
July 21, 2017 

Dear Editors, 

We have completed the revision of our manuscript according to the reviewer’s comments. Below is a list 

of the major changes of the revised manuscript. In addition, a detailed comment by comment response 

to each reviewer is attached afterwards. Last, a manuscript with tracked changes in enclosed. 

1. We have added two additional figures, Fig. 3 and Fig. 4, to further elucidate the singular 

behavior of SPIM. Figure 3 in the previous manuscript is now Fig. 5. 

2. We have added the section named, “Scale behavior in other landscape evolution models.” This 

section details the generalized abrasion model (Gasparini et al., 2007). Using their model and 

our nondimensionalization scheme, we show that their model does not exhibit scale invariance. 

3. We added another section named, “Sensitivity of relief to hillslope length and profile length.” In 

this section, we show how the relief in a landscape can be more sensitive to the hillslope length 

than the profile length. This sensitivity to the hillslope length arises due to the inherent singular 

behavior of SPIM. 

4. We expanded our discussion and conclusion section. As we mentioned in our comments to the 

reviewers, we took care to emphasize the importance of the scaling behavior in the model and 

the singular behavior in addition to scale invariance. 

We hope that our revisions satisfy all the reviewers’ concerns and that our manuscript meets the 

requirements for publication in ESurf. 

Sincerely, 

Jeffrey Kwang and Gary Parker 
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We thank the reviewer for their thoughtful comments and suggestions. From the reviews introduc-
tion, we believe the reviewer has a good understanding of our main results and our motivation for
writing this paper.

Reviewer 1: ”The singularity at A = 0 is well known.”

There are two issues here: elevation singularity and slope singularity at the ridges. We agree that it
is readily seen that there is a slope singularity at the ridge at steady state when drainage area goes
to zero. However, without integrating the conservation equation at steady state, the existence of
an elevation singularity at the ridges for m/n ≥ 0.5, and its absence for m/n < 0.5 cannot be easily
deduced. This is especially true in the 2D model, which has no analytical solution. Within the
literature, there has been little discussion specifically oriented to the singular behavior of SPIM in
regard to slope at the ridge. To our knowledge, the presence or absence of the elevation singularity
(according to the value of m/n) in 2D models has never been shown in the literature.

Reviewer 1: ”It is a part of the solution that exists on paper but is never realized in nature
because other mechanisms dominate erosion near drainage divides, where drainage area is small.”

We agree with the comment. But our goal is not to understand how SPIM performs in conjunction
with other mechanisms, but rather to see how SPIM itself performs. For this reason, we did not
include hillslope diffusion in our model. There are two additional issues. 1: When the using a grid
size in the 2D model that is larger than the hillslope length scale, hillslope diffusion has little to no
effect on the landscapes relief. 2: When the basin is sufficiently large compared to, e.g. the scale
of hillslope diffusion, unrealistic horizontal scale invariance prevails at all scales larger than that of
hillslope diffusion when m/n = 0.5.

Reviewer 1: ”The authors already seem to consider this a secondary point they dont mention
it in the abstract so removing it would not change the paper much.”

We do not agree with this statement; the singular behavior is an integral part of this paper. It is our
belief that the singular behavior is an important for demonstrating some of the pitfalls of modeling
landscapes with SPIM. The reviewer makes good points here, and we thus propose to expand our
discussion on the singularity and focus on explaining its importance.

Reviewer 1: ”The special mathematical case for 2m=n is interesting, and the thorough analysis
presented in the paper could form an important part of a more general study of scaling in landscape
evolution models. However, I am not convinced that a paper that presents only this result can stand
on its own.”

Our paper does indeed focus on the scale invariant case, as we believe it is the most interesting
and surprising part of the analysis, and corresponds to the most commonly used value of m/n.
However, looking at Figure 2, we not only present the scale invariant case of m/n = 0.5, but also
m/n = 0.4 and m/n = 0.6. We need to emphasize the following point in our revised text. Relief
is scale-invariant for m/n = 0.5, relief increases with scale for m/n < 0.5, but decreases with scale
for m/n > 0.5. We can think of nothing about the morphodynamics of natural systems that would
dictate such behavior.
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Reviewer 1: ”The demonstrated scale invariance occurs in a model from which terms that im-
part scale dependence have been omitted. One such term is the diffusion term in equation 2 (which
should be positive).”

