

Impact of different fertilizers on the carbonate weathering in a typical karst area,

Southwest China: a field column experiment

Chao Song^{1, 2}, Changli Liu¹, Guilin Han²

1. The Institute of Hydrogeology and Environmental Geology, Chinese Academy of

5 Geological Sciences, Shijiazhuang, 050803, Hebei, China

6 2. School of Water Resources and Environment, China University of Geosciences

7 (Beijing), Beijing, 100083, China.

8

Corresponding Author:

1. Chao Song

11 Email: chao-song@qq.com

12 Tel/Fax: +86-18931852527

13 **Abstract:** Carbonate weathering, as a significant vector for the movement of carbon
14 both between and within ecosystems, are strongly influenced by anthropogenic
15 perturbations such as agricultural fertilization. Different fertilizer may exert a
16 different impact on carbonate weathering, but these discrepancies are not still
17 well-known so far. In this study, a field column experiment was employed to explore
18 the responses of carbonate weathering to different fertilizer addition. The eleven
19 different treatments with three replicates including control, NH_4NO_3 , NH_4HCO_3 ,
20 NaNO_3 , NH_4Cl , $(\text{NH}_4)_2\text{CO}_3$, $\text{Ca}_3(\text{PO}_4)_2$, $(\text{NH}_4)_3\text{PO}_4$, fused calcium-magnesium
21 phosphate fertilizer (Ca-Mg-P), Urea and K_2CO_3 were established in this column
22 experiment, where limestone and dolostone tablets were buried at the bottom of each
23 to determine the weathering amount and ratio of carbonate in soil. The result showed
24 that the addition of urea, NH_4NO_3 , NH_4HCO_3 , NH_4Cl and $(\text{NH}_4)_2\text{CO}_3$ distinctly
25 increased carbonate weathering, which was attributed to the nitrification of NH_4^+ , and
26 the addition of $\text{Ca}_3(\text{PO}_4)_2$, Ca-Mg-P and K_2CO_3 induced carbonate precipitation due
27 to common ion effect. Whereas the $(\text{NH}_4)_3\text{PO}_4$ and NaNO_3 addition did not impact
28 significantly on carbonate weathering. The results of NaNO_3 treatment seem to be
29 raising a new question: the little impact of nitrate on carbonate weathering may result
30 in the overestimation of impact of N-fertilizer on CO_2 consumption by carbonate
31 weathering at the regional/global scale if the effect of NO_3^- and NH_4^+ are not
32 distinguished.

33 **Keywords:** Carbonate weathering; Column experiment; Nitrogenous fertilizer;
34 Phosphate fertilizer; Southwest China

35

36

37

38

39 **1. Introduction**

40 Carbonate weathering plays a significant role in consumption of the elevated
41 atmospheric CO₂ (Kump et al., 2000; Liu et al., 2010; 2011). The riverine
42 hydro-chemical composition such as the ratio of HCO₃⁻ and Ca²⁺+Mg²⁺ is usually
43 employed as an indicator to estimate the CO₂ consumption by carbonate weathering at
44 the regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). However,
45 a disturbance to CO₂ consumption estimation is introduced because the fluvial
46 alkalinity, Ca²⁺ and Mg²⁺ may also be produced due to the reaction between carbonate
47 and the protons which can originate from the nitrification processes of N-fertilizer
48 (Barnes and Raymond, 2009; Chao et al., 2011; Gandois et al., 2011; Hamilton et al.,
49 2007; Oh and Raymond, 2006; Perrin et al., 2008; Pierson-wickmann et al., 2009;
50 Semhi and Suchet, 2000; West and McBride, 2005), from the sulfuric acid (Lerman
51 and Wu, 2006; Lerman et al., 2007; Li et al., 2008; Li et al., 2009), from organic acid
52 secreted by microorganisms (Lian et al., 2008), as well as from acidic soil(Chao et al.,
53 2014). Given the atmospheric CO₂ is not the unique weathering agent, differentiating
54 the agent of carbonate weathering is more and more significant to enable the accurate
55 budgeting of the net CO₂ consumption by carbonate, especially in agricultural area.

56 The world average annual increase in fertilizer consumption was 3.3% from 1961

57 to 1997, and FAO's study predicts a 1% increase per year until 2030 (FAO, 2000).
58 For China, the consumption of chemical fertilizer increased from 12.7 Mt in 1980 to
59 59.1 Mt in 2013 (Fig. 1). The Increasing consumption of chemical fertilizer is a
60 significant disturbance factor of carbonate weathering and carbon cycle. Many studies
61 showed that nitrogen fertilizer additions increased in the dissolution of lime and
62 increase the total export of DIC from agricultural watersheds (Barnes and Raymond,
63 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et
64 al., 2008; Pierson-wickmann et al., 2009; Probst, 1986; Semhi and Suchet, 2000; West
65 and McBride, 2005). According to the estimation from Probst (1988) and Semhi et al.
66 (2000), the contribution of N-fertilizers to carbonate dissolution represents 30% and
67 12-26%, respectively, on two small agricultural carbonate basins in south-western
68 France, the Girou and the Gers (subtributary and tributary of the Garonne river,
69 respectively). For lager basin level, such as the Garonne river basin, this contribution
70 was estimated at 6% by Semhi et al. (2000). At national and global scales, Perrin et al.
71 (2008) estimated that the deficit of CO₂ uptake due to N-fertilizer addition (usually in
72 form of NH₄NO₃) represent up to 5.7-13.4% and only 1.6-3.8% of the total CO₂ flux
73 naturally consumed by carbonate dissolution, for France and on a global scale,
74 respectively.

