1	Impact of different fertilizers on carbonate weathering in a typical karst area,
2	Southwest China: a field column experiment
3	Chao Song ^{1, 2} , Changli Liu ¹ , Guilin Han ² , Congqiang Liu ²
4	¹ The Institute of Hydrogeology and Environmental Geology, Chinese Academy of
5	Geological Sciences, Shijiazhuang, 050803, Hebei, China
6	² School of Water Resources and Environment, China University of Geosciences
7	(Beijing), Beijing, 100083, China.
8	
9	Corresponding Author: Chao Song
10	Email: chao-song@qq.com

- 11 Tel/Fax: +86-18931852527

Abstract: Carbonate weathering, as a significant vector for the movement of carbon 14 both between and within ecosystems, is strongly influenced by agricultural 15 fertilization, since the addition of fertilizers tends to change the chemical 16 characteristics of soil such as the pH. Different fertilizers may exert a different impact 17 on carbonate weathering, but these discrepancies are as of yet not well-known. In this 18 study, a field column experiment was conducted to explore the response of carbonate 19 weathering to the addition of different fertilizers. We compared 11 different treatments, 20 21 including a control treatment, using 3 replicates per treatment. Carbonate weathering was assessed by measuring the weight loss of limestone and dolostone tablets buried 22 at the bottom of soil-filled columns. The results show that the addition of urea, 23 NH₄NO₃, NH₄HCO₃, NH₄Cl and (NH₄)₂CO₃ distinctly increased carbonate 24 weathering, which was attributed to the nitrification of NH_4^+ . The addition of 25 $Ca_3(PO_4)_2$, Ca-Mg-P and K_2CO_3 induced carbonate precipitation due to the common 26 ion effect. The addition of (NH₄)₃PO₄ and NaNO₃ had a relatively little impact on 27 carbonate weathering in comparison to those five NH₄-based fertilizers above. The 28 results of NaNO₃ treatment raise a new question: the negligible impact of nitrate on 29

CO₂ consumption by carbonate weathering at the regional/global scale, if the effects
of NO₃ and NH₄ are not distinguished.

carbonate weathering may result in overestimation of the impact of N-fertilizer on

33 Keywords: Carbonate weathering; Column experiment; Nitrogenous fertilizer;
34 Phosphate fertilizer; Southwest China

36

37 1. Introduction

Carbonate weathering plays a significant role in consumption of atmospheric CO₂ 38 (Kump et al., 2000; Liu et al., 2011; Liu et al., 2010). Riverine hydro-chemical 39 composition, such as the ratio of HCO_3^- to $Ca^{2+} + Mg^{2+}$, is usually employed as an 40 indicator to estimate the CO₂ consumption by natural carbonate weathering at the 41 regional/global scale (Hagedorn and Cartwright, 2009; Li et al., 2009). However, 42 fluvial alkalinity may also be produced by other processes including the reaction 43 between carbonates and protons derived from: (i) the nitrification of N-fertilizer 44 (Barnes and Raymond, 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and 45 46 Raymond, 2006; Perrin et al., 2008; Pierson-wickmann et al., 2009; Semhi and Suchet, 2000; Song et al., 2017; Song et al., 2011; West and McBride, 2005); (ii) sulfuric acid 47 forming in the oxidation of reduced sulfuric minerals (mainly pyrite, FeS₂) (Lerman 48 and Wu, 2006; Lerman et al., 2007; Li et al., 2011; Li et al., 2008); (iii) organic acid 49 secreted by microorganisms (Lian et al., 2008); and (iv) acidic soil (such as red soil, 50 yellow soil) (Song et al., 2014; Song et al., 2017). Given that atmospheric CO₂ is not a 51 unique weathering agent, differentiating the agent of carbonate weathering is 52 important for the accurate budgeting of net CO₂ consumption by carbonate 53 weathering, especially in agricultural areas where mineral fertilizers are used. 54

55 The global average annual increase in mineral fertilizer consumption was 3.3 % 56 from 1961 to 1997, and FAO's study predicts a 1 % increase per year until 2030

(FAO, 2000). In China, the consumption of chemical fertilizer increased from 12.7 Mt 57 in 1980 to 59.1 Mt in 2013 (Fig. 1). The increasing consumption of mineral fertilizers 58 is a significant disturbance factor in carbonate weathering and the carbon cycle. 59 Several studies have shown that nitrogen fertilizer additions increased weathering 60 rates, and also increased the total export of DIC from agricultural watersheds (Barnes 61 and Raymond, 2009; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 62 2006; Perrin et al., 2008; Pierson-wickmann et al., 2009; Probst, 1986; Semhi and 63 Suchet, 2000; West and McBride, 2005). According to estimates by Probst (1988) and 64 65 Semhi et al. (2000), the contribution of N-fertilizers to carbonate dissolution was 30 % and 12-26 % in two small agricultural carbonate basins in south-western France, the 66 Girou and the Gers, respectively (tributaries of the Garonne River). In the Garonne 67 River Basin, which is a large basin (52,000 km²), this contribution was estimated at 6 % 68 by Semhi et al. (2000). Perrin et al. (2008) estimated that the contribution of 69 N-fertilizer (usually in form of NH₄NO₃) represents up to 5.7-13.4 % and 1.6-3.8 % of 70 the carbonate dissolution in France and across the world, respectively. 71

72 The estimates described above are largely based on calculations that assumed a single type of fertilizer (e.g. $(NH_4)_2SO_4$, NH_4NO_3 , or NH_4Cl) was used throughout the 73 whole basin that was considered. However, in actual agricultural practices, different 74 75 fertilizers are usually added for different crops. The impact of these fertilizers on carbonate weathering and riverine chemical composition may be different. In the case 76 of nitrogenous fertilizer, 100% of NO_3^- produced after the addition $(NH_4)_2SO_4$ and 77 NH₄Cl is derived from the nitrification of NH_4^+ , whilst comparatively, it is only 50 % 78 after the addition of NH₄NO₃. Differences in NO₃⁻ sources may produce a deviation in 79

80 the impact of N-fertilizer addition on CO₂ consumption by carbonate weathering, since the addition of different N-fertilizers (e.g. (NH₄)₂SO₄, NH₄NO₃, NH₄Cl, NaNO₃ 81 or urea) may result in different contributions to carbonate weathering and relative 82 products such as HCO_3^- , Ca^{2+} and Mg^{2+} . For phosphate fertilizer, the coprecipitation 83 of phosphate ions with calcium carbonate may inhibit carbonate weathering (Kitano et 84 al., 1978). We assume that the response of carbonate weathering to the addition of 85 different fertilizers, such as N-fertilizer (NH₄ and NO₃), P-fertilizer and Ca/Mg 86 fertilizer, may display differences, which are so far poorly known, but likely 87 88 significant. Here we sought to understand the agricultural impact on natural carbonate weathering, and to accurately evaluate the CO₂ consumption via carbonate weathering 89 in agricultural areas. 90

91 The carbonate-rock-tablet test is used to determine the weathering rate of carbonate rock/mineral from the laboratory to the field (Adams and Post, 1999; 92 Dreybrodt et al., 1996; Gams, 1981; Gams, 1985; Jiang and Yuan, 1999; Liu and 93 Dreybrod, 1997; Plan, 2005; Song et al., 2017; Song et al., 2011; Song et al., 2017; 94 Trudgill, 1975). In the laboratory, the carbonate-rock-tablet is employed to study the 95 kinetics of calcite dissolution/precipitation (Dreybrodt et al., 1996; Liu and Dreybrod, 96 1997) and determine the rate of carbonate mineral weathering in the soil column 97 (Song et al., 2017; Song et al., 2011). In the field, it is also used to observe the rate of 98 carbonate weathering and estimate CO2 consumption (Jiang, 2013; Jiang and Yuan, 99 1999; Plan, 2005; Song et al., 2017; Song et al., 2011; Song et al., 2017). Liu (2011) 100 argued that the carbonate-rock-tablet test may lead to deviations in estimated CO₂ 101 consumption by carbonate weathering at the regional/global scale, in cases where 102 there are insufficient representative data. It is nonetheless a well-established method 103 for the comparative or simulated experiment (Song et al., 2017; Song et al., 2011; 104

105 Song et al., 2017).

106 A field column experiment that involved embedding carbonate-rock-tablets was 107 carried out in a typical karst area of southwest China, in order to observe the impact 108 of different fertilizer additions on carbonate weathering in soil.