Thank you for pointing out the mistake in our equation; it has been fixed. We have purposely omit-
ted the hillslope diffusion terms in order to study the behavior of SPIM itself. The use of hillslope
diffusion resolves the problem of horizontal scale invariance for m/n = 0.5 only at the finest scales.

Reviewer 1: ”The authors argue that hillslope diffusion operates only at small scales. Sure,
but might that not contradict the conclusion that the steady-state landscape for a 1 m2 domain can
be stretched so that it is identical to the corresponding landscape for a 100 km2 domain?”

No contradiction, just hard to get an acronym into the abstract. Here is a proposed rewriting.
”Landscape evolution models often utilize the stream power incision model (SPIM) to simulate
river incision. That is, the steady-state landscape predicted using SPIM alone for a 1 m2 horizontal
domain can be stretched so that it is identical to the corresponding landscape for a 100 km2 domain.”

Reviewer 1: ”The authors also do not consider channel width, another potential source of scale
dependence.”

Width can indeed provide a source of scale dependence. We will point this out in a revised text.
But the purpose of our paper is to study a 2D implementation of SPIM in the context of landscape
evolution. SPIM does not predict channel width, and the addition of hillslope diffusion or hillslope
length does not change this.

Reviewer 1: ”I appreciate what the authors are trying to do: discovering flaws in widely used
models is one way that science advances. But they seem to construe their discovery as evidence that
the entire community is asleep at the wheel, and I dont think that is true.”

We thank the reviewer for grasping the central point of our paper. The comment ”But they seem
to construe their discovery as evidence that the entire community is asleep at the wheel, and I dont
think that is true” is more sociological than scientific. We believe that our results stand on their
own, and that the science speaks for itself without editorializing. It does not make sense, however,
to point out the scale invariance issue when m/n = 0.5 without also pointing out that the use of
this value is ubiquitous in the literature. (See table at the end of this response).

Reviewer 1: ”The fact that this simplification gives rise to scale invariance with a particular
combination of parameters is indeed an odd quirk one that is probably worthy of a cautionary tale
but it doesnt mean that the underlying arguments for relating incision rate to drainage area and
slope are fundamentally flawed.”

We do not agree that our central result is an odd quirk. It is built into the fabric of SPIM. We re-
peat. Relief is scale-invariant for m/n = 0.5, relief increases with scale for m/n < 0.5, but decreases
with scale for m/n > 0.5. We can think of nothing about the morphodynamics of natural systems
that would dictate such behavior.

Reviewer 1: ”The version of the stream power model presented in this paper certainly has sub-
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stantial limitations, and discussions of its shortcomings as well as proposed improvements abound
in the literature.”

Yes, but we have not found a single instance in the literature where the scale invariance associated
with m/n = 0.5 has been recognized.

Reviewer 1: ”I see two ways in which the authors could potentially use their analysis to con-
tribute to those discussions. First, perhaps they could show more clearly how scale-invariant models
would lead researchers to draw incorrect conclusions about drainage basins, even if those researchers
are aware of the limitations of the stream power model as a process law.”

