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Abstract 12 
The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-13 
term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover 14 
effect that can be applied to field, laboratory and modelling data and thus allows the comparison of 15 
results from different sources. The framework describes the formation of sediment cover as a function 16 
of the probability of sediment being deposited on already alluviated areas of the bed. We define 17 
benchmark cases and suggest physical interpretations of deviations from these benchmarks. 18 
Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to 19 
clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction and 20 
the transport stage. We derive system time scales and investigate cover response to cyclic 21 
perturbations. The model predicts that bedrock channels achieve grade in steady state by adjusting 22 
bed cover. Thus, bedrock channels have at least two characteristic time scales of response. Over short 23 
time scales, the degree of bed cover is adjusted such that they can just transport the supplied sediment 24 
load, while over long time scales, channel morphology evolves such that the bedrock incision rate 25 
matches the tectonic uplift or base level lowering rate. 26 
 27 

1. Introduction 28 
 29 
Bedrock channels are shaped by erosion caused by countless impacts of the sediment particles they 30 
carry along their bed (Beer and Turowski, 2015; Cook et al., 2013; Sklar and Dietrich, 2004). There are 31 
feedbacks between the evolving channel morphology, the bedload transport, and the hydraulics 32 
(e.g., Finnegan et al., 2007; Johnson and Whipple, 2007; Wohl and Ikeda, 1997). Impacting bedload 33 
particles driven forward by the fluid forces erode and therefore shape the bedrock bed. In turn, the 34 
morphology of the channel determines the pathways of both sediment and water, and sets the stage 35 
for the entrainment and deposition of the sediment (Hodge and Hoey, 2016). Sediment particles play 36 
a key role in this erosion process; they provide the tools for erosion and also determine where 37 
bedrock is exposed such that it can be worn away by impacting particles (Gilbert, 1877; Sklar and 38 
Dietrich, 2004). 39 
 40 
The importance of the cover effect - that a stationary layer of gravel can shield the bedrock from 41 
bedload impacts – has by now been firmly established in a number of field and laboratory studies 42 
(e.g., Chatanantavet and Parker, 2008; Finnegan et al., 2007; Hobley et al., 2011; Johnson and 43 
Whipple, 2007; Turowski and Rickenmann, 2009; Turowski et al., 2008; Yanites et al., 2011). 44 
Sediment cover is generally modelled with generic relationships that predict the decrease of the 45 
fraction of exposed bedrock area A* with the increase of the relative sediment supply Qs

*, usually 46 
defined as the ratio of sediment supply to transport capacity. Based on laboratory experiments and 47 
simple modeling, Turowski and Bloem (2016) argued that the focus on covered area is generally 48 
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justified on the reach scale and that erosion of bedrock under a thin sediment cover can be 49 
neglected. However, the behavior of sediment cover under flood conditions is currently unknown 50 
and the assumption that the cover distribution at low flow is representative for that at high flow may 51 
not be justified (cf. Beer et al., 2016; Turowski et al., 2008). 52 
 53 
The most commonly used function to describe the cover effect is the linear decline (Sklar and 54 
Dietrich, 1998), which is the simplest function connecting the steady state end members of an empty 55 
bed when relative sediment supply Qs

* = 0 and full cover when Qs
* = 1: 56 

 57 

𝐴𝐴∗ = �1 − 𝑄𝑄𝑠𝑠∗ for 𝑄𝑄𝑠𝑠∗ < 1
0 otherwise

 58 

(eq. 1) 59 
In contrast, the exponential cover function arises under the assumption that particle deposition is 60 
equally likely for each part of the bed, whether it is covered or not (Turowski et al., 2007).  61 
 62 

𝐴𝐴∗ = �exp(−𝑄𝑄𝑠𝑠∗) for 𝑄𝑄𝑠𝑠∗ < 1
0 otherwise

 63 

(eq. 2) 64 
Here, exp denotes the natural exponential function.  65 
 66 
Hodge and Hoey (2012) obtained both the linear and the exponential functions using a cellular 67 
automaton (CA) model that modulated grain entrainment probabilities by the number of 68 
neighbouring grains. However, consistent with laboratory flume data, the same model also produced 69 
other behaviours under different parameterisations. One alternative behavior is runaway alluviation, 70 
which was attributed by Chatanantavet and Parker (2008) to the differing roughness of bedrock and 71 
alluvial patches. Due to a decrease in flow velocity, an increase in surface roughness and differing 72 
grain geometry, the likelihood of deposition is higher over bed sections covered by alluvium 73 
compared to smooth, bare bedrock sections (Hodge et al., 2011). This can lead to rapid alluviation of 74 
the entire bed once a minimum fraction has been covered. The relationship between sediment flux 75 
and cover is also affected by the bedrock morphology; flume experiments have demonstrated that 76 
on a non-planar bed the location of sediment cover is driven by bed topography and hydraulics (e.g., 77 
Finnegan et al., 2007; Inoue et al., 2014). Johnson and Whipple (2007) found that stable patches of 78 
alluvium tended to form in topographic lows such as pot holes and at the bottom of slot canyons, 79 
whereas Hodge and Hoey (2016) found that local flow velocity also controls sediment cover location. 80 
 81 
The relationship between roughness, bed cover and incision was explored in a number of recent 82 
numerical modeling studies. Nelson and Seminara (2011, 2012) were one of the first to model the 83 
impact that the differing roughness of bedrock and alluvial areas has on sediment patch stability. 84 
Zhang et al. (2014) formulated a macro-roughness cover model, in which sediment cover is related to 85 
the ratio of sediment thickness to bedrock macro-roughness. Aubert et al. (2016) directly simulated 86 
the dynamics of particles in a turbulent flow and obtained both linear and exponential cover 87 
functions. Johnson (2014) linked erosion and cover to bed roughness in a reach-scale model. Using a 88 
model formulation similar to that of Nelson and Seminara (2011), Inoue et al. (2016) reproduced bar 89 
formation and sediment dynamics in bedrock channels. All of these studies used slightly different 90 
approaches and mathematical formulations to describe alluvial cover, making a direct comparison 91 
difficult. 92 
 93 
Over time scales including multiple floods, the variability in sediment supply is also important (e.g., 94 
Turowski et al., 2013). Lague (2010) used a model formulation in which cover was written as a 95 
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function of the average sediment depth to upscale daily incision processes to long time scales. He 96 
found that over the long term, cover dynamics are largely independent of the precise formulation at 97 
the process scale and are rather controlled by the magnitude-frequency distribution of discharge and 98 
sediment supply. Using the CA model of Hodge and Hoey (2012), Hodge (in press) found that, when 99 
sediment supply was very variable, sediment cover was primarily determined by the recent history of 100 
sediment supply, rather than the relationships identified under constant sediment fluxes. 101 
 102 
So far, it has been somewhat difficult to compare and discuss the different cover functions obtained 103 
from theoretical considerations, numerical models, and experiments, since a unifying framework and 104 
clear benchmark cases have been missing. Here, we propose such a framework, and develop type 105 
cases linked to physical considerations of the flow hydraulics and sediment erosion and deposition. 106 
We show how this framework can be applied to data from a published model (Hodge and Hoey, 107 
2012). Furthermore, we develop a reach-scale erosion-deposition model that allows the dynamic 108 
modeling of cover and prediction of steady states. Thus, we clarify the relationship between cover, 109 
deposited mass and relative sediment supply. As part of this model framework we investigate the 110 
response time of a channel to a change in sediment input, which we illustrate using data from a 111 
natural channel.  112 
 113 

2. A probabilistic framework 114 
 115 
2.1. Development 116 
Here we build on the arguments put forward by Turowski et al. (2007) and Turowski (2009). Consider 117 
a bedrock bed on which sediment particles are distributed. We can view the deposition of each 118 
particle as a random process, and each area element on the bed surface can be assigned a probability 119 
for the deposition of a particle. When assuming that a given number of particles are distributed on 120 
the bed, the mean behavior of the exposed area A* can be calculated from the following equation: 121 

𝑑𝑑𝐴𝐴∗ = −𝑃𝑃(𝐴𝐴∗,𝑀𝑀𝑠𝑠
∗, … )𝑑𝑑𝑀𝑀𝑠𝑠

∗ 122 
(eq. 3) 123 
P is the probability that a given particle is deposited on the exposed part of the bed, which here is a 124 
function of the fraction of exposed area (A*) and a dimensionless mass of particles on the bed per 125 
area (Ms

*, explained below), but which can be expected to also be a function of the relative sediment 126 
supply, the bed topography and roughness, the particle size, the local hydraulics or other control 127 
variables. Ms

* is a dimensionless mass equal to the total mass of the particles residing on the bed per 128 
area, which is suitably normalized. A suitable mass for normalization is the minimum mass required 129 
to cover a unit area, M0, as will become clear later. The minus sign is introduced because the fraction 130 
of the exposed area reduces as Ms

* increases. Similar to eq. (3), the equation for the fraction of 131 
covered area Ac

* = 1-A* can be written as: 132 
 133 

𝑑𝑑𝐴𝐴𝑐𝑐∗ = 𝑃𝑃(𝐴𝐴∗,𝑀𝑀𝑠𝑠
∗, … )𝑑𝑑𝑀𝑀𝑠𝑠

∗ 134 
(eq. 4) 135 
As most previous relationships are expressed in terms of relative sediment supply Qs

*, the relation of 136 
Ms

* to Qs
* will be discussed later. 137 

 138 
We can make some general statements about P. First, P is defined for the range 0 ≤  A* ≤  1 and 139 
undefined elsewhere. Second, P takes values between zero and one for 0 ≤ A* ≤ 1. Third, P(A*=0) = 0 140 
and P(A*=1) = 1. Note that P is not a distribution function and therefore does not need to integrate 141 
to one. Neither does it have to be continuous and differentiable everywhere. 142 
 143 
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For purpose of illustration, we will next discuss two simple forms of the probability function P that 144 
lead to the linear and exponential forms of the cover effect, respectively. First, consider the case that 145 
all particles are always deposited on exposed bedrock. In this case, formally, to keep with the 146 
conditions stated above, we define P = 1 for 0 < A* ≤ 1 and P = 0 for A* = 0.  Thus, we can write 147 
 148 