109 2. Materials and Methods

110 **2.1 The study site**

This study was carried out in a typical karst area, namely the Huaxi District of 111 Guiyang City, Guizhou Province, SW China (26°23'N, 106°40'E, 1094 m ASL). 112 Guiyang, the capital city of Guizhou Province, is located in the central part of the 113 province, covering an area from 26°11'00" to 26°54'20"N and 106°27'20" to 114 107°03'00"E (approximately 8,000 km²), with elevations ranging from 875 to 1655 m 115 ASL. Guiyang has a population of more than 1.5 million people, a wide diversity of 116 karstic landforms, high elevations and low latitude, with a subtropical warm-moist 117 climate, and an average annual temperature of 15.3 °C and annual precipitation of 118 119 1200 mm (Lang, 2006). A monsoonal climate often results in high precipitation during summer, with much less during winter, although the humidity is often high throughout 120 most of the year (Han and Jin, 1996). Agriculture is a major land use in order to 121 produce the vegetables and foods in the suburbs of Guiyang (Liu et al., 2006). The 122 consumption of chemical fertilizer increased from 150 kg/ha in 1980 to 190 kg/ha in 123 2013 (GBS, 2014). 124

125 **2.2 Soil properties**

126 The soil used in this column experiment was yellow-brown clay, which was 127 sampled from the B horizon (below 20 cm in depth) of yellow-brown soil profile from

128	a cabbage-corn or capsicum-corn rotation plantation in Huaxi District. The soil was
129	air-dried, ground to pass through a 2-mm sieve, mixed thoroughly and used for the
130	soil columns. The soil pH (V_{soil} : $V_{water} = 1:2.5$) was determined by pH meter. The
131	chemical characteristics of the soil, including organic matter (OM), NH ₄ -N, NO ₃ -N,
132	available P, available K, available Ca, available Mg, available Fe, and available S
133	were determined according to the Agro Services International (ASI) method (Hunter,
134	1984). OM was extracted by using an extracting solution containing 0.2 mol l^{-1}
135	NaOH, 0.01 mol l^{-1} EDTA, 2 % methanol, and 0.005 % Superfloc 127, and
136	determined by the K ₂ CrO ₇ -H ₂ SO ₄ oxidation method. NH ₄ -N, NO ₃ -N, available Ca,
137	and Mg were extracted by 1 mol l^{-1} KCl solution. NH ₄ -N and NO ₃ -N
138	was determined by colorimetry method, while Ca and Mg were determined by
139	ICP-AES (inductively coupled plasma atomic emission spectrometer). Available K, P
140	and Fe were extracted by using an extracting solution containing 0.25 mol 1^{-1}
141	NaHCO ₃ , 0.01 mol l^{-1} EDTA, 0.01 mol l^{-1} NH ₄ F, and 0.005 % Superfloc 127. P was
142	determined by spectrophotometry (colorimetry), and K and Fe were determined by
1.40	
143	atomic absorption spectrophotometry. Finally, available S was extracted by 0.1 mol l^{-1}
143 144	atomic absorption spectrophotometry. Finally, available S was extracted by 0.1 mol l^{-1} Ca(H ₂ PO ₄) ₂ and 0.005 % Superfloc 127 and determined by turbidimetric method. The

146 **2.3 Soil column and different fertilization treatments**

In order to test the hypothesis that the impact of different chemical fertilizers on carbonate weathering may be different, columns ($\emptyset = 20$ cm, H= 15 cm) were constructed from 20 cm diameter polyvinylchloride (PVC) pipe (Fig. 2). A hole ($\emptyset =$

150	2 cm) was placed at the bottom of each column to discharge soil water from the soil
151	column. A polyethylene net (\emptyset 0.5 mm) was placed in the bottom of the columns to
152	prevent soil loss. A 2 cm thick filter layer, including gravel, coarse sand and fine sand,
153	was spread over the net. Two different carbonate rock tablets were buried in the
154	bottom of each soil column (Fig. 2). Based on the common kinds of chemical
155	fertilizers and the main objective of this study, three types (N, P and K fertilizers) of
156	fertilizer including 10 different fertilizers (NH4NO3; NH4HCO3; NaNO3; NH4Cl;
157	(NH ₄) ₂ CO ₃ ; Ca ₃ (PO ₄) ₂ ; (NH ₄) ₃ PO ₄ ; fused calcium-magnesium phosphate; Urea and
158	K ₂ CO ₃ fertilizer) were involved in this study. As a result, eleven fertilization
159	treatments including control treatment, each with three replicates, were set up in the
160	field column experiment. The local practical rate of fertilizer application is
161	approximate 160 kg N \cdot ha ⁻¹ of N fertilizer, 150 kg P ₂ O ₅ ha ⁻¹ of P fertilizer and 50 kg
162	$K \cdot ha^{\text{-1}}$ of K fertilizer. In order to short the time of this experiment and make the
163	experimental results distinct, the added amount of 10 fertilizers was increased to: (1)
164	control without fertilizer (CK); (2) 43g NH ₄ NO ₃ fertilizer (CF); (3) 85g NH ₄ HCO ₃
165	fertilizer (NHC); (4) 91g NaNO ₃ fertilizer (NN); (5) 57g NH ₄ Cl fertilizer (NCL); (6)
166	51g (NH ₄) ₂ CO ₃ fertilizer (NC); (7) 52g Ca ₃ (PO ₄) ₂ fertilizer (CP); (8) 15g (NH ₄) ₃ PO ₄
167	fertilizer (NP); (9) 44g fused calcium-magnesium phosphate fertilizer (Ca-Mg-P); (10)
168	32g Urea fertilizer (U); and (11) 10g K ₂ CO ₃ fertilizer (PP). An aliquot of 6 kg of soil
169	was weighed (bulk density = 1.3 g/cm^3), mixed throughly with one of the above
170	fertilizers, and filled into its own column. This process was repeated for all three
171	replicates of the 11 fertilizer treatments. The soil columns were labelled and placed

orderly (see Fig. 2b) at the field experiment site in Huaxi District, Guiyang for awhole year.

174 **2.4 The rate of carbonate weathering**

Two different kinds of carbonate rock tablets (2 cm \times 1 cm \times 0.5 cm in size) were 175 176 placed in the bottom of each soil column to examine the rate of carbonate weathering in the soil. The two different kinds of carbonate rock collected from the karst area of 177 Huaxi District were: (1) limestone with 60-65 % micrite, 30-35 % microcrystalline 178 calcite, and 2-3 % pyrite; and (2) dolostone with 98-99 % fine crystalline dolomite, 1 % 179 pyrite, and trace quantities organic matter. All the tablets were heated at 80 $\,^\circ C$ for 4 180 hours, weighed on a 1/10000 electronic balance in the laboratory, labeled by tying a 181 label with fishing line, and then buried at the bottom of each soil column. After a 182 183 whole year, the tablets were removed carefully, rinsed, baked and weighed.

The amount of weathering (Aw), the ratio of weathering (Rw) and the rate of weathering (Raw) for limestone and dolomite were calculated according to the weight difference of the tablets using the following formulas:

 $Aw = (Wi - Wf) \tag{1}$

$$\mathbf{R}w = (\mathbf{W}i - \mathbf{W}f)/\mathbf{W}i \tag{2}$$

189
$$Raw = (Wi-Wf)/(S*T)$$
(3)

where W_i is the initial weight of the carbonate-rock-tablet, W_f is the final weight, S is the surface area of carbonate rock tablet, and T is the length of the experimental period.

193 **2.5 Statistical analysis**

194 Statistical analysis was performed using IBM SPSS 20.0 (Statistical Graphics 195 Corp, Princeton, USA). All results of carbonate weathering were reported as the 196 means \pm standard deviations (SD) for the three replicates.