Thank you for the suggestions. We agree that including these suggestions in our manuscript will
greatly improve the impact and discussion of our manuscript. We hope to include examples of where
the stream power incision model can lead to incorrect conclusions. Our first example of how SPIM
can lead to incorrect conclusion is in its use to predict landscape relief. Whipple and Tucker [1999]
show in a 1D model that SPIM can be used to predict landscape relief given the location of the
channel head, Xc. In 2D models, the corresponding variable would be a critical area threshold, Ac,
where above this threshold fluvial processes dominate (e.g. Montgomery and Dietrich 1988). We
believe that our work on scaling relationships and ridge singularities can show that predicting relief
using a 2D SPIM-based model cannot be reliable without a good understanding of what physical
processes set the scale in landscapes (i.e. hillslope length/channel head location). Because the
singularities affect the channel profile/relief most strongly in the headwaters, the fluvial relief of the
landscape is sensitive to the choice of hillslope length. In determining the relief of the landscape,
it could be that its value is more sensitive to the choice of hillslope length instead of the horizontal
length of the basin (as predicted by SPIM). In addition, we believe our results also have implica-
tions for recent work on drainage basin reorganization and the stability of drainage divides. Most
of the literature uses the χ methodology with SPIM to predict locations and stability of drainage
divides. The stability of a drainage divide is taken to depend on the values of χ on either side of the
drainage divide. χ is evaluated at a threshold value (Xc or Ac) from the ridge, and like η, χ varies
sensitively due to the singular behavior near the ridge. We believe that our analysis on the ridge
singularities in both the 1D and 2D model can help elucidate the uncertainty in the prediction of
stable drainage divide locations.

Reviewer 1: ”Second, they might consider whether the particular shortcomings they document
offer any insights into how a better model of river incision could be constructed and whether any
of the proposed improvements to the stream power law avoid these problems.”

In the literature, there have been many proposals for landscape evolution models that incorporate
bedrock incision based on abrasion from saltating sediment particles. For example, Gasparini et al.
2007 propose a generalized saltaton-abrasion model. The steady state slope is given by the following
equation S = aA1−b (1 − cA−0.5)

−1
(Note: We replace the actual parameters with simplified bulk

parameters). If we non-dimensionalize this equation in the same manner as our manuscript, we

get Ŝ = ag
υ2
Â1−bL3−2b

(
1 − cÂ−0.5L−1

)−1

. Just by inspection of this equation, we can see that it is

impossible to make elevation invariant to horizontal length scale L. In addition, the exponent, b,
formulation is made from empirical laws, where it is unlikely the term 3 − 2b ≤ 0. We will expand
this discussion in a revised version of the manuscript to show that some bedrock incision models
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do not necessarily experience scale invariance.

We hope that additions such as the ones stated above will help our manuscript contribute to the
discussion of the strengths and weakness of SPIM, and help motivate improved prediction of land-
scape evolution.

Gasparini, N. M., Whipple, K. X. and Bras, R. L.: Predictions of steady state and transient
landscape morphology using sediment-flux-dependent river incision models, Journal of Geophysical
Research, 112(F3), doi:10.1029/2006JF000567, 2007.

Montgomery, D. R. and Dietrich, W. E.: Where do channels begin?, Nature, 336(6196), 232234,
doi:10.1038/336232a0, 1988.

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications
for height limits of mountain ranges, landscape response timescales, and research needs, Journal of
Geophysical Research: Solid Earth, 104(B8), 1766117674, doi:10.1029/1999JB900120, 1999.
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We thank the reviewer taking the time to review our paper. The comments will be very helpful to
us for improving our manuscript.

Reviewer 2: ”This paper presents a call to arms, urging landscape evolution modelers who use
the stream power incision model (SPIM) to move on to more sophisticated models, which better
represent the physical mechanisms responsible for river erosion of bedrock, such as abrasion by sed-
iment.”

This is indeed a one of the main motivations for our manuscript. Thank you for recognizing the
point.

Reviewer 2: ”The argument rests primarily on the finding of scale invariant solutions when
the SPIM exponent ratio m/n = 0.5, for the case where the commonly-used hillslope diffusion term
is omitted.”

While we believe that the scale invariant case is the most interesting and unexpected of our results,
we think that our analysis of the slope and elevation singularities at the ridge and of the scaling
when m/n 6= 0.5 are also important for our argument. In particular, relief increases with scale for
m/n < 0.5, but decreases with scale for m/n > 0.5. We will make sure we emphasize its important
in a revised version of the manuscript.

Reviewer 2: ”While I am sympathetic to the stated goals of this work, I worry that, ironically,
this paper may have the opposite impact by focusing so narrowly on a rather anecdotal result.”