75 These estimated results were usually based on a hypothesis of individual fertilizer
76 (e.g. (NH₄)₂SO₄, NH₄NO₃, or NH₄Cl) input into an agricultural basin. Nevertheless, at
77 an agricultural basin, different fertilizers are usually added for different crops in actual
78 agricultural practices. The impact of these fertilizers on carbonate weathering and
79 riverine chemical composition may be different. For nitrogenous fertilizer, 100% NO₃⁻

80 produced after the addition $(\text{NH}_4)_2\text{SO}_4$ and NH_4Cl derive from the nitrification of
81 NH_4^+ , comparatively, only 50% after the addition NH_4NO_3 . The difference of NO_3^-
82 source may cause the evaluated deviation of the impact of N-fertilizer addition on
83 CO_2 consumption by carbonate weathering. For phosphate fertilizer, the
84 coprecipitaion of phosphate ions with calcium carbonate may inhibit carbonate
85 weathering (Kitano et al., 1978). We suppose that the response of carbonate
86 weathering to the addition of different fertilizer such as N-fertilizer (NH_4 and NO_3),
87 P-fertilizer and Ca/Mg fertilizer may display difference, which is poorly known so far
88 but significant to well understand the agricultural force on natural carbonate
89 weathering and accurately evaluate the CO_2 consumption via carbonate weathering in
90 agricultural area.

91 Moreover, the carbonate-rock-tablet test is used to determine the weathering rate
92 of carbonate rock/mineral from laboratory to field (Gams, 1981; Chao et al., 2011;
93 Trudgill, 1975; Chao et al., 2014; Dreybrodt et al., 1996; Gams, 1985; Jiang and Yuan,
94 1999; Liu and Dreybrod, 1997; Plan, 2005). In laboratory, the carbonate-rock-tablet is
95 employed to study the kinetics of calcite dissolution/precipitation (Dreybrodt et al.,
96 1996; Liu and Dreybrod, 1997) and determine the rate of carbonate mineral
97 weathering in soil column (Chao et al., 2011). However, in field, it is also used to
98 observe the rate of carbonate weathering and estimated CO_2 consumption by
99 carbonate weathering (Chao et al., 2014; Jiang and Yuan, 1999; Jiang et al., 2013;
100 Plan, 2005). Although Liu (2011) argue that the carbonate-rock-tablet test may lead to
101 the deviation of estimated CO_2 consumption by carbonate weathering at the
102 regional/global scale in the case of insufficient representative data (Liu, 2011), our
103 results show that it is a preferred option for the condition controlled contrast or
104 stimulated experiment (Chao et al., 2011; Chao et al., 2014), where the result from the

105 carbonate-rock-tablet test is consistent to the major element geochemical data of
106 leachates from soil column(Chao et al., 2011).

107 Therefore, a field column experiment embedding carbonate rock tablets was
108 carried out in a typical karst area of southwest China to observe the impacts of
109 different fertilizer addition on carbonate weathering in soil.

110 **2. Materials and Methods**

111 **2.1 The study site**

112 This study was carried out in a typical karst area, the Huaxi district of Guiyang
113 city, Guizhou province, SW China (26°23'N, 106°40'E, 1094 m asl). Guiyang, the
114 capital city of Guizhou Province, is located in the central part of The Province,
115 covering an area from 26°11'00" to 26°54'20"N and 106°27'20" to 107°03'00"E, with
116 elevations ranging from 875 to 1655 m above mean sea level. Guiyang has a
117 population of more than 1.5 million people, a high diversity of karstic landforms, a
118 high elevation and low latitude, with a subtropical warm-moist climate, annual
119 average temperature of 15.3 °C and annual precipitation of 1200 mm (Lang et al.,
120 2006). A monsoonal climate often results in high precipitation during summer and
121 much less during winter, although the humidity is often high during most of the year
122 (Han and Jin, 1996). Agriculture is a major land use in order to produce the vegetables
123 and foods in the suburb of Guiyang (Liu et al., 2006). The consumption of chemical
124 fertilizer increased from 0.8 Mt in 1980 to 1.0 Mt in 2013 (GBS, 2014).

125 **2.2 Soil properties**

126 The soil used in this column experiment was sampled from the B horizon (below
127 20 cm in depth) of yellow-brown soil in a cabbage-corn or capsicum-corn rotation

128 plantation in Huaxi district. It was air-dried, ground to pass through a 2-mm sieve,
129 mixed thoroughly and used for soil columns. The pH ($V_{\text{soil}}:V_{\text{water}} = 1:2.5$) were
130 determined by pH meter. The chemical characteristics of soil including organic matter
131 (OM), $\text{NH}_4\text{-N}$, $\text{NO}_3\text{-N}$, available P, available K, available Ca, available Mg, available
132 S and available Fe were determined according to the Agro Services International (ASI)
133 Method (Hunter, 1980), where the extracting solution used for OM contained 0.2 mol
134 l^{-1} NaOH , 0.01 mol l^{-1} EDTA, 2% methanol and 0.005% Superfloc 127, $\text{NH}_4\text{-N}$,
135 $\text{NO}_3\text{-N}$, available Ca and Mg were determined based on extraction by 1 mol l^{-1} KCl
136 solution, available K, P and Fe were extracted by extracting solution containing 0.25
137 mol l^{-1} NaHCO_3 , 0.01 mol l^{-1} EDTA, 0.01 mol l^{-1} NH_4F , and 0.005% Superfloc 127,
138 and available S was extracted by 0.1 mol l^{-1} $\text{Ca}(\text{H}_2\text{PO}_4)_2$ and 0.005% Superfloc 127.
139 The results are shown in Table 1.

