
1 
 

 A probabilistic framework for the cover effect in bedrock erosion 1 
 2 
 3 
Jens M. Turowski 4 
Helmholtzzentrum Potsdam, German Research Centre for Geosciences GFZ, Telegrafenberg, 14473 5 
Potsdam, Germany, turowski@gfz-potsdam.de 6 
Rebecca Hodge 7 
Department of Geography, Durham University, Durham, DH1 3LE, United Kingdom, 8 
rebecca.hodge@durham.ac.uk 9 
 10 
 11 
Abstract 12 
The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-13 
term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover 14 
effect that can be applied to field, laboratory and modelling data and thus allows the comparison of 15 
results from different sources. The framework describes the formation of sediment cover as a function 16 
of the probability of sediment being deposited on already alluviated areas of the bed. We define 17 
benchmark cases and suggest physical interpretations of deviations from these benchmarks. 18 
Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to 19 
clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction and 20 
the transport stage. We derive system time scales and investigate cover response to cyclic 21 
perturbations. The model predicts that bedrock channels achieve grade in steady state by adjusting 22 
bed cover. Thus, bedrock channels have at least two characteristic time scales of response. Over short 23 
time scales, the degree of bed cover is adjusted such that the supplied sediment load can just be 24 
transported, while over long time scales, channel morphology evolves such that the bedrock incision 25 
rate matches the tectonic uplift or base level lowering rate. 26 
 27 

1. Introduction 28 
 29 
Bedrock channels are shaped by erosion caused by countless impacts of the sediment particles they 30 
carry along their bed (Beer and Turowski, 2015; Cook et al., 2013; Sklar and Dietrich, 2004). There are 31 
feedbacks between the evolving channel morphology, the bedload transport, and the hydraulics 32 
(e.g., Finnegan et al., 2007; Johnson and Whipple, 2007; Wohl and Ikeda, 1997). Impacting bedload 33 
particles driven forward by the fluid forces erode and therefore shape the bedrock bed. In turn, the 34 
morphology of the channel determines the pathways of both sediment and water, and the forces the 35 
latter exerts on the former, and thus sets the stage for the entrainment and deposition of the 36 
sediment (Hodge and Hoey, 2016). Sediment particles play a key role in this erosion process; they 37 
provide the tools for erosion and also determine where bedrock is exposed such that it can be worn 38 
away by impacting particles (Gilbert, 1877; Sklar and Dietrich, 2004). 39 
 40 
The importance of the cover effect – that a stationary layer of gravel can shield the bedrock from 41 
bedload impacts – has by now been firmly established in a number of field and laboratory studies 42 
(e.g., Chatanantavet and Parker, 2008; Finnegan et al., 2007; Hobley et al., 2011; Johnson and 43 
Whipple, 2007; Turowski and Rickenmann, 2009; Turowski et al., 2008; Yanites et al., 2011). 44 
Sediment cover is generally modelled with generic relationships that predict the decrease of the 45 
fraction of exposed bedrock area A* with the increase of the relative sediment supply Qs

*, usually 46 
defined as the ratio of sediment supply to transport capacity. Based on laboratory experiments and 47 
simple modeling, Turowski and Bloem (2016) argued that the focus on covered area is generally 48 
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justified on the reach scale and that erosion of bedrock under a thin sediment cover can be 49 
neglected. However, the behavior of sediment cover under flood conditions is currently unknown 50 
and the assumption that the cover distribution at low flow is representative of that at high flow may 51 
not be justified (cf. Beer et al., 2016; Turowski et al., 2008). 52 
 53 
The most commonly used function to describe the cover effect is the linear decline (Sklar and 54 
Dietrich, 1998), which is the simplest function connecting the steady state end members of an empty 55 
bed when relative sediment supply Qs

* = 0 and full cover when Qs
* = 1: 56 

 57 

𝐴𝐴∗ = �1 − 𝑄𝑄𝑠𝑠∗ for 𝑄𝑄𝑠𝑠∗ < 1
0 otherwise

 58 

(eq. 1) 59 
In contrast, the exponential cover function arises under the assumption that particle deposition is 60 
equally likely for each part of the bed, whether it is covered or not (Turowski et al., 2007).  61 
 62 

𝐴𝐴∗ = �𝑒𝑒
−𝑄𝑄𝑠𝑠∗ for 𝑄𝑄𝑠𝑠∗ < 1
0 otherwise

 63 

(eq. 2) 64 
Here, e is the base of the natural logarithm.  65 
 66 
Hodge and Hoey (2012) obtained both the linear and the exponential functions using a cellular 67 
automaton (CA) model that modulated grain entrainment probabilities by the number of 68 
neighbouring grains. However, consistent with laboratory flume data, the same model also produced 69 
other behaviours under different parameterisations. One alternative behavior is runaway alluviation, 70 
which was attributed by Chatanantavet and Parker (2008) to the differing roughness of bedrock and 71 
alluvial patches. Due to a decrease in flow velocity, an increase in surface roughness and differing 72 
grain geometry, the likelihood of deposition is higher over bed sections covered by alluvium 73 
compared to smooth, bare bedrock sections (Hodge et al., 2011). This can lead to rapid alluviation of 74 
the entire bed once a minimum fraction has been covered. The relationship between sediment flux 75 
and cover is also affected by the bedrock morphology; flume experiments have demonstrated that 76 
on a non-planar bed the location of sediment cover is driven by bed topography and hydraulics (e.g., 77 
Finnegan et al., 2007; Inoue et al., 2014). Johnson and Whipple (2007) observed that stable patches 78 
of alluvium tend to form in topographic lows such as pot holes and at the bottom of slot canyons, 79 
whereas Hodge and Hoey (2016) found that local flow velocity also controls sediment cover location. 80 
 81 
The relationship between roughness, bed cover and incision was explored in a number of recent 82 
numerical modeling studies. Nelson and Seminara (2011, 2012) were one of the first to model the 83 
impact that the differing roughness of bedrock and alluvial areas has on sediment patch stability. 84 
Zhang et al. (2014) formulated a macro-roughness cover model, in which sediment cover is related to 85 
the ratio of sediment thickness to bedrock macro-roughness. Aubert et al. (2016) directly simulated 86 
the dynamics of particles in a turbulent flow and obtained both linear and exponential cover 87 
functions. Johnson (2014) linked sediment transport and cover to bed roughness in a reach-scale 88 
model. Using a model formulation similar to that of Nelson and Seminara (2011), Inoue et al. (2016) 89 
reproduced bar formation and sediment dynamics in bedrock channels. All of these studies used 90 
slightly different approaches and mathematical formulations to describe alluvial cover, making a 91 
direct comparison difficult. 92 
 93 
Over time scales including multiple floods, the variability in sediment supply is also important (e.g., 94 
Turowski et al., 2013). Lague (2010) used a model formulation in which cover was written as a 95 
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function of the average sediment depth to upscale daily incision processes to long time scales. He 96 
found that over the long term, cover dynamics are largely independent of the precise formulation at 97 
the process scale and are rather controlled by the magnitude-frequency distribution of discharge and 98 
sediment supply. Using the CA model of Hodge and Hoey (2012), Hodge (in press) found that, when 99 
sediment supply was very variable (alternating large pulses with no sediment supply), the amount of 100 
sediment cover was primarily determined by the recent supply history, rather than by the 101 
relationships identified under constant sediment supply. 102 
 103 
So far, it has been somewhat difficult to compare and discuss the different cover functions obtained 104 
from theoretical considerations, numerical models, and experiments, since a unifying framework and 105 
clear benchmark cases have been missing. Here, we propose such a framework, and develop type 106 
cases linked to physical considerations of the flow hydraulics and sediment erosion and deposition. 107 
We show how this framework can be applied to data from a published model (Hodge and Hoey, 108 
2012). Furthermore, we develop a reach-scale erosion-deposition model that allows the dynamic 109 
modeling of cover and prediction of steady states. Thus, we clarify the relationship between cover, 110 
deposited mass and relative sediment supply. As part of this model framework we investigate the 111 
response time of a channel to a change in sediment input, which we illustrate using data from a 112 
natural channel.  113 
 114 

2. A probabilistic framework 115 
 116 
2.1. Development 117 
Here we build on the arguments put forward by Turowski et al. (2007) and Turowski (2009). Consider 118 
a bedrock bed on which sediment particles are distributed. We can view the deposition of each 119 
particle as a random process, and each area element on the bed surface can be assigned a probability 120 
for the deposition of a particle. When assuming that a given number of particles are distributed on 121 
the bed, the mean behavior of the exposed area A* can be calculated from the following equation 122 
(Fig. 1): 123 

𝑑𝑑𝐴𝐴∗ = −𝑃𝑃(𝐴𝐴∗,𝑀𝑀𝑠𝑠
∗, … )𝑑𝑑𝑀𝑀𝑠𝑠

∗ 124 
(eq. 3) 125 
P is the probability that a given particle is deposited on the exposed part of the bed, which here is a 126 
function of the fraction of exposed area (A*) and a dimensionless mass of particles on the bed per 127 
area (Ms

*, explained below), but which can be expected to also be a function of the relative sediment 128 
supply, the bed topography and roughness, the particle size, the local hydraulics or other control 129 
variables. Ms

* is a dimensionless mass equal to the total mass of the particles residing on the bed per 130 
area, which is suitably normalized. A suitable mass for normalization is the minimum mass required 131 
to cover a unit area, M0, as will become clear later. The minus sign is introduced because the fraction 132 
of the exposed area reduces as Ms

* increases. As most previous relationships are expressed in terms 133 
of relative sediment supply Qs

*, the relation of Ms
* to Qs

* will be discussed later. 134 
 135 

 136 
Probability of deposition
on uncovered bed = P

Probability of deposition
on covered bed = 1- P Fraction of exposed

bed: A*
Dimensionless
stationary mass: Ms*

A* depends on the
distribution of M* within
the control area.
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Fig. 1: Cartoon illustration of a bed partially covered by sediment. For purpose of illustration, the bed 137 
is divided into a square raster, with each pixel of the size of a single grain. For a given number of 138 
particles in the area of the bed of interest, the exposed area fraction of the bed is dependent on the 139 
distribution of particles. Grains that sit on top of other grains do not contribute to cover. The 140 
probability that a new grain is deposited on uncovered bed is given by P (eq. 3). 141 
 142 
We can make some general statements about P. First, P is defined for the range 0 ≤  A* ≤  1 and 143 
undefined elsewhere. Second, P takes values between zero and one for 0 ≤ A* ≤ 1. Third, P(A*=0) = 0 144 
and P(A*=1) = 1. Note that P is not a distribution function and therefore does not need to integrate 145 
to one. Neither does it have to be continuous and differentiable everywhere. 146 
 147 
For purpose of illustration, we will next discuss two simple forms of the probability function P that 148 
lead to the linear and exponential forms of the cover effect, respectively. First, consider the case that 149 
all particles are always deposited on exposed bedrock. In this case, formally, to keep with the 150 
conditions stated above, we define P = 1 for 0 < A* ≤ 1 and P = 0 for A* = 0.  Thus, we can write 151 
 152 