The horizontal scale invariance for m/n = 0.5 is indeed glaring. As documented immediately below,
we suggest that this choice is not anecdotal, but instead reflects common usage in the landscape
community. We need, however, to emphasize more clearly that our focus is not narrow, but covers
the entire range of values of m/n. Repeating text above, relief is scale-invariant for m/n = 0.5,
relief increases with scale for m/n < 0.5, but decreases with scale for m/n > 0.5. We can think of
nothing about the morphodynamics of natural systems that would dictate such behavior.

Reviewer 2: ”The model behavior described here will rarely occur in model studies because
modelers typically use other m/n ratios, or hillslope diffusion terms, minimum hillslope lengths or
other model components that avoid this result.”

We would like to suggest otherwise. Firstly, many modelers have indeed used the value m/n = 0.5,
either as the sole value or as an option. Some notable examples are Willett et al. 2014 (use m/n
= 0.5 and hm/n = 0.5), the FASTSCAPE MODEL (e.g. Braun and Willett 2013, use m/n = 0.5
and hm/n = 0.5), and LANDLAB (e.g. Hobley et al. 2017, use m/n = 0.5). While the values of
both m and n can be altered in LANDLAB, m/n = 0.5 is set as the default. Our argument is when
modelers have little information on what the m/n ratio should be, their default value is 0.5, the
value that leads to scale invariance. We provide a table of papers in which a value of m/n equal or
close to 0.5 has been used.

Secondly, neither the inclusion of a hillslope diffusion term nor the use of a minimum hillslope length
rectifies the scale invariance problem associated with m/n = 0.5 in the larger sense. We refer back to
middle three panels of Figure 2b of our manuscript. Shown therein are steady-state landscapes for
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m/n = 0.5, with horizontal scale L2D = 22.4 km, 224 km and 2240 km. We assume for illustration
that the fine scale length (diffusion or hillslope length) is 2 km. It follows that unrealistic scale
invariance prevails over lengths corresponding to 91.1% of the smallest basin, 99.1% of the medium
basin, and 99.9% of the largest basin. SPIM forces the landscape to behave like the bellows of an
accordion; pushing scale down jacks up ALL the slopes when m/n = 0.5.

We emphasize our belief that it is important to study the behavior of SPIM itself without the use
of other sub-models (e.g. hillslope diffusion). We further argue that insight into the fundamental
behavior of SPIM will be valuable when choosing e.g. a bedrock abrasion-incision model for imple-
mentation within a landscape evolution model.

Reviewer 2: ”I agree with the suggestions of the first reviewer for how this work could be ex-
tended in constructive ways.”

The second reviewer also agrees with the first reviewers suggestions for improving our work. As
we said in the response to the first reviewer, we will add examples of conditions where SPIM leads
to incorrect interpretations, and apply our scaling analysis to show that more sophisticated models
do not suffer from horizontal scale invariance. Please look at our written response to the first review.

Reviewer 2: ”For example, can scale analysis be used to identify when the SPIM may lead to
incorrect interpretations, or test the validity of divergent model outcomes, such as the findings of
Egholm et al. (2013) who directly compared the SPIM with a bedload abrasion incision model?”

Thank you for citing the Egholm et al. 2013 paper; this paper will be cited within our modified
manuscript. This paper clearly features a problem that requires a model that is more sophisticated
than SPIM. We appreciate the direct comparisons between SPIM and a bedload abrasion incision
model. Egholm et al. [2013] uses many sub-models (e.g. hillslope diffusion, isostasy, landslides,
etc.). Our paper, however, is focused on how SPIM captures incision in a 2D landscape model. Our
paper will be improved by adding a comparison between the way in which relief structure created
with a) SPIM and b) a bedrock-abrasion incision model scale with horizontal length. Thank you for
your insightful comments, and we hope our proposed additions will satisfy your concerns regarding
our paper.

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream
power equation governing fluvial incision and landscape evolution, Geomorphology, 180181, 170179,
doi:10.1016/j.geomorph.2012.10.008, 2013.