𝑑𝑑𝐴𝐴∗ = −𝑑𝑑𝑀𝑀𝑠𝑠
∗ for 0 < 𝐴𝐴∗ ≤ 1

𝑑𝑑𝐴𝐴∗ = 0 for 𝐴𝐴∗ = 0
 149 

(eq. 5) 150 
Integrating, we obtain:  151 

𝐴𝐴∗ = −𝑀𝑀𝑠𝑠
∗ + 𝐶𝐶 152 

(eq. 6) 153 
where the constant of integration C is found to equal one by using the condition A*(Ms

*=0) = 1. Thus, 154 
we obtain the linear cover function of eq. (1). Note that the linear cover function gives a theoretical 155 
lower bound for the amount of cover: it arises when all available sediment always falls on uncovered 156 
ground, and thus no additional sediment is available that could facilitate quicker alluviation. In 157 
essence, this is a mass conservation argument. Now it is obvious why M0 is a convenient way to 158 
normalize: in plots of A* against Ms

*, we obtain a triangular region bounded by the points [0,1], [0,0] 159 
and [1,0] in which the cover function cannot exist (Fig. 1).  160 
 161 
Similarly to above, if we set P to a constant value smaller than one for 0 < A* ≤ 1, k, we obtain 162 
 163 

𝐴𝐴∗ = 1 − 𝑘𝑘𝑀𝑀𝑠𝑠
∗ 164 

(eq. 7) 165 
It is clear that the assumption of P = k is physically unrealistic, because it implies that the probability 166 
of deposition on exposed ground is independent of the amount of uncovered bedrock. Especially 167 
when A* is close to zero, it seems unlikely that, say, always 90% of the sediment falls on uncovered 168 
ground. A more realistic assumption is that the probability of deposition on uncovered ground is 169 
independent of location and other possible controls, but is equal to the fraction of exposed area, i.e., 170 
P = A*. In a probabilistic sense, this is also the simplest plausible assumption one can make. Then 171 
 172 

𝑑𝑑𝐴𝐴∗ = −𝐴𝐴∗𝑑𝑑𝑀𝑀𝑠𝑠
∗ 173 

(eq. 8) 174 
giving upon integration 175 

𝐴𝐴∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗
 176 

(eq. 9) 177 
The argument used here to obtain the exponential cover effect in eq. (9) essentially corresponds to 178 
the one given by Turowski et al. (2007). Since this case presents the simplest plausible assumption, 179 
we will use it as a benchmark case, to which we will compare other possible functional forms of P. 180 
 181 
In principle, the probability function P can be varied to account for various processes that make 182 
deposition more likely either on already covered ground by decreasing P for the appropriate range of 183 
A* from the benchmark case P = A*, or on uncovered ground by increasing P from the benchmark 184 
case P = A*. As has been identified previously (Chatanantavet and Parker, 2008; Hodge and Hoey 185 
2012), roughness feedbacks to the flow can cause either case depending on whether subsequent 186 
deposition is adjacent to or on top of existing sediment patches. In the former case, particles residing 187 
on an otherwise bare bedrock bed act as obstacles for moving particles, and create a low-velocity 188 
wake zone in the downstream direction. In addition, particles residing on other single particles are 189 
unstable and stacks of particles are unlikely. Hence, newly arriving particles tend to deposit either 190 
upstream or downstream of stationary particles and the probability is generally higher for deposition 191 
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on uncovered ground than in the benchmark case. In the latter case, larger patches of stationary 192 
particles increase the surface roughness of the bed, thus decreasing the local flow velocity and 193 
stresses, making deposition on the patch more likely. In this way, the probability of deposition on 194 
already covered bed is increased in comparison to the benchmark case. 195 
 196 
A simple functional form that can be used to take into account either one of these two effects is a 197 
power law dependence of P on A*, taking the form P = A*α (Fig. 1A). Then, the cover function 198 
becomes (Fig. 1B): 199 
 200 

𝐴𝐴∗ = (1 − (1 − 𝛼𝛼)𝑀𝑀𝑠𝑠
∗)

1
1−𝛼𝛼 201 

(eq. 10) 202 
Here, the probability of deposition on uncovered ground is increased in comparison to the 203 
benchmark exponential case if 0 < α < 1, and decreased if α > 1.  204 
 205 
A convenient and flexible way to parameterize P(A*) in general is the cumulative version of the Beta 206 
distribution, given by:  207 

𝑃𝑃(𝐴𝐴∗) = 𝐵𝐵(𝐴𝐴∗;𝑎𝑎, 𝑏𝑏) 208 
(eq. 11) 209 
Here, B(A*;a,b) is the regularized incomplete Beta function with two shape parameters a and b, 210 
which are both real positive numbers, defined by:  211 

𝐵𝐵(𝐴𝐴∗;𝑎𝑎, 𝑏𝑏) =
∫ 𝑦𝑦𝑎𝑎−1(1− 𝑦𝑦)𝑏𝑏−1𝑑𝑑𝑑𝑑𝐴𝐴∗

0

∫ 𝑦𝑦𝑎𝑎−1(1− 𝑦𝑦)𝑏𝑏−1𝑑𝑑𝑑𝑑1
0

 212 

(eq. 12) 213 
Here, y is a dummy variable. With suitable choices for a and b, cover functions resembling the 214 
exponential (a=b=1), the linear form (a=0, b>0), and the power law form (a>>b or a<<b) can be 215 
retrieved. Wavy functions are also a possibility (Fig. 2), thus both of the roughness effects described 216 
above can be modelled in a single scenario. Unfortunately, the integral necessary to obtain A*(Ms

*) 217 
does not give a closed-form analytical solution and needs to be computed numerically. 218 
 219 
In principle, a suitable function P could also be defined to account for the influence of bed 220 
topography on sediment deposition. Such a function is likely dependent on the details of the 221 
particular bed, hydraulics and sediment flow paths in a complex way and needs to be mapped out 222 
experimentally. 223 
 224 



6 
 

 225 
Fig. 1: A) Various examples for the probability function P as a function of bedrock exposure A*. B) 226 
Corresponding analytical solutions for the cover function between A* and dimensionless sediment 227 
mass Ms

* using eq. (7), (9) and (10). Grey shading depicts the area where the cover function cannot 228 
run due to conservation of mass. 229 
 230 

 231 
Fig. 2: Examples for the use of the regularized incomplete Beta function (eq. 12) to parameterize P, 232 
using various values for the shape parameters a and b. The choice a = b = 1 gives a dependence that 233 
is equivalent to the exponential cover function. Grey shading depicts the area where the cover 234 
function cannot run due to conservation of mass. 235 
 236 
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2.2 Example of application using model data 237 
 238 
To illustrate how the framework can be used, we apply it to data obtained from the CA model 239 
developed by Hodge and Hoey (2012). The CA model reproduces the transport of individual sediment 240 
grains over a smooth bedrock surface. In each time step, the probability of a grain being entrained is 241 
a function of the number of neighboring grains. If five or more of the eight neighbouring cells contain 242 
grains then the grain has probability of entrainment pc, otherwise it has probability pi. In most model 243 
runs pc was set to a value  less than that of pi, thus accounting for the impact of sediment cover in 244 
decreasing local shear stress (though increased flow resistance) and increasing the critical 245 
entrainment shear stress for grains (via lower grain exposure and increased pivot angles). Thus, in 246 
the model, grain scale dynamics of entrainment are varied by adjusting the values of pi and pc. This 247 
has a direct effect on the reach-scale distribution of cover, which is captured by our P-function (eq. 248 
3). 249 
 250 
The model is run with a domain that is 100 cells wide by 1000 cells long, with each cell having the 251 
same area as a grain. Up to four grains can potentially be entrained from each cell in a time step, 252 
limiting the maximum sediment flux. In each time step random numbers and the probabilities are 253 
used to select the grains that are entrained, which are then moved a step length downstream. A 254 
fixed number of grains are also supplied to the upstream end of the model domain. A smoothing 255 
algorithm is applied to prevent unrealistically tall piles of grains developing in cells if there are far 256 
fewer grains in adjacent cells. After around 500 time steps the model typically reaches a steady state 257 
condition in which the number of grains supplied to and leaving the model domain are equal. 258 
Sediment cover is measured in a downstream area of the model domain and is defined as grains that 259 
are not entrained in a given time step. Consequently grains that are deposited in one time step, and 260 
entrained in the following one do not contribute to the sediment cover, and so the model implicitly 261 
incorporates the effect of local sediment cover on grain deposition. 262 
 263 
Model runs were completed with a six different combinations of Pi and Pc: 0.95/0.95, 0.95/0.75, 264 
0.75/0.10, 0.75/0.30, 0.30/0.30 and 0.95/0.05. These combinations were selected to cover the range 265 
of relationships between relative sediment supply Qs

* and the exposed bed fraction A* observed by 266 
Hodge and Hoey (2012). For each pair of Pi and Pc model runs were completed at least 20 different 267 
values of Qs

* in order to quantify the model behaviour. 268 
 269 
Cover bed fraction and total mass on the bed given out by the model were converted using eq. (3) 270 
into the probabilistic framework (Fig. 3). The derivative was approximated by simple linear finite 271 
differences, which, in the case of run-away alluviation, resulted in a non-continuous curve due to 272 
large gradients. The exponential benchmark (eq. 9) is also shown for comparison. The different 273 
model parameterisations produce results in which the probability of deposition on bedrock is both 274 
more and less likely than in the baseline case, with some runs showing both behaviours. Cases where 275 
the probability is more than the baseline case (i.e. grains are more likely to fall on uncovered areas) 276 
are associated with runs in which grains in clusters are relatively immobile. These runs are likely to be 277 
particularly affected by the smoothing algorithm that acts to move sediment from alluviated to 278 
bedrock areas. All model parameterisations predict greater bed exposure for a given normalised 279 
mass than is predicted by a linear cover relationship (Figure 3b). Runs with relatively more immobile 280 
cluster grains have a lower exposed fraction for the same normalised mass. Runs with low values of 281 
Pi and Pc seem to lead to behavior in which cover is more likely than in the exponential benchmark, 282 
while for high values, it is less likely. However, there are complex interactions and general 283 
statements cannot be made straightforwardly. 284 
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 285 