140 **2.3 Soil column and different fertilization treatments**

141 In order to test the hypothesis that the responses of the impact of different
142 chemical fertilizer on carbonate weathering may be different, columns ($\text{Ø}=20\text{cm}$, $\text{H}=$
143 15cm) were constructed from 20-cm diameter polyvinylchloride (PVC) pipe (Fig. 2).
144 A hole ($\text{Ø}=2\text{ cm}$) were established at the bottom of each column to discharge soil
145 water from soil column. A Polyethylene net ($\text{Ø} 0.5\text{ mm}$) was placed in the bottom of
146 the columns to prevent soil loss. A filter sand layer with 2 cm thickness including
147 gravel, coarse sand and fine sand was spread on the net. Two different carbonate rock
148 tablets were buried in the bottom of each soil column (Fig .2). According to common
149 kinds of chemical fertilizer and the main objective of this study, eleven fertilization

150 treatments with three replicates in the field column experiment were set up: (1)control
151 without fertilizer (CK); (2)43g NH_4NO_3 fertilizer (CF); (3)85g NH_4HCO_3 fertilizer
152 (NHC); (4)91g NaNO_3 fertilizer (NN); (5)57g NH_4Cl fertilizer (NCL); (6)51g
153 $(\text{NH}_4)_2\text{CO}_3$ fertilizer (NC); (7)52g $\text{Ca}_3(\text{PO}_4)_2$ fertilizer (CP); (8)15g $(\text{NH}_4)_3\text{PO}_4$
154 fertilizer (NP); (9)44g fused calcium-magnesium phosphate fertilizer (Ca-Mg-P); (10)
155 32g Urea fertilizer (U) and (11) 10g K_2CO_3 fertilizer (PP). To shorten the experiment
156 time and enhance the effect of fertilization, the added amount of fertilizers in these
157 treatments motioned above was increased to 30 times than its local practical amount
158 (N fertilizer: $160 \text{ kg N} \cdot \text{ha}^{-1}$; P fertilizer: $150 \text{ kg P}_2\text{O}_5 \cdot \text{ha}^{-1}$; K fertilizer: $50 \text{ kg K} \cdot \text{ha}^{-1}$).
159 The soil was weighed, mixed perfectly with above fertilizer, respectively, and filled in
160 its own column. These soil columns were placed at the field experiment site in
161 Guiyang of Southwestern China for a whole year.

162 **2.4 The rate of carbonate weathering**

163 Two different kinds of carbonate rock tablets ($2 \text{ cm} \times 1 \text{ cm} \times 0.5 \text{ cm}$ in size) were
164 established in the bottom of each soil column to explore the rate of carbonate
165 weathering in soil. The two different kinds of carbonate rock collected from karst area
166 of Huaxi district were (1) limestone with 60-65% micrite, 30-35% microcrystalline
167 calcite and 2-3% pyrite and (2) dolostone with 98-99% power crystal dolomite, 3-5%
168 microcrystalline calcite, 1% pyrite and little organic matter. All of tablets were baked
169 at 80°C for 4 hours then weighed in a 1/10000 electronic balance in the laboratory,
170 tied to a label with fishing line and buried at the bottom of each soil column. They
171 were taken out carefully, rinsed, baked and weighed after a whole year.

172 The amount of carbonate weathering (Acw), the ratio of carbonate weathering
173 (Rcw) and the rate of carbonate weathering ($Racw$) were calculated according to the
174 weight difference of the tablets using the following formulas:

175 $Acw = (Wi - Wf)$ (1)

176 $Rcw = (Wi - Wf) / Wi$ (2)

177 $Racw = (Wi - Wf) / (S * T)$ (3)

178 where Wi is the initial weight of the carbonate rock tablets, Wf is their final weights,
179 S is the surface area of carbonate weathering tablets, and T is the experiment period.

180 **3. Results**

181 The amount (Acw), the ratio (Rcw) and the rate ($Racw$) of carbonate weathering
182 were listed in Table 2 and Fig. 3. The results between limestone and dolostone
183 weathering under different fertilization treatment were similar. We will explain the
184 results with carbonates instead of individual dolostone and limestone. The results
185 showed the Acw , Rcw and $Racw$ of carbonate weathering under urea, NH_4NO_3 ,
186 NH_4HCO_3 , NH_4Cl and $(NH_4)_2CO_3$ treatments were positive, and much bigger than
187 that under the control treatment, suggesting that the addition of these fertilizers can
188 aid and increase the chemical weathering of carbonate. In $(NH_4)_3PO_4$ treatment, the
189 Acw , and Rcw were only -0.0028g and -0.0007g for limestone and dolomite, -1.08%
190 and -0.75% for limestone and dolomite, respectively, less than those under other four
191 NH_4 -fertilizers as mentioned above. The Acw , Rcw and $Racw$ in $NaNO_3$ treatment
192 failed to show a remarkable difference with control treatment, implying little effect of
193 $NaNO_3$ fertilizer addition on carbonate weathering (Fig. 3).

194 However, except the R_{cw} of limestone in $\text{Ca}_3(\text{PO}_4)_2$ treatment approaching zero,
195 the Ac_w , R_{cw} and Rac_w of two different carbonate in Ca-Mg-P and K_2CO_3 and
196 $\text{Ca}_3(\text{PO}_4)_2$ treatments showed a negative value, indicating that the addition of
197 Ca-Mg-P, K_2CO_3 and $\text{Ca}_3(\text{PO}_4)_2$ fertilizers can lead to the precipitation at the surface
198 of carbonate mineral, which can be explained by common ion effect.

199 **4. Discussion**

200 **4.1 The carbonate rock tablet test: the validation of this experiment**

201 In this study, every procedure to establish soil column with carbonate rock tablets
202 in the bottom of each was strictly same, including the size of column, the preparation
203 and column filling of soil sample, the setting and test of carbonate rock tablets, etc.
204 Moreover, three replicates of each treatment were designed. We consider the
205 experiment design can meet the objective of this study and the results of
206 carbonate-rock-tablet test are therefore valid and credible.