Egholm, D. L., Knudsen, M. F. and Sandiford, M.: Lifespan of mountain ranges scaled by feedbacks
between landsliding and erosion by rivers, Nature, 498(7455), 475478, doi:10.1038/nature12218,
2013.

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbullu-
oglu, E. and Tucker, G. E.: Creative computing with Landlab: an open-source toolkit for building,
coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Sur-
face Dynamics, 5(1), 2146, doi:10.5194/esurf-5-21-2017, 2017.

Willett, S. D., McCoy, S. W., Perron, J. T., Goren, L. and Chen, C.-Y.: Dynamic Reorganization
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of River Basins, Science, 343(6175), 12487651248765, doi:10.1126/science.1248765, 2014.

Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision model: Implications
for height limits of mountain ranges, landscape response timescales, and research needs, Journal of
Geophysical Research: Solid Earth, 104(B8), 1766117674, doi:10.1029/1999JB900120, 1999.
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Abstract. Landscape evolution models often utilize the stream power incision model to simulate river incision: E=KA
m
S

n
, 

where E = vertical incision rate, K = erodibility constant, A = upstream drainage area, S = channel gradient, and m and n are 

exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state 

landscapes. The most common choice of exponents satisfies m/n = 0.5; indeed, this ratio has been deemed to yield the 10 

“optimal channel network.”. Yet all models have limitations. Here, we show that when hillslope diffusion (which operates 

only at small scales) is neglected, the choice m/n = 0.5 yields a curiously unrealistic result: the predicted landscape is 

invariant to horizontal stretching. That is, the steady-state landscape for a 1 m
2
10 km

2
 horizontal domain can be stretched so 

that it is identical to the corresponding landscape for a 1001000 km
2
 domain. 

1 Introduction 15 

The stream power incision model (SPIM) (e.g., Howard, 1994; Howard et al., 1994) is a commonly-used physically-based 

model for bedrock incision. The incision rate, E, can be written as 

𝐸 = 𝐾𝐴𝑚𝑆𝑛 (1) 

where K = erodibility coefficient, A = upslope drainage area, S = downstream slope, and m and n are exponents. This simple 

model is thoroughly reviewed in Whipple and Tucker (1999) and Lague (2014), where they hypothesize that m/n is between 20 

0.35 and 0.60. This range is consistent with results inferred from field work and map studies (Flint, 1974; Howard and 

Kerby, 1983; Tarboton et al., 1989; Willgoose et al., 1990; Tarboton et al., 1991; Willgoose, 1994; Moglen and Bras, 1995; 

Snyder et al., 2000; Banavar et al., 2001).). Furthermore, many researchers specifically suggest that, or offer as a default, the 

ratio, m/n ~ 0.5 (Snyder et al., 2000; Banavar et al., 2001; Hobley et al. 2017). The choice of this ratio is paramount in 

numerical Landscape Evolution Models (LEMs) that utilize SPIM, such as the channel-hillslope integrated landscape 25 

development model, CHILD (Tucker et al., 2001). The ratio, m/n, is also used to describe the relationship between slope and 

drainage area in describing stream long profiles (Flint, 1974). All models using SPIM, including studies on drainage 

reorganization and stability (Willett et al., 2014), tectonic histories of landscapes (Goren et al., 2014b; Fox et al., 2014), and 

persistent drainage migration (Pelletier, 2004), involve specification of this ratio. In addition, the specific values of m and n 



 

2 

 

are important (Tucker and Whipple, 2002). Here, however, we focus on the ratio itself. In their research on optimal channel 

networks, Rodriguez-Iturbe and Rinaldo (2001) hypothesize that a landscape’s drainage network organizes itself into an 

optimal state which minimizes the rate of energy dissipation. Their definition of optimality requires that m/n = 0.5. Here, 

however,Here, however, we focus on the ratio itself, and we show a somewhat unexpected result: when m/n = 0.5, SPIM-

based LEMs exhibit elevation solutions that are invariant to shape-preserving stretching of horizontal domain. That is, except 5 

for the finest scales at which hillslope diffusion becomes important, the model predicts the same solution for a landscape 

with a total basin area of 1 m
2
10 km

2
 and one with a total basin area of 1001000 km

2
 under the constraint of identical 

horizontal basin shape (e.g. square). The validity of SPIM at the meter scale should not be expected, but the extremity of this 

result underscores a heretofore unrecognized unrealistic aspect of SPIM. 