197 **3. Results**

198 3.1 Weathering rate of carbonate under different fertilized treatments

The Rw and Raw of limestone and dolostone are listed in Table 2. The results 199 show that the Rw of limestone under urea, NH₄NO₃, NH₄Cl, (NH₄)₂CO₃ and 200 NH_4HCO_3 treatments were 8.48 ±0.96, 6.42 ±0.28, 5.54 ±0.64, 4.44 ±0.81 and 4.48 201 202 ± 0.95 ‰, respectively, significantly greater than that under the control treatment 0.48 ± 0.14 % (see Fig. 3). In addition, the observed Rw of dolostone were 6.59 ± 0.67 , 203 5.30 ± 0.87 , 4.77 ± 0.78 , 4.94 ± 1.91 and 3.22 ± 0.87 % respectively, under these 204 205 same five fertilization treatments, in contrast to -0.31 ± 0.09 ‰ in the control treatment. This clearly demonstrates that the addition of these five fertilizers increased 206 the rate of carbonate weathering. 207

208 The remaining treatments made differences in the Rw and Raw of limestone and dolostone in comparison to the control treatment (Table 2), but the differences were 209 much smaller than the treatments with those five fertilizers as mentioned above (Fig. 210 3). In the $(NH_4)_3PO_4$ treatment, the Rw were only 1.08 ± 0.34 ‰, and 0.75 ± 0.21 ‰ 211 for limestone and dolomite, respectively, while the Raw were 4.00 ± 1.15 g m⁻² a⁻¹ 212 and 1.00 \pm 1.01 g m⁻² a⁻¹ for limestone and dolomite, respectively. The Rw and Raw 213 in the NaNO3 treatments showed differences with the control treatment. The values, 214 however, are much less than those under the five NH₄-based fertilizers mentioned 215

above, exhibiting little effect of the NaNO₃ fertilizer addition on carbonate weathering (see Table 2 and Fig. 3). Except for the Rw of limestone approaching zero in the Ca₃(PO₄)₂ treatment, all the values of Rw and Raw in Ca-Mg-P, K₂CO₃ and Ca₃(PO₄)₂ treatments showed negative values. This indicates that the addition of Ca-Mg-P, K₂CO₃ and Ca₃(PO₄)₂ fertilizers led to precipitation at the surface of the carbonate mineral.

3.2 Comparison of limestone of dolomite

Fig. 3 shows that, on the whole, the ratios of dolostone weathering are smaller than those of limestone weathering except for the $(NH_4)_2CO_3$ treatment, demonstrating that dolostone weathers more slowly than limestone under fertilization effects.

In Fig. 4, we plotted the Rw of limestone vs. dolostone tablets in a linear correlation diagram, in order to compare the weathering responses of limestone with dolostone. The results show that the Rw of limestone and dolostone exhibit a high positive correlation (R^2 =0.9773; see Fig. 4), indicating that the weathering of limestone and dolostone are similar under different treatments. Thus, we will explain the results in terms of carbonates, rather than separately discussing the individual dolostone and limestone.

234 **4. Discussion**

4.1 Kinetics of carbonate dissolution/precipitation: controlling factors

Experimental studies of carbonate dissolution kinetics have shown metal carbonate weathering usually depends upon three parallel reactions occurring at the carbonate interface (Chou et al., 1989; Plummer et al., 1978; Pokrovsky et al., 2009):

239
$$MeCO_3 \leftrightarrow Me^{2+} + CO_3^{2-}$$
 (4)

240
$$MeCO_3 + H_2CO_3 \leftrightarrow Me^{2+} + 2HCO_3^-$$
 (5)

(6)

241
$$MeCO_3 + H^+ \leftrightarrow Me^{2+} + HCO_3^-$$

where Me = Ca, Mg. As Eq. (5) describes, atmospheric/soil CO₂ is usually considered 242 to be the natural weathering agent of carbonate. In watersheds with calcite- and 243 dolomite-containing bedrock, H₂CO₃ formed in the soil zone usually reacts with 244 carbonate minerals, resulting in dissolved Ca, Mg, and HCO_3^- as described in Eq. (5) 245 246 (Andrews and Schlesinger, 2001; Shin et al., 2014). Although it has been proven that the reaction of carbonate dissolution is mainly controlled by the amount of rainfall 247 (Amiotte Suchet et al., 2003; Egli and Fitze, 2001; Kiefer, 1994), in this study, we 248 249 consider that the effect of rainfall is equal in each soil column, and hence is disregarded as a controlling factor in weathering rate differences among these 250 treatments. In theory, the fertilizers could stimulate bacteria, which may increase 251 252 respiration and CO_2 concentrations in the soil, as a result, probably enhance carbonate weathering as Eq. (5). However, Eq. (6) suggests that the proton from other 253 origins, such as the nitrification processes of NH₄⁺, as mentioned in the Introduction 254 section, can play the role of weathering agent in agricultural areas. In this study, the 255 urea, NH₄NO₃, NH₄HCO₃, NH₄Cl, and (NH₄)₂CO₃ amendments increased (10 to 256 17-fold) the natural weathering rate from 2.00 g m⁻² a^{-1} for limestone tablets in the 257 control treatment (Table 2). Thus, these increases are strongly related to the effect of 258 proton release from the nitrification of NH₄⁺. In contrast, carbonate precipitation will 259

occur due to the backward reaction of Eq. (5) in the following cases: (1) the degassing of dissolved CO₂ due to dramatic changes in the parameters of the CO₂ system (such as T, pH, pCO₂, etc); (2) soil evapotranspiration; or (3) the common ion effect: the increase of Ca²⁺, Mg²⁺ or CO₃²⁻ in a weathering-system with equilibrium between water and calcite (Calmels et al., 2014; Dreybrodt, 1998).

4.2 Main reactions and effects in different treatments

The main reactions and effects of every treatment in this study are listed in Table3.

(1) Nitrification in NH₄-fertilizer: NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and
urea
In urea (CO(NH₂)₂) treatment, the enzyme urease rapidly hydrolyzes the urea-N

to NH_4^+ ions (Eq. (7)) when urea is applied to the soil (Soares et al., 2012).

272
$$CO(NH_2)_2 + 3H_2O \rightarrow 2NH_4^+ + 2OH^- + CO_2$$
 (7)

Although the study of Singh et al. (2013) showed that part of NH_4^+ may be lost as ammonia (NH_3) and subsequently as nitrous oxide (N_2O) (Singh et al., 2013), the remaining ammonium (NH_4^+) is mainly oxidized during nitrification in soil by autotrophic bacteria, such as Nitrosomonas, resulting in nitrite NO_2^- and H^+ ions. Nitrite is in turn oxidized by another bacterium, such as Nitrobacter, resulting in nitrate (NO_3^-) (Eq. (8)) (Perrin et al., 2008).

279
$$NH_4^+ + 2O_2 \rightarrow NO_3^- + H_2O + 2H^+$$
 (8)

280 The protons (H^+) produced by nitrification can be neutralized in two ways:

(i) either by exchange process with base cations in the soil exchange complex

282 (Eq. (9)) Soil – Ca + 2H⁺ \rightarrow Soil – 2H⁺ + Ca²⁺ (9)

283 or (ii) via carbonate mineral dissolution (Eq.(10))

284
$$Ca_{(1-x)}Mg_{x}CO_{3} + H^{+} \rightarrow (1-x)Ca^{2+} + xMg^{2+} + HCO_{3}^{-}$$
 (10)

Consequently, by combining Eq. (8) and Eq. (10), carbonate weathering by 285 protons produced by nitrification can be expressed as (Eq. 11) (See details in Perrin et 286 al., 2008 and Gandois et al., 2011). 287

288
$$2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}^{+} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 2HCO_{3}^{-}$$

289 (11)

As discussed above, provided that the loss as ammonia (NH₃) and nitrous oxide 290 (N₂O) after hydrolyzation is disregarded in this study, the final equation of carbonate 291 weathering in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments will be as 292 follows, respectively: 293

294
$$2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}NO_{3} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + 2NO_{3}^{-} + H_{2}O +$$

295 $2HCO_{3}^{-}$ (12)

 $2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}HCO_{3} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O +$ 296 3HCO₃⁻ 297 (13)

298
$$2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}Cl + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + Cl^{-} + H_{2}O +$$

299 $2HCO_{3}^{-}$ (14)

$$3Ca_{(1-x)}Mg_{x}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 2H_{2}O + 4M_{2}O_{3} + 2M_{2}O_{3} + 2M_{$$

$$301 \quad 4HCO_3$$
 (15)

302
$$3Ca_{(1-x)}Mg_{x}CO_{3} + CO(NH_{2})_{2} + 4O_{2} \rightarrow 3(1-x)Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 4HCO_{3}^{-}$$

303 (16)

(2) No effect of NO₃-fertilizer treatment: NaNO₃ treatment 304

In the NaNO₃ treatment, the reaction occurs according to Eq. (17), indicating that 305 the addition of NO₃-fertilizer does not significantly influence carbonate weathering. 306

307
$$Ca_{(1-x)}Mg_{x}CO_{3} + NaNO_{3} + CO_{2} + H_{2}O \rightarrow (1-x)Ca^{2+} + xMg^{2+} + Na^{+} + NO_{3}^{-} +$$

308 2HCO₃⁻

309 (3) Common ion effect: K₂CO₃ treatment

In the K_2CO_3 treatment, CO_3^{2-} and HCO_3^{-} will be produced after the addition of K₂CO₃ according to Eq. (18), hence resulting in carbonate precipitation as described in Eq. (19), due to the common ion effect.