207 **4.2 The kinetics and controlled factors of carbonate weathering**

208 Experimental studies of carbonate dissolution kinetics have shown metal
209 carbonate weathering usually depends upon three parallel reactions occurring at the
210 carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009):

214 where $\text{Me}=\text{Ca, Mg}$. As Eq. (5) describes, atmospheric/soil CO_2 is usually regard as
215 the natural weathering agent of carbonate, whereas many studies have exposed that

216 carbonate weathering can occur due to the reaction (Eq. (4)) between carbonate and
217 other proton contributors, as mentioned in introduction section: the nitrification
218 processes of NH_4^+ , the sulfuric acid, organic acid secreted by microorganisms, and
219 acidic soil (Chao et al., 2014).

220 In field, carbonate dissolution is mainly controlled by the amount of rainfall
221 (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), as well as impacted
222 of soil CO_2 (Andrews and Schlesinger, 2001). We consider that the effect of rainfall
223 on each soil column is same. In this study, the urea, NH_4NO_3 , NH_4HCO_3 , NH_4Cl and
224 $(\text{NH}_4)_2\text{CO}_3$ amendment increased (10 to 17-fold) the natural weathering rate of 2.00
225 $\text{g m}^{-2} \text{ a}^{-1}$ from limestone tablets in control treatment (table 2). These increases may be,
226 in the one hand, attributed to the effect of the proton released from the nitrification of
227 NH_4^+ . On the other hand, it may be, in theory, related to enhanced microbiogenic CO_2
228 due to nitrogenous nutrients stimulation (Eq(5)), because fertilizer application can
229 increase soil CO_2 flux (Sainju et al., 2008; Bhattacharyya et al., 2013), the increased
230 CO_2 can enhance carbonate dissolution rate at near neutral or alkali pH (Andrews and
231 Schlesinger, 2001).

232 According to the added amount of different fertilization treatment, the molar
233 amount of added nitrogen nutrient in NaNO_3 treatment is 1.07mol, much bigger than
234 in NH_4NO_3 , equivalent to NH_4HCO_3 and NH_4Cl treatment. However, the Ac_w and
235 Rc_w , and Rac_w of NaNO_3 treatment is far less (Fig. 3 and table 2), inhibiting that the
236 increases of carbonate weathering rate in urea, NH_4NO_3 , NH_4HCO_3 , NH_4Cl and
237 $(\text{NH}_4)_2\text{CO}_3$ amendment have no distinct relationship with enhanced microbiogenic

238 CO₂ due to nitrogenous fertilizer amendment.

239 **4.3 The effect of nitrification of NH₄-fertilizer**

240 In urea (CO(NH₂)₂) treatment, the enzyme urease rapidly hydrolyzes the urea-N
241 (CO(NH₂)₂) to NH₄⁺ ions (Eq. (7)) when urea is applied to the soil (Soares et al.,
242 2012).

244 Table 3 shows that the amount of NH₄⁺ hydrolyzed from urea is 1.06 mol, while
245 NH₄⁺ ionized from NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and (NH₄)₃PO₄ is 0.54
246 mol, 1.08 mol, 1.07 mol, 1.06 mol and 0.03 mol, respectively (Table 3). Although the
247 study from Singh et al showed that a part of NH₄⁺ may be lost as ammonia (NH₃) and
248 subsequently as nitrous oxide (N₂O) (Singh et al., 2013), yet the rest ammonium
249 (NH₄⁺) is mainly oxidized in soil by autotrophic bacteria (like Nitrosomonas) during
250 nitrification, resulting in nitrite NO₂⁻ and H⁺ ions. Nitrite is, in turn, oxidized by
251 another bacterium, such as Nitrobacter, resulting in nitrate (NO₃⁻) (Eq. (8)) (Perrin et
252 al., 2008).

254 The protons (H⁺) produced by nitrification can be neutralized in two ways:

255 (i) either by exchange process with base cations in the soil exchange complex
256 (Eq. (9))

$$\text{Soil} - \text{Ca} + 2\text{H}^+ \rightarrow \text{Soil} - 2\text{H}^+ + \text{Ca}^{2+} \quad (9)$$

257 (ii) or via carbonate mineral dissolution (Eq.(10))

259 Consequently, after Eq. (8) and Eq. (10) are combined, carbonate weathering by
260 protons produced by nitrification is supposed to becomes (Eq. 11) (See details in

261 Perrin et al., 2008 and Gandois et al., 2011).

264 The R_{cw} of limestone tablets and the initial concentration of NH_4^+ are plotted in
265 Fig. 4. A distinct relationship between them is observed: the A_{cw} and R_{cw} in NH_4NO_3 ,
266 NH_4HCO_3 , NH_4Cl , $(\text{NH}_4)_2\text{CO}_3$ and urea treatments are bigger than in control
267 treatment, where the initial concentration of NH_4^+ displays similar results (Fig. 4).
268 This suggests that carbonate weathering in NH_4NO_3 , NH_4HCO_3 , NH_4Cl , $(\text{NH}_4)_2\text{CO}_3$
269 and urea treatments are mainly attributed to the dissolution reaction described as Eq.
270 (11). This process of carbonate weathering by protons from nitrification has been
271 proven by many studies, from laboratory to field (Semhi and Suchet, 2000; Bertrand
272 et al., 2007; Oh and Raymond, 2006; Errin et al., 2006; Hamilton et al., 2007; Biasi et
273 al., 2008; Perrin et al., 2008; Barnes and Raymond, 2009; Chao et al., 2011; West and
274 McBride, 2005; Gandois et al., 2011). According to the estimation from Yue et al.
275 (2015), The enhanced HCO_3^- flux due to nitrification of NH_4^+ at Houzhai catchment
276 of Guizhou province would be 3.72×10^5 kg C/year and account for 18.7% of this
277 flux in the entire catchment(Yue et al., 2015). This is similar to estimates from other
278 small agricultural carbonate basins (12–26%) in Southwest France (Semhi and Suchet,
279 2000; Perrin et al., 2008).