𝑑𝑑𝐴𝐴∗ = −𝑑𝑑𝑀𝑀𝑠𝑠
∗ for 0 < 𝐴𝐴∗ ≤ 1

𝑑𝑑𝐴𝐴∗ = 0 for 𝐴𝐴∗ = 0
 153 

(eq. 4) 154 
Integrating, we obtain:  155 

𝐴𝐴∗ = −𝑀𝑀𝑠𝑠
∗ + 𝐶𝐶 156 

(eq. 5) 157 
where the constant of integration C is found to equal one by using the condition A*(Ms

*=0) = 1. Thus, 158 
we obtain a linear cover function. Note that the linear cover function gives a theoretical lower bound 159 
for the amount of cover: it arises when all available sediment always falls on uncovered ground, and 160 
thus no additional sediment is available that could facilitate quicker alluviation. In essence, this is a 161 
mass conservation argument. Now it is obvious why M0 is a convenient way to normalize: in plots of 162 
A* against Ms

*, we obtain a triangular region bounded by the points [0,1], [0,0] and [1,0] in which the 163 
cover function cannot exist (Fig. 2).  164 
 165 
Similarly to above, if we set P to a constant value, k, smaller than one for 0 < A* ≤ 1, we obtain 166 
 167 

𝐴𝐴∗ = 1 − 𝑘𝑘𝑀𝑀𝑠𝑠
∗ 168 

(eq. 6) 169 
It is clear that the assumption of P = k is physically unrealistic, because it implies that the probability 170 
of deposition on exposed ground is independent of the amount of uncovered bedrock. Especially 171 
when A* is close to zero, it seems unlikely that, say, always 90% of the sediment falls on uncovered 172 
ground. A more realistic assumption is that the probability of deposition on uncovered ground is 173 
independent of location and other possible controls, but is equal to the fraction of exposed area, i.e., 174 
P = A*. In a probabilistic sense, this is also the simplest plausible assumption one can make. Then 175 
 176 

𝑑𝑑𝐴𝐴∗ = −𝐴𝐴∗𝑑𝑑𝑀𝑀𝑠𝑠
∗ 177 

(eq. 7) 178 
giving upon integration 179 

𝐴𝐴∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗
 180 

(eq. 8) 181 
The argument used here to obtain the exponential cover effect in eq. (8) essentially corresponds to 182 
the one given by Turowski et al. (2007). Since this case presents the simplest plausible assumption, 183 
we will use it as a benchmark case, to which we will compare other possible functional forms of P. 184 
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 185 
In principle, the probability function P can be varied to account for various processes that make 186 
deposition more likely either on already covered ground by decreasing P for the appropriate range of 187 
A* from the benchmark case P = A*, or on uncovered ground by increasing P from the benchmark 188 
case P = A*. As has been identified previously (Chatanantavet and Parker, 2008; Hodge and Hoey 189 
2012), roughness feedbacks to the flow can cause either case depending on whether subsequent 190 
deposition is adjacent to or on top of existing sediment patches. In the former case, particles residing 191 
on an otherwise bare bedrock bed act as obstacles for moving particles, and create a low-velocity 192 
wake zone in the downstream direction. In addition, particles residing on other single particles are 193 
unstable and stacks of particles are unlikely. Hence, newly arriving particles tend to deposit either 194 
upstream or downstream of stationary particles and the probability is generally higher for deposition 195 
on uncovered ground than in the benchmark case. In the latter case, larger patches of stationary 196 
particles increase the surface roughness of the bed, thus decreasing the local flow velocity and 197 
stresses, making deposition on the patch more likely. In this way, the probability of deposition on 198 
already covered bed is increased in comparison to the benchmark case. 199 
 200 
A simple functional form that can be used to take into account either one of these two effects is a 201 
power law dependence of P on A*, taking the form P = A*α (Fig. 2A). Then, the cover function 202 
becomes (Fig. 2B): 203 
 204 

𝐴𝐴∗ = (1 − (1 − 𝛼𝛼)𝑀𝑀𝑠𝑠
∗)

1
1−𝛼𝛼 205 

(eq. 9) 206 
Here, the probability of deposition on uncovered ground is increased in comparison to the 207 
benchmark exponential case if 0 < α < 1, and decreased if α > 1.  208 
 209 
A convenient and flexible way to parameterize P(A*) in general is the cumulative version of the Beta 210 
distribution, given by:  211 

𝑃𝑃(𝐴𝐴∗) = 𝐵𝐵(𝐴𝐴∗; 𝑎𝑎, 𝑏𝑏) 212 
(eq. 10) 213 
Here, B(A*;a,b) is the regularized incomplete Beta function with two shape parameters a and b, 214 
which are both real positive numbers, defined by:  215 

𝐵𝐵(𝐴𝐴∗; 𝑎𝑎, 𝑏𝑏) =
∫ 𝑦𝑦𝑎𝑎−1(1 − 𝑦𝑦)𝑏𝑏−1𝑑𝑑𝑑𝑑𝐴𝐴∗

0

∫ 𝑦𝑦𝑎𝑎−1(1 − 𝑦𝑦)𝑏𝑏−1𝑑𝑑𝑑𝑑1
0

 216 

(eq. 11) 217 
Here, y is a dummy variable. With suitable choices for a and b, cover functions resembling the 218 
exponential (a=b=1), the linear form (a=0, b>0), and the power law form (a>>b or a<<b) can be 219 
retrieved. Wavy functions are also a possibility (Fig. 3), thus both of the roughness effects described 220 
above can be modelled in a single scenario. Unfortunately, the integral necessary to obtain A*(Ms

*) 221 
does not give a closed-form analytical solution and needs to be computed numerically. 222 
 223 
In principle, a suitable function P could also be defined to account for the influence of bed 224 
topography on sediment deposition. Such a function is likely dependent on the details of the 225 
particular bed, hydraulics and sediment flow paths in a complex way and needs to be mapped out 226 
experimentally. 227 
 228 
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 229 
Fig. 2: A) Various examples for the probability function P as a function of bedrock exposure A*. B) 230 
Corresponding analytical solutions for the cover function between A* and dimensionless sediment 231 
mass Ms

* using eq. (6), (7) and (9). Grey shading depicts the area where the cover function cannot 232 
run due to conservation of mass. 233 
 234 

 235 
Fig. 3: Examples for the use of the regularized incomplete Beta function (eq. 11) to parameterize P, 236 
using various values for the shape parameters a and b. The choice a = b = 1 gives a dependence that 237 
is equivalent to the exponential cover function. Grey shading depicts the area where the cover 238 
function cannot run due to conservation of mass. 239 
 240 
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2.2 Example of application using model data 241 
 242 
To illustrate how the framework can be used, we apply it to data obtained from the CA model 243 
developed by Hodge and Hoey (2012). The CA model reproduces the transport of individual sediment 244 
grains over a smooth bedrock surface. In each time step, the probability of a grain being entrained is 245 
a function of the number of neighboring grains. If five or more of the eight neighbouring cells contain 246 
grains then the grain has probability of entrainment pc, otherwise it has probability pi. In most model 247 
runs pc was set to a value less than that of pi, thus accounting for the impact of sediment cover in 248 
decreasing local shear stress (through increased flow resistance) and increasing the critical 249 
entrainment shear stress for grains (via lower grain exposure and increased pivot angles). Thus, in 250 
the model, grain scale dynamics of entrainment are varied by adjusting the values of pi and pc. This 251 
has a direct effect on the reach-scale distribution of cover, which is captured by our P-function (eq. 252 
3). 253 
 254 
The model is run with a domain that is 100 cells wide by 1000 cells long, with each cell having the 255 
same area as a grain. Up to four grains can potentially be entrained from each cell in a time step, 256 
limiting the maximum sediment flux. In each time step random numbers and the probabilities are 257 
used to select the grains that are entrained, which are then moved a step length of ten cells 258 
downstream and deposited. Model results are insensitive to the step length. A fixed number of grains 259 
are also supplied to the upstream end of the model domain. A smoothing algorithm is applied to 260 
prevent unrealistically tall piles of grains developing in cells if there are far fewer grains in adjacent 261 
cells. After around 500 time steps the model typically reaches a steady state condition in which the 262 
number of grains supplied to and leaving the model domain are equal. Sediment cover is measured 263 
in a downstream area of the model domain and is defined as grains that are not entrained in a given 264 
time step. Consequently grains that are deposited in one time step, and entrained in the following 265 
one do not contribute to the sediment cover, and so the model implicitly incorporates the effect of 266 
local sediment cover on grain deposition. 267 
 268 
Model runs were completed with a six different combinations of pi and pc: 0.95/0.95, 0.95/0.75, 269 
0.75/0.10, 0.75/0.30, 0.30/0.30 and 0.95/0.05. These combinations were selected to cover the range 270 
of relationships between relative sediment supply Qs

* and the exposed bed fraction A* observed by 271 
Hodge and Hoey (2012). For each pair of pi and pc model runs were completed at least 20 different 272 
values of Qs

* in order to quantify the model behaviour. 273 
 274 
Cover bed fraction and total mass on the bed produced by the model were converted using eq. (3) 275 
into the new probabilistic framework (Fig. 4). The derivative was approximated by simple linear finite 276 
differences, which, in the case of run-away alluviation, resulted in a non-continuous curve due to 277 
large gradients. The exponential benchmark (eq. 8) is also shown for comparison. The different 278 
model parameterisations produce results in which the probability of deposition on bedrock is both 279 
more and less likely than in the baseline case, with some runs showing both behaviours. Cases where 280 
the probability is more than the baseline case (i.e. grains are more likely to fall on uncovered areas) 281 
are associated with runs in which grains in clusters are relatively immobile. These runs are likely to be 282 
particularly affected by the smoothing algorithm that acts to move sediment from alluviated to 283 
bedrock areas. All model parameterisations predict greater bed exposure for a given normalised 284 
mass than is predicted by a linear cover relationship (Figure 3b). Runs with relatively more immobile 285 
cluster grains have a lower exposed fraction for the same normalised mass. Runs with low values of 286 
pi and pc seem to lead to behavior in which cover is more likely than in the exponential benchmark, 287 
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while for high values, it is less likely. However, these are complex interactions and it is difficult to 288 
generalize the model behavior. 289 
 290 

 291 
Fig. 4: Probability functions P and cover function derived from data obtained from the model of 292 
Hodge and Hoey (2012). The grey dashed line shows the exponential benchmark behavior. Grey 293 
shading depicts the area where the cover function cannot run due to conservation of mass. The 294 
legend gives values of the probabilities of entrainment pi and pc used for the runs (see text). 295 
 296 
 297 