313
$$K_2CO_3 + H_2O \rightarrow 2K^+ + HCO_3^- + OH^-$$
 (18)

314
$$(1-x) \operatorname{Ca}^{2+} + x \operatorname{Mg}^{2+} + 2 \operatorname{HCO}_3^{-} \rightarrow \operatorname{Ca}_{(1-x)} \operatorname{Mg}_x \operatorname{CO}_3 + \operatorname{CO}_2 + \operatorname{H}_2 \operatorname{O}$$
 (19)

315 (4) Complex effects: Nitrification versus inhibition effect of PO₄ in (NH₄)₃PO₄ 316 treatments

In the $(NH_4)_3PO_4$ treatment, the reaction of carbonate weathering will occur according to Eq. (11) due to the nitrification of NH_4^+ ionized from the $(NH_4)_3PO_4$ fertilizer. The PO_4^{3-} anion will exert an inhibition to calcite dissolution (Kitano et al., 1978), as calcium orthophosphate (Ca-P) precipitation is produced on the surface of calcite after the addition of PO_4^{3-} in soil (reaction: Ca + PO₄ \rightarrow Ca-P), resulting in inhibition of the calcite dissolution (Alkattan et al., 2002; Berner and Morse, 1974; Raistrick, 1949).

(5) Complex effects: Common ion effect versus inhibition effect of PO₄ in Ca₃(PO₄)₂ and Ca-Mg-P treatments

In the Ca₃(PO₄)₂ and Ca-Mg-P treatments, on the one hand, Ca_(1-x)Mg_xCO_{3 is} produced when the concentrations of Ca²⁺ (or/and Mg²⁺) increases according to Eq. (19). On the other hand, the inhibition effect of phosphate will cause calcium phosphate precipitation to be produced on the surface of carbonate minerals after the addition of P in soil (reaction: Ca + PO₄ \rightarrow Ca-P), resulting in inhibition the carbonate

precipitation (Alkattan et al., 2002; Burton and Walter, 1990; Giannimaras and

- Koutsoukos, 1987; House, 1987; Ishikawa and Ichikuni, 1981; Lin and Singer, 2006;
- 333 Mucci, 1986; Reddy, 1977).

4.3 Difference between NH₄⁺ and NO₃⁻ in impacts on carbonate weathering and implication on the estimation of CO₂ consumption

In order to further compare the differences between NH_4^+ and NO_3^- effects on 336 carbonate weathering, the initial molar amounts of fertilizer-derived NH₄ per unit in 337 every treatment were calculated, and are listed in Table 4. The results show that the 338 amount of NH_4^+ hydrolyzed from added urea is 1.06 mole, while NH_4^+ ionized from 339 added NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and (NH₄)₃PO₄ is 0.54 mole, 1.08 340 mole, 1.07 mole, 1.06 mole, and 0.03 mole, respectively (Table 4). The Rw of 341 limestone tablets and the initial amount of NH₄⁺ per treatment are plotted in Fig. 5. A 342 distinct relationship between them is observed, in that the Rw values in NH_4NO_3 , 343 NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea treatments are larger than in the control 344 treatment, where the initial amount of NH_4^+ yields similar results (Fig. 5). This 345 suggests that carbonate weathering in NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and 346 urea treatments are mainly attributed to the dissolution reaction described as Eq. (11). 347 This process of carbonate weathering by protons released from nitrification has been 348 demonstrated by many studies, from the laboratory to the field (Barnes and Raymond, 349 350 2009; Bertrand et al., 2007; Biasi et al., 2008; Errin et al., 2006; Gandois et al., 2011; Hamilton et al., 2007; Oh and Raymond, 2006; Perrin et al., 2008; Semhi and Suchet, 351 2000; Song et al., 2017; Song et al., 2011; West and McBride, 2005). We have noted 352 that the Rw values in NH_4HCO_3 and $(NH_4)_2CO_3$ treatments are less than half those in 353 urea treatment despite adding the same amount of fertilizer-derived NH₄ 354 (approximately 1.07 mole). This is probably because the two fertilizers, NH₄HCO₃ 355

and $(NH_4)_2CO_3$ as a typical weak acid and weak base salt, are easier to decompose and produce NH_3 and CO_2 gases according to Eq. (20) and (21) (Trypuc and Kielkowska, 1996), resulting in amounts of fertilizer-derived NH_4 that are lower than 1.07 moles.

$$360 \qquad \text{NH}_4\text{HCO}_3 \rightarrow \text{NH}_3 \uparrow + \text{H}_2\text{O} + \text{CO}_2 \uparrow \tag{20}$$

$$(NH_4)_2CO_3 \rightarrow 2NH_3 \uparrow + H_2O + CO_2 \uparrow$$
(21)

The Aw and Rw in the $(NH_4)_3PO_4$ treatment, unlike in other NH₄-fertlizer 362 treatments, do not show a significant increase compared to the control treatment, 363 which is not only owing to the low amount of added NH_4^+ in $(NH_4)_3PO_4$ treatment 364 (0.3 mole; see Table 4), but also the inhibition of phosphate (Chien et al., 2011; Wang 365 et al., 2012). After the addition of $(NH_4)_3PO_4$ in soil, calcium orthophosphate (Ca-P) 366 precipitation will form on calcite surfaces, which is initiated with the aggregation of 367 clusters leading to the nucleation and subsequent growth of Ca-P phases, at various 368 pH values and ionic strengths relevant to soil solution conditions (Chien et al., 2011; 369 370 Wang et al., 2012).

There is no significant different between the Rw in the NaNO₃ treatment compared to the control treatment, indicating that the addition of NO₃-fertilizer does not significantly influence carbonate weathering.

A notable issue herein is that the NaNO₃ treatment produces the same amount of NO₃⁻ (1.07 mole) as other NH₄ fertilizer (NH₄NO₃, NH₄HCO₃, NH₄Cl, (NH₄)₂CO₃ and urea), but it fails to impact carbonate weathering, which raises a new problem. Eq. (5), usually considered as an expression for the natural weathering process of carbonate, is an important reaction in understanding the kinetics of carbonate dissolution in carbonate-dominated areas, where the molar ratio of HCO₃⁻and Me²⁺ in

the river is usually used as an indicator to make estimates of CO₂ consumption by 380 carbonate weathering at the regional/global scale (Hagedorn and Cartwright, 2009; Li 381 et al., 2009). In agricultural areas, the relationship between (Ca+Mg)/HCO₃⁻ and NO₃⁻ 382 is usually employed to estimate the contribution of N-fertilizer to riverine Ca^{2+} , Mg^{2+} , 383 and alkalinity (Etchanchu and Probst, 1988; Jiang, 2013; Jiang et al., 2009; Perrin et 384 al., 2008; Semhi and Suchet, 2000). In these studies, the nitrification described in Eq. 385 (8) is usually considered as the unique origin of NO_3^- . According to the results of the 386 NaNO₃ treatment in this study, the contribution of protons from nitrification to 387 388 carbonate weathering may be overestimated, if anthropogenic NO₃⁻ is neglected, since the anthropogenic NO_3^- does not release the proton described in Eq. (8). For NH_4NO_3 389 fertilizer, Eq. (12) shows that two moles of $Ca^{2+}+Mg^{2+}$, NO_3^- , and HCO_3^- will be 390 produced when one mole NH₄NO₃ reacts with 2 moles of carbonate, where only half 391 of the NO_3^- originates from nitrification described as Eq. (8). This will result in an 392 overestimation of the contribution of nitrification to carbonate weathering, and thus 393 thereby mislead the estimation of CO₂ consumption. 394

At regional scales, if different fertilizers are simultaneously added to an agricultural area, the estimation of CO_2 consumption by carbonate weathering might become more complicated, since the mole ratios of Ca+Mg, HCO₃⁻, and/or NO₃⁻ between different fertilization treatments are different (see Table 3). Thus, the related anthropogenic inputs (e.g. Ca+Mg, NH₄, NO₃⁻, HCO₃⁻, etc.) need to be investigated to more accurately estimate the impact of fertilization on carbonate weathering and its CO₂ consumption.