280 As discussed above, provided that the loss as ammonia (NH_3) and nitrous oxide
281 (N_2O) after hydrolyzation is unconsidered in this study, the final equation of
282 carbonate weathering in NH_4NO_3 , NH_4HCO_3 , NH_4Cl , $(\text{NH}_4)_2\text{CO}_3$ and urea treatments
283 will be followed as, respectively:

294 The Ac_w and Rc_w in $(NH_4)_3PO_4$ treatment, unlike in other NH_4 -fertilizer
295 treatments, had not a significant increase comparing with control treatment, which is
296 not only owing to the low amount of added NH_4^+ in $(NH_4)_3PO_4$ treatment (0.3 mol,
297 see Table 3) but also relative to the inhibition of phosphate. After the addition of
298 $(NH_4)_3PO_4$ in soil, calcium orthophosphate (Ca-P) precipitation will form on calcite
299 surface which is initiated with the aggregation of clusters leading to the nucleation
300 and subsequent growth of Ca-P phases, at various pH values and ionic strengths
301 relevant to soil solution conditions (Chien et al., 2011; Wang et al., 2012).

302 **4.4 Little/no effect of NO_3 -fertilizer on carbonate weathering and its implication**

303 **to the evaluation of CO_2 consumption by carbonate weathering**

304 In Fig. 3, the Ac_w and Rc_w without significant difference with control treatment
305 in $NaNO_3$ treatment indicates that the addition of NO_3 -fertilizer does not significantly
306 influence carbonate weathering. This result is raising a new problem.

307 Eq. (5), usually as an expression for the natural weathering process of carbonate,
 308 is an important reaction for understanding the kinetics process of carbonate

309 dissolution in carbonate-dominated areas, where the molar ratio of HCO_3^- and Me^{2+} in
310 the river as an indicator is usually used to make estimations of CO_2 consumption by
311 carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li
312 et al., 2009). At agricultural areas, the relationship between $(\text{Ca}+\text{Mg})/\text{HCO}_3^-$ and NO_3^-
313 is usually employed to estimate the contribution of N-fertilizer to riverine Ca^{2+} , Mg^{2+}
314 and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et
315 al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described as Eq.
316 (8) is usually considered as the unique origin of NO_3^- . According to the result of
317 NaNO_3 treatment in this study, the contribution of protons from nitrification to
318 carbonate weathering may be overestimated if anthropogenic NO_3^- is neglected, since
319 the anthropogenic NO_3^- does not release the proton described as Eq. (8). For NH_4NO_3
320 fertilizer, the (Eq. (12)) show that the two moles of $\text{Ca}^{2+}+\text{Mg}^{2+}$, NO_3^- and HCO_3^- will
321 be produced when one mole NH_4NO_3 react with 2 moles of carbonate, where only
322 half of NO_3^- originate from nitrification described as Eq. (8). This will result in
323 doubled overestimation on the true contribution of the nitrification to CO_2
324 consumption by carbonate weathering.

325 At regional scales, If different fertilizers are added to an agricultural area, the
326 estimation of CO_2 consumption by carbonate weathering might became more
327 complicated, since the mole ratio of $\text{Ca}+\text{Mg}$, HCO_3^- and/or NO_3^- between different
328 fertilization treatment is different (see Eq. (8)-(12)). Thus, the related anthropogenic
329 inputs (e.g. $\text{Ca}+\text{Mg}$, NH_4 , NO_3^- , HCO_3^- , etc.) need to be investigated to more
330 accurately estimate the impact of fertilization on carbonate weathering and its CO_2
331 consumption.

332 **5. Conclusion**

333 The impact of the addition of different fertilizer (NH_4NO_3 , NH_4HCO_3 , NaNO_3 ,

334 NH₄Cl, (NH₄)₂CO₃, Ca₃(PO₄)₂, (NH₄)₃PO₄, Ca-Mg-P, Urea and K₂CO₃) on carbonate
335 weathering was studied in a field column experiment with carbonate rock tablets at its
336 bottom of each. The weathering amount and ratio of carbonate rock tablets showed
337 that the addition of urea, NH₄NO₃, NH₄HCO₃, NH₄Cl and (NH₄)₂CO₃ distinctly
338 increased carbonate weathering, which was attributed to the nitrification of NH₄⁺, and
339 the addition of Ca₃(PO₄)₂, Ca-Mg-P and K₂CO₃ induced carbonate precipitation due
340 to common ion effect. While the (NH₄)₃PO₄ and NaNO₃ addition did not impact
341 significantly on carbonate weathering, where the former can be attributed to low
342 added amount of (NH₄)₃PO₄, may be related to the inhibition of phosphate, and the
343 latter seemed to be raising a new question. The little impact of nitrate on carbonate
344 weathering may result in the overestimation of impact of N-fertilizer on CO₂
345 consumption by carbonate weathering at the regional/global scale if the effect of NO₃
346 and NH₄ are not distinguished. Thus, the related anthropogenic inputs (e.g. Ca+ Mg,
347 NH₄, NO₃⁻, HCO₃⁻, etc.) need to be investigated to more accurately estimate the
348 impact of fertilization on carbonate weathering and its CO₂ consumption.

349 **6. Acknowledgements**

350 This study is supported jointly by the Basic Science Research Fund from the
351 Institute of Hydrogeology and Environmental Geology (Grant No. SK201208), the
352 Chinese National Natural Science Foundation (No. 41403107 and No. 41325010), and
353 the China Geological Survey Projects (No. 12120113005900).

354
355

356 **References:**

357 Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock
358 lithology: Implications for the atmospheric/soil CO₂ uptake by continental weathering and alkalinity
359 river transport to the oceans. *Global Biogeochemical Cycles*, 17(2): 1-13.