 286 
Fig. 3: Probability functions P and cover function derived from data obtained from the model of 287 
Hodge and Hoey (2012). The grey dashed line shows the exponential benchmark behavior. Grey 288 
shading depicts the area where the cover function cannot run due to conservation of mass. The 289 
legend gives values of the probabilities of entrainment Pi and Pc used for the runs (see text). 290 
 291 
 292 

3. Cover development in time and space 293 
 294 
3.1. Model derivation 295 
 296 
Previous descriptions of the cover effect relate the exposed fraction of the bed to the relative 297 
sediment supply Qs

* (see eqs. 1 and 2). The relation between Qs
* and Ms, which we used in eq. (3), 298 

has often been muddled and incorrect (see, for example, Turowski et al., 2007). In this chapter, we 299 
derive a model to clarify this relationship and put it on a sound physical bases. To this end, the 300 
probabilistic formulation introduced above is extended to allow the calculation of the temporal and 301 
spatial evolution of sediment cover in a stream. Here, we will derive the equations for the one 302 
dimensional case (linear flume), but extensions to higher dimensions are possible in principle. The 303 
derivation is inspired by the erosion-deposition framework (e.g. Charru et al., 2004; Turowski, 2009), 304 
with some necessary adaptions to make it suitable for channels with partial sediment cover. In our 305 
system, we consider two separate mass reservoirs within a control volume. The first reservoir 306 
contains all particles in motion, the total mass per bed area of which is denoted by Mm, while the 307 
second reservoir contains all particles that are stationary on the bed, the total mass per bed area of 308 
which is denoted by Ms. We need then three further equations, one to connect the rate of change of 309 
mobile mass to the sediment flux in the flume, one to govern the exchange of particles between the 310 
two reservoirs, and one to describe how sediment transport rate is related to the mobile mass. The 311 
first of these is of course the Exner equation of sediment continuity (e.g. Paola and Voller, 2005), 312 
which captures mass conservation in the system. Instead of the common approach tracking the 313 
height of the sediment over a reference level, we use the total sediment mass on the bed as a 314 
variable, giving 315 
 316 

𝜕𝜕𝑀𝑀𝑚𝑚

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝑞𝑞𝑠𝑠
𝜕𝜕𝜕𝜕

+ 𝐸𝐸 − 𝐷𝐷 317 

(eq. 13) 318 
Here, x is the coordinate in the streamwise direction, t the time, qs the sediment mass transport rate 319 
per unit width, while E is the mass entrainment rate per bed area and D is the mass deposition rate 320 
per bed area. The latter two terms describe the exchange of particles between reservoirs; in the 321 
single reservoir Exner equation these terms are not needed. It is clear that for the problem at hand 322 
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the choice of total mass or volume as a variable to track the amount of sediment in the reach of 323 
interest is preferable to the height of the alluvial cover, since necessarily, when cover is patchy, the 324 
height of the alluvium varies across the bed. It is useful to work with dimensionless variables by 325 
defining t* = t/T and x* = x/L, where T and L are suitable time and length scales, respectively. The 326 
dimensionless mobile mass per bed area Mm

* is equal to Mm/M0, and eq. (13) becomes:  327 
 328 

𝜕𝜕𝑀𝑀𝑚𝑚
∗

𝜕𝜕𝑡𝑡∗
= −

𝜕𝜕𝑞𝑞𝑠𝑠∗

𝜕𝜕𝑥𝑥∗
+ 𝐸𝐸∗ − 𝐷𝐷∗ 329 

(eq. 14)  330 
Here,  331 

𝑞𝑞𝑠𝑠∗ =
𝑇𝑇
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑠𝑠 332 

(eq. 15) 333 
The dimensionless entrainment and deposition rates, E* and D*, are equal to TE/M0 and TD/M0, 334 
respectively. The rate of change of the stationary sediment mass Ms in time is the difference of the 335 
deposition rate D and the entrainment rate E:  336 
 337 

𝜕𝜕𝑀𝑀𝑠𝑠

𝜕𝜕𝜕𝜕
= 𝐷𝐷 − 𝐸𝐸 338 

(eq. 16) 339 
Or, using dimensionless variables 340 

𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= 𝐷𝐷∗ − 𝐸𝐸∗ 341 

(eq. 17) 342 
We also need sediment entrainment and deposition functions. The entrainment rate needs to be 343 
modulated by the availability of sediment on the bed. If Ms

* is equal to zero, no material can be 344 
entrained. A plausible assumption is that the maximal entrainment rate, E*

max, is equal to the 345 
transport capacity.  346 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
∗ = 𝑞𝑞𝑡𝑡∗ 347 

(eq. 18) 348 
Here, qt

 * is the dimensionless mass transport capacity, which is related to the transport capacity per 349 
unit width qt by a relation similar to eq. (15). To first order, the rate of change in entrainment rate, 350 
dE, is proportional to the difference of Emax and E, and to the rate of change in mass on the bed.  351 
 352 

𝑑𝑑𝐸𝐸∗ = (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
∗ − 𝐸𝐸∗)𝑑𝑑𝑀𝑀𝑠𝑠

∗ = (𝑞𝑞𝑡𝑡∗ − 𝐸𝐸∗)𝑑𝑑𝑀𝑀𝑠𝑠
∗ 353 

(eq. 19) 354 
Integrating, we obtain 355 
 356 

𝐸𝐸∗ = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
∗ �1− 𝑒𝑒−𝑀𝑀𝑠𝑠

∗� = �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠
∗�𝑞𝑞𝑡𝑡∗ 357 

(eq. 20)  358 
Here, we used the condition E*(Ms

*=0) = 0 to fix the integration constant to E*
max. As required, eq. 359 

(20) approaches E*
max as Ms

* goes to infinity, and is equal to zero when Ms
* is equal to zero. Using a 360 

similar line of argument, and by assuming the maximum deposition rate to be equal to qs
*, we arrive 361 

at an equation for the deposition rate D*.  362 
 363 

𝐷𝐷∗ = �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗ �𝑞𝑞𝑠𝑠∗ 364 

(eq. 21) 365 
When Mm* is small, then the amount that can be deposited is limited by Mm*. If Mm* is large, then 366 
deposition is limited by sediment supply. Substituting eqs. (20) and (21) into eq. (17), we obtain: 367 
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 368 
𝜕𝜕𝑀𝑀𝑠𝑠

∗(𝑥𝑥∗, 𝑡𝑡∗)
𝜕𝜕𝑡𝑡∗

= 𝐷𝐷∗ − 𝐸𝐸∗ = �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗ (𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑠𝑠∗(𝑥𝑥∗, 𝑡𝑡∗) − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗(𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑡𝑡∗(𝑥𝑥∗, 𝑡𝑡∗) 369 

(eq. 22) 370 
Note that qs

*/qt
* = Qs

*. The equation for the mobile mass (eq. 14) becomes:  371 
 372 

𝜕𝜕𝑀𝑀𝑚𝑚
∗ (𝑥𝑥∗, 𝑡𝑡∗)
𝜕𝜕𝑡𝑡∗

= −
𝜕𝜕𝑞𝑞𝑠𝑠∗

𝜕𝜕𝑥𝑥∗
− �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚

∗ (𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑠𝑠∗(𝑥𝑥∗, 𝑡𝑡∗) + �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠
∗(𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑡𝑡∗(𝑥𝑥∗, 𝑡𝑡∗) 373 

(eq. 23) 374 
Finally, the sediment transport rate needs to be proportional to the mobile sediment mass times the 375 
downstream sediment speed U, and we can write 376 
 377 

𝑞𝑞𝑠𝑠∗(𝑥𝑥∗, 𝑡𝑡∗) = 𝑈𝑈∗(𝑥𝑥∗, 𝑡𝑡∗)𝑀𝑀𝑚𝑚
∗ (𝑥𝑥∗, 𝑡𝑡∗) 378 

(eq. 24) 379 
Here 380 

𝑈𝑈∗ =
𝑇𝑇
𝐿𝐿
𝑈𝑈 381 

(eq. 25) 382 
 383 
After incorporating the original equation between A* and Ms

* (eq. 3), the system of four differential 384 
equations (3), (22), (23) and (24) contains four unknowns: the downstream gradient in the sediment 385 
transport rate ∂qs

*/∂x*, the exposed fraction of the bed A*, the non-dimensional stationary mass Ms
*, 386 

and the non-dimensional mobile mass Mm
*, while the non-dimensional transport capacity qt

* and the 387 
non-dimensional downstream sediment speed U* are input variables, and P is a externally specified 388 
function. In addition, sediment input qs

* needs to be specified as an upstream boundary condition 389 
and initial values for the mobile mass Mm

* and the stationary mass Ms
* need to be specified 390 

everywhere. 391 
 392 

3.2. Time-independent solution 393 
 394 
Setting the time derivatives to zero, we obtain a time-independent solution, which links the exposed 395 
area directly to the ratio of sediment transport rate to transport capacity. From eq. (23) it follows 396 
that in this case, the entrainment rate is equal to the deposition rate and we obtain 397 

�1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗������ 𝑞𝑞𝑠𝑠∗��� = �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗����� 𝑞𝑞𝑡𝑡∗ 398 
(eq. 26) 399 
Here, the bar over the variables denotes their steady state value. Substituting eq. (24) to eliminate 400 
𝑀𝑀𝑚𝑚
∗����� and solving for 𝑀𝑀𝑠𝑠

∗���� gives 401 
 402 

𝑀𝑀𝑠𝑠
∗���� = −ln �1 − �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� �

𝑞𝑞𝑠𝑠∗���
𝑞𝑞𝑡𝑡∗
� = −ln �1 − �1− 𝑒𝑒−

𝑞𝑞𝑡𝑡∗
𝑈𝑈∗𝑄𝑄𝑠𝑠

∗����
�𝑄𝑄𝑠𝑠∗����� 403 

(eq. 27) 404 
Note that we assume here that sediment cover is only dependent on the stationary sediment mass 405 
on the bed and we thus neglect grain-grain interactions known as the dynamic cover (Turowski et al., 406 
2007). In analogy to eq. (24), we can write 407 