402 **4.4 The comparison with other studied results**

403 The Rw and Raw of limestone in the control treatment in this study were 0.48 ‰ 404 and 2.00 g m⁻² a⁻¹, respectively. These are generally consistent with observations of

0.51-32.97 g m⁻² a⁻¹ (for Raw) in Nongla, Guangxi, a karst area of Southwestern 405 China (Zhang, 2011), and with the results of 0.05-5.06 ‰ (for Rw) and 1.08-136.90 406 g $m^{-2} a^{-1}$ (for Raw) from the north slope of the Hochschwab Massif in Austria (Plan, 407 2005), as determined using the limestone tablet method. But the Raw of 2.00 g m⁻² a⁻¹ 408 is lower than the results of 7.0-63.5 g m⁻² a⁻¹ for Raw from Jinfo Mountain in 409 Chongqing, China (Zhang, 2011). These differences in carbonate weathering are 410 mainly attributed to the different types of carbonate rock tablets, climate, 411 micro-environments of soil, etc. The Raw of limestone in the N-fertilizer treatments 412 are 20.57-34.71 g m⁻² a⁻¹, similar to the weathering rate of carbonate in an orchard 413 (32.97 g m⁻² a⁻¹) at Nongla, Manshan, Guangxi, China, which usually involves 414 fertilization activities. 415

416 At larger scales, such as watersheds, the weathering rate is usually estimated by using the riverine hydro-chemical method, which is inconsistent with the results from 417 the carbonate-rock-tablet test. Zeng et al. (2014) estimate that the carbon sink 418 intensity calculated by the carbonate-rock-tablet test is only one sixth of that 419 estimated using the riverine hydro-chemical method (Zeng et al., 2014). The results 420 from Semhi et al. (2000) show that weathering rates of carbonate rock using riverine 421 hydro-chemical method are approximately 77.5 g m⁻² a⁻¹ and 50.4 g m⁻² a⁻¹ in the 422 upstream and downstream, respectively, of the Garonne river, France, which are 423 approximately 25-35 times greater than that in the control treatment (2.00 g m⁻² a⁻¹ 424 for natural weathering rate) and 2-3 times greater than in the N-fertilizer treatment 425 $(20.57-34.71 \text{ g m}^{-2} \text{ a}^{-1} \text{ for anthropic weathering rate})$ in this study. The global natural 426 weathering rate of carbonate reported by Amiotte Suchet et al. (2003) is 47.8 g m⁻² a⁻¹, 427 which is much higher than that we observed. Thus, we conclude that it is difficult to 428 compare the results from the carbonate-rock-tablet test and the riverine 429

hydro-chemical method. The carbonate-rock-tablet test is suitable for research on the 430 comparative or simulated experiments, while the riverine hydro-chemical method is 431 appropriate for regional investigations and estimations. According to the estimation 432 from Yue et al. (2015), the enhanced HCO_3^- flux due to nitrification of NH_4^+ at 433 Houzhai catchment of Guizhou Province would be 3.72×10^5 kg C/year and account 434 for 18.7 % of this flux in the entire catchment (Yue et al., 2015). This is similar to 435 estimates from other small agricultural carbonate basins (12-26 %) in southwest 436 France. 437

438 **5.** Conclusions

The impact of the addition of different fertilizers (NH₄NO₃, NH₄HCO₃, NaNO₃, 439 NH₄Cl, (NH₄)₂CO₃, Ca₃(PO₄)₂, (NH₄)₃PO₄, Ca-Mg-P, urea, and K₂CO₃) on carbonate 440 weathering was studied in a field column experiment using carbonate-rock-tablets. 441 The amount of weathering and the ratio of weathering of carbonate rock tablets 442 showed that the addition of urea, NH₄NO₃, NH₄HCO₃, NH₄Cl, and (NH₄)₂CO₃ 443 distinctly increased carbonate weathering, which was attributed to the nitrification of 444 NH_4^+ , while the addition of Ca₃(PO₄)₂, Ca-Mg-P and K₂CO₃ induced carbonate 445 precipitation due to the common ion effect. The addition of (NH₄)₃PO₄ and NaNO₃ 446 had a relatively little impact on carbonate weathering, where the former can be 447 attributed to the low added amount of (NH4)₃PO₄, and may be related to the inhibition 448 of phosphate, while the latter seemed to raise a new question. The question is: the 449 minor impact of nitrate on carbonate weathering may result in the overestimation of 450 the impact of N-fertilizer on CO₂ consumption by carbonate weathering at the 451 regional/global scale, if the effects of NO₃ and NH₄ are not distinguished. Thus, the 452

453	related anthropogenic inputs (e.g. Ca+ Mg, NH ₄ , NO ₃ ⁻ , HCO ₃ ⁻ , etc.) need to be
454	investigated to more accurately estimate the impact of fertilization on carbonate
455	weathering and its consumption of CO_2 (Perrin et al., 2008; Semhi and Suchet, 2000).
456	6. Acknowledgements
457	This study was supported jointly by the Basic Science Research Fund from the
458	Institute of Hydrogeology and Environmental Geology (Grant No. SK201208), and
459	the Chinese National Natural Science Foundation (No. 41403107 and No. 41325010).
460	
461	
462	References:
463	Adams, J.M. and Post, W.M., 1999. A preliminary estimate of changing calcrete carbon storage on land
464	since the Last Glacial Maximum. Global and Planetary Change, 20(4): 243-256.
465	Alkattan, M., Oelkers, E.H., Dandurand, J.L. and Schott, J., 2002. An experimental study of calcite
466	dissolution rates at acidic conditions and 25 C in the presence of NaPO3 and MgCl2. Chemical
467	Geology, 190(1-4): 291-302.
468	Amiotte Suchet, P., Probst, J.L. and Ludwig, W., 2003. Worldwide distribution of continental rock
469 470	lithology: Implications for the atmospheric/soil CO ₂ uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochemical Cycles, 17(2): 1-13.
471	Andrews, J.A. and Schlesinger, W.H., 2001. Soil CO ₂ dynamics, acidification, and chemical
472	weathering in a temperate forest with experimental CO ₂ enrichment. Global Biogeochem. Cycles, 15:
473	149-162.
474	Barnes, R.T. and Raymond, P.A., 2009. The contribution of agricultural and urban activities to
475	inorganic carbon fluxes within temperate watersheds. Chemical Geology, 266(3-4): 318-327.
476	Berner, R.A. and Morse, J.W., 1974. Dissolution kinetics of calcium carbonate in sea water; IV,
477	Theory of calcite dissolution. American Journal of Science, 274(2): 108.
478	Bertrand, I., Delfosse, O. and Mary, B., 2007. Carbon and nitrogen mineralization in acidic, limed and
479	calcareous agricultural soils: Apparent and actual effects. Soil Biology and Biochemistry, 39(1):
480	276-288.
481	Biasi, C. et al., 2008. Direct experimental evidence for the contribution of lime to CO_2 release from
482	managed peat soil. Soil Biology and Biochemistry, 40(10): 2660-2669.
483	Burton, E.A. and Walter, L.M., 1990. The role of pH in phosphate inhibition of calcite and aragonite
484	precipitation rates in seawater. Geochimica et Cosmochimica Acta, 54(3): 797-808.
485	Calmels, D., Gaillardet, J. and François, L., 2014. Sensitivity of carbonate weathering to soil CO_2
486	production by biological activity along a temperate climate transect. Chemical Geology, 390(0): 74-86.
487	Chien, S.H., Prochnow, L.I., Tu, S. and Snyder, C.S., 2011. Agronomic and environmental aspects of
488	phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling in
489	Agroecosystems, 89(2): 229-255.
	21

- Chou, L., Garrels, R.M. and Wollast, R., 1989. Comparative study of the kinetics and mechanisms of
 dissolution of carbonate minerals. Chemical Geology, 78(3-4): 269-282.
- 492 Dreybrodt, W., 1998. Reply to the comment by Y. Zhang and CA Grattoni on: "precipitation kinetics of
- 493 calcite in the system CaCO₃-H₂O-CO₂: the conversion to CO₂ by the slow process $H^+ + HCO_3^- \rightarrow CO_2 + H^+$
- 494 H₂O as a rate limiting step" by W. Dreybrodt, L. Eisenlohr, B. Madry, and S. Ringer. Geochimica et