360 Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical
361 weathering in a temperate forest with experimental CO₂ enrichment. *Global Biogeochemical Cycles*,
362 15(1): 149-162.

363 Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO₂ dynamics, acidification, and chemical
364 weathering in a temperate forest with experimental CO₂ enrichment. *Global Biogeochem. Cycles*, 15:
365 149-162.

366 Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to
367 inorganic carbon fluxes within temperate watersheds. *Chemical Geology*, 266(3-4): 318-327.

368 Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and
369 calcareous agricultural soils: Apparent and actual effects. *Soil Biology and Biochemistry*, 39(1):
370 276-288.

371 Bhattacharyya, P. et al., 2013. Greenhouse gas emission in relation to labile soil C, N pools and
372 functional microbial diversity as influenced by 39 years long-term fertilizer management in tropical
373 rice. *Soil and Tillage Research*, 129: 93-105.

374 Biasi, C. et al., 2008. Direct experimental evidence for the contribution of lime to CO₂ release from
375 managed peat soil. *Soil Biology and Biochemistry*, 40(10): 2660-2669.

376 Chao, S., Changli, L., Junkun, W., Yun, Z. and Hongbing, H., 2011. Impact of the Addition of a
377 Compound Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. *Applied
378 Geochemistry*, 26(S): 170-173.

379 Chao, S., Changli, L., Yun, Z. and Hongbing, H., 2014. Impact of animal manure addition on
380 agricultural lime weathering in acidic soil: pH dependence and CO₂ independence of agricultural lime
381 weathering. *Procedia Earth and Planetary Science*(10): 405-409.

382 Chien, S.H., Prochnow, L.I., Tu, S. and Snyder, C.S., 2011. Agronomic and environmental aspects of
383 phosphate fertilizers varying in source and solubility: an update review. *Nutrient Cycling in
384 Agroecosystems*, 89(2): 229-255.

385 Chou, L., Garrels, R.M. and Wollast, R., 1989. Comparative study of the kinetics and mechanisms of
386 dissolution of carbonate minerals. *Chemical Geology*, 78(3-4): 269-282.

387 Dreybrodt, W., Lauckner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the
388 reaction CO₂ + H₂O → H⁺ + HCO₃⁻ as one of the rate limiting steps for the dissolution of calcite in the
389 system H₂O-CO₂-CaCO₃. *Geochimica et Cosmochimica Acta*, 60(18): 3375-3381.

390 Egli, M. and Fitze, P., 2001. Quantitative aspects of carbonate leaching of soils with differing ages and
391 climates. *Catena*, 46(1): 35-62.

392 Errin, A.S.P., Robst, A.P. and Robst, J.L.P., 2006. Impact of nitrogen fertilizers on natural weathering
393 processes : Evident role on CO₂ consumption The oxygen isotopic composition of Precambrian cherts,
394 Goldschmidt Conference, pp. 2332-2332.

395 Etchanchu, D. and Probst, J., 1988. Evolution of the chemical composition of the Garonne River water
396 during the period 1971-1984. *Hydrological sciences journal*, 33(3): 243-256.

397 Gams, I., 1981. Comparative research of limestone solution by means of standard tablets, *Proceedings
398 of the 8th International Congress of Speleology* Bowling Green, Kentucky, pp. 273-275.

399 Gams, I., 1985. International comparative measurements of surface solution by means of standard
400 limestone tablets. *Razpr IV Razeda Sazu*, 26: 361-386.

401 Gandois, L., Perrin, A.S. and Probst, A., 2011. Impact of nitrogenous fertiliser-induced proton release
402 on cultivated soils with contrasting carbonate contents: A column experiment. *Geochimica et
403 Cosmochimica Acta*, 75: 1185-1198.

404 GBS, 2014. 2014 Guizhou Statistical Yearbook. Statistical Press of China, Beijing.

405 Hagedorn, B. and Cartwright, I., 2009. Climatic and lithologic controls on the temporal and spatial
406 variability of CO₂ consumption via chemical weathering: An example from the Australian Victorian
407 Alps. *Chemical Geology*, 260(3-4): 234-253.

408 Hamilton, S.K., Kurzman, A.L., Arango, C., Jin, L. and Robertson, G.P., 2007. Evidence for carbon
409 sequestration by agricultural liming. *Global Biogeochemical Cycles*, 21(GB2021): 1-12.

410 Han, Z. and Jin, Z., 1996. Hydrogeology of Guizhou Province, China. Seismic Publication, Beijing.

411 Hunter, A.H., 1980. Laboratory and greenhouse techniques for nutrient survey to determine the soil
412 amendments required for optimum plant growth. Mimeograph. Agro Service International (ASI),
413 Florida, USA.

414 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst
415 underground river system: Evidence from major elements and $\delta^{13}\text{C}_{\text{DIC}}$ in Nandong, Southwest China.
416 *Journal of Contaminant Hydrology*, 152(0): 1-11.

417 Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors
418 affecting the groundwater quality in the Nandong karst underground river system in Yunan, China.
419 *Journal of Contaminant Hydrology*, 109(1-4): 49-61.

420 Jiang, Z. and Yuan, D., 1999. CO₂ source-sink in karst processes in karst areas of China. *Episodes*,
421 22(1): 33-35.

422 Jiang, Z., Lian, Y. and Qin, X., 2013. Carbon cycle in the epikarst systems and its ecological effects in
423 South China. *Environmental earth sciences*, 68(1): 151-158.

424 Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. *Earth Surface
425 Processes and Landforms*, 19(3): 213-232.

426 Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate.
427 *Geochemical Journal*(12): 29-37.

428 Kump, L.R., Brantley, S.L. and Arthur, M.A., 2000. Chemical weathering, atmospheric CO₂, and
429 climate. *Annual Review of Earth and Planetary Sciences*, 28(1): 611-667.