𝑞𝑞𝑡𝑡∗ = 𝑈𝑈∗𝑀𝑀0
∗ 408 

(eq. 28) 409 
Here, M0

* is a characteristic dimensionless mass that depends on hydraulics and therefore implicitly 410 
on transport capacity (which is independent of and should not be confused with the minimum mass 411 
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necessary to fully cover the bed M0). When sediment transport rate equals transport capacity, then 412 
M0

* is equal to the mobile mass of sediment normalized by the reference mass M0. It can be viewed 413 
as a proxy for the transport capacity and is a convenient parameter to simplify the equations. The 414 
mobile mass can then, in general, be written as follows (cf. Turowski et al., 2007), remembering that 415 
the relative sediment supply Qs

* = 1 when supply is equal to capacity:  416 
𝑀𝑀𝑚𝑚
∗ = 𝑀𝑀0

∗𝑄𝑄𝑠𝑠∗ 417 
(eq. 29) 418 
If we use the exponential cover function (eq. 9) with eqs. (27), (28) and (29) we obtain 419 
 420 

𝐴𝐴∗��� = 1 − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �
𝑞𝑞𝑠𝑠∗���
𝑞𝑞𝑡𝑡∗

= 1 − �1 − 𝑒𝑒−
𝑞𝑞𝑡𝑡∗
𝑈𝑈∗𝑄𝑄𝑠𝑠

∗����
�𝑄𝑄𝑠𝑠∗���� = 1 − �1 − 𝑒𝑒−𝑀𝑀0

∗𝑄𝑄𝑠𝑠∗����� 𝑄𝑄𝑠𝑠∗���� 421 

(eq. 30) 422 
Similarly, equations can be found for the other analytical solutions of the cover function. For the 423 
linear case (eq. 7), we obtain:  424 

𝐴𝐴∗��� = 1 + ln �1 − �1 − 𝑒𝑒−𝑀𝑀0
∗𝑄𝑄𝑠𝑠∗�����𝑄𝑄𝑠𝑠∗����� 425 

(eq. 31) 426 
For the power law case (eq. 10), we obtain: 427 

𝐴𝐴∗��� = �1 + (1 − 𝛼𝛼)ln �1 − �1 − 𝑒𝑒−𝑀𝑀0
∗𝑄𝑄𝑠𝑠∗�����𝑄𝑄𝑠𝑠∗������

1
1−𝛼𝛼 428 

(eq. 32) 429 
It is interesting that the assumption of an exponential cover function essentially leads to a combined 430 
linear and exponential relation between 𝐴𝐴∗��� and  𝑄𝑄𝑠𝑠∗����. Instead of a linear decline as the original linear 431 
cover model, or a concave-up relationship as the original exponential model, the function is convex-432 
up for all solutions (Fig. 4). Adjusting M0

* shifts the lines: decreasing M0
* leads to a delayed onset of 433 

cover and vice versa. The former result arises because a lower M0
* means that the sediment flux is 434 

conveyed through a smaller mass moving at a higher velocity. The original linear cover function (eq. 435 
1) can be recovered from the exponential model with a high value of M0

*, since the exponential term 436 
quickly becomes negligible with increasing 𝑄𝑄𝑠𝑠∗���� and the linear term dominates (Fig. 4C). Note that for 437 
the linear (eq. 6) and the power law cases (eq. 10), high values of M0

* may give 𝐴𝐴∗��� = 0 for 𝑄𝑄𝑠𝑠∗���� < 1 (Fig. 438 
4B,D), which is consistent with the concept of runaway alluviation. Using the beta distribution to 439 
describe P, a numerical solution is necessary, but a wide range of steady-state cover functions can be 440 
obtained (Fig. 5). By varying the value of M0

*, an even wider range of behavior can be obtained. 441 
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 442 
Fig. 4: Analytical solutions at steady state for the exposed fraction of the bed (A*) as a function of 443 
relative sediment supply (Q*, cf. Fig. 1). A) Comparison of the different solutions, keeping M0

* 444 
constant at 1. B) Varying M0

* for the linear case (eq. 31). C) Varying M0
* for the exponential case (eq. 445 

30). D) Varying M0
* for the power law case with α = 0.1 (eq. 32). 446 

 447 

 448 
Fig. 5: Steady state solutions using the beta distribution to parameterize P (eq. 11) for a range of 449 
parameters a and b, and using M0

* = 1 (cf. Fig. 2). The solutions were obtained by iterating the 450 
equations to a steady state, using initial conditions of A* = 1 and Mm

* = Ms
* = 0. 451 

 452 
The previous analysis shows that steady state cover is controlled by the characteristic dimensionless 453 
mass M0

*, which is equal to the ratio of dimensionless transport capacity and particle speed (eq. 28). 454 
Converting to dimensional variables, we can write 455 
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𝑀𝑀0
∗ =

𝑞𝑞𝑡𝑡∗

𝑈𝑈∗ =
𝑞𝑞𝑡𝑡
𝑀𝑀0𝑈𝑈

 456 

(eq. 33) 457 
The minimum mass necessary to completely cover the bed per unit area, M0, can be estimated 458 
assuming a single layer of close-packed spherical grains residing on the bed (cf. Turowski, 2009), 459 
giving:  460 

𝑀𝑀0 =
𝜋𝜋𝜌𝜌𝑠𝑠𝐷𝐷50

3√3
 461 

(eq. 34)  462 
Here, ρs is the sediment density and D50 is the median grain size. We use equations derived by 463 
Fernandez-Luque and van Beek (1976) from flume experiments that describe transport capacity and 464 
particle speed as a function of bed shear stress (see also Lajeunesse et al., 2010, and Meyer-Peter 465 
and Mueller, 1948, for similar equations): 466 
 467 

𝑞𝑞𝑡𝑡 = 5.7
𝜌𝜌𝑠𝑠𝜌𝜌

(𝜌𝜌𝑠𝑠 − 𝜌𝜌)𝑔𝑔
�
𝜏𝜏
𝜌𝜌
−
𝜏𝜏𝑐𝑐
𝜌𝜌
�
3 2⁄

 468 

(eq. 35) 469 
 470 

𝑈𝑈 = 11.5��
𝜏𝜏
𝜌𝜌
�
1 2⁄

− 0.7 �
𝜏𝜏𝑐𝑐
𝜌𝜌
�
1 2⁄

� 471 

(eq. 36) 472 
Here, τc is the critical bed shear stress for the onset of bedload motion, g is the acceleration due to 473 
gravity and ρ is the water density. Combining eqs. (34), (35) and (36) to get an equation for M0

* gives: 474 
 475 

𝑀𝑀0
∗ =

3√3
2𝜋𝜋

(𝜃𝜃 − 𝜃𝜃𝑐𝑐)3 2⁄

𝜃𝜃1 2⁄ − 0.7𝜃𝜃𝑐𝑐
1 2⁄ =

3√3𝜃𝜃𝑐𝑐
2𝜋𝜋

(𝜃𝜃 𝜃𝜃𝑐𝑐⁄ − 1)3 2⁄

(𝜃𝜃 𝜃𝜃𝑐𝑐⁄ )1 2⁄ − 0.7
 476 

(eq. 37) 477 
Here, the Shields stress θ = τ/(ρs ˗ ρ)gD50, and θc is the corresponding critical Shields stress, and we 478 
approximated 5.7/11.5 = 0.496 with 1/2 (compare to eqs. 35/36). At high θ, when the threshold can 479 
be neglected, eq. (37) reduces to a linear relationship between M0

* and θ. Near the threshold, M0
* is 480 

shifted to lower values as θc increases (Fig. 6). The systematic variation of U* with the hydraulic 481 
driving conditions (eq. 36) implies that the cover function evolves differently in response to changes 482 
in sediment supply and transport capacity. For a first impression, by comparing equations (35) and 483 
(36), we assume that particle speed scales with transport capacity raised to the power of one third 484 
(Fig. 7).  485 
 486 

 487 
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Fig. 6: The characteristic dimensionless mass M0
* depicted as a function of A) the Shields stress and 488 

B) the ratio of Shields stress to critical Shields stress (eq. 37). 489 
 490 

 491 
Fig. 7: Variation of the exposed bed fraction as a function of transport capacity, assuming that 492 
particle speed scales with transport capacity to the power of one third. 493 
 494 

3.3 Temporal evolution of cover within a reach 495 
3.3.1 System timescales 496 
To calculate the temporal evolution of cover on the bed within a single reach, we solved the 497 
equations numerically for a section of the bed with homogenous conditions using a simple linear 498 
finite difference scheme. Then, the sediment input is a boundary condition, while sediment output, 499 
mobile and stationary sediment mass and the fraction of the exposed bed are output variables. In 500 
general, a change in sediment supply leads to a gradual adjustment of the output variables towards a 501 
new steady state (Fig. 8). Unfortunately, a general analytical solution is not possible, but a result can 502 
be obtained for the special case of qs

* = 0. Such a situation is rare in nature, but could be easily 503 
created in flume experiments as a model test. Then, the time derivative of stationary mass is given 504 
by:  505 
 506 

𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= −�1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗�𝑞𝑞𝑡𝑡∗ 507 

(eq. 38) 508 
Using the exponential cover model (eq. 9), we obtain:  509 
 510 

1
𝐴𝐴∗(1− 𝐴𝐴∗)

𝜕𝜕𝐴𝐴∗

𝜕𝜕𝑡𝑡∗
= 𝑞𝑞𝑡𝑡∗ 511 

(eq. 39) 512 
Equation (39) is separable and can be integrated to obtain 513 
 514 

ln(𝐴𝐴∗) − ln(1 − 𝐴𝐴∗) = 𝑡𝑡∗𝑞𝑞𝑡𝑡∗ + 𝐶𝐶 515 
(eq. 40) 516 
Letting A*(t*=0) = A*

0, where A*
0 is the initial cover, the final equation is 517 

 518 
1 − 𝐴𝐴∗

1 − 𝐴𝐴0∗
𝐴𝐴0∗

𝐴𝐴∗
= 𝑒𝑒−𝑡𝑡∗𝑞𝑞𝑡𝑡∗ 519 

(eq. 41) 520 
To clarify the characteristic time scale of the process, equation (41) can also be written in the form of 521 
a sigmoidal-type function: 522 
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 523 