3. Cover development in time and space 298 
 299 
3.1. Model derivation 300 
 301 
Previous descriptions of the cover effect relate the exposed fraction of the bed to the relative 302 
sediment supply Qs

* (see eqs. 1 and 2). In this section, we derive a model to clarify the relationship 303 
between the exposed fraction, Qs

* and Ms  and put it on a sound physical basis. To this end, the 304 
probabilistic formulation introduced previously is extended to allow the calculation of the temporal 305 
and spatial evolution of sediment cover in a stream. Here, we will derive the equations for the one 306 
dimensional case (linear flume), but extensions to higher dimensions are possible in principle. The 307 
derivation is inspired by the erosion-deposition framework (e.g. Charru et al., 2004), with some 308 
necessary adaptions to make it suitable for channels with partial sediment cover (e.g., Turowski, 309 
2009). In our system, we consider two separate mass reservoirs within a control volume. The first 310 
reservoir contains all particles in motion, the total mass per bed area of which is denoted by Mm, 311 
while the second reservoir contains all particles that are stationary on the bed, the total mass per 312 
bed area of which is denoted by Ms. The reservoirs exchange mass by entrainment and deposition, 313 
i.e., when a stationary particle is entrained it becomes mobile and when a mobile particle is 314 
deposited, it becomes stationary. In addition to eq. 3, we need then three further equations, one to 315 
connect the rate of change of mobile mass to the sediment flux in the flume, and one each to 316 
describe mass conservation in the two reservoirs. Instead of the common approach tracking the 317 
height of the sediment over a reference level, as is done in the classic mass conservation in fluvial 318 
systems, the Exner equation (e.g. Paola and Voller, 2005), we use the total sediment mass on the bed 319 
as a variable. Mobile sediment mass is supplied from upstream (Δin), leaves in the downstream 320 
direction (Δout) and can be exchanged between the stationary and the mobile mass reservoirs by 321 
entrainment (Etot) and deposition (Dtot) (Fig. 5). The latter two parameters describe the exchange of 322 
particles between reservoirs; in the single reservoir Exner equation these terms are not needed. It is 323 
clear that for the problem at hand the choice of total mass or volume as a variable to track the 324 
amount of sediment in the reach of interest is preferable to the height of the alluvial cover, since 325 
necessarily, when cover is patchy, the height of the alluvium varies across the bed. 326 
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 327 

 328 
Fig. 5: Sediment dynamics at the bed are modelled by two reservoirs for stationary and mobile mass, 329 
which can exchange material by entrainment (Etot) and deposition (Dtot). Sediment mass can be 330 
supplied from upstream (Δin) and can leave into the downstream direction (Δout). 331 
 332 
The difference form of the mass balance for the mobile sediment is then given by (cf. Fig. 5) 333 

∆𝑀𝑀𝑚𝑚 = (∆in − ∆out + 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 − 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡)∆𝑡𝑡 334 
(eq. 12) 335 
Here, ΔMm is the change in mobile sediment mass and Δt is a change in time. As the length of a time 336 
step is reduced to zero, a continuous version of eq. (12) is obtained, which reads 337 
 338 

𝜕𝜕𝑀𝑀𝑚𝑚

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝑞𝑞𝑠𝑠
𝜕𝜕𝜕𝜕

+ 𝐸𝐸 − 𝐷𝐷 339 

(eq. 13) 340 
Here, x is the coordinate in the streamwise direction, t the time, qs the sediment mass transport rate 341 
per unit width, while E is the mass entrainment rate per bed area and D is the mass deposition rate 342 
per bed area. Similarly, in the mass balance for the stationary mass reservoir, the rate of change of 343 
the stationary sediment mass Ms in time is the difference of the deposition rate D and the 344 
entrainment rate E:  345 

𝜕𝜕𝑀𝑀𝑠𝑠

𝜕𝜕𝜕𝜕
= 𝐷𝐷 − 𝐸𝐸 346 

(eq. 14) 347 
It is useful to work with dimensionless variables by defining t* = t/T and x* = x/L, where T and L are 348 
suitable time and length scales, respectively. The dimensionless mobile mass per bed area Mm

* is 349 
equal to Mm/M0, and eq. (13) becomes:  350 
 351 

𝜕𝜕𝑀𝑀𝑚𝑚
∗

𝜕𝜕𝑡𝑡∗
= −

𝜕𝜕𝑞𝑞𝑠𝑠∗

𝜕𝜕𝑥𝑥∗
+ 𝐸𝐸∗ − 𝐷𝐷∗ 352 

(eq. 15)  353 
Here,  354 

𝑞𝑞𝑠𝑠∗ =
𝑇𝑇
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑠𝑠 355 

(eq. 16) 356 
The dimensionless entrainment and deposition rates, E* and D*, are equal to TE/M0 and TD/M0, 357 
respectively. Similarly, the balance for the stationary mass (eq. 14) can be written as 358 

𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= 𝐷𝐷∗ − 𝐸𝐸∗ 359 

(eq. 17) 360 
We also need sediment entrainment and deposition functions. The entrainment rate needs to be 361 
modulated by the availability of sediment on the bed. If Ms

* is equal to zero, no material can be 362 
entrained. A plausible assumption is that the maximal entrainment rate, E*

max, is equal to the 363 
transport capacity.  364 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
∗ = 𝑞𝑞𝑡𝑡∗ 365 

Stationary mass Ms

Mobile mass Mm

Etot

Dtot

∆in ∆out
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(eq. 18) 366 
Here, qt

 * is the dimensionless mass transport capacity, which is related to the transport capacity per 367 
unit width qt by a relation similar to eq. (16). To first order, the rate of change in entrainment rate, 368 
dE, is proportional to the difference of Emax and E, and to the rate of change in mass on the bed.  369 
 370 

𝑑𝑑𝐸𝐸∗ = (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
∗ − 𝐸𝐸∗)𝑑𝑑𝑀𝑀𝑠𝑠

∗ = (𝑞𝑞𝑡𝑡∗ − 𝐸𝐸∗)𝑑𝑑𝑀𝑀𝑠𝑠
∗ 371 

(eq. 19) 372 
Integrating, we obtain 373 
 374 

𝐸𝐸∗ = 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
∗ �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗� = �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠
∗�𝑞𝑞𝑡𝑡∗ 375 

(eq. 20)  376 
Here, we used the condition E*(Ms

*=0) = 0 to fix the integration constant to E*
max. As required, eq. 377 

(20) approaches E*
max as Ms

* goes to infinity, and is equal to zero when Ms
* is equal to zero. Using a 378 

similar line of argument, and by assuming the maximum deposition rate to be equal to qs
*, we arrive 379 

at an equation for the deposition rate D*.  380 
 381 

𝐷𝐷∗ = �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗ �𝑞𝑞𝑠𝑠∗ 382 

(eq. 21) 383 
When Mm* is small, then the amount that can be deposited is limited by Mm*. If Mm* is large, then 384 
deposition is limited by sediment supply. Substituting eqs. (20) and (21) into eq. (17), we obtain: 385 
 386 

𝜕𝜕𝑀𝑀𝑠𝑠
∗(𝑥𝑥∗, 𝑡𝑡∗)
𝜕𝜕𝑡𝑡∗

= 𝐷𝐷∗ − 𝐸𝐸∗ = �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗ (𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑠𝑠∗(𝑥𝑥∗, 𝑡𝑡∗) − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗(𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑡𝑡∗(𝑥𝑥∗, 𝑡𝑡∗) 387 

(eq. 22) 388 
Note that qs

*/qt
* = Qs

*. The equation for the mobile mass (eq. 14) becomes:  389 
 390 

𝜕𝜕𝑀𝑀𝑚𝑚
∗ (𝑥𝑥∗, 𝑡𝑡∗)
𝜕𝜕𝑡𝑡∗

= −
𝜕𝜕𝑞𝑞𝑠𝑠∗

𝜕𝜕𝑥𝑥∗
− �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚

∗ (𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑠𝑠∗(𝑥𝑥∗, 𝑡𝑡∗) + �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠
∗(𝑥𝑥∗,𝑡𝑡∗)�𝑞𝑞𝑡𝑡∗(𝑥𝑥∗, 𝑡𝑡∗) 391 

(eq. 23) 392 
Finally, the sediment transport rate needs to be proportional to the mobile sediment mass times the 393 
downstream sediment speed U, and we can write 394 
 395 

𝑞𝑞𝑠𝑠∗(𝑥𝑥∗, 𝑡𝑡∗) = 𝑈𝑈∗(𝑥𝑥∗, 𝑡𝑡∗)𝑀𝑀𝑚𝑚
∗ (𝑥𝑥∗, 𝑡𝑡∗) 396 

(eq. 24) 397 
Here 398 

𝑈𝑈∗ =
𝑇𝑇
𝐿𝐿
𝑈𝑈 399 

(eq. 25) 400 
After incorporating the original equation between A* and Ms

* (eq. 3), the system of four differential 401 
equations (3), (22), (23) and (24) contains four unknowns: the downstream gradient in the sediment 402 
transport rate ∂qs

*/∂x*, the exposed fraction of the bed A*, the non-dimensional stationary mass Ms
*, 403 

and the non-dimensional mobile mass Mm
*, while the non-dimensional transport capacity qt

* and the 404 
non-dimensional downstream sediment speed U* are input variables, and P is a externally specified 405 
function. In addition, sediment input qs

* needs to be specified as an upstream boundary condition 406 
and initial values for the mobile mass Mm

* and the stationary mass Ms
* need to be specified 407 

everywhere. 408 
 409 

3.2. Time-independent solution 410 
 411 
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In this chapter, we discuss the steady solution to the system of equations and thus clarify the 412 
relationship between cover, stationary sediment mass, sediment supply and transport capacity. 413 
Setting the time derivatives to zero, we obtain a time-independent solution, which links the exposed 414 
area directly to the ratio of sediment transport rate to transport capacity. From eq. (23) it follows 415 
that in this case, the entrainment rate is equal to the deposition rate and we obtain 416 

�1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗������ 𝑞𝑞𝑠𝑠∗��� = �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗����� 𝑞𝑞𝑡𝑡∗ 417 
(eq. 26) 418 
Here, the bar over the variables denotes their steady state value. Substituting eq. (24) to eliminate 419 
𝑀𝑀𝑚𝑚
∗����� and solving for 𝑀𝑀𝑠𝑠

