac{1}{2O_{2}} \rightarrow \frac{2(1-x)}{2(1-x)} \frac{Ca^{2+}}{Ca^{2+}} + \frac{NO_{2}}{Ca^{2+}} + \frac{NO_{2}}{1-2} +$					
8. (NH 4) 2 PO 4	(2) Inhibition of phosphate to calcite dissolution: calcium orthophosphate (Ca P) precipitation pro	duces or	Forma	atted: Cente	ered	
<u></u> 42 <u>+</u> +	surface of calcite after the addition of PO_{4}^{3} in soil, resulting in inhibiting the dissolution of calcite	,				
	$\frac{1}{(1) Common ion effect: The Ca11, Mg2CO2 produces when the concentrations of Ca2+ and Mg2+ in$	treases	Forma	atted: Inder	t: First line: 0 o	L cm
	$\frac{1}{1} \frac{1}{x} C_{0}^{2+} + \frac{xMe^{2+}}{2} + \frac{2HCO_{2}}{2} \xrightarrow{\sim} C_{0} C_{0} + \frac{CO_{2}}{2} + \frac{CO_{2}}{2} + \frac{H_{2}O}{2}$					
<u>9. Ca-Mg-P</u>	(2) Inhibition of phosphate to calcite precipitation: calcium phosphate precipitation produces on the	• e surfac	Formatted: Cer		tered, Indent: First	
	calcite after the addition of P in soil, resulting in inhibiting the precipitation of calcite		inie. (5 cm		
<u>10. Urea</u>	$\frac{3C_{0,1+x}Mg_xCO_3 + CO(NH_2)_2 + 4O_2}{3C_{0,1+x}Ca^{2+} + 3xMg^{2+} + 2NO_3^{-} + 4HCO_3^{-}}$	•	Forma	atted: Cente	ered	
	Common ion effect: The Ca _(1-x) Mg _x CO ₁ produces when the concentration of HCO ₂ ⁻ increases					
<u>11. K₂CO3</u>	$\frac{(i)(1-x)Ca^{2+} + xMg^{2+} + 2HCO_3}{= -Ca_{(1-x)}Mg_2CO_3 + CO_2 + H_2O}$	•	Forma	atted: Cente	ered	
	$(\underline{ii}) \underline{K_2CQ_1 + \underline{H_2O} \rightarrow 2K^+ + \underline{HCQ_1^- + OH^-}}$					
1	able 3: -The main reaction and effects in these 11 fertilizeder treatments					
Treatment	Main reactions and effects	_				
1. Control	$\underline{\operatorname{Ca}_{(1-x)}\operatorname{Mg}_{x}\operatorname{CO}_{3} + \operatorname{CO}_{2} + \operatorname{H}_{2}\operatorname{O} \rightarrow (1-x)\operatorname{Ca}^{2+} + x\operatorname{Mg}^{2+} + 2\operatorname{HCO}_{3}^{2-}}$	_				
<u>2. NH₄NO₃</u>	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}NO_{3} + 2O_{2}} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + 2NO_{3}^{-} + H_{2}O + 2HCO_{3}^{-}$	_				
	$\underline{\mathrm{NH}_{4}\mathrm{HCO}_{3}} \rightarrow \underline{\mathrm{NH}_{3}} \uparrow + \underline{\mathrm{H}_{2}\mathrm{O}} + \underline{\mathrm{CO}_{2}} \uparrow$	_				
<u>5. NH₄HCO₃</u>	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}HCO_{3} + 2O_{2}} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3} + H_{2}O + 3HCO_{3} + 2MCO_{3} + 2MCO_{3}$					
<u>4. NaNO₃</u>	$\underline{Ca_{(1-x)}Mg_xCO_3 + NaNO_3 + CO_2 + H_2O} \rightarrow (1-x)Ca^{2+} + xMg^{2+} + Na^+ + NO_3 + 2HCO_3 + 2HCO$					
<u>5. NH₄Cl</u>	$\underline{2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}Cl + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3} + Cl^{2} + H_{2}O + 2HCO_{3} + CO_{3} + CO_{$					
6 (NH.).CO.	$(\underline{NH}_4)_2\underline{CO}_3 \rightarrow \underline{2NH}_3 \uparrow + \underline{H}_2\underline{O} + \underline{CO}_2 \uparrow$					
<u>0. (M14/2CO3</u>	$\underline{3Ca_{(1-x)}Mg_xCO_3 + (NH_4)_2CO_3 + 4O_2} \rightarrow 3(1-x) Ca^{2+} + 3xMg^{2+} + 2NO_3 + 2H_2O + 4HCO_3 + 2H_2O_2 + 4HCO_3 + 2H_2O_2 + 4HCO_3 + 2H_2O_2 + 2H_2O$	_				
7 $C_{22}(PO_1)$	(1) (1-x) $Ca^{2+} + xMg^{2+} + 2HCO_3 \rightarrow Ca_{(1-x)}Mg_3CO_3 + CO_2 + H_2O_3$		Forma	atted: Inder	nt: Left: 0 cm,	
<u>7. Ca3(1 0412</u>	$(2) Ca + PO_{\underline{4}} \rightarrow Ca - P$		Hangi	ng: 2 ch, Fii	rst line: -2 ch	
8 (NH.).PO.	$(1) 2Ca_{(1-x)}Mg_xCO_3 + NH_4^+ + 2O_2 \rightarrow 2(1-x) Ca^{2+} + 2xMg^{2+} + NO_3^- + H_2O + 2HCO_3^-$					
<u>5. (1114/31 04</u>	$(2) Ca + PO_{\underline{4}} \rightarrow Ca - P$	_				
9 Ca-Mo-P	(1) (1-x) $Ca^{2+} + xMg^{2+} + 2HCO_3 \rightarrow Ca_{(1-x)}Mg_3CO_3 + CO_2 + H_2O_3$					
<u>7. Cu Wig-1</u>	$(2) Ca + PO_{\underline{4}} \rightarrow Ca - P$	_				
<u>10. Urea</u>	$\underline{3Ca_{(1-x)}Mg_xCO_3 + CO(NH_2)_2 + 4O_2} \rightarrow \underline{3(1-x)} Ca^{2+} + 3xMg^{2+} + 2NO_3^{-} + 4HCO_3^{-}$	_				
<u>11. K₂CO₃</u>	(i) (1-x) $\operatorname{Ca}^{2+} + x\operatorname{Mg}^{2+} + 2\operatorname{HCO}_{3} \xrightarrow{-} \operatorname{Ca}_{(1-x)}\operatorname{Mg}_{x}\operatorname{CO}_{3} + \operatorname{CO}_{2} + \operatorname{H}_{2}\operatorname{O}_{3}$	_				