495 Cosmochimica Acta, 62(23-24): 3791-3792.

- 496 Dreybrodt, W., Lauckner, J., Zaihua, L., Svensson, U. and Buhmann, D., 1996. The kinetics of the
- 497 reaction $CO_2 + H_2O \rightarrow H^+ + HCO_3^-$ as one of the rate limiting steps for the dissolution of calcite in the
- 498 system H₂O-CO₂-CaCO₃. Geochimica et Cosmochimica Acta, 60(18): 3375-3381.
- Egli, M. and Fitze, P., 2001. Quantitative aspects of carbonate leaching of soils with differing ages andclimates. Catena, 46(1): 35-62.
- 501 Errin, A.S.P., Robst, A.P. and Robst, J.L.P., 2006. Impact of nitrogen fertilizers on natural weathering
- 502 processes : Evident role on CO_2 consumption The oxygen isotopic composition of Precambrian cherts, 503 Goldschmidt Conference, pp. 2332-2332.
- 504 Etchanchu, D. and Probst, J., 1988. Evolution of the chemical composition of the Garonne River water
- during the period 1971-1984. Hydrological sciences journal, 33(3): 243-256.
- 506 FAO, 2000. Fertilizer requirements in 2015 and 2030. FAO.
- Gams, I., 1981. Comparative research of limestone solution by means of standard tablets, Proceedings
 of the 8th International Congress of Speleology Bowling Green, Kentucky, pp. 273-275.
- Gams, I., 1985. International comparative measurements of surface solution by means of standard
 limestone tablets. Razpr IV Razeda Sazu, 26: 361-386.
- 511 Gandois, L., Perrin, A.S. and Probst, A., 2011. Impact of nitrogenous fertiliser-induced proton release
- 512 on cultivated soils with contrasting carbonate contents: A column experiment. Geochimica et
- 513 Cosmochimica Acta, 75: 1185-1198.
- 514 GBS, 2014. 2014 Guizhou Statistical Yearbook. Statistical Press of China, Beijing.
- 515 Giannimaras, E.K. and Koutsoukos, P.G., 1987. The crystallization of calcite in the presence of 516 orthophosphate. Journal of Colloid and Interface Science, 116(2): 423-430.
- 517 Hagedorn, B. and Cartwright, I., 2009. Climatic and lithologic controls on the temporal and spatial
- variability of CO_2 consumption via chemical weathering: An example from the Australian Victorian
- 519 Alps. Chemical Geology, 260(3-4): 234-253.
- Hamilton, S.K., Kurzman, A.L., Arango, C., Jin, L. and Robertson, G.P., 2007. Evidence for carbon
 sequestration by agricultural liming. Global Biogeochemical Cycles, 21(GB2021): 1-12.
- 522 Han, Z. and Jin, Z., 1996. Hydrogeology of Guizhou Province, China. Seismic Publication, Beijing.
- 523 House, W.A., 1987. Inhibition of calcite crystal growth by inorganic phosphate. Journal of Colloid and
- 524 Interface Science, 119(2): 505-511.
- Hunter, A.H., 1984. Soil Fertility analytical services in Bangladesh. BARC/IDAS Cosultancy Report
 Contract Aid/388-0005: 581-601.
- 527 Ishikawa, M. and Ichikuni, M., 1981. Coprecipitation of phosphate with calcite. GEOCHEMICAL
 528 JOURNAL, 15(5): 283-288.
- 529 Jiang, Y., 2013. The contribution of human activities to dissolved inorganic carbon fluxes in a karst
- underground river system: Evidence from major elements and $\delta^{13}C_{DIC}$ in Nandong, Southwest China.
- Journal of Contaminant Hydrology, 152(0): 1-11.
- Jiang, Y., Wu, Y., Groves, C., Yuan, D. and Kambesis, P., 2009. Natural and anthropogenic factors
- 533 affecting the groundwater quality in the Nandong karst underground river system in Yunan, China.

- Journal of Contaminant Hydrology, 109(1-4): 49-61.
- Jiang, Z. and Yuan, D., 1999. CO₂ source-sink in karst processes in karst areas of China. Episodes,

- Kiefer, R.H., 1994. Temporal cycles of karst denudation in northwest Georgia, USA. Earth Surface
 Processes and Landforms, 19(3): 213-232.
- 539 Kitano, Y., Okumura, M. and Idogaki, M., 1978. Uptake of phosphate ions by calcium carbonate.
- 540 Geochemical Journal(12): 29-37.
- Kump, L.R., Brantley, S.L. and Arthur, M.A., 2000. Chemical weathering, atmospheric CO₂, and
 climate. Annual Review of Earth and Planetary Sciences, 28(1): 611-667.
- Lang, Y., 2006. Geochemistry of surface and ground water in Guiyang, China: Water/rock interaction
 and pollution in a karst hydrological system. Applied Geochemistry, 21: 887-903.
- Lerman, A. and Wu, L., 2006. CO_2 and sulfuric acid controls of weathering and river water composition. Journal of Geochemical Exploration, 88(1-3): 427-430.
- 547 Lerman, A., Wu, L. and Mackenzie, F.T., 2007. CO_2 and H_2SO_4 consumption in weathering and 548 material transport to the ocean, and their role in the global carbon balance. Marine Chemistry, 106(1-2): 549 326-350.
- Li, S. et al., 2011. Using a dual isotopic approach to trace sources and mixing of sulphate in Changjiang Estuary, China. Applied Geochemistry, 26, Supplement: S210-S213.
- 552 Li, S., Calmels, D., Han, G., Gaillardet, J. and Liu, C., 2008. Sulfuric acid as an agent of carbonate 553 weathering constrained by $\delta^{13}C_{DIC}$: Examples from Southwest China. Earth and Planetary Science 554 Letters, 270(3-4): 189-199.
- Li, S., Xu, Z., Wang, H., Wang, J. and Zhang, Q., 2009. Geochemistry of the upper Han River basin,
- 556 China: 3: Anthropogenic inputs and chemical weathering to the dissolved load. Chemical Geology,
 557 264(1-4): 89-95.
- Lian, B., Chen, Y., Zhu, L. and Yang, R., 2008. Effect of Microbial Weathering on Carbonate Rocks.
 Earth Science Frontiers, 15(6): 90-99.
- Lin, Y.P. and Singer, P.C., 2006. Inhibition of calcite precipitation by orthophosphate: Speciation and thermodynamic considerations. Geochimica et cosmochimica acta, 70(10): 2530-2539.
- Liu, C., Li, S., Lang, Y. and Xiao, H., 2006. Using δ¹⁵N- and δ¹⁸O-Values To Identify Nitrate Sources
 in Karst Ground Water, Guiyang, Southwest China. Environmental Science & Technology, 40(22):
 6928-6933.
- 565 Liu, Z. and Dreybrod, W., 1997. Dissolution kinetics of calcium carbonate minerals in H_2O-CO_2 566 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction $H_2O + CO_2$
- 567 \leftrightarrow H⁺ + HCO₃⁻. Geochimica et Cosmochimica Acta, 61(14): 2879-2889.
- Liu, Z., Dreybrodt, W. and Liu, H., 2011. Atmospheric CO₂ sink: silicate weathering or carbonate
 weathering? Applied Geochemistry, 26(S): 292-294.
- Liu, Z., Dreybrodt, W. and Wang, H., 2010. A new direction in effective accounting for the atmospheric CO₂ budget: Considering the combined action of carbonate dissolution, the global water
 cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Science Reviews, 99(3-4):
- **573** 162-172.
- 574 Mucci, A., 1986. Growth kinetics and composition of magnesian calcite overgrowths precipitated from
- seawater: Quantitative influence of orthophosphate ions. Geochimica et Cosmochimica Acta, 50(10):
 2255-2265.
- 577 NBS, 2014. 2014 Statistical Yearbook. Statistical Press of China, Beijing.

⁵³⁶ 22(1): 33-35.