∗���� gives 420 
 421 

𝑀𝑀𝑠𝑠
∗���� = −ln �1 − �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� �

𝑞𝑞𝑠𝑠∗���
𝑞𝑞𝑡𝑡∗
� = −ln �1 − �1 − 𝑒𝑒−

𝑞𝑞𝑡𝑡∗
𝑈𝑈∗𝑄𝑄𝑠𝑠

∗����
�𝑄𝑄𝑠𝑠∗����� 422 

(eq. 27) 423 
Note that we assume here that sediment cover is only dependent on the stationary sediment mass 424 
on the bed and we thus neglect grain-grain interactions known as the dynamic cover (Turowski et al., 425 
2007). In analogy to eq. (24), we can write 426 

𝑞𝑞𝑡𝑡∗ = 𝑈𝑈∗𝑀𝑀0
∗ 427 

(eq. 28) 428 
Here, M0

* is a characteristic dimensionless mass that depends on hydraulics and therefore implicitly 429 
on transport capacity (which should not be confused with the minimum mass necessary to fully cover 430 
the bed M0). When sediment transport rate equals transport capacity, then M0

* is equal to the 431 
mobile mass of sediment normalized by the reference mass M0. It can be viewed as a proxy for the 432 
transport capacity and is a convenient parameter to simplify the equations. The mobile mass can 433 
then, in general, be written as follows (cf. Turowski et al., 2007), remembering that the relative 434 
sediment supply Qs

* = 1 when supply is equal to capacity:  435 
𝑀𝑀𝑚𝑚
∗ = 𝑀𝑀0

∗𝑄𝑄𝑠𝑠∗ 436 
(eq. 29) 437 
If we use the exponential cover function (eq. 8) with eqs. (27), (28) and (29), we obtain 438 
 439 

𝐴𝐴∗��� = 1 − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �
𝑞𝑞𝑠𝑠∗���
𝑞𝑞𝑡𝑡∗

= 1 − �1 − 𝑒𝑒−
𝑞𝑞𝑡𝑡∗
𝑈𝑈∗𝑄𝑄𝑠𝑠

∗����
�𝑄𝑄𝑠𝑠∗���� = 1 − �1 − 𝑒𝑒−𝑀𝑀0

∗𝑄𝑄𝑠𝑠∗����� 𝑄𝑄𝑠𝑠∗���� 440 

(eq. 30) 441 
Similarly, equations can be found for the other analytical solutions of the cover function. For the 442 
linear case (eq. 6), we obtain:  443 

𝐴𝐴∗��� = 1 + ln �1 − �1 − 𝑒𝑒−𝑀𝑀0
∗𝑄𝑄𝑠𝑠∗�����𝑄𝑄𝑠𝑠∗����� 444 

(eq. 31) 445 
For the power law case (eq. 9), we obtain: 446 

𝐴𝐴∗��� = �1 + (1 − 𝛼𝛼)ln �1 − �1 − 𝑒𝑒−𝑀𝑀0
∗𝑄𝑄𝑠𝑠∗�����𝑄𝑄𝑠𝑠∗������

1
1−𝛼𝛼 447 

(eq. 32) 448 
The exponential cover function essentially leads to a combined linear and exponential relation 449 
between 𝐴𝐴∗��� and  𝑄𝑄𝑠𝑠∗����. Instead of a linear decline as the original linear cover model (eq. 1), or a 450 
concave-up relationship as the original exponential model (eq. 2), the function is convex-up for all 451 
solutions (Fig. 6). Adjusting M0

* shifts the lines: decreasing M0
* leads to a delayed onset of cover and 452 

vice versa. The former result arises because a lower M0
* means that the sediment flux is conveyed 453 

through a smaller mass moving at a higher velocity. The original linear cover function (eq. 1) can be 454 
recovered from the exponential model with a high value of M0

*, since the exponential term quickly 455 
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becomes negligible with increasing 𝑄𝑄𝑠𝑠∗���� and the linear term dominates (Fig. 6C). Note that for the 456 
linear (eq. 5) and the power law cases (eq. 9), high values of M0

* may give 𝐴𝐴∗��� = 0 for 𝑄𝑄𝑠𝑠∗���� < 1 (Fig. 457 
6B,D), which is consistent with the concept of runaway alluviation. Using the beta distribution to 458 
describe P, a numerical solution is necessary, but a wide range of steady-state cover functions can be 459 
obtained (Fig. 7. By varying the value of M0

*, an even wider range of behaviors can be obtained. 460 

 461 
Fig. 6: Analytical solutions at steady state for the exposed fraction of the bed (A*) as a function of 462 
relative sediment supply (Q*, cf. Fig. 2). A) Comparison of the different solutions, keeping M0

* 463 
constant at 1. B) Varying M0

* for the linear case (eq. 31). C) Varying M0
* for the exponential case (eq. 464 

30). D) Varying M0
* for the power law case with α = 0.1 (eq. 32). 465 

 466 

 467 
Fig. 7: Steady state solutions using the beta distribution to parameterize P (eq. 10) for a range of 468 
parameters a and b, and using M0

* = 1 (cf. Fig. 3). The solutions were obtained by iterating the 469 
equations to a steady state, using initial conditions of A* = 1 and Mm

* = Ms
* = 0. 470 
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 471 
The previous analysis shows that steady state cover is controlled by the characteristic dimensionless 472 
mass M0

*, which is equal to the ratio of dimensionless transport capacity and particle speed (eq. 28). 473 
In the following, we relate M0

* to hydraulic variables and argue that it is, in general, not a constant. 474 
Converting M0

* to dimensional variables, we can write 475 

𝑀𝑀0
∗ =

𝑞𝑞𝑡𝑡∗

𝑈𝑈∗ =
𝑞𝑞𝑡𝑡
𝑀𝑀0𝑈𝑈

 476 

(eq. 33) 477 
The minimum mass necessary to completely cover the bed per unit area, M0, can be estimated 478 
assuming a single layer of close-packed spherical grains residing on the bed (cf. Turowski, 2009), 479 
giving:  480 

𝑀𝑀0 =
𝜋𝜋𝜌𝜌𝑠𝑠𝐷𝐷50

3√3
 481 

(eq. 34)  482 
Here, ρs is the sediment density and D50 is the median grain size. We use equations derived by 483 
Fernandez-Luque and van Beek (1976) from flume experiments that describe transport capacity and 484 
particle speed as a function of bed shear stress (see also Lajeunesse et al., 2010, and Meyer-Peter 485 
and Mueller, 1948, for similar equations): 486 
 487 

𝑞𝑞𝑡𝑡 = 5.7
𝜌𝜌𝑠𝑠𝜌𝜌

(𝜌𝜌𝑠𝑠 − 𝜌𝜌)𝑔𝑔
�
𝜏𝜏
𝜌𝜌
−
𝜏𝜏𝑐𝑐
𝜌𝜌
�
3 2⁄

 488 

(eq. 35) 489 
 490 

𝑈𝑈 = 11.5 ��
𝜏𝜏
𝜌𝜌
�
1 2⁄

− 0.7 �
𝜏𝜏𝑐𝑐
𝜌𝜌
�
1 2⁄

� 491 

(eq. 36) 492 
Here, τc is the critical bed shear stress for the onset of bedload motion, g is the acceleration due to 493 
gravity and ρ is the water density. Combining eqs. (34), (35) and (36) to get an equation for M0

* gives: 494 
 495 

𝑀𝑀0
∗ =

3√3
2𝜋𝜋

(𝜃𝜃 − 𝜃𝜃𝑐𝑐)3 2⁄

𝜃𝜃1 2⁄ − 0.7𝜃𝜃𝑐𝑐
1 2⁄ =

3√3𝜃𝜃𝑐𝑐
2𝜋𝜋

(𝜃𝜃 𝜃𝜃𝑐𝑐⁄ − 1)3 2⁄

(𝜃𝜃 𝜃𝜃𝑐𝑐⁄ )1 2⁄ − 0.7
 496 

(eq. 37) 497 
Here, the Shields stress θ = τ/(ρs ˗ ρ)gD50, and θc is the corresponding critical Shields stress, and we 498 
approximated 5.7/11.5 = 0.496 with 1/2 (compare to eqs. 35/36). At high θ, when the threshold can 499 
be neglected, eq. (37) reduces to a linear relationship between M0

* and θ. Near the threshold, M0
* is 500 

shifted to lower values as θc increases (Fig. 8). The systematic variation of U* with the hydraulic 501 
driving conditions (eq. 36) implies that the cover function evolves differently in response to changes 502 
in sediment supply and transport capacity. For a first impression, by comparing equations (35) and 503 
(36), we assume that particle speed scales with transport capacity raised to the power of one third 504 
(Fig. 9).  505 
 506 
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 507 
Fig. 8: The characteristic dimensionless mass M0

* depicted as a function of A) the Shields stress and 508 
B) the ratio of Shields stress to critical Shields stress (eq. 37). 509 
 510 

 511 
Fig. 9: Variation of the exposed bed fraction as a function of transport capacity, assuming that 512 
particle speed scales with transport capacity to the power of one third. 513 
 514 

3.3 Temporal evolution of cover within a reach 515 
 516 
To calculate the temporal evolution of cover on the bed within a single reach, we solved equations 517 
(3), (22), (23) and (24) numerically for a section of the bed with homogenous conditions using a 518 
simple linear finite difference scheme. In this case sediment input is a boundary condition, while 519 
sediment output, mobile and stationary sediment mass and the fraction of the exposed bed are 520 
output variables. In general, a change in sediment supply leads to a gradual adjustment of the output 521 
variables towards a new steady state (Fig. 10). It is desirable to obtain expressions for the response 522 
time of the system to external perturbation, such as a change in sediment supply or hydraulic 523 
conditions. Such a response time could then be compared to the time scales of changes in boundary 524 
conditions. For example, during a flood event, both transport capacity and sediment supply change 525 
over time. If these changes are slow in comparison of the response time of cover, the bed cover state 526 
can essentially keep up with the imposed changes at all times and therefore steady state equations 527 
(section 3.2) can be used to calculate its evolution. In contrast, if the imposed change is rapid in 528 
comparison to the response time, cover may lag behind and an approach that resolves cover as a 529 
dynamic variable is necessary. This may, for example, be important when studying the erosional 530 
behavior of channels in response to floods (see Lague, 2010; Turowski et al., 2013). Unfortunately, a 531 
general analytical solution is not possible, but results can be obtained for special cases. We first 532 
derive analytical solutions for the response time for a reach without upstream sediment supply and 533 
for a system responding to small perturbations in sediment supply or transport capacity (section 534 
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3.3.1) and discuss the system behavior (section 3.3.2). Finally, we apply the concepts to data from a 535 
flood in a natural river and demonstrate that, for this specific case, because of the response times 536 
the steady state relations do not capture cover behavior. 537 
 538 
3.3.1 System timescales 539 
First, consider a reach without upstream sediment supply, i.e., qs

* = 0. Such a situation is rare in 540 
nature, but could be easily created in flume experiments as a model test. Then, the time derivative of 541 
stationary mass is given by:  542 
 543 

𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= −�1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗�𝑞𝑞𝑡𝑡∗ 544 

(eq. 38) 545 
Using the exponential cover model (eq. 8), we obtain:  546 
 547 

1
𝐴𝐴∗(1 − 𝐴𝐴∗)

𝜕𝜕𝐴𝐴∗

𝜕𝜕𝑡𝑡∗
= 𝑞𝑞𝑡𝑡∗ 548 

(eq. 39) 549 
Equation (39) is separable and can be integrated to obtain 550 
 551 

ln(𝐴𝐴∗) − ln(1 − 𝐴𝐴∗) = 𝑡𝑡∗𝑞𝑞𝑡𝑡∗ + 𝐶𝐶 552 
(eq. 40) 553 
Letting A*(t*=0) = A*

0, where A*
0 is the initial cover, the final equation is in the form of a sigmoidal-554 

type function: 555 
 556 

𝐴𝐴∗ =
1

1 + �1 − 𝐴𝐴0∗
𝐴𝐴0∗

� 𝑒𝑒−𝑡𝑡∗𝑞𝑞𝑡𝑡∗
 557 

(eq. 41) 558 
By making the parameters in the exponent on the right hand side of eq. (42) dimensional, we get:  559 
 560 

𝑡𝑡∗𝑞𝑞𝑡𝑡∗ =
𝑡𝑡
𝑇𝑇

𝑇𝑇
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡 =
𝑡𝑡𝑞𝑞𝑡𝑡
𝐿𝐿𝑀𝑀0

 561 

(eq. 42) 562 
which allows a characteristic system time scale TE to be defined as 563 

𝑇𝑇𝐸𝐸 =
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡
 564 

(eq. 43) 565 
Since this time scale is dependent on the transport capacity qt, we can view it as a time scale 566 
associated with the entrainment of sediment from the bed (cf. eq. 20) – hence the subscript E on TE. 567 
From eq. (41), the exposed bed fraction evolves in an asymptotic fashion towards equilibrium 568 
(Fig. 11). We can expect that there are other characteristic time scales for the system, for example 569 
associated with sediment deposition or downstream sediment evacuation.  570 
 571 
We can make some further progress and define a more general system time scale by performing a 572 
perturbation analysis (Appendix A). For small perturbations in either qs

* or qt
*, we obtain an 573 

exponential term describing the transient evolution, which allows the definition of a system 574 
timescale TS 575 

exp �−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗����
� �𝑞𝑞𝑠𝑠∗���� 𝑡𝑡∗� = 𝑒𝑒−

𝑡𝑡
𝑇𝑇𝑆𝑆  576 
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(eq. 44)  577 
Here, exp denotes the natural exponential function. The characteristic system time scale can then be 578 
written as 579 

𝑇𝑇𝑆𝑆 =
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡� �1 − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗����
� �𝑞𝑞𝑠𝑠�𝑞𝑞𝑡𝑡�

�
=
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡�
𝑒𝑒𝑀𝑀𝑠𝑠

∗���� 580 

(eq. 45) 581 
Note that for qs

* = 0, eq. (45) reduces to eq. (43), as would be expected. Since 𝑀𝑀𝑠𝑠
∗���� is directly related 582 

to steady state bed exposure 𝐴𝐴∗���, we can rewrite the equation, for example by assuming the 583 
exponential cover function (eq. 8), as 584 

𝑇𝑇𝑆𝑆 =
𝐿𝐿𝐿𝐿0

𝑞𝑞𝑡𝑡� 𝐴𝐴∗���
 585 

(eq. 46) 586 
Since bed cover is more easily measurable than the mass on the bed, eq. (46) can help to estimate 587 
system time scales in the field. Further, 𝐴𝐴∗��� varies between 0 and 1, which allows the estimation of a 588 
minimum system time using eq. (43). As 𝐴𝐴∗��� approaches zero, the system time scale diverges. 589 
 590 
To illustrate these additional dependencies, we have used numerical solutions of eqs. (3), (22), (23) 591 
and (24) to calculate the time needed to reach 99.9% of total adjustment after a step change in 592 
transport stage (chosen due to the asymptotic behavior of the system), analysed across a plausible 593 
range of particle speeds U (Fig. 12). Response time decreases as particle speed increases. This 594 
reflects elevated downstream evacuation for higher particles speeds, resulting in a smaller mobile 595 
particle mass and thus higher entrainment and lower deposition rates. Response time also increases 596 
with increasing relative sediment supply Qs

*. As the runs start with zero sediment cover, and the 597 
extent of cover increases with Qs

*, at higher Qs
* the adjusted cover takes longer to develop. 598 

 599 

 600 
Fig. 10: Temporal evolution of cover for the simple case of a control box with sediment through-flux, 601 
based on eqs. (3), (22), (23) and (24). Relative sediment supply (supply normalized by transport 602 
capacity) was specified to 0.25 and increased to 1 at t* = 5. The response of sediment output, mobile 603 
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and stationary sediment mass and the exposed bed fraction was calculated. Here, we used the 604 
exponential function for P (eq. 8) and M0

* = U* = 1. The initial values were A* = 1 and Mm
* = Ms

* = 0.  605 
 606 

 607 
Fig. 11: Evolution of the exposed bed fraction (removal of sediment cover) over time starting with 608 
different initial values of bed exposure, for the special case of no sediment supply, i.e., qs

* = 0 (eq. 41) 609 
and qt

* = 1. 610 
 611 

 612 
Fig. 12: Dimensionless time to reach 99.9% of the total adjustment in exposed area as a function of 613 
A) transport stage and B) particle speed. All simulation were started with A* = 1 and Mm

* = Ms
* = 0. 614 

 615 
 616 
3.3.2 Phase shift and gain in response to a cyclic perturbation 617 
The perturbation analysis (Appendix A) gives some insight into the response of cover to cyclic 618 
sinusoidal perturbations. Let sediment supply be perturbed in a cyclic way described by an equation 619 
of the form  620 

𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝑑𝑑 sin �
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 621 

(eq. 47) 622 
Here, the overbar denotes the temporal average, δqs

* is the time-dependent perturbation, d is the 623 
amplitude of the perturbation and p its period. A similar perturbation can be applied to the transport 624 
capacity (see Appendix A). The reaction of the stationary mass and therefore cover can then also be 625 
described by sinusoidal function of the form (Appendix A)  626 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺 sin �

2𝜋𝜋𝜋𝜋
𝑝𝑝

+ 𝜑𝜑� 627 
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(eq. 48) 628 
Here, δMs

* is the perturbation of the stationary sediment mass around the temporal average, G is 629 
known as the gain, describing the amplitude response, and φ is the phase shift. If the gain is large, 630 
stationary mass reacts strongly to the perturbation; if it is small, the forcing does not leave a signal. 631 
The phase shift is negative if the response lags behind the forcing and positive if it leads. The phase 632 
shift can be written as  633 

𝜑𝜑 = tan−1 �−2𝜋𝜋
𝑇𝑇𝑆𝑆
𝑝𝑝
� 634 

(eq. 49) 635 
The gain can be written as 636 

𝐺𝐺 =
𝑝𝑝
𝑇𝑇𝑆𝑆

𝐾𝐾𝐾𝐾

�� 𝑝𝑝𝑇𝑇𝑆𝑆
�
2

+ 4𝜋𝜋2
 637 

(eq. 50) 638 
Here, d is the amplitude of the perturbation, and K is a function of the time-averaged values of qs, qt 639 
and U and differs for perturbations in transport capacity and sediment supply (see Appendix A). 640 
Thus, the system behavior can be interpreted as a function of the ratio of the period of perturbation 641 
p and the system time scale Ts. The period p is large if the forcing parameter, i.e., discharge or 642 
sediment supply, varies slowly and small when it varies quickly. According to eq. (49), the phase shift 643 
is equal to -π/2 for low values of p/Ts (quickly-varying forcing parameter), implying a substantial lag in 644 
the adjustment of cover. The phase shift tends to zero as p/Ts tends to infinity (Fig. 13). The gain 645 
varies approximately linearly with p/Ts for small p/Ts (quickly-varying forcing parameter), while it is 646 
approximately constant at a value of Kd for large p/Ts (slowly-varying forcing parameter) (eq. 50). 647 
Thus, if the forcing parameter varies slowly, cover adjustment keeps up at all times. 648 
 649 

 650 
Fig. 13: Phase shift (eq. 49) and gain (eq. 50) as a function of the ratio of the period of perturbation p 651 
and the system time scale Ts. For the calculation, the constant factor in the gain (Kd) was set equal to 652 
one. 653 
 654 
3.3.3 A flood at the Erlenbach 655 
To illustrate the magnitude of the timescales using real data, we use a flood dataset from the 656 
Erlenbach, a sediment transport observatory in the Swiss Prealps (e.g., Beer et al., 2015). There, near 657 
a discharge gauge, bedload transport rates are measured at 1-minute resolution using the Swiss Plate 658 
Geophone System, a highly developed and fully calibrated surrogate bedload measuring system (e.g., 659 
Rickenmann et al., 2012; Wyss et al. 2016). We use data from a flood on 20th June 2007 (Turowski et 660 
al., 2009) with highest peak discharge that has so far been observed at the Erlenbach. The 661 
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meteorological conditions that triggered this flood and its geomorphic effects have been described in 662 
detail elsewhere (Molnar et al., 2010; Turowski et al., 2009, 2013). The Erlenbach does not have a 663 
bedrock bed in the sense that bedrock is exposed in the channel bed, however, the data provide a 664 
realistic natural time series of discharge and bedload transport over the course of a single event. 665 
Rather than predicting bed cover evolution for a natural system, for which we do not currently have 666 
data for validation, we use the Erlenbach data to illustrate possible cover behavior during a fictitious 667 
event with different initial sediment cover extents, using natural data to provide realistic boundary 668 
conditions. 669 
 670 
Using a median grain size of 80 mm, a sediment density of 2650 kg/m3 and a reach length of 50 m, 671 
we obtained M0 = 128 kg/m2. We calculated transport capacity using the equation of Fernandez 672 
Luque and van Beek (1976). However, it is known that this and similar equations strongly 673 
overestimate measured transport rates in streams such as the Erlenbach (e.g., Nitsche et al., 2011). 674 
Consequently, we rescaled by setting the ratio of bedload supply to capacity to one at the highest 675 
discharge. The exposed fraction was then calculated iteratively assuming P = A* (i.e., the exponential 676 
cover formulation, eq. 8). In a real flood event, water discharge and sediment supply obviously do 677 
not follow a small cyclic perturbation (Fig. 13). But we can tentatively relate the observations to the 678 
theory by assuming that at each time step, the change in sediment supply can be represented by the 679 
commencement of a sinusoidal perturbation with varying period. To estimate the effective period p, 680 
one needs to take the derivatives of eq. (47).  681 