𝐴𝐴∗ =
1

1 + �1 − 𝐴𝐴0∗
𝐴𝐴0∗

� 𝑒𝑒−𝑡𝑡∗𝑞𝑞𝑡𝑡∗
 524 

(eq. 42) 525 
By making the parameters in the exponent on the right hand side of eq. (42) dimensional, we get:  526 
 527 

𝑡𝑡∗𝑞𝑞𝑡𝑡∗ =
𝑡𝑡
𝑇𝑇

𝑇𝑇
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡 =
𝑡𝑡𝑞𝑞𝑡𝑡
𝐿𝐿𝑀𝑀0

 528 

(eq. 43) 529 
which allows a characteristic system time scale TE to be defined as 530 

𝑇𝑇𝐸𝐸 =
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡
 531 

(eq. 44) 532 
Since this time scale is dependent on the transport capacity qt, we can view it as a time scale 533 
associated with the entrainment of sediment from the bed (cf. eq. 20) – hence the subscript E on TE. 534 
From eq. (42), the exposed bed fraction evolves in an asymptotic fashion towards equilibrium (Fig. 9). 535 
We can expect that there are other characteristic time scales for the system, for example associated 536 
with sediment deposition or downstream sediment evacuation.  537 
 538 
We can make some further progress and define a more general system time scale by performing a 539 
perturbation analysis (Appendix A). For small perturbations in either qs

* or qt
*, we obtain an 540 

exponential term describing the transient evolution, which allows the definition of a system 541 
timescale TS 542 

exp �−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗����
� �𝑞𝑞𝑠𝑠∗���� 𝑡𝑡∗� = exp �−

𝑡𝑡
𝑇𝑇𝑆𝑆
� 543 

(eq. 45)  544 
The characteristic system time scale can then be written as 545 

𝑇𝑇𝑆𝑆 =
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡� �1 − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗����
� �𝑞𝑞𝑠𝑠�𝑞𝑞𝑡𝑡�

�
=
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡�
𝑒𝑒𝑀𝑀𝑠𝑠

∗���� 546 

(eq. 46) 547 
Note that for qs

* = 0, eq. (46) reduces to eq. (44), as would be expected. Since 𝑀𝑀𝑠𝑠
∗���� is directly related 548 

to steady state bed exposure 𝐴𝐴∗���, we can rewrite the equation, for example by assuming the 549 
exponential cover function (eq. 3), as 550 

𝑇𝑇𝑆𝑆 =
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡� 𝐴𝐴∗���
 551 

(eq. 47) 552 
Since bed cover is more easily measurable than the mass on the bed, eq. (47) can help to estimate 553 
system time scales in the field. Further, 𝐴𝐴∗��� varies between 0 and 1, which allows estimating a 554 
minimum system time using eq. (44). As 𝐴𝐴∗��� approaches zero, the system time scale diverges. 555 
 556 
To illustrate these additional dependencies, we have used numerical solutions of eqs. (3), (22), (23) 557 
and (24) to calculate the time needed to reach 99.9%  of total adjustment after a step change in 558 
transport stage (chosen due to the asymptotic behavior of the system), produced by varying particle 559 
speed U over a range of plausible values (Fig. 10). Response time decreases as particle speed 560 
increases. This reflects elevated downstream evacuation for higher particles speeds, resulting in a 561 
smaller mobile particle mass and thus higher entrainment and lower deposition rates. Response time 562 
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also increases with increasing relative sediment supply Qs
*. As the runs start with zero sediment 563 

cover, and the extent of cover increases with Qs
*, at higher Qs

* the adjusted cover takes longer to 564 
develop. 565 
 566 

 567 
Fig. 8: Temporal evolution of cover for the simple case of a control box with sediment through-flux, 568 
based on eqs. (3), (22), (23) and (24). Relative sediment supply (supply normalized by transport 569 
capacity) was specified to 0.25 and increased to 1 at t* = 5. The response of sediment output, mobile 570 
and stationary sediment mass and the exposed bed fraction was calculated. Here, we used the 571 
exponential function for P (eq. 9) and M0

* = U* = 1. The initial values were A* = 1 and Mm
* = Ms

* = 0.  572 
 573 

 574 
Fig. 9: Evolution of the exposed bed fraction (removal of sediment cover) over time starting with 575 
different initial values of bed exposure, for the special case of no sediment supply, i.e., qs

* = 0 (eq. 41) 576 
and qt

* = 1. 577 
 578 
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 579 
Fig. 10: Dimensionless time to reach 99.9% of the total adjustment in exposed area as a function of 580 
A) transport stage and B) particle speed. All simulation were started with A* = 1 and Mm

* = Ms
* = 0. 581 

 582 
 583 
3.3.2 Phase shift and gain in response to a cyclic perturbation 584 
The perturbation analysis (Appendix A) gives some insight into the response of cover to cyclic 585 
sinusoidal perturbations. Let sediment supply be perturbed in a cyclic way described by an equation 586 
of the form  587 

𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝑑𝑑 sin �
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 588 

(eq. 48) 589 
Here, the overbar denotes the temporal average, δqs

* is the time-dependent perturbation, d is the 590 
amplitude of the perturbation and p its period. A similar perturbation can be applied to the transport 591 
capacity (see Appendix A). The reaction of the stationary mass and therefore cover can then also be 592 
described by sinusoidal function of the form (Appendix A)  593 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺 sin �

2𝜋𝜋𝜋𝜋
𝑝𝑝

+ 𝜑𝜑� 594 

(eq. 49) 595 
Here, δMs

* is the perturbation of the stationary sediment mass around the temporal average, G is 596 
known as the gain, describing the amplitude response, and φ is the phase shift. If the gain is large, 597 
stationary mass reacts strongly to the perturbation; if it is small, the forcing does not leave a signal. 598 
The phase shift is negative if the response lags behind the forcing and positive if it leads. The phase 599 
shift can be written as  600 

𝜑𝜑 = tan−1 �−2𝜋𝜋
𝑇𝑇𝑆𝑆
𝑝𝑝
� 601 

(eq. 50) 602 
The gain can be written as 603 

𝐺𝐺 =
𝑝𝑝
𝑇𝑇𝑆𝑆

𝐾𝐾𝐾𝐾

�� 𝑝𝑝𝑇𝑇𝑆𝑆
�
2

+ 4𝜋𝜋2
 604 

(eq. 51) 605 
Here, d is the amplitude of the perturbation, and K is a function of the time-averaged values of qs, qt 606 
and U and differs for perturbations in transport capacity and sediment supply (see Appendix A). 607 
Thus, the system behavior can be interpreted as a function of the ratio of the period of perturbation 608 
p and the system time scale Ts. The period p is large if the forcing parameter, i.e., discharge or 609 
sediment supply, varies slowly and small when it varies quickly. According to eq. (50), the phase shift 610 
is equal to -π/2 for low values of p/Ts (quickly-varying forcing parameter), implying a substantial lag in 611 
the adjustment of cover. The phase shift tends to zero as p/Ts tends to infinity (Fig. 11). The gain 612 
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varies approximately linearly with p/Ts for small p/Ts (quickly-varying forcing parameter), while it is 613 
approximately constant at a value of Kd for large p/Ts (slowly-varying forcing parameter) (eq. 51). 614 
Thus, if the forcing parameter varies slowly, cover adjustment keeps up at all times. 615 
 616 

 617 
Fig. 11: Phase shift (eq. 50) and gain (eq. 51) as a function of the ratio of the period of perturbation p 618 
and the system time scale Ts. For the calculation, the constant factor in the gain (Kd) was set equal to 619 
one. 620 
 621 
3.3.3 A flood at the Erlenbach 622 
To illustrate the magnitude of the timescales using real data, we use a flood dataset from the 623 
Erlenbach, a sediment transport observatory in the Swiss Prealps (e.g., Beer et al., 2015). There, near 624 
a discharge gauge, bedload transport rates are measured at 1-minute resolution using the Swiss Plate 625 
Geophone System, a highly developed and fully calibrated surrogate bedload measuring system (e.g., 626 
Rickenmann et al., 2012; Wyss et al. 2016). We use data from a flood on 20th June 2007 (Turowski et 627 
al., 2009) with highest peak discharge that has so far been observed at the Erlenbach. The 628 
meteorological conditions that triggered this flood and its geomorphic effects have been described in 629 
detail elsewhere (Molnar et al., 2010; Turowski et al., 2009, 2013). The Erlenbach does not have a 630 
bedrock bed in the sense that bedrock is exposed in the channel bed, however, the data provide a 631 
realistic natural time series of discharge and bedload transport over the course of a single event. 632 
Rather than predicting bed cover evolution for a natural system, for which we do not currently have 633 
data for validation, we use the Erlenbach data to illustrate possible cover behavior during a fictitious 634 
event with different initial sediment cover extents, using natural data to provide realistic boundary 635 
conditions. 636 
 637 
Using a median grain size of 80 mm, a sediment density of 2650 kg/m3 and a reach length of 50 m, 638 
we obtained M0 = 128 kg/m2. We calculated transport capacity using the equation of Fernandez 639 
Luque and van Beek (1976). However, it is known that this and similar equations strongly 640 
overestimate measured transport rates in streams such as the Erlenbach (e.g., Nitsche et al., 2011). 641 
Consequently, we rescaled by setting the ratio of bedload supply to capacity to one at the highest 642 
discharge. The exposed fraction was then calculated iteratively assuming P = A* (i.e., the exponential 643 
cover formulation, eq. 9). In a real flood event, water discharge and sediment supply obviously do 644 
not follow a small cyclic perturbation (Fig. 11). But we can tentatively relate the observations to the 645 
theory by assuming that at each time step, the change in sediment supply can be represented by the 646 
commencement of a sinusoidal perturbation with varying period. To estimate the effective period p, 647 
one needs to take the derivatives of eq. (48).  648 

0 2 4 6 8 10 12 14 16 18 20

-1.5

-1.0

-0.5

0.0

0.5

1.0

Gain

G
ai

n,
 P

ha
se

 s
hi

ft

p/TS

Phase shift



19 
 

𝑑𝑑𝑑𝑑𝑠𝑠∗

𝑑𝑑𝑑𝑑
=
𝑑𝑑𝑑𝑑𝑞𝑞𝑠𝑠∗

𝑑𝑑𝑑𝑑
=

2𝜋𝜋𝜋𝜋
𝑝𝑝

cos �
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 649 

(eq. 52)  650 
Setting t = 0 for the time of interest, we can relate p to the local gradient in bedload supply, which 651 
can be measured from the data. 652 
 653 