	$(\underline{ii}) \underline{K_2CO_3 + H_2O} \rightarrow 2K^+ + HCO_3^- + OH^-$	 Formatted: Indent: First line: 0.5 ch
1180	Note: (1) Common ion effect: The $Ca_{(1-x)}Mg_xCO_3$ produced when the concentrations of Ca^{2+} , $-Mg^{2+}$ and/or	 Formatted: Indent: First line: 0 ch
1181	$\underline{\text{HCO}_{3}} \text{ increases (for } \underline{\textbf{T}} \text{treatment 7, 9 and 11); (1-x) } Ca^{2+} + xMg^{2+} + 2HCO_{3} Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O_3 Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O_3 + CO_2 $	 Formatted: Subscript
1182	(2) Inhibition of phosphate to-calcite dissolution/precipitation by phosphate: calcium orthophosphate (Ca-P)	 Formatted: Superscript
1183	precipitation produceds on the surface of calcite after the addition of PO_4^{3-} in soil, resulting in the inhibitingion of	Formatted: Left
1184	the dissolution/precipitation of calcite (for T treatment 7, 8 and 9): Ca + PO ₄ \rightarrow Ca-P	

1185 <u>Table 4: –The amount of fertilizer-derived NH_4^+ at the initial phase of the experiment and the</u>

potential nitrog	genous transform	<u>mation (NH₄ -NC</u>	<u>)₃)</u>		
	Molecular	Amount of	<u>Molar</u>	Amount of	The maximum
Treatment	mass	added	<u>amount</u>	fertilizer-derived	of N products
	<u>g/mol</u>	<u>fertilizer /g</u>	/mole	$\underline{NH_4}^+$ /mole	/mole
<u>NH₄NO₃</u>	<u>80</u>	<u>43</u>	<u>0.54</u>	<u>0.54</u>	1.08
<u>NH₄HCO₃</u>	<u>79</u>	<u>85</u>	<u>1.08</u>	<u>1.08</u>	1.08
<u>NaNO₃</u>	<u>85</u>	<u>91</u>	<u>1.07</u>	<u>0.00</u>	1.07
<u>NH4Cl</u>	<u>53.5</u>	<u>57</u>	<u>1.07</u>	<u>1.07</u>	1.07
<u>(NH₄)₂CO₃</u>	<u>96</u>	<u>51</u>	<u>0.53</u>	<u>1.06</u>	1.06
<u>Ca₃(PO₄)₂</u>	<u>310</u>	<u>52</u>	<u>0.17</u>	<u>0.00</u>	0.00
<u>(NH₄)₃PO₄</u>	<u>149</u>	<u>15</u>	<u>0.10</u>	<u>0.30</u>	0.30
Ca-Mg-P	<u>wnd</u>	<u>44</u>	<u>wnd</u>	<u>0.00</u>	0.00
<u>Urea</u>	<u>60</u>	<u>32</u>	<u>0.53</u>	<u>1.06</u>	1.06
<u>K₂CO₃</u>	<u>138</u>	<u>10</u>	<u>0.07</u>	<u>0.00</u>	0.00
wnd=withoutno, data;, The amount of added fertilizer (g) divided by its molecular mass (g/mol)					

1187

1186

<u>udata, The amount of added fermizer (g) divided by its molecular in</u>

1188 wais the molar amount of fertilizer (mole):, Gadf-gram amount of added fertilizers (g); Maafof
 1189 added fertilizers (mol). The amounts of fertilizer-derived NH₄⁺ isare calculated by their own

1190 ionization or hydrolysis processes. The maximum of N products is estimated by their main

1191 <u>reactions in **t**</u>Table 3.

Formatted: Font: 10 pt, Font color: Black
Formatted: Font: 10 pt, Font color: Black
Formatted: Indent: Left: 0 cm, First line: 0 ch
Formatted: Font: 10 pt, Font color: Black
Formatted: Font: 10.5 pt
Formatted: Font: 10.5 pt, Font color: Auto
Formatted: Font: 10.5 pt, Font color: Auto
Formatted: Font: 10.5 pt
Formatted: Font:
Formatted: Font: 10.5 pt
Formatted: Font: 10.5 pt
Formatted: Font: 10.5 pt