𝑑𝑑𝑑𝑑𝑠𝑠∗

𝑑𝑑𝑑𝑑
=
𝑑𝑑𝑑𝑑𝑞𝑞𝑠𝑠∗

𝑑𝑑𝑑𝑑
=

2𝜋𝜋𝜋𝜋
𝑝𝑝

cos �
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 682 

(eq. 51)  683 
Setting t = 0 for the time of interest, we can relate p to the local gradient in bedload supply, which 684 
can be measured from the data. 685 
 686 

2𝜋𝜋𝜋𝜋
𝑝𝑝

=
∆𝑞𝑞𝑠𝑠∗

∆𝑡𝑡
 687 

(eq. 52)  688 
Assuming that all change in the response time is due to changes in the period (i.e., assuming a 689 
constant amplitude, d = 1), we can obtain a conservative estimate of the range over which p varies 690 
over the course of an event. 691 

𝑝𝑝 = 2𝜋𝜋
∆𝑡𝑡
∆𝑞𝑞𝑠𝑠∗

 692 

(eq. 53)  693 
In the exemplary event, the evolution and final value of bed cover depends strongly on its initial 694 
value (Fig. 14), indicating that the adjustment is incomplete. The system timescale is generally larger 695 
than 1000 s and is inversely related to discharge via the dependence on transport capacity. The 696 
p/Ts ratio varies around one, with low values at the beginning of the flood and large values in the 697 
waning hydrograph. Both the high values of the system time scale and the smooth evolution of bed 698 
cover over the course of the flood imply that cover development cannot keep up with the variation in 699 
the forcing characteristics. This dynamic adjustment of cover, which can lag forcing processes, may 700 
thus play an important role in the dynamics of bedrock channels and probably needs to be taken into 701 
account in modelling. 702 
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 703 
Fig. 14: Calculated evolution of cover during the largest event observed at the Erlenbach on 20th June 704 
2007 (Turowski et al., 2009). Bedload transport rates were measured with the Swiss Plate geophone 705 
sensors calibrated with direct bedload samples (Rickenmann et al., 2012). The final fraction of 706 
exposed bedrock is strongly dependent on its initial value. 707 
 708 

4.  Discussion  709 
4.1 Model formulation 710 

In principle, the framework for the cover effect presented here allows the formulation of a general 711 
model for bedrock channel morphodynamics without the restrictions of previous models (e.g. Nelson 712 
and Seminara, 2011; Zhang et al., 2015). To achieve this, the dependency of P on various control 713 
parameters needs to be specified. In general, P should be controlled by local topography, grain size 714 
and shape, hydraulic forcing, and the amount of sediment already residing on the bed. Furthermore, 715 
the shape of the P function should also be affected by feedbacks between these properties, such as 716 
the development of sediment cover altering the local roughness and hence altering hydraulics and 717 
local transport capacity (Inoue et al., 2014; Johnson, 2014). Within the treatment presented here, we 718 
have explicitly accounted only for the impact of the amount of sediment already residing on the bed. 719 
However, all of the mentioned effects can be included implicitly by an appropriate choice of P. The 720 
exact relationships between, say, bed topography and P need to be mapped out experimentally (e.g., 721 
Inoue et al., 2014), with theoretical approaches also providing some direction (cf. Johnson, 2014; 722 
Zhang et al., 2015). Currently available experimental results (Chatanantavet and Parker, 2008; 723 
Finnegan et al., 2007; Hodge and Hoey, 2016; Inoue et al., 2014; Johnson and Whipple, 2007) cover 724 
only a small range of the possible parameter space and, in general, not all necessary parameters to 725 
constrain P were reported. Specifically the stationary mass of sediment residing on the bed is usually 726 
not reported and can be difficult to determine experimentally, but is necessary to determine P. 727 
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Nevertheless, depending on the choice of P, our model can yield a wide range of cover functions that 728 
encompasses reported functions both from numerical modelling (e.g., Aubert et al., 2016; Hodge and 729 
Hoey, 2012; Johnson, 2014) and experiments (Chatanantavet and Parker, 2008; Inoue et al., 2014; 730 
Sklar and Dietrich, 2001) (see Figs. 4 and 5). 731 
 732 
The dynamic model put forward here is a minimum first order formulation, and there are some 733 
obvious future alterations. We only take account of the static cover effect caused by immobile 734 
sediment on the bed. The dynamic cover effect, which arises when moving grains interact at high 735 
sediment concentration and thus reduce the number of impacts on the bed (Turowski et al., 2007), 736 
could in principle be included into the formulation, but would necessitate a second probability 737 
function specifically to describe this dynamic cover. It would also be possible to use different P-738 
functions for entrainment and deposition, thus introducing hysteresis into cover development.  Such 739 
hysteresis has been observed in experiments in which the equilibrium sediment cover was a function 740 
of the initial extent of sediment cover (Chatanantavet and Parker, 2008; Hodge and Hoey, 2012). 741 
Whether such alterations are necessary is best established with targeted laboratory experiments.  742 
 743 
4.2 Comparison to previous modelling frameworks 744 
We will briefly outline in this section the main differences to previous formulations of cover dynamics 745 
in bedrock channels. Thus, the novel aspects of our formulation and the respective advantages and 746 
disadvantages will become clear. 747 
 748 
Aubert et al. (2015) coupled the movement of spherical particles to the simulation of a turbulent 749 
fluid and investigated how cover depends on transport capacity and supply. Similar to what is 750 
predicted by our analytical formulation, they found a range of cover function for various model set-751 
ups, including linear and convex-up relationships (compare the results in Fig. 6 to their Fig. 15). 752 
Aubert et al. (2015) presented the so far most detailed physical simulations of bed cover formation 753 
and the correspondence between the predictions is encouraging. 754 
 755 
Nelson and Seminara (2011, 2012) formulated a morphodynamic model for bedrock channels. They 756 
based their formulation on sediment concentration, which is in principle similar to our formulation 757 
based on mass. However, Nelson and Seminara (2011, 2012) did not distinguish between mobile and 758 
stationary sediment and linked local transport directly to sediment concentration. Further, Nelson 759 
and Seminara (2011, 2012) assumed a direct correspondence between sediment concentration and 760 
degree of cover, which is equivalent to the linear cover function (eq. 6). In this case, it is assumed 761 
that grains are always deposited on uncovered bed and the different possible distributions of 762 
particles within a grid node are not taken into account. Practically, this implies that the grid size 763 
needs to be of the order of the grain size, because, strictly, the assumption is only valid if a single 764 
grain can cover an entire grid node (cf. Fig. 1). Although different in various details, Inoue et al. 765 
(2016) have used essentially the same approach as Nelson and Seminar (2011, 2012) to link bedload 766 
concentration, transport and bed cover. Both of these models allow the 2D modelling of bedrock 767 
channel morphology. Although we have not fully developed such a model in the present paper, our 768 
model framework could easily be extended to 2D problems.  769 
 770 
Inoue et al. (2014) formulated a 1D model for cover dynamics and bedrock erosion. There, they 771 
distinguish between stationary and mobile sediment using an Exner equation to capture sediment 772 
mass conservation. The degree of bed cover is related to transport rates and sediment mass via a 773 
saturation volume, which is related to our characteristic mass M0

* (see section 3.2). A key difference 774 
between Inoue et al.’s (2014) model and the one presented here lies in the sediment mass 775 
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conservation equations (eqs. 13 and 14), in which we explicitly take account of both entrainment and 776 
deposition. In addition, with the function P, describing the relationship between deposited mass and 777 
degree of cover, we provide a more flexible framework for complex simulations where the bed needs 778 
to be discretized (e.g., 2D models or reach-scale formulations). 779 
 780 
Zhang et al. (2015) formulated a bed cover model specifically for beds with macro-roughness. There, 781 
deposited sediment always fills topographic lows from their deepest positions, such that there is a 782 
reach-uniform sediment level. While the model provides a fundamentally different approach to what 783 
is suggested here, its applicability is limited to very rough beds and the assumption of a sediment 784 
elevation that is independent of the position on the bed seems physically unrealistic. In principle, the 785 
probabilistic framework presented here should be able to deal with macro-rough beds, by making 786 
the P-function (eq. 3) explicitly dependent on roughness, and thus allows a more general treatment 787 
of the problem of bed cover. 788 
 789 
Within this paper, we focused on the dynamics of bed cover, rather than on the modelling of the 790 
dynamics of entire channels. The probabilistic formulation using the parameter P provides a flexible 791 
framework to connect the sediment mass residing on the bed with the exposed bedrock fraction. 792 
This particular element has not been treated in any of the previous models and could be easily 793 
implemented in other approaches dealing with sediment fluxes along and across the stream and the 794 
interaction with erosion and, over long time scales, channel morphology. However, it is as yet 795 
unclear how flow hydraulics, sediment properties and other conditions affect P and this should be 796 
investigated in targeted laboratory experiments. 797 
 798 
4.3 Further implications 799 
Based on field data interpretation, Phillips and Jerolmack (2016) argued that bedrock rivers adjust 800 
such that, similar to alluvial channels, medium sized floods are most effective in transporting 801 
sediment, and that channel geometry therefore can quickly adjust their transport capacity to the 802 
applied load and therefore achieve grade (cf. Mackin, 1948). They conclude that bedrock channels 803 
can adjust their morphologic parameters (channel width and shape) quickly in response to changing 804 
boundary conditions. In contrast, our model suggests that instead bed cover can be adjusted to 805 
achieve grade. In steady state, time derivatives need to be equal to zero. Thus, entrainment equals 806 
deposition (eq. 14), implying that the downstream gradient in sediment transport rate is equal to 807 
zero (eq. 13). When sediment supply or transport capacity change, the exposed bedrock fraction can 808 
adjust to achieve a new steady state and a change of the channel geometry is unnecessary. These 809 
changes in sediment cover can occur far more rapidly than changes in width and cross-sectional 810 
shape (compare to eq. 46). Whether a steady state is achieved depends on the relative magnitude of 811 
the timescales of perturbation and cover adjustment (see section 3). Our results imply that bedrock 812 
channels have two distinct time scales to adjust to changing boundary conditions to achieve grade. 813 
Over short times, bed cover is adjusted. This can occur rapidly. Over long time scales, channel width, 814 
cross-sectional shape and slope are adjusted. 815 
 816 