 10 

In this paper, we perform a scaling analysis of SPIM. First, we use a 1D model to analytically derive steady-state river 

profiles, to illustrate the problem of scale invariance, and to delineate conditions for which elevation singularities occur at 

the ridge. Then, using a 2D numerical model, we demonstrate the effects of horizontal scale on the steady-state relief of 

landscapes and infer the conditions for which elevation singularities occur at ridges. 

2 Motivation 15 

SPIM is a simple model that has been used to gain considerable insight into landscape evolution. Previous studies using 

SPIM have shown how landscapes respond to tectonic and climate forcing (e.g., Howard, 1994; Howard et al., 1994). Yet 

like most simple models, SPIM is in some sense an oversimplification. Here we demonstrate this by showing that it satisfies 

a curiously unrealistic scale invariance relation. By demonstrating this limitation, we hope to motivate the formulation of 

models that overcomes it. 20 

 

The fundamental limitation on SPIM becomes apparent when the ratio, m/n = 0.5. Under this condition, a SPIM alone will 

predict the same steady-state relief for a 1 m
2
10 km

2
 domain as a 1001000 km

2
 domain of the same horizontal shape, as 

illustrated below. LEMs utilizing SPIM often sidestep this problem with the use of a “hillslope diffusion” coefficient (e.g. 

Passalacqua et al., 2006), a useful but rather poorly-constrained parameter that lumps together a wide range of processes 25 

(Fernandes and Dietrich, 1997). Alternatively, the problem can be sidestepped with an externally specified “hillslope critical 

length” (Goren et al., 2014a) that essentially specifies the location of channel heads. For example, the model simulations of 

Willett et al. (2014) employ the specific value of 500 m for hillslope critical length in their characterization of tendencies for 

drainage divide migration. The prediction of the hillslope diffusion coefficient and the location of channels are outstanding 

problems in the field of geomorphology (Montgomery and Dietrich, 1988). The intrinsic nature of the SPIM model, 30 

however, is such that scale invariance persists for the case m/n = 0.5 at scales larger than a characteristic hillslope length 

scale, whether it be externally specified or computed from a diffusion coefficient. 
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The existence of scale invariance exemplifies an unrealistic aspect of SPIM, which we believe to be associated with its 

omission of natural processes, such as abrasion due to sediment transport. Gilbert (1877) theorized two roles that sediment 

moving as bedload could play in bedrock incision, the first as an abrasive agent that incises the bed via collisions and the 

second as a protector that inhibits collisions of bedload on the bed. These observations have been implemented quantitatively 5 

by many modelers (e.g., Sklar and Dietrich, 2001, Sklar and Dietrich, 2004; Sklar and Dietrich, 2006; Lamb et al., 2008; 

Zhang et al., 2015), some of whom have implemented them in LEMs (e.g. Gasparini et al., 2006, Gasparini et al., 2007). 

Egholm et al. (2013) have directly compared landscape models using SPIM on the one hand, and models using a saltation-

abrasion model on the other hand. Here we shed light on an unrealistic behavior of SPIM with the goal of motivating the 

landscape evolution community to develop more advanced treatments that better capture the underlying physics. A further 10 

goal is to emphasize the importance of scaling and non-dimensionalization in characterizing LEMs. 