2𝜋𝜋𝜋𝜋
𝑝𝑝

=
∆𝑞𝑞𝑠𝑠∗

∆𝑡𝑡
 654 

(eq. 52)  655 
Assuming that all change in the response time is due to changes in the period (i.e., assuming a 656 
constant amplitude, d = 1), we can obtain a conservative estimate of the range over which p varies 657 
over the course of an event. 658 

𝑝𝑝 = 2𝜋𝜋
∆𝑡𝑡
∆𝑞𝑞𝑠𝑠∗

 659 

(eq. 52)  660 
In the exemplary event, the evolution and final value of bed cover depends strongly on its initial 661 
value (Fig. 12), indicating that the adjustment is incomplete. The system timescale is generally larger 662 
than 1000s and is inversely related to discharge via the dependence on transport capacity. The 663 
p/Ts ratio varies around one, with low values at the beginning of the flood and large values in the 664 
waning hydrograph. Both the high values of the system time scale and the smooth evolution of bed 665 
cover over the course of the flood imply that cover development cannot keep up with the variation in 666 
the forcing characteristics. This dynamic adjustment of cover, which can lag forcing processes, may 667 
thus play an important role in the dynamics of bedrock channels and probably needs to be taken into 668 
account in modelling. 669 
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Fig. 12: Calculated evolution of cover during the largest event observed at the Erlenbach on 20th June 671 
2007 (Turowski et al., 2009). Bedload transport rates were measured with the Swiss Plate geophone 672 
sensors calibrated with direct bedload samples (Rickenmann et al., 2012). The final fraction of 673 
exposed bedrock is strongly dependent on its initial value. 674 
 675 

4.  Discussion  676 
4.1 Model formulation 677 

In principle, the framework for the cover effect presented here allows the formulation of a general 678 
model for bedrock channel morphodynamics without the restrictions of previous models (e.g. Nelson 679 
and Seminara, 2011; Zhang et al., 2015). To achieve this, the dependency of P on various control 680 
parameters needs to be specified. In general, P should be controlled by local topography, grain size 681 
and shape, hydraulic forcing, and the amount of sediment already residing on the bed. Furthermore, 682 
the shape of the P function should also be affected by feedbacks between these properties, such as 683 
the development of sediment cover altering the local roughness and hence altering hydraulics and 684 
local transport capacity (Inoue et al., 2014; Johnson, 2014). Within the treatment presented here, we 685 
have explicitly accounted only for the impact of the amount of sediment already residing on the bed. 686 
However, all of the mentioned effects can be included implicitly by an appropriate choice of P. The 687 
exact relationships between, say, bed topography and P need to be mapped out experimentally (e.g., 688 
Inoue et al., 2014), with theoretical approaches also providing some direction (cf. Johnson, 2014; 689 
Zhang et al., 2015). Currently available experimental results (Chatanantavet and Parker, 2008; 690 
Finnegan et al., 2007; Hodge and Hoey, 2016; Inoue et al., 2014; Johnson and Whipple, 2007) cover 691 
only a small range of the possible parameter space and, in general, not all necessary parameters to 692 
constrain P were reported. Specifically the stationary mass of sediment residing on the bed is usually 693 
not reported and can be difficult to determine experimentally, but is necessary to determine P. 694 
Nevertheless, depending on the choice of P, our model can yield a wide range of cover functions that 695 
encompasses reported functions both from numerical modelling (e.g., Aubert et al., 2016; Hodge and 696 
Hoey, 2012; Johnson, 2014) and experiments (Chatanantavet and Parker, 2008; Inoue et al., 2014; 697 
Sklar and Dietrich, 2001) (see Figs. 4 and 5). 698 
 699 
The dynamic model put forward here is a minimum first order formulation, and there are some 700 
obvious future alterations. We only take account of the static cover effect caused by immobile 701 
sediment on the bed. The dynamic cover effect, which arises when moving grains interact at high 702 
sediment concentration and thus reduce the number of impacts on the bed (Turowski et al., 2007), 703 
could in principle be included into the formulation, but would necessitate a second probability 704 
function specifically to describe this dynamic cover. It would also be possible to use different P-705 
functions for entrainment and deposition, thus introducing hysteresis into cover development.  Such 706 
hysteresis has been observed in experiments in which the equilibrium sediment cover was a function 707 
of the initial extent of sediment cover (Chatanantavet and Parker, 2008; Hodge and Hoey, 2012). 708 
Whether such alterations are necessary is best established with targeted laboratory experiments.  709 
 710 
4.2 Comparison to previous modelling frameworks 711 
We will briefly outline in this section the main differences to previous formulations of cover dynamics 712 
in bedrock channels. Thus, the novel aspects of our formulation and the respective advantages and 713 
disadvantages will become clear. 714 
 715 
Aubert et al. (2015) coupled the movement of spherical particles to the simulation of a turbulent 716 
fluid and investigated how cover depended on transport capacity and supply. Similar to what is 717 
predicted by our analytical formulation, they found a range of cover function for various model set-718 
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ups, including linear and convex-up relationships (compare the results in Fig. 4 to their Fig. 15). 719 
Despite short-comings, Aubert et al. (2015) presented the so far most detailed physical simulations of 720 
bed cover formation and the correspondence between the predictions is encouraging. 721 
 722 
Nelson and Seminara (2011, 2011) formulated a morphodynamic model for bedrock channels. They 723 
based their formulation on sediment concentration, which is in principle similar to our formulation 724 
based on mass. However, Nelson and Seminara (2011, 2012) did not distinguish between mobile and 725 
stationary sediment and linked local transport directly to sediment concentration. Further, a given 726 
mass can be distributed in multiple ways to achieve various degrees of cover, a fact that is quantified 727 
in our formulation by the probability parameter P. Nelson and Seminara (2011, 2012) assumed a 728 
direct correspondence between sediment concentration and degree of cover, which is equivalent to 729 
the linear cover assumption (eq. 7), with the associated problems outlined earlier. Practically, this 730 
implies that the grid size needs to be of the order of the grain size. Although different in various 731 
details, Inoue et al. (2016) have used essentially the same approach as Nelson and Seminar (2011, 732 
2012) to link bedload concentration, transport and bed cover. Both of these models allow the 2D 733 
modelling of bedrock channel morphology. Although we have not fully developed such a model in 734 
the present paper, our model framework could easily be extended to 2D problems.  735 
 736 
Inoue et al. (2014) formulated a 1D model for cover dynamics and bedrock erosion. There, they 737 
distinguish between stationary and mobile sediment using an Exner equation to capture sediment 738 
mass conservation. The degree of bed cover is related to transport rates and sediment mass via a 739 
saturation volume, which is related to our characteristic mass M0

* (see section 3.2). A key difference 740 
between Inoue et al.’s (2014) model and the one presented here lies in the sediment continuity 741 
equation (eq. 26), in which we explicitly take account of both entrainment and deposition. In 742 
addition, with the function P, describing the relationship between deposited mass and degree of 743 
cover, we provide a more flexible framework for complex simulations where the bed needs to be 744 
discretized (e.g., 2D models or reach-scale formulations). 745 
 746 
Zhang et al. (2015) formulated a bed cover model specifically for beds with macro-roughness. There, 747 
deposited sediment always fills topographic lows from their deepest positions, such that there is a 748 
reach-uniform sediment level. While the model is interesting and provides a fundamentally different 749 
approach to what is suggested here, its applicability is limited to very rough beds and the assumption 750 
of a sediment elevation that is independent of the position on the bed seems physically unrealistic. In 751 
principle, the probabilistic framework presented here should be able to deal with macro-rough beds 752 
as well and thus allows a more general treatment of the problem of bed cover. 753 
 754 
Within this paper, we focused on the dynamics of bed cover, rather than modelling the dynamics of 755 
entire channels. The probabilistic formulation using the parameter P provides a flexible framework 756 
to connect the sediment mass residing on the bed with the exposed bedrock fraction. This particular 757 
element has not been treated in any of the previous models and could be easily implemented in 758 
other approaches dealing with sediment fluxes along and across the stream and the interaction with 759 
erosion and, over long time scales, channel morphology. However, it is as yet unclear how flow 760 
hydraulics, sediment properties and other conditions affect P and this should be investigated in 761 
targeted laboratory experiments. Nevertheless, the proposed formulation provides a framework in 762 
which data from various sources can be easily compared and discussed. 763 
 764 
4.3 Further implications 765 
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Based on field data interpretation, Phillips and Jerolmack (2016) argued that bedrock rivers adjust 766 
such that, similar to alluvial channels, medium sized floods are most effective in transporting 767 
sediment, and that channel geometry therefore can quickly adjust their transport capacity to the 768 
applied load and therefore achieve grade (cf. Mackin, 1948). They conclude that bedrock channels 769 
can adjust their morphologic parameters (channel width and shape) quickly in response to changing 770 
boundary conditions, a somewhat counter-intuitive notion for slowly-eroding channels. CIn contrast, 771 
our model suggests that bed cover can be adjusted to achieve grade. In steady state, time derivatives 772 
need to be equal to zero. Thus, entrainment equals deposition (eq. 16), implying that the 773 
downstream gradient in sediment transport rate is equal to zero (eq. 14). When sediment supply or 774 
transport capacity change, the exposed bedrock fraction can adjust to achieve a new steady state 775 
and a change of the channel geometry is unnecessary. These changes in sediment cover can occur far 776 
more rapidly than changes in width and cross-sectional shape (compare to eq. 47). Whether a steady 777 
state is achieved depends on the relative magnitude of the timescales of perturbation and cover 778 
adjustment (see section 3.2). Our results imply that bedrock channels have two distinct time scales to 779 
adjust to changing boundary conditions to achieve grade. Over short times, bed cover is adjusted. 780 
This can occur rapidly. Over long time scales, channel width, cross-sectional shape and slope are 781 
adjusted. 782 
 783 