430 Lang, Y., Liu, C., Zhao, Z., Li, S. and Han, G., 2006. Geochemistry of surface and ground water in
431 Guiyang, China: Water/rock interaction and pollution in a karst hydrological system. *Applied
432 Geochemistry*, 21(6): 887-903.

433 Lerman, A. and Wu, L., 2006. CO₂ and sulfuric acid controls of weathering and river water
434 composition. *Journal of Geochemical Exploration*, 88(1-3): 427-430.

435 Lerman, A., Wu, L. and Mackenzie, F.T., 2007. CO₂ and H₂SO₄ consumption in weathering and
436 material transport to the ocean, and their role in the global carbon balance. *Marine Chemistry*, 106(1-2):
437 326-350.

438 Li, S., Calmels, D., Han, G., Gaillardet, J. and Liu, C., 2008. Sulfuric acid as an agent of carbonate
439 weathering constrained by $\delta^{13}\text{C}_{\text{DIC}}$: Examples from Southwest China. *Earth and Planetary Science
440 Letters*, 270(3-4): 189-199.

441 Li, S., Xu, Z., Wang, H., Wang, J. and Zhang, Q., 2009. Geochemistry of the upper Han River basin,
442 China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. *Chemical Geology*,
443 264(1-4): 89-95.

444 Lian, B., Chen, Y., Zhu, L. and Yang, R., 2008. Effect of Microbial Weathering on Carbonate Rocks.

445 Earth Science Frontiers, 15(6): 90-99.

446 Liu, C., Li, S., Lang, Y. and Xiao, H., 2006. Using $\delta^{15}\text{N}$ - and $\delta^{18}\text{O}$ -Values To Identify Nitrate
447 Sources in Karst Ground Water, Guiyang, Southwest China. *Environmental Science & Technology*,
448 40(22): 6928-6933.

449 Liu, Z. et al., 2010. Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in
450 a travertine-depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of
451 biannual laminae in travertine and for climatic reconstruction. *Chemical Geology*, 273(3-4): 258-266.

452 Liu, Z., 2011. "Method of maximum potential dissolution" to calculate the intensity of karst process
453 and the relevant carbon sink: With discussions on methods of solute load and carbonate-rock-tablet test.
454 *Carsologica Sinica*, 30(4): 79-82.

455 Liu, Z. and Dreybrod, W., 1997. Dissolution kinetics of calcium carbonate minerals in $\text{H}_2\text{O}-\text{CO}_2$
456 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction $\text{H}_2\text{O} + \text{CO}_2$
457 $\leftrightarrow \text{H}^+ + \text{HCO}_3^-$. *Geochimica et Cosmochimica Acta*, 61(14): 2879-2889.

458 Liu, Z., Dreybrodt, W. and Liu, H., 2011. Atmospheric CO_2 sink: silicate weathering or carbonate
459 weathering? *Applied Geochemistry*, 26(S): 292-294.

460 NBS, 2014. 2014 Statistical Yearbook. Statistical Press of China, Beijing.

461 Oh, N. and Raymond, P.A., 2006. Contribution of agricultural liming to riverine bicarbonate export and
462 CO_2 sequestration in the Ohio River basin. *Global Biogeochemical Cycles*, 20: 1-17.

463 Perrin, A., Probst, A. and Probst, J., 2008. Impact of nitrogenous fertilizers on carbonate dissolution in
464 small agricultural catchments: Implications for weathering CO_2 uptake at regional and global scales.
465 *Geochimica et Cosmochimica Acta*, 72(13): 3105-3123.

466 Pierson-wickmann, A., Aquilina, L., Martin, C., Ruiz, L. and Molánat, J., 2009. High chemical
467 weathering rates in first-order granitic catchments induced by agricultural stress. *Chemical Geology*,
468 265: 369-380.

469 Plan, L., 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
470 alps. *Geomorphology*, 68(3-4): 201-212.

471 Plummer, L.N., Wigley, T. and Parkhurst, D.L., 1978. The kinetics of calcite dissolution in CO_2 -water
472 systems at 5 to 60 °C and 0.0 to 1 atm CO_2 . *American Journal of Science*, 278: 179-216.

473 Pokrovsky, O.S., Golubev, S.V., Schott, J. and Castillo, A., 2009. Calcite, dolomite and magnesite
474 dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm
475 pCO_2 : New constraints on CO_2 sequestration in sedimentary basins. *Chemical Geology*, 265(1-2):
476 20-32.

477 Probst, J., 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical
478 and chemical erosion rates in a calcareous molasse basin. *Hydrological Sciences Journal*, 31(1): 61-79.

479 Sainju, U.M., Jabro, J.D. and Stevens, W.B., 2008. Soil carbon dioxide emission and carbon content as
480 affected by irrigation, tillage, cropping system, and nitrogen fertilization. *Journal of Environmental
481 Quality*, 37(1): 98-106.

482 Semhi, K. and Suchet, A., 2000. Impact of nitrogen fertilizers on the natural weathering-erosion
483 processes and fluvial transport in the Garonne basin. *Applied Geochemistry*, 15(6): 865-878.

484 Singh, J., Kunhikrishnan, A., Bolan, N.S. and Saggar, S., 2013. Impact of urease inhibitor on ammonia
485 and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
486 *Science of The Total Environment*, 465(0): 56-63.

487 Soares, J.R., Cantarella, H. and Menegale, M.L.D.C., 2012. Ammonia volatilization losses from
488 surface-applied urea with urease and nitrification inhibitors. *Soil Biology and Biochemistry*, 52(0):

489 82-89.

490 Trudgill, S.T., 1975. Measurement of erosional weight loss of rock tablets. British Geomorphological
491 Research Group Technical Bulletin, 17: 13-20.