- 578 Oh, N. and Raymond, P.A., 2006. Contribution of agricultural liming to riverine bicarbonate export and
- 579 CO₂ sequestration in the Ohio River basin. Global Biogeochemical Cycles, 20: 1-17.
- 580 Perrin, A., Probst, A. and Probst, J., 2008. Impact of nitrogenous fertilizers on carbonate dissolution in
- small agricultural catchments: Implications for weathering CO₂ uptake at regional and global scales.
- 582 Geochimica et Cosmochimica Acta, 72(13): 3105-3123.
- 583 Pierson-wickmann, A., Aquilina, L., Martin, C., Ruiz, L. and Molénat, J., 2009. High chemical
- weathering rates in first-order granitic catchments induced by agricultural stress. Chemical Geology,
- **585** 265: 369-380.
- Plan, L., 2005. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian
 alps. Geomorphology, 68(3-4): 201-212.
- Plummer, L.N., Wigley, T. and Parkhurst, D.L., 1978. The kinetics of calcite dissolution in CO₂-water
 systems at 5 to 60 °C and 0.0 to 1 atm CO₂. American Journal of Science, 278: 179-216.
- Pokrovsky, O.S., Golubev, S.V., Schott, J. and Castillo, A., 2009. Calcite, dolomite and magnesite
 dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm
- 592 pCO₂: New constraints on CO₂ sequestration in sedimentary basins. Chemical Geology, 265(1-2):
 593 20-32.
- Probst, J., 1986. Dissolved and suspended matter transported by the Girou River (France): mechanical
 and chemical erosion rates in a calcareous molasse basin. Hydrological Sciences Journal, 31(1): 61-79.
- 596 Raistrick, B., 1949. The influence of foreign ions on crystal growth from solution. 1. The stabilization
- 597 of the supersaturation of calcium carbonate solutions by anions possessing OPOPO chains. Discussions
- 598 of the Faraday Society, 5: 234-237.
- Reddy, M.M., 1977. Crystallization of calcium carbonate in the presence of trace concentrations of
 phosphorus-containing anions:: I. Inhibition by phosphate and glycerophosphate ions at pH 8.8 and
 25 °C. Journal of Crystal Growth, 41(2): 287-295.
- Semhi, K. and Suchet, A., 2000. Impact of nitrogen fertilizers on the natural weathering-erosion
 processes and fluvial transport in the Garonne basin. Applied Geochemistry, 15(6): 865-878.
- Shin, W., Ryu, J., Mayer, B., Lee, K. and Lee, S., 2014. Natural and anthropogenic sources and
 processes affecting water chemistry in two South Korean streams. Science of The Total Environment,
 485: 270-280.
- Singh, J., Kunhikrishnan, A., Bolan, N.S. and Saggar, S., 2013. Impact of urease inhibitor on ammonia
 and nitrous oxide emissions from temperate pasture soil cores receiving urea fertilizer and cattle urine.
- 609 Science of The Total Environment, 465(0): 56-63.
- Soares, J.R., Cantarella, H. and Menegale, M.L.D.C., 2012. Ammonia volatilization losses from
 surface-applied urea with urease and nitrification inhibitors. Soil Biology and Biochemistry, 52(0):
 82-89.
- Song, C., Liu, C. and Han, G., 2017. Impact of fertilization with irrigation on carbonate weathering in
 an agricultural soil in Northern China: A column experiment. Geochemical Journal, 51(2): 143-155.
- 615 Song, C., Liu, C., Wang, J., Zhang, Y. and Hou, H., 2011. Impact of the Addition of a Compound
- Fertilizer on the Dissolution of Carbonate Rock Tablets: a Column Experiment. Applied Geochemistry,26(S): 170-173.
- 618 Song, C., Liu, C., Zhang, Y. and Hou, H., 2014. Impact of animal manure addition on agricultural lime
- 619 weathering in acidic soil: pH dependence and CO_2 independence of agricultural lime weathering.
- 620 Procedia Earth and Planetary Science(10): 405-409.
- 621 Song, C., Liu, C., Zhang, Y. and Hou, H., 2017. Impact of animal manure addition on the

- 622 weathering of agricultural lime in acidic soils: The agent of carbonate weathering., 2(5): 202-212.
- Trudgill, S.T., 1975. Measurement of erosional weight loss of rock tablets. British Geomorphological
- 624 Research Group Technical Bulletin, 17: 13-20.
- Trypuc, M. and Kielkowska, U., 1996. Solubility in the NH₄HCO₃+NH₄VO₃+H₂O system. Journal of
 Chemical & Engineering Data, 41(5): 1005-1007.
- 627 Wang, L., Ruiz-Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A., 2012. Kinetics of Calcium
- 628 Phosphate Nucleation and Growth on Calcite: Implications for Predicting the Fate of Dissolved
- 629 Phosphate Species in Alkaline Soils. Environmental Science & Technology, 46(2): 834-842.
- 630 West, T.O. and McBride, A.C., 2005. The contribution of agricultural lime to carbon dioxide emissions
- 631 in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and
 632 Environment, 108(2): 145-154.
- Yue, F.J., Li, S.L., Liu, C.Q., Lang, Y.C. and Ding, H., 2015. Sources and transport of nitrate
 constrained by the isotopic technique in a karst catchment: an example from Southwest China.
 Hydrological Processes, 29(8): 1883-1893.
- 636 Zeng, C., Zhao, M., Yang, R. and Liu, Z., 2014. Comparison of karst processes-related carbon sink
- 637 intensity calculated by carbonate rock tablet test and solute load method: a case study in the Chenqi
- karst spring system. Hydrogology & Engineering Geology, 41(1): 106-111.
- 639 Zhang, C., 2011. Carbonate rock dissolution rates in different landuses and their carbon sink effect.
- 640 Chinese Science Bulletin, 56(35): 3759-3765.
- 641

643 644

Table 1 Chemical composition of soil Unit Parameter Values pН _ 6.94 Content of particles <0.01mm 74 % Content of particles <0.001mm % 45 % Organic matter 0.99 NH_4^+-N mg/kg 339.87 NO₃⁻-N mg/kg 569.05 Available P mg/kg 8.18 Available K mg/kg 56.88 Available Ca mg/kg 3041.06 Available Mg mg/kg 564.83 Available S 100.72 mg/kg Available Fe 24.41 mg/kg

Transformer	Limestone		Dolostone	
Treatment	Rw / ‰	$\operatorname{Raw}/\operatorname{g}\operatorname{m}^{-2}\operatorname{a}^{-1}$	Rw / ‰	$\operatorname{Raw}/\operatorname{g}\operatorname{m}^{-2}\operatorname{a}^{-1}$
Control	0.48 ± 0.14	2.00 ± 0.58	-0.31 ± 0.09	-1.57 ± 0.86
NH ₄ NO ₃	6.42 ± 0.28	24.86 ± 2.01	$5.30 {\pm} 0.87$	20.57 ± 1.15
NH ₄ HCO ₃	4.44 ± 0.81	21.00 ± 3.45	$3.22\!\pm\!0.87$	13.71 ± 3.88
NaNO ₃	0.86 ± 0.17	4.43 ± 1.73	0.53 ± 0.26	3.14 ± 1.73
NH ₄ Cl	5.54 ± 0.64	21.29 ± 2.45	4.77 ± 0.78	18.71 ± 0.86
$(NH_4)_2CO_3$	4.48 ± 0.95	20.57 ± 4.46	4.94 ± 1.91	26.57 ± 7.62
$Ca_3(PO_4)_2$	0.01 ± 0.04	$0.43\ \pm 0.86$	-0.55 ± 0.25	-1.86 ± 1.29
$(NH_4)_3PO_4$	1.08 ± 0.34	4.00 ± 1.15	0.75 ± 0.21	1.00 ± 1.01
Ca-Mg-P	-0.31 ± 0.12	-1.86 ± 0.43	-0.97 ± 0.38	-3.14 ± 0.72
Urea	8.48 ± 0.96	34.71 ± 4.32	6.59 ± 0.67	26.43 ± 2.73
K_2CO_3	-0.26 ± 0.15	-1.14 ± 0.58	-0.59 ± 0.15	-2.57 ± 0.43

648 Rw - the ratio of carbonate weathering; Raw - the rate of carbonate weathering; Rw = 1000 (Wi-Wf)/Wi

and $\operatorname{Raw} = (Wi-Wf)/(S*T)$, where Wi is the initial weight of the carbonate rock tablet, and Wf is the

final weight. S is the surface area of carbonate rock tablet (here, we used $S = 7 \text{ cm}^2$ for every tablet),

and T is the experiment period. Values are reported as means \pm standard deviations, n = 3.