5. Conclusions 784 
 785 
The probabilistic view put forward in this paper offers a framework into which diverse data on bed 786 
cover, whether obtained from field studies, laboratory experiments or numerical modeling, can be 787 
easily converted to be meaningfully compared. The conversion requires knowledge of the mass of 788 
sediment on the bed and the evolution of exposed fraction of the bed. Within the framework, 789 
individual data sets can be compared to the exponential benchmark and linear limit cases, enabling 790 
physical interpretation. Furthermore, the formulation allows the general dynamic sub-grid modelling 791 
of bed cover. Depending on the choice of P, the model yields a wide range of possible cover 792 
functions. Which of these functions are appropriate for natural rivers and how they vary with factors 793 
including topography needs to mapped out experimentally. 794 
 795 
It needs to be noted here that the precise formulation of the entrainment and deposition functions 796 
also affects steady state cover relations. When calibrating P on data, it cannot always be decided 797 
whether a specific deviation from the benchmark case results from varying entrainment and 798 
deposition processes or from changes in the probability function driven for example by variations in 799 
roughness. For the prediction of the steady state cover relations and for the comparison of data sets, 800 
this should not matter, but the dynamic evolution of cover could be strongly affected. 801 
 802 
The system timescale for cover adjustment is inversely related to transport capacity. This time scale 803 
can be long and in many realistic situations, cover cannot instantaneously adjust to changes in the 804 
forcing conditions. Thus, dynamic cover adjustment needs to be taken into account when modelling 805 
the long-term evolution of bedrock channels. 806 
 807 
Our model formulation implies that bedrock channels adjust bed cover to achieve grade. Therefore, 808 
bedrock channel evolution is driven by two optimization principles. On short time scales, bed cover 809 
adjusts to match the sediment output of a reach to its input. Over long time scales, width and slope 810 
of the channel evolve to match long-term incision rate to tectonic uplift or base level lowering rates.  811 
  812 
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Appendix A: Perturbation analysis  813 
 814 
Here, we derive the effect of a small sinusoidal perturbation of the driving variables, namely 815 
sediment supply qs

* and transport capacity qt
*, on cover development. The perturbation of the 816 

driving variables can be written as  817 
𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗ 818 

(eq. A1) 819 
𝑞𝑞𝑡𝑡∗ = 𝑞𝑞𝑡𝑡∗��� + 𝛿𝛿𝑞𝑞𝑡𝑡∗ 820 

(eq. A2) 821 
Here, the bar denotes the average of the quantity at steady state, while δqs

* and δqt
* denote the 822 

small perturbation. The exposed area can be similarly written as  823 
𝐴𝐴∗ = 𝐴𝐴∗��� + 𝛿𝛿𝐴𝐴∗ 824 

(eq. A3) 825 
Steady state cover is directly related to the mass on the bed Ms

* by eq. (3), which we can rewrite as  826 
𝑑𝑑𝐴𝐴∗

𝑑𝑑𝑑𝑑
= −𝑃𝑃

𝑑𝑑𝑀𝑀𝑠𝑠
∗

𝑑𝑑𝑑𝑑
 827 

(eq. A4) 828 
Substituting eq. (A3) and a similar equation for Ms

*, 829 
𝑀𝑀𝑠𝑠
∗ = 𝑀𝑀𝑠𝑠

∗���� + 𝛿𝛿𝑀𝑀𝑠𝑠
∗ 830 

(eq. A5) 831 
 we obtain 832 

𝑑𝑑𝛿𝛿𝛿𝛿∗

𝑑𝑑𝑑𝑑
= −𝑃𝑃

𝑑𝑑𝛿𝛿𝛿𝛿𝑠𝑠
∗

𝑑𝑑𝑑𝑑
 833 

(eq. A6) 834 
Here, the averaged terms drop out as they are independent of time. If P and the steady state 835 
solution for A* are known, a direct relationship between A* and Ms

* can be derived. For example, for 836 
the exponential cover model (eq. 2), substituting eqs. (A3) and (A5), we find 837 

𝐴𝐴∗��� + 𝛿𝛿𝐴𝐴∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗����−𝛿𝛿𝑀𝑀𝑠𝑠

∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗����𝑒𝑒−𝛿𝛿𝑀𝑀𝑠𝑠

∗ = 𝐴𝐴∗���𝑒𝑒−𝛿𝛿𝑀𝑀𝑠𝑠
∗ ≈ 𝐴𝐴∗���(1 − 𝛿𝛿𝑀𝑀𝑠𝑠

∗) 838 
(eq. A7) 839 
Here, since the δ variables are small, we approximated the exponential term using a Taylor expansion 840 
to first order. We obtain  841 

𝛿𝛿𝐴𝐴∗ = −𝐴𝐴∗���𝛿𝛿𝑀𝑀𝑠𝑠
∗ 842 

(eq. A8) 843 
It is therefore sufficient to derive the perturbation solution for Ms

*, the time evolution of which is 844 
given by eq. (22). Eliminating Mm

* using eq. (24), we obtain 845 
𝜕𝜕𝑀𝑀𝑠𝑠

∗

𝜕𝜕𝑡𝑡∗
= �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗� � 𝑞𝑞𝑠𝑠∗ − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗�𝑞𝑞𝑡𝑡∗ 846 

(eq. A9) 847 
 848 
Perturbation of sediment supply 849 
 850 
First, let’s look at a perturbation of sediment supply qs

*, while other parameters are held constant. 851 
Substituting eq. (A1) and (A5) into (A9), we obtain 852 

𝜕𝜕𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= �1 − 𝑒𝑒−

�𝑞𝑞𝑠𝑠∗���+𝛿𝛿𝑞𝑞𝑠𝑠∗�
𝑈𝑈∗
� � �𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗� − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗����−𝛿𝛿𝑀𝑀𝑠𝑠
∗� 𝑞𝑞𝑡𝑡∗ 853 

(eq. A10) 854 
Again, since the δ variables are small, we can replace the relevant exponentials with Taylor expansion 855 
to first order: 856 
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𝑒𝑒−
𝛿𝛿𝑞𝑞𝑠𝑠∗

𝑈𝑈∗� ≈ 1 −
𝛿𝛿𝑞𝑞𝑠𝑠∗

𝑈𝑈∗  857 

(eq. A11) 858 
A similar approximation applies for the exponential in Ms

*. Substituting eq. (A11) into eq. (A10), 859 
expanding the multiplicative terms, dropping terms of second order in the δ variables and 860 
rearranging, we get 861 

𝜕𝜕𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= 𝛿𝛿𝑞𝑞𝑠𝑠∗ �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� +

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒

−𝑞𝑞𝑠𝑠
∗���
𝑈𝑈∗� � − 𝛿𝛿𝑀𝑀𝑠𝑠

∗ �𝑞𝑞𝑡𝑡∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗���� 862 

(eq. A12) 863 
The perturbation is assumed to be sinusoidal  864 

𝛿𝛿𝑞𝑞𝑠𝑠∗ = 𝑑𝑑 sin�
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 865 

(eq. A13) 866 
Here, p is the period of the perturbation and d is its amplitude. Note that, to be consistent with the 867 
assumptions previously made, d needs to be small in comparison with the average sediment supply. 868 
Substituting, eq. (A12) can be integrated to obtain the solution  869 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺𝑞𝑞𝑠𝑠∗ sin�

2𝜋𝜋𝜋𝜋
𝑃𝑃

+ 𝜑𝜑𝑞𝑞𝑠𝑠∗� + 𝐶𝐶exp �−�𝑞𝑞𝑡𝑡∗ − �1− 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗����
𝑡𝑡
𝑇𝑇�

 870 

where C is a constant of integration. The gain is given by 871 

𝐺𝐺𝑞𝑞𝑠𝑠∗ =
𝑝𝑝
𝑇𝑇

�1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� + 𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� �𝑑𝑑

��𝑞𝑞𝑡𝑡∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� � 𝑞𝑞𝑠𝑠∗����
2

�𝑝𝑝𝑇𝑇�
2

+ 4𝜋𝜋2

 872 

(eq. A14) 873 
And the phase shift by 874 

𝜑𝜑𝑞𝑞𝑠𝑠∗ = tan−1

⎣
⎢
⎢
⎢
⎡
−

2𝜋𝜋
𝑝𝑝
𝑇𝑇 �𝑞𝑞𝑡𝑡

∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗����⎦
⎥
⎥
⎥
⎤
 875 

(eq. A15) 876 
 877 
Perturbation of transport capacity 878 
 879 
The perturbation of the transport capacity qt

* is a little more complicated, since both qt
* and U* are 880 

explicitly dependent on hydraulics (e.g., shear stress; see eqs. 43 and 44), and thus U* is implicitly 881 
dependent on qt

* and δqt
*. To circumvent this problem, we expand the exponential term featuring 882 

U*(δqt
*) in eq. (A9) using a Taylor series expansion around δqt

* = 0.  883 
 884 

exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗(𝛿𝛿𝑞𝑞𝑡𝑡∗)� ≈ exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)� �1 −
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗2(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕𝑞𝑞𝑡𝑡∗
(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)𝛿𝛿𝑞𝑞𝑡𝑡∗� 885 

(eq. A16) 886 
Both U* and its derivative are constants when evaluated at δqt

* = 0. We can thus write 887 
 888 

exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗� = exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� �1 −
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����2
�
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕𝑞𝑞𝑡𝑡∗
�

����������
𝛿𝛿𝑞𝑞𝑡𝑡∗� = [1 − 𝐶𝐶0𝛿𝛿𝑞𝑞𝑡𝑡∗]𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗�����  889 

 890 
(eq. A17) 891 



25 
 

Here, C0 is a constant. Proceeding as before by substituting eq. (A2), (A8) and (A17) into (A9), 892 
expanding exponential terms containing δ variables, dropping terms of second order in the δ 893 
variables and rearranging, we obtain:  894 

𝜕𝜕𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= �𝐵𝐵𝑞𝑞𝑠𝑠∗𝑒𝑒

−𝑞𝑞𝑠𝑠
∗

𝑈𝑈∗����� + 𝑒𝑒−𝑀𝑀𝑠𝑠
∗���� − 1�𝛿𝛿𝑞𝑞𝑡𝑡∗ − 𝛿𝛿𝑀𝑀𝑠𝑠

∗𝑞𝑞𝑡𝑡∗���𝑒𝑒−𝑀𝑀𝑠𝑠
∗���� 895 

(eq. A18) 896 
A sinusoidal perturbation of the form  897 

𝛿𝛿𝑞𝑞𝑡𝑡∗ = 𝑑𝑑 sin�
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 898 

(eq. A19) 899 
yields the solution  900 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺𝑞𝑞𝑡𝑡∗ sin �

2𝜋𝜋𝜋𝜋
𝑃𝑃

+ 𝜑𝜑𝑞𝑞𝑡𝑡∗� + 𝐶𝐶exp �−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠∗�
𝑡𝑡
𝑝𝑝� �

−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠∗�
𝑡𝑡
𝑇𝑇�

 901 

with  902 

𝐺𝐺𝑞𝑞𝑡𝑡∗ =
𝑝𝑝
𝑇𝑇

�𝑞𝑞𝑠𝑠
∗2

𝑈𝑈∗����2
� 𝜕𝜕𝜕𝜕

∗

𝜕𝜕𝜕𝜕𝑞𝑞𝑡𝑡∗
�

���������
𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� − �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠

∗

𝑞𝑞𝑡𝑡∗���
�𝑑𝑑

�𝑞𝑞𝑡𝑡∗���
2 �𝑝𝑝𝑇𝑇�

2
�1 − �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗� � 𝑞𝑞𝑠𝑠

∗

𝑞𝑞𝑡𝑡∗���
�
2

+ 4𝜋𝜋2

 903 

(eq. A20) 904 
and 905 

𝜑𝜑 = tan−1

⎝

⎜
⎛
−

2𝜋𝜋
𝑝𝑝
𝑇𝑇 �𝑞𝑞𝑡𝑡

∗��� − �1− 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� �𝑞𝑞𝑠𝑠∗�
⎠

⎟
⎞

 906 

(eq. A21) 907 
 908 
Summary 909 
 910 
Using the system timescale TS, the phase shift and gain can be generally rewritten as 911 
 912 

𝜑𝜑 = tan−1 �−2𝜋𝜋
𝑇𝑇𝑆𝑆
𝑝𝑝
� 913 

(eq. A22)  914 

𝐺𝐺 =
𝑝𝑝
𝑇𝑇𝑆𝑆

𝐾𝐾𝐾𝐾

�� 𝑝𝑝𝑇𝑇𝑆𝑆
�
2

+ 4𝜋𝜋2
 915 

(eq. A23) 916 
Here, K differs for perturbations in sediment supply and transport capacity, given by the equations 917 
 918 

𝐾𝐾𝑞𝑞𝑠𝑠∗ = 1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� +
𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒

−𝑞𝑞𝑠𝑠
∗���
𝑈𝑈∗�  919 

(eq. A24) 920 

𝐾𝐾𝑞𝑞𝑡𝑡∗ =
𝑞𝑞𝑠𝑠∗

2

𝑈𝑈∗����2
�
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕𝑞𝑞𝑡𝑡∗
�

����������
𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� − �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� �

𝑞𝑞𝑠𝑠∗

𝑞𝑞𝑡𝑡∗���
 921 

(eq. A25) 922 
 923 
  924 
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Notation 925 
 926 
Overbars denote time-averaged quantities. 927 
 928 
a  Shape parameter in the regularized incomplete Beta function. 929 
A*  Fraction of exposed (uncovered) bed area.  930 
Ac

*  Fraction of covered bed area. 931 
b  Shape parameter in the regularized incomplete Beta function. 932 
B  Regularized incomplete Beta function. 933 
C  Constant of integration. 934 
C0  Constant [m2s/kg]. 935 
d  Amplitude of perturbation [kg/m2s]. 936 
D  Sediment deposition rate per bed area [kg/m2s].  937 
D*  Dimensionless sediment deposition rate. 938 
D50  Median grain size [m]. 939 
e  Base of the natural logarithm. 940 
E  Sediment entrainment rate per bed area [kg/m2s].  941 
E*  Dimensionless sediment entrainment rate. 942 
Emax   Maximal possible dimensionless sediment entrainment rate. 943 
g  Acceleration due to gravity [m/s2]. 944 
G  Gain [kg/m2s]. 945 
I   Non-dimensional incision rate. 946 
k  Probability of sediment deposition on uncovered parts of the bed, linear 947 

implementation.  948 
kI Non-dimensional erodibility.  949 
K Parameter in the gain equation. 950 
L Characteristic length scale [m]. 951 
M0  Minimum mass per area necessary to cover the bed [kg/m2].  952 
M0

*  Dimensionless characteristic sediment mass.  953 
Mm  Mobile sediment mass [kg/m2]. 954 
Mm

*  Dimensionless mobile sediment mass.  955 
Ms  Stationary sediment mass [kg/m2]. 956 
Ms

*  Dimensionless stationary sediment mass. 957 
p  Period of perturbation [s].  958 
pc  Probability of entrainment, CA model, blocked grains. 959 
pi  Probability of entrainment, CA model, free grains. 960 
P  Probability of sediment deposition on uncovered parts of the bed. 961 
qs  Mass sediment transport rate per unit width [kg/ms]. 962 
qs

*  Dimensionless sediment transport rate.  963 
qt  Mass sediment transport capacity per unit width [kg/ms]. 964 
qt

*  Dimensionless transport capacity. 965 
Qs

*  Relative sediment supply; sediment transport rate over transport capacity.  966 
Qt  Mass sediment transport capacity [kg/s]. 967 
t  Time variable [s]. 968 
t*  Dimensionless time.  969 
T  Characteristic time scale [s].  970 
TE  Characteristic time scale for sediment entrainment [s].  971 
TS  Characteristic system time scale [s]. 972 
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U  Sediment speed [m/s]. 973 
U*  Dimensionless sediment speed. 974 
x  Dimensional streamwise spatial coordinate [m].  975 
x*  Dimensionless streamwise spatial coordinate. 976 
y  Dummy variable. 977 
α  Exponent.  978 
γ  Fraction of pore space in the sediment. 979 
δ  denotes time-varying component. 980 
θ  Shields stress. 981 
θc  Critical Shields stress. 982 
ρ  Density of water [kg/m3].  983 
ρs  Density of sediment [kg/m3]. 984 
τ  Bed shear stress [N/m2].  985 
τc  Critical bed shear stress at the onset of bedload motion [N/m2]. 986 
 987 

  988 
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 1112 
Fig. 1: A) Various examples for the probability function P as a function of bedrock exposure A*. B) 1113 
Corresponding analytical solutions for the cover function between A* and dimensionless sediment 1114 
mass Ms

* using eq. (7), (9) and (10). Grey shading depicts the area where the cover function cannot 1115 
run due to conservation of mass. 1116 
 1117 

 1118 
Fig. 2: Examples for the use of the regularized incomplete Beta function (eq. 12) to parameterize P, 1119 
using various values for the shape parameters a and b. The choice a = b = 1 gives a dependence that 1120 
is equivalent to the exponential cover function. Grey shading depicts the area where the cover 1121 
function cannot run due to conservation of mass. 1122 
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 1123 
Fig. 3: Probability functions P and cover function derived from data obtained from the model of 1124 
Hodge and Hoey (2012). The grey dashed line shows the exponential benchmark behavior. Grey 1125 
shading depicts the area where the cover function cannot run due to conservation of mass. The 1126 
legend gives values of Pi and Pc used for the runs (see text). 1127 
 1128 

 1129 
Fig. 4: Analytical solutions at steady state for the exposed fraction of the bed (A*) as a function of 1130 
relative sediment supply (Q*, cf. Fig. 1). A) Comparison of the different solutions, keeping M0

* 1131 
constant at 1. B) Varying M0

* for the linear case (eq. 31). C) Varying M0
* for the exponential case (eq. 1132 

30). D) Varying M0
* for the power law case with α = 0.1 (eq. 32). 1133 
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 1135 
Fig. 5: Steady state solutions using the beta distribution to parameterize P (eq. 11) for a range of 1136 
parameters a and b, and using M0

* = 1 (cf. Fig. 2). The solutions were obtained by iterating the 1137 
equations to a steady state, using initial conditions of A* = 1 and Mm

* = Ms
* = 0. 1138 

 1139 

 1140 
Fig. 6: The characteristic dimensionless mass M0

* depicted as a function of A) the Shields stress and 1141 
B) the ratio of Shields stress to critical Shields stress (eq. 37). 1142 
 1143 

 1144 
Fig. 7: Variation of the exposed bed fraction as a function of transport capacity, assuming that 1145 
particle speed scales with transport capacity to the power of one third. 1146 
 1147 
 1148 
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 1149 
Fig. 8: Temporal evolution of cover for the simple case of a control box with sediment through-flux, 1150 
based on eqs. (3), (22), (23) and (24). Relative sediment supply (supply normalized by transport 1151 
capacity) was specified to 0.25 and increased to 1 at t* = 5. The response of sediment output, mobile 1152 
and stationary sediment mass and the exposed bed fraction was calculated. Here, we used the 1153 
exponential function for P (eq. 9) and M0

* = U* = 1. The initial values were A* = 1 and Mm
* = Ms

* = 0. 1154 

 1155 
Fig. 9: Evolution of the exposed bed fraction (removal of sediment cover) over time starting with 1156 
different initial values of bed exposure, for the special case of no sediment supply, i.e., qs

* = 0 (eq. 41) 1157 
and qt

* = 1. 1158 
 1159 
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 1160 
Fig. 10: Dimensionless time to reach 99.9% of the total adjustment in exposed area as a function of 1161 
A) transport stage and B) particle speed. All simulation were started with A* = 1 and Mm

* = Ms
* = 0. 1162 

 1163 

 1164 
Fig. 11: Phase shift (eq. 50) and gain (eq. 51) as a function of the ratio of the period of perturbation p 1165 
and the system time scale Ts. For the calculation, the constant factor in the gain (Kd) was set equal to 1166 
one. 1167 
 1168 
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 1169 
Fig. 12: Calculated evolution of cover during the largest event observed at the Erlenbach on 20th June 1170 
2007 (Turowski et al., 2009). Bedload transport rates were measured with the Swiss Plate geophone 1171 
sensors calibrated with direct bedload samples (Rickenmann et al., 2012). The final fraction of 1172 
exposed bedrock is strongly dependent on its initial value. 1173 
 1174 
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