5. Conclusions 817 
 818 
The probabilistic view put forward in this paper offers a framework into which diverse data on bed 819 
cover, whether obtained from field studies, laboratory experiments or numerical modeling, can be 820 
easily converted to be meaningfully compared. The conversion requires knowledge of the mass of 821 
sediment on the bed and the evolution of exposed fraction of the bed. Within the framework, 822 
individual data sets can be compared to the exponential benchmark and linear limit cases, enabling 823 
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physical interpretation. Furthermore, the formulation allows the general dynamic sub-grid modelling 824 
of bed cover. Depending on the choice of P, the model yields a wide range of possible cover 825 
functions. Which of these functions are appropriate for natural rivers and how they vary with factors 826 
including topography needs to mapped out experimentally. 827 
 828 
It needs to be noted here that the precise formulation of the entrainment and deposition functions 829 
also affects steady state cover relations. When calibrating P on data, it cannot always be decided 830 
whether a specific deviation from the benchmark case results from varying entrainment and 831 
deposition processes or from changes in the probability function driven for example by variations in 832 
roughness. For the prediction of the steady state cover relations and for the comparison of data sets, 833 
this should not matter, but the dynamic evolution of cover could be strongly affected. 834 
 835 
The system timescale for cover adjustment is inversely related to transport capacity. This time scale 836 
can be long and in many realistic situations, cover cannot instantaneously adjust to changes in the 837 
forcing conditions. Thus, dynamic cover adjustment needs to be taken into account when modelling 838 
the long-term evolution of bedrock channels. 839 
 840 
Our model formulation implies that bedrock channels adjust bed cover to achieve grade. Therefore, 841 
bedrock channel evolution is driven by two optimization principles. On short time scales, bed cover 842 
adjusts to match the sediment output of a reach to its input. Over long time scales, width and slope 843 
of the channel evolve to match long-term incision rate to tectonic uplift or base level lowering rates.  844 
  845 
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Appendix A: Perturbation analysis  846 
 847 
Here, we derive the effect of a small sinusoidal perturbation of the driving variables, namely 848 
sediment supply qs

* and transport capacity qt
*, on cover development. The perturbation of the 849 

driving variables can be written as  850 
𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗ 851 

(eq. A1) 852 
𝑞𝑞𝑡𝑡∗ = 𝑞𝑞𝑡𝑡∗��� + 𝛿𝛿𝑞𝑞𝑡𝑡∗ 853 

(eq. A2) 854 
Here, the bar denotes the average of the quantity at steady state, while δqs

* and δqt
* denote the 855 

small perturbation. The exposed area can be similarly written as  856 
𝐴𝐴∗ = 𝐴𝐴∗��� + 𝛿𝛿𝐴𝐴∗ 857 

(eq. A3) 858 
Steady state cover is directly related to the mass on the bed Ms

* by eq. (3), which, as long as P is 859 
independent of time, we can rewrite as  860 

𝑑𝑑𝐴𝐴∗

𝑑𝑑𝑑𝑑
= −𝑃𝑃

𝑑𝑑𝑀𝑀𝑠𝑠
∗

𝑑𝑑𝑑𝑑
 861 

(eq. A4) 862 
Substituting eq. (A3) and a similar equation for Ms

*, 863 
𝑀𝑀𝑠𝑠
∗ = 𝑀𝑀𝑠𝑠

∗���� + 𝛿𝛿𝑀𝑀𝑠𝑠
∗ 864 

(eq. A5) 865 
 we obtain 866 

𝑑𝑑𝛿𝛿𝛿𝛿∗

𝑑𝑑𝑑𝑑
= −𝑃𝑃

𝑑𝑑𝛿𝛿𝛿𝛿𝑠𝑠
∗

𝑑𝑑𝑑𝑑
 867 

(eq. A6) 868 
Here, the averaged terms drop out as they are independent of time. If P and the steady state 869 
solution for A* are known, a direct relationship between A* and Ms

* can be derived. For example, for 870 
the exponential cover model (eq. 8), substituting eqs. (A3) and (A5), we find 871 

𝐴𝐴∗��� + 𝛿𝛿𝐴𝐴∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗����−𝛿𝛿𝑀𝑀𝑠𝑠

∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗����𝑒𝑒−𝛿𝛿𝑀𝑀𝑠𝑠

∗ = 𝐴𝐴∗���𝑒𝑒−𝛿𝛿𝑀𝑀𝑠𝑠
∗ ≈ 𝐴𝐴∗���(1 − 𝛿𝛿𝑀𝑀𝑠𝑠

∗) 872 
(eq. A7) 873 
Here, since the δ variables are small, we approximated the exponential term using a Taylor expansion 874 
to first order. We obtain  875 

𝛿𝛿𝐴𝐴∗ = −𝐴𝐴∗���𝛿𝛿𝑀𝑀𝑠𝑠
∗ 876 

(eq. A8) 877 
It is therefore sufficient to derive the perturbation solution for Ms

*, the time evolution of which is 878 
given by eq. (22). Eliminating Mm

* using eq. (24), we obtain 879 
𝜕𝜕𝑀𝑀𝑠𝑠

∗

𝜕𝜕𝑡𝑡∗
= �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗� � 𝑞𝑞𝑠𝑠∗ − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗�𝑞𝑞𝑡𝑡∗ 880 

(eq. A9) 881 
 882 
Perturbation of sediment supply 883 
 884 
First, let us look at a perturbation of sediment supply qs

*, while other parameters are held constant. 885 
Substituting eq. (A1) and (A5) into (A9), we obtain 886 

𝜕𝜕𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= �1 − 𝑒𝑒−

�𝑞𝑞𝑠𝑠∗���+𝛿𝛿𝑞𝑞𝑠𝑠∗�
𝑈𝑈∗
� � �𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗� − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗����−𝛿𝛿𝑀𝑀𝑠𝑠
∗� 𝑞𝑞𝑡𝑡∗ 887 

(eq. A10) 888 
Again, since the δ variables are small, we can replace the relevant exponentials with Taylor expansion 889 
to first order: 890 
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𝑒𝑒−
𝛿𝛿𝑞𝑞𝑠𝑠∗

𝑈𝑈∗� ≈ 1 −
𝛿𝛿𝑞𝑞𝑠𝑠∗

𝑈𝑈∗  891 

(eq. A11) 892 
A similar approximation applies for the exponential in Ms

*. Substituting eq. (A11) into eq. (A10), 893 
expanding the multiplicative terms, dropping terms of second order in the δ variables and 894 
rearranging, we get 895 

𝜕𝜕𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= 𝛿𝛿𝑞𝑞𝑠𝑠∗ �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� +

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒

−𝑞𝑞𝑠𝑠
∗���
𝑈𝑈∗� � − 𝛿𝛿𝑀𝑀𝑠𝑠

∗ �𝑞𝑞𝑡𝑡∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗���� 896 

(eq. A12) 897 
The perturbation is assumed to be sinusoidal  898 

𝛿𝛿𝑞𝑞𝑠𝑠∗ = 𝑑𝑑 sin �
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 899 

(eq. A13) 900 
Here, p is the period of the perturbation and d is its amplitude. Note that, to be consistent with the 901 
assumptions previously made, d needs to be small in comparison with the average sediment supply. 902 
Substituting, eq. (A12) can be integrated to obtain the solution  903 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺𝑞𝑞𝑠𝑠∗ sin �

2𝜋𝜋𝜋𝜋
𝑃𝑃

+ 𝜑𝜑𝑞𝑞𝑠𝑠∗� + 𝐶𝐶exp �−�𝑞𝑞𝑡𝑡∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗����
𝑡𝑡
𝑇𝑇�

 904 

where C is a constant of integration. The gain is given by 905 

𝐺𝐺𝑞𝑞𝑠𝑠∗ =
𝑝𝑝
𝑇𝑇

�1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� + 𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� �𝑑𝑑

��𝑞𝑞𝑡𝑡∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� � 𝑞𝑞𝑠𝑠∗����
2

�𝑝𝑝𝑇𝑇�
2

+ 4𝜋𝜋2

 906 

(eq. A14) 907 
And the phase shift by 908 

𝜑𝜑𝑞𝑞𝑠𝑠∗ = tan−1

⎣
⎢
⎢
⎢
⎡
−

2𝜋𝜋
𝑝𝑝
𝑇𝑇 �𝑞𝑞𝑡𝑡

∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗����⎦
⎥
⎥
⎥
⎤
 909 

(eq. A15) 910 
 911 
Perturbation of transport capacity 912 
 913 
The perturbation of the transport capacity qt

* is a little more complicated, since both qt
* and U* are 914 

explicitly dependent on hydraulics (e.g., shear stress; see eqs. 43 and 44), and thus U* is implicitly 915 
dependent on qt

* and δqt
*. To circumvent this problem, we expand the exponential term featuring 916 

U*(δqt
*) in eq. (A9) using a Taylor series expansion around δqt

* = 0.  917 
 918 

exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗(𝛿𝛿𝑞𝑞𝑡𝑡∗)� ≈ exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)� �1 −
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗2(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕𝑞𝑞𝑡𝑡∗
(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)𝛿𝛿𝑞𝑞𝑡𝑡∗� 919 

(eq. A16) 920 
Both U* and its derivative are constants when evaluated at δqt

* = 0. We can thus write 921 
 922 

exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗� = exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� �1 −
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����2
�
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕𝑞𝑞𝑡𝑡∗
�

����������
𝛿𝛿𝑞𝑞𝑡𝑡∗� = [1 − 𝐶𝐶0𝛿𝛿𝑞𝑞𝑡𝑡∗]𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗�����  923 

 924 
(eq. A17) 925 
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Here, C0 is a constant. Proceeding as before by substituting eq. (A2), (A8) and (A17) into (A9), 926 
expanding exponential terms containing δ variables, dropping terms of second order in the δ 927 
variables and rearranging, we obtain:  928 

𝜕𝜕𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝑡𝑡∗
= �𝐵𝐵𝑞𝑞𝑠𝑠∗𝑒𝑒

−𝑞𝑞𝑠𝑠
∗

𝑈𝑈∗����� + 𝑒𝑒−𝑀𝑀𝑠𝑠
∗���� − 1�𝛿𝛿𝑞𝑞𝑡𝑡∗ − 𝛿𝛿𝑀𝑀𝑠𝑠

∗𝑞𝑞𝑡𝑡∗���𝑒𝑒−𝑀𝑀𝑠𝑠
∗���� 929 

(eq. A18) 930 
A sinusoidal perturbation of the form  931 

𝛿𝛿𝑞𝑞𝑡𝑡∗ = 𝑑𝑑 sin �
2𝜋𝜋𝜋𝜋
𝑝𝑝
� 932 

(eq. A19) 933 
yields the solution  934 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺𝑞𝑞𝑡𝑡∗ sin �

2𝜋𝜋𝜋𝜋
𝑃𝑃

+ 𝜑𝜑𝑞𝑞𝑡𝑡∗� + 𝐶𝐶exp �−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠∗�
𝑡𝑡
𝑝𝑝� �

−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠∗�
𝑡𝑡
𝑇𝑇�

 935 

with  936 

𝐺𝐺𝑞𝑞𝑡𝑡∗ =
𝑝𝑝
𝑇𝑇

�𝑞𝑞𝑠𝑠
∗2

𝑈𝑈∗����2
� 𝜕𝜕𝜕𝜕

∗

𝜕𝜕𝛿𝛿𝑞𝑞𝑡𝑡∗
�

���������
𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� − �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠

∗

𝑞𝑞𝑡𝑡∗���
�𝑑𝑑

�𝑞𝑞𝑡𝑡∗���
2 �𝑝𝑝𝑇𝑇�

2
�1 − �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗� � 𝑞𝑞𝑠𝑠

∗

𝑞𝑞𝑡𝑡∗���
�
2

+ 4𝜋𝜋2

 937 

(eq. A20) 938 
and 939 

𝜑𝜑 = tan−1

⎝

⎜
⎛
−

2𝜋𝜋
𝑝𝑝
𝑇𝑇 �𝑞𝑞𝑡𝑡

∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� �𝑞𝑞𝑠𝑠∗�
⎠

⎟
⎞

 940 

(eq. A21) 941 
 942 
Summary 943 
 944 
Using the system timescale TS, the phase shift and gain can be generally rewritten as 945 
 946 

𝜑𝜑 = tan−1 �−2𝜋𝜋
𝑇𝑇𝑆𝑆
𝑝𝑝
� 947 

(eq. A22)  948 

𝐺𝐺 =
𝑝𝑝
𝑇𝑇𝑆𝑆

𝐾𝐾𝐾𝐾

�� 𝑝𝑝𝑇𝑇𝑆𝑆
�
2

+ 4𝜋𝜋2
 949 

(eq. A23) 950 
Here, K differs for perturbations in sediment supply and transport capacity, given by the equations 951 
 952 

𝐾𝐾𝑞𝑞𝑠𝑠∗ = 1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� +
𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒

−𝑞𝑞𝑠𝑠
∗���
𝑈𝑈∗�  953 

(eq. A24) 954 

𝐾𝐾𝑞𝑞𝑡𝑡∗ =
𝑞𝑞𝑠𝑠∗

2

𝑈𝑈∗����2
�
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕𝑞𝑞𝑡𝑡∗
�

����������
𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� − �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� �

𝑞𝑞𝑠𝑠∗

𝑞𝑞𝑡𝑡∗���
 955 

(eq. A25) 956 
 957 
  958 
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Notation 959 
 960 
Overbars denote time-averaged quantities. 961 
 962 
a  Shape parameter in the regularized incomplete Beta function. 963 
A*  Fraction of exposed (uncovered) bed area.  964 
Ac

*  Fraction of covered bed area. 965 
b  Shape parameter in the regularized incomplete Beta function. 966 
B  Regularized incomplete Beta function. 967 
C  Constant of integration. 968 
C0  Constant [m2s/kg]. 969 
d  Amplitude of perturbation [kg/m2s]. 970 
D  Sediment deposition rate per bed area [kg/m2s].  971 
Dtot  Sediment deposition rate [kg/s]. 972 
D*  Dimensionless sediment deposition rate. 973 
D50  Median grain size [m]. 974 
e  Base of the natural logarithm. 975 
E  Sediment entrainment rate per bed area [kg/m2s].  976 
Etot  Sediment entrainment rate [kg/s]. 977 
E*  Dimensionless sediment entrainment rate. 978 
Emax   Maximal possible dimensionless sediment entrainment rate. 979 
g  Acceleration due to gravity [m/s2]. 980 
G  Gain [kg/m2s]. 981 
I   Non-dimensional incision rate. 982 
k  Probability of sediment deposition on uncovered parts of the bed, linear 983 

implementation.  984 
kI Non-dimensional erodibility.  985 
K Parameter in the gain equation. 986 
L Characteristic length scale [m]. 987 
M0  Minimum mass per area necessary to cover the bed [kg/m2].  988 
M0

*  Dimensionless characteristic sediment mass.  989 
Mm  Mobile sediment mass [kg/m2]. 990 
Mm

*  Dimensionless mobile sediment mass.  991 
Ms  Stationary sediment mass [kg/m2]. 992 
Ms

*  Dimensionless stationary sediment mass. 993 
p  Period of perturbation [s].  994 
pc  Probability of entrainment, CA model, blocked grains. 995 
pi  Probability of entrainment, CA model, free grains. 996 
P  Probability of sediment deposition on uncovered parts of the bed. 997 
qs  Mass sediment transport rate per unit width [kg/ms]. 998 
qs

*  Dimensionless sediment transport rate.  999 
qt  Mass sediment transport capacity per unit width [kg/ms]. 1000 
qt

*  Dimensionless transport capacity. 1001 
Qs

*  Relative sediment supply; sediment transport rate over transport capacity.  1002 
Qt  Mass sediment transport capacity [kg/s]. 1003 
t  Time variable [s]. 1004 
t*  Dimensionless time.  1005 
T  Characteristic time scale [s].  1006 
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TE  Characteristic time scale for sediment entrainment [s].  1007 
TS  Characteristic system time scale [s]. 1008 
U  Sediment speed [m/s]. 1009 
U*  Dimensionless sediment speed. 1010 
x  Dimensional streamwise spatial coordinate [m].  1011 
x*  Dimensionless streamwise spatial coordinate. 1012 
y  Dummy variable. 1013 
α  Exponent.  1014 
γ  Fraction of pore space in the sediment. 1015 
δ  denotes time-varying component. 1016 
Δin  Sediment supply rate from upstream direction [kg/s]. 1017 
ΔMm  Change in mobile sediment mass [kg]. 1018 
Δout  Transport rate of sediment leaving into the downstream direction [kg/s].  1019 
Δt  Change in time [s]. 1020 
θ  Shields stress. 1021 
θc  Critical Shields stress. 1022 
ρ  Density of water [kg/m3].  1023 
ρs  Density of sediment [kg/m3]. 1024 
τ  Bed shear stress [N/m2].  1025 
τc  Critical bed shear stress at the onset of bedload motion [N/m2]. 1026 
 1027 

  1028 
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 1152 
Fig. 1: Cartoon illustration of a bed partially covered by sediment. For purpose of illustration, the bed 1153 
is divided into a square raster, with each pixel of the size of a single grain. For a given number of 1154 
particles in the area of the bed of interest, the exposed area fraction of the bed is dependent on the 1155 
distribution of particles. Grains that sit on top of other grains do not contribute to cover. The 1156 
probability that a new grain is deposited on uncovered bed is given by P (eq. 3). 1157 

 1158 
Fig. 2: A) Various examples for the probability function P as a function of bedrock exposure A*. B) 1159 
Corresponding analytical solutions for the cover function between A* and dimensionless sediment 1160 
mass Ms

* using eq. (6), (7) and (9). Grey shading depicts the area where the cover function cannot 1161 
run due to conservation of mass. 1162 
 1163 
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 1164 
Fig. 3: Examples for the use of the regularized incomplete Beta function (eq. 11) to parameterize P, 1165 
using various values for the shape parameters a and b. The choice a = b = 1 gives a dependence that 1166 
is equivalent to the exponential cover function. Grey shading depicts the area where the cover 1167 
function cannot run due to conservation of mass. 1168 

 1169 
Fig. 4: Probability functions P and cover function derived from data obtained from the model of 1170 
Hodge and Hoey (2012). The grey dashed line shows the exponential benchmark behavior. Grey 1171 
shading depicts the area where the cover function cannot run due to conservation of mass. The 1172 
legend gives values of pi and pc used for the runs (see text). 1173 
 1174 
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 1175 
Fig. 5: Sediment dynamics at the bed are modelled by two reservoirs for stationary and mobile mass, 1176 
which can exchange material by entrainment (Etot) and deposition (Dtot). Sediment mass can be 1177 
supplied from upstream (Δin) and can leave into the downstream direction (Δout). 1178 
 1179 

 1180 
Fig. 6: Analytical solutions at steady state for the exposed fraction of the bed (A*) as a function of 1181 
relative sediment supply (Q*, cf. Fig. 2). A) Comparison of the different solutions, keeping M0

* 1182 
constant at 1. B) Varying M0

* for the linear case (eq. 31). C) Varying M0
* for the exponential case (eq. 1183 

30). D) Varying M0
* for the power law case with α = 0.1 (eq. 32). 1184 
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 1186 
Fig. 7: Steady state solutions using the beta distribution to parameterize P (eq. 10) for a range of 1187 
parameters a and b, and using M0

* = 1 (cf. Fig. 3). The solutions were obtained by iterating the 1188 
equations to a steady state, using initial conditions of A* = 1 and Mm

* = Ms
* = 0. 1189 

 1190 

 1191 
Fig. 8: The characteristic dimensionless mass M0

* depicted as a function of A) the Shields stress and 1192 
B) the ratio of Shields stress to critical Shields stress (eq. 37). 1193 
 1194 

 1195 
Fig. 9: Variation of the exposed bed fraction as a function of transport capacity, assuming that 1196 
particle speed scales with transport capacity to the power of one third. 1197 
 1198 
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 1201 

 1202 
Fig. 10: Temporal evolution of cover for the simple case of a control box with sediment through-flux, 1203 
based on eqs. (3), (22), (23) and (24). Relative sediment supply (supply normalized by transport 1204 
capacity) was specified to 0.25 and increased to 1 at t* = 5. The response of sediment output, mobile 1205 
and stationary sediment mass and the exposed bed fraction was calculated. Here, we used the 1206 
exponential function for P (eq. 8) and M0

* = U* = 1. The initial values were A* = 1 and Mm
* = Ms

* = 0.  1207 

 1208 
Fig. 11: Evolution of the exposed bed fraction (removal of sediment cover) over time starting with 1209 
different initial values of bed exposure, for the special case of no sediment supply, i.e., qs

* = 0 (eq. 41) 1210 
and qt

* = 1. 1211 
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 1213 
Fig. 12: Dimensionless time to reach 99.9% of the total adjustment in exposed area as a function of 1214 
A) transport stage and B) particle speed. All simulation were started with A* = 1 and Mm

* = Ms
* = 0. 1215 

 1216 

 1217 
Fig. 13: Phase shift (eq. 49) and gain (eq. 50) as a function of the ratio of the period of perturbation p 1218 
and the system time scale Ts. For the calculation, the constant factor in the gain (Kd) was set equal to 1219 
one. 1220 
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 1222 
Fig. 14: Calculated evolution of cover during the largest event observed at the Erlenbach on 20th June 1223 
2007 (Turowski et al., 2009). Bedload transport rates were measured with the Swiss Plate geophone 1224 
sensors calibrated with direct bedload samples (Rickenmann et al., 2012). The final fraction of 1225 
exposed bedrock is strongly dependent on its initial value. 1226 
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