r	-	h
О	э	Z

Table 3 The main reaction and effects in the 11 fertilizer treatments

Treatment	Main reactions and effects
1. Control	$Ca_{(1-x)}Mg_{x}CO_{3} + CO_{2} + H_{2}O \rightarrow (1-x) Ca^{2+} + xMg^{2+} + 2HCO_{3}^{-}$
2. NH ₄ NO ₃	$2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}NO_{3} + 2O_{2} \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + 2NO_{3}^{-} + H_{2}O + 2HCO_{3}^{-}$
3. NH ₄ HCO ₃	$\rm NH_4HCO_3 \rightarrow \rm NH_3 \uparrow + \rm H_2O + \rm CO_2 \uparrow$
	$2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}HCO_{3} + 2O_{2} \rightarrow 2(1-x) Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + H_{2}O + 3HCO_{3}^{-}$
4. NaNO ₃	$Ca_{(1-x)}Mg_xCO_3 + NaNO_3 + CO_2 + H_2O \rightarrow (1-x) Ca^{2+} + xMg^{2+} + Na^+ + NO_3^- + 2HCO_3^-$
5. NH ₄ Cl	$2Ca_{(1-x)}Mg_{x}CO_{3} + NH_{4}Cl + 2O_{2} \rightarrow 2(1-x) Ca^{2+} + 2xMg^{2+} + NO_{3}^{-} + Cl^{-} + H_{2}O + 2HCO_{3}^{-}$
	$(\mathrm{NH}_4)_2\mathrm{CO}_3 \rightarrow 2\mathrm{NH}_3 \uparrow + \mathrm{H}_2\mathrm{O} + \mathrm{CO}_2 \uparrow$
6. $(NH_4)_2CO_3$	$3Ca_{(1-x)}Mg_{x}CO_{3} + (NH_{4})_{2}CO_{3} + 4O_{2} \rightarrow 3(1-x) Ca^{2+} + 3xMg^{2+} + 2NO_{3}^{-} + 2H_{2}O + 4HCO_{3}^{-} + 2H_{2}O + 2H_{2$
	(1) (1-x) $\operatorname{Ca}^{2+} + x\operatorname{Mg}^{2+} + 2\operatorname{HCO}_{3} \rightarrow \operatorname{Ca}_{(1-x)}\operatorname{Mg}_{x}\operatorname{CO}_{3} + \operatorname{CO}_{2} + \operatorname{H}_{2}\operatorname{O}$
7. Ca ₃ (PO ₄) ₂	$(2) Ca + PO_4 \rightarrow Ca-P$
	(1) $2Ca_{(1-x)}Mg_xCO_3 + NH_4^+ + 2O_2 \rightarrow 2(1-x)Ca^{2+} + 2xMg^{2+} + NO_3^- + H_2O + 2HCO_3^-$
8. (NH ₄) ₃ PO ₄	$(2) \operatorname{Ca} + \operatorname{PO}_4 \longrightarrow \operatorname{Ca-P}$
0 C- M- D	(1) (1-x) $Ca^{2+} + xMg^{2+} + 2HCO_3 \rightarrow Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O$
9. Ca-Mg-P	$(2) \operatorname{Ca} + \operatorname{PO}_4 \longrightarrow \operatorname{Ca-P}$
10. Urea	$3Ca_{(1-x)}Mg_xCO_3 + CO(NH_2)_2 + 4O_2 \rightarrow 3(1-x) Ca^{2+} + 3xMg^{2+} + 2NO_3^- + 4HCO_3^-$
11 K CO	(i) (1-x) $Ca^{2+} + xMg^{2+} + 2HCO_3 \rightarrow Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O$
11. K ₂ CO ₃	(ii) $K_2CO_3 + H_2O \rightarrow 2K^+ + HCO_3^- + OH^-$
Note: (1) Comm	non ion effect: The $Ca_{(1-x)}Mg_xCO_3$ produced when the concentrations of Ca^{2+} , Mg^{2+} and/or HCC

654 increases (for treatment 7, 9 and 11): (1-x) $Ca^{2+} + xMg^{2+} + 2HCO_3^{-} \rightarrow Ca_{(1-x)}Mg_xCO_3 + CO_2 + H_2O;$

655 (2) Inhibition of calcite dissolution/precipitation by phosphate: calcium orthophosphate (Ca-P) precipitation

by produced on the surface of calcite after the addition of PO_4^{3-} in soil, resulting in the inhibition of the

dissolution/precipitation of calcite (for treatment 7, 8 and 9): $Ca + PO_4 \rightarrow Ca-P$

potential introgenous transformation (INH ₄ -INO ₃)					
	Molecular	Amount of	Molar amount of	Amount of	The maximum
Treatment	mass	added	added fertilizer	fertilizer-derived	of N products
	g/mol	fertilizer /g	/mole	$\mathrm{NH_4^+}/\mathrm{mole}$	/mole
NH ₄ NO ₃	80	43	0.54	0.54	1.08
NH ₄ HCO ₃	79	85	1.08	1.08	1.08
NaNO ₃	85	91	1.07	0.00	1.07
NH ₄ Cl	53.5	57	1.07	1.07	1.07
(NH ₄) ₂ CO ₃	96	51	0.53	1.06	1.06
$Ca_3(PO_4)_2$	310	52	0.17	0.00	0.00
$(NH_4)_3PO_4$	149	15	0.10	0.30	0.30
Ca-Mg-P	nd	44	nd	0.00	0.00
Urea	60	32	0.53	1.06	1.06
K_2CO_3	138	10	0.07	0.00	0.00

Table 4 The amount of fertilizer-derived NH_4^+ at the initial phase of the experiment and the potential nitrogenous transformation $(NH_4^+ - NO_3^-)$

nd=no data. The amount of added fertilizer (g) divided by its molecular mass (g/mol) is the molar

amount of fertilizer (mole). The amounts of fertilizer-derived NH_4^+ are calculated by their own ionization or hydrolysis processes. The maximum of N products is estimated by their main

reactions in Table 3.

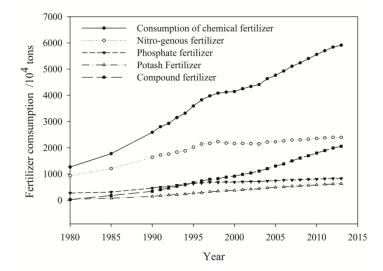
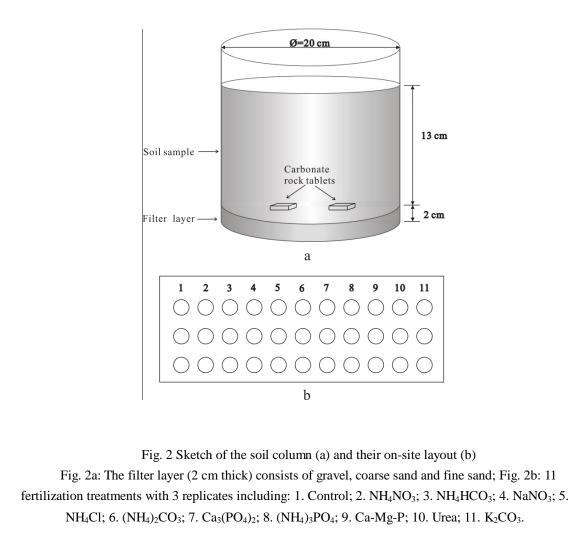
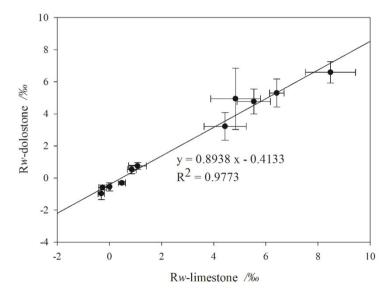





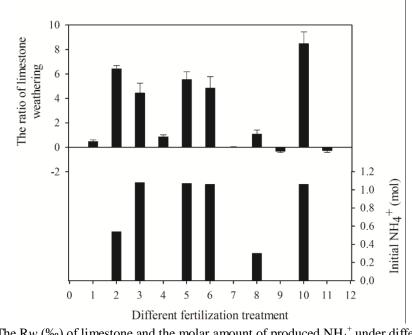
Fig. 1 The change in chemical fertilizer consumption in China during the 1980-2013 period

667 The data were collected from National Bureau of Statistics of the People's Republic of China

- 668 (NBS, 2014) (<u>http://www.stats.gov.cn/tjsj/ndsj/</u>)



6	8	2	


Fig. 3 The Rw (‰) of limestone and dolostone under different fertilizer treatments

 $\label{eq:control} \textbf{684} \qquad \qquad \text{Treatment 1. Control; 2. NH}_4\text{NO}_3\text{; 3. NH}_4\text{HCO}_3\text{; 4. NaNO}_3\text{; 5. NH}_4\text{Cl}\text{; 6. (NH}_4\text{)}_2\text{CO}_3\text{; 7.}$

685 $Ca_3(PO_4)_2$; 8. (NH₄)₃PO₄; 9. Ca-Mg-P; 10. Urea; 11. K₂CO₃. Rw = 1000(W*i*-W*f*)/W*i*, where W*i* is 686 the initial weight of the carbonate rock tablet, and W*f* is the final weight.

689Fig. 4 The linear correlation of Rw (‰) of limestone and dolostone690 $Rw = 1000(Wi \cdot Wf)/Wi$, where Wi is the initial weight of the limestone tablet, and Wf is the final691weight.692

694Fig. 5 The Rw (‰) of limestone and the molar amount of produced NH_4^+ under different fertilizer695treatments696Treatment 1. Control; 2. NH_4NO_3 ; 3. NH_4HCO_3 ; 4. $NaNO_3$; 5. NH_4Cl ; 6. $(NH_4)_2CO_3$; 7.697 $Ca_3(PO_4)_2$; 8. $(NH_4)_3PO_4$; 9. Ca-Mg-P; 10. Urea; 11. K_2CO_3 . Rw = 1000(Wi-Wf)/Wi, where Wi is the698initial weight of the limestone tablet, and Wf is the final weight.