492 Wang, L., Ruiz-Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A., 2012. Kinetics of Calcium
493 Phosphate Nucleation and Growth on Calcite: Implications for Predicting the Fate of Dissolved
494 Phosphate Species in Alkaline Soils. *Environmental Science & Technology*, 46(2): 834-842.

495 West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
496 in the United States: dissolution, transport, and net emissions. *Agriculture, Ecosystems and
497 Environment*, 108(2): 145-154.

498 Yue, F.J., Li, S.L., Liu, C.Q., Lang, Y.C. and Ding, H., 2015. Sources and transport of nitrate
499 constrained by the isotopic technique in a karst catchment: an example from Southwest China.
500 *Hydrological Processes*, 29(8): 1883-1893.

501

502

503

504

Table 1 Chemical composition of soil

Parameter	Unit	Values
pH	-	6.94
Organic matter	%	0.99
NH_4^+ -N	mg/kg	339.87
NO_3^- -N	mg/kg	569.05
Available P	mg/kg	8.18
Available K	mg/kg	56.88
Available Ca	mg/kg	3041.06
Available Mg	mg/kg	564.83
Available S	mg/kg	100.72
Available Fe	mg/kg	24.41

505

506

Table 2 Carbonate weathering under different fertilizer treatments

Treatment	Limestone		Dolostone	
	Acw/g	Racw/g m ⁻² a ⁻¹	Acw/g	Racw/g m ⁻² a ⁻¹
Control	0.0014± 0.0004	2.00±0.58	-0.0011± 0.0006	-1.57±0.86
NH ₄ NO ₃	0.0174± 0.0014	24.86±2.01	0.0144± 0.0008	20.57±1.15
NH ₄ HCO ₃	0.0147± 0.0024	21.00±3.45	0.0096± 0.0027	13.71±3.88
NaNO ₃	0.0031± 0.0012	4.43±1.73	0.0022± 0.0012	3.14±1.73
NH ₄ Cl	0.0149± 0.0017	21.29±2.45	0.0131± 0.0006	18.71±0.86
(NH ₄) ₂ CO ₃	0.0144± 0.0031	20.57±4.46	0.0186± 0.0053	26.57±7.62
Ca ₃ (PO ₄) ₂	0.0003± 0.0006	0.43±0.86	-0.0013± 0.0009	-1.86±1.29
(NH ₄) ₃ PO ₄	0.0028± 0.0008	4.00±1.15	0.0007± 0.0007	1.00±1.01
Ca-Mg-P	-0.0013± 0.0003	-1.86±0.43	-0.0022± 0.0005	-3.14±0.72
Urea	0.0243± 0.0030	34.71±4.32	0.0185± 0.0019	26.43±2.73
K ₂ CO ₃	-0.0008± 0.0004	-1.14±0.58	-0.0018± 0.0003	-2.57±0.43

508 Acw - the amount of carbonate weathering; Racw - the ratio of carbonate weathering; Ra_{cw} - the rate of
 509 carbonate weathering; Acw = (Wi-Wf); Racw = (Wi-Wf)/(S*T), where Wi is the initial weight of the
 510 carbonate rock tablets, and Wf is their final weight. S is the surface area of carbonate weathering tablets,
 511 and T is the experiment period.

512

513

514

515

Table 3: The amount of generated NH_4^+ at the initial phase of the experiment

Treatment	Relative molecular mass /g/mol	Amount of added fertilizer /g	Molar concentration /mol	Initial NH_4^+ /mol
NH_4NO_3	80	43	0.54	0.54
NH_4HCO_3	79	85	1.08	1.08
NaNO_3	85	91	1.07	0.00
NH_4Cl	53.5	57	1.07	1.07
$(\text{NH}_4)_2\text{CO}_3$	96	51	0.53	1.06
$\text{Ca}_3(\text{PO}_4)_2$	310	52	0.17	0.00
$(\text{NH}_4)_3\text{PO}_4$	149	15	0.10	0.30
Ca-Mg-P	/	44	0.00	0.00
Urea	60	32	0.53	1.06
K_2CO_3	138	10	0.07	0.00

516

517

518
519 Fig. 1 The change of chemical fertilizer consumption in China during 1980-2013
520

521 The data were collected from National Bureau of Statistics of the People's Republic of China
522 (NBS, 2014) (<http://www.stats.gov.cn/tjsj/ndsj/>)
523
524

525

526

527

Fig. 2 Sketch map of the soil column

528

529

530

531

532

533

Fig. 3 The ratio of carbonate weathering under different fertilization treatment

534

(a)-limestone; (b)-dolostone. Treatment 1-Control; 2- NH_4NO_3 ; 3- NH_4HCO_3 ; 4- NaNO_3 ; 5- NH_4Cl ; 6- $(\text{NH}_4)_2\text{CO}_3$; 7- $\text{Ca}_3(\text{PO}_4)_2$; 8- $(\text{NH}_4)_3\text{PO}_4$; 9- Ca-Mg-P ; 10-Urea; 11- K_2CO_3 . $R_{cw} = (W_i - W_f)/W_i$, where W_i is the initial weight of the carbonate rock tablets, and W_f is their final weight.

535

536

537

538 Fig. 4 The ratio of limestone weathering and the molar amount of produced NH_4^+ under different
 539 fertilization treatment

540 Treatment 1-Control; 2- NH_4NO_3 ; 3- NH_4HCO_3 ; 4- NaNO_3 ; 5- NH_4Cl ; 6- $(\text{NH}_4)_2\text{CO}_3$; 7- $\text{Ca}_3(\text{PO}_4)_2$;
 541 8- $(\text{NH}_4)_3\text{PO}_4$; 9-Ca-Mg-P; 10-Urea; 11- K_2CO_3 . $\text{Rcw} = (\text{W}_i - \text{W}_f)/\text{W}_i$, where W_i is the initial weight of
 542 limestone tablets, and W_f is their final weight.

543