3 1D model: scale invariance and singularities  

AAn LEM can be implemented using the following equation of mass conservation for rock/regolith subject to uplift and 

denudation: 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐸 + 𝐷𝛻2𝜂  (2) 15 

where η = local landscape elevation, t = time, υ = rock uplift rate and D = hillslope diffusion coefficient. The term, 𝐷𝛻2𝜂, 

accounts for hillslope diffusion (Somfai and Sander, 1997; Banavar et al., 2001). The effect of diffusion is commonly 

neglected at coarse-grained resolution (Somfai and Sander, 1997; Banavar et al., 2001; Passalacqua et al., 2006), at which 

any resolved channels can be taken to be fluvially-dominated bedrock channels (Montgomery and Foufoula-Georgiou,1993). 

In our analysis, we use Eq. (1) to specify the incision term in Eq. (2). It should be noted that SPIM refers to the incision in 20 

the direction normal to the bed, implying that there are both horizontal and vertical components of incision. In much of the 

literature using SPIM, however, the horizontal component is neglected in accordance with the original formulation of 

Howard and Kerby (1983), and incision is assumed to be purely vertical downward:. Here we preserve this simplification in 

order to better understand the overall behavior of SPIM. Last, in correspondence with most 2D implementations of SPIM 

within LEM,  we neither resolve channels nor compute their hydraulic geometry in our 2D implementation.. The focus of 25 

this paper is the most simplified form (e.g. (1)) of SPIM. This way we can analyze the most fundamental behavior of SPIM 

itself. 

 

Equation (2) characterizes landscape evolution in 2D; i.e. elevation   = (x,y), where x and y are horizontal coordinates. It is 

useful for some purposes, however, to simplify Eq. (2) into a 1D form. Neglecting hillslope diffusion, the 1D conservation 30 

equation is 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚(− 𝜕𝜂 𝜕𝑙⁄ )𝑛   (3) 
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where l = horizontal stream distance from the ridge, at which l = 0. It should be noted that the negative sign appears front of 

the term 𝜕𝜂 𝜕𝑙⁄  because 𝜕𝜂 𝜕𝑙⁄  is negative in the downstream direction, so that streambed slope, 𝑆 = − 𝜕𝜂 𝜕𝑙⁄ . In SPIM, 

slope S is assumed to be positive. In order to solve Eq. (3), a relationship between A and l must be established. Here we 

assume a generalized form of Hack’s Law (Hack, 1957); 

𝐴 = 𝐶𝑙ℎ  (4) 5 

where C and h are positive values. Hack’s Law assumes that upslope area increases with l
h
. From empirical data, Hack found 

the exponent, h, to be ~1.67 (Hack, 1957).  

 

Previous researchers have presented 1D analytical solutions for elevation profiles (Chase, 1992; Beaumont et al., 1992, 

Anderson, 1994; Kooi and Beaumont, 1994; Tucker and Slingerland, 1994; Kooi and Beaumont, 1996; Densmore et al., 10 

1998; Willett, 1999; Whipple and Tucker, 1999; Willett, 2010). In their solutions, the effect of the horizontal scale, which in 

the 1D model we define as the total length of the stream profile, L1D, was neither shown nor discussed. Previous studies that 

use Eq. (4) (Whipple and Tucker, 1999; Willett, 2010) involve nondimensionalization of both the horizontal and vertical 

coordinates by the total horizontal length of the profile, L1D. ThisAs we show below, this step obscures the effect of the 

horizontal scale on the relief of the profile. In our study, we nondimensionalize the vertical coordinate, η, by a combination 15 

of υ and the acceleration of gravity, g. Our nondimensionalization of the coordinates is shown below. 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝑙 = 𝐿1𝐷𝑙  (5) 

Substituting Eq. (4) and Eq. (5) into Eq. (3) results in the following dimensionless conservation equation: 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃1𝐷
−𝑛𝑙ℎ𝑚(− 𝜕𝜂̂ 𝜕𝑙⁄ )

𝑛
  (6) 

where the dimensionless number P1D, termed the 1D Pillsbury number herein for convenience, is given by the relation 20 

𝑃1𝐷 = 𝐾−1 𝑛⁄ 𝐶−𝑚 𝑛⁄ 𝐿1𝐷
1−ℎ𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔  (7) 

At steady-state, Eq. (6) becomes  

𝑃1𝐷 = 𝑙ℎ𝑚 𝑛⁄ (− 𝜕𝜂̂ 𝜕𝑙⁄ ) (8) 

From this equation, we see that as we approach the ridge, i.e 𝑙 → 0, the slope term (− 𝜕𝜂̂ 𝜕𝑙⁄ ) always approaches infinity for 

positive values of h, m, and n. 25 

 

The value of the 1D Pillsbury number P1D increases with stream profile length, L1D, when hm/n < 1, is invariant to changes in 

L1D when hm/n = 1, and decreases with L1D when hm/n > 1. This can be further illustrated by integrating Eq. (8). To solve 

this first order differential equation, we need to specify a single boundary condition, shown below. 

𝜂̂|𝑙=1 = 0  (9) 30 

This boundary condition sets the location and elevation of the outlet, where flow is allowed to exit the system. Integrating 

Eq. (8) yields 
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𝜂̂ = {
−𝑃1𝐷ln(𝑙) if ℎ𝑚 = 𝑛

(1 − ℎ𝑚 𝑛⁄ )−1𝑃1𝐷(1 − 𝑙1−ℎ𝑚 𝑛⁄ ) if ℎ𝑚 ≠ 𝑛
   (10) 

The steady-state profiles defined by Eq. (10) are shown in Fig. 1. Inspecting Eq. (10), we see that elevation is infinite at the 

ridge (l = 0) when hm/n ≥ 1, and elevation is finite when hm/n < 1. In addition, when hm/n = 1, P1D, shown in Eq. (7), is no 

longer dependent on the horizontal scale, L1D, and 𝜂̂ is independent of the scale of the basin. Using the empirical value from 

Hack’s original work (1957), i.e. h = 1.67, the ratio, m/n, must take the value 0.6 for scale invariance. This ratio is within the 5 

range reported in the literature (Whipple and Tucker, 1999). 

4 2D model: scale invariance 

In 2D, the conservation equation using SPIM and neglecting hillslope diffusion can be written as 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚[(𝜕𝜂 𝜕𝑥⁄ )2 + (𝜕𝜂 𝜕𝑦⁄ )2]𝑛 2⁄  (11) 

To understand the behavior of Eq. (11) in response to scale, we need to use a dimensionless formulation in a fashion similar 10 

to the previous 1D analysis. Here, L2D denotes the horizontal length of the entire domain, which is taken to be square for 

convenience. For the 2D analysis, our nondimensionalization is 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝐴 = 𝐿2𝐷
2 𝐴̂ 𝑥 = 𝐿2𝐷𝑥̂ 𝑦 = 𝐿2𝐷𝑦̂   (12) 

The form of Eq. (11), in which x, y, and A have been made dimensionless using the definitions shown in Eq. (12) is 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃2𝐷
−𝑛𝐴̂𝑚[(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]𝑛 2⁄   (13) 15 

where the dimensionless number P2D, termed the 2D Pillsbury number is given as 

𝑃2𝐷 = 𝐾−1 𝑛⁄ 𝐿2𝐷
1−2𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔   (14) 

At steady-state, Eq. (13) becomes 

𝑃2𝐷 = 𝐴̂𝑚 𝑛⁄ [(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]1 2⁄   (15) 

The form of the parameter P2D specified by Eq. (14) is similar to the 1D form, Eq. (7), but is different due to the different 20 

dimensionality. The parameter, P2D, scales with the relief of the landscape; as it increases, the slope term on the RHS of Eq. 

(15) also increases. The value of P2D increases with L2D for m/n < 0.5, remains constant with L2D for m/n = 0.5, and decreases 

with L2D for m/n > 0.5. For the ratio, m/n = 0.5, the exponent aboveto which L2D is raised in Eq. (14) becomes zero, and the 

relief of the landscape becomes invariant to horizontal scale. When m/n = 0.5, the same steady-state solution to Eq. (15) 

prevails regardless of the value of L2D. We note here that this scale-invariance, which is the key result of this paper, is 25 

intrinsic to the model itself and is not a function of the discretization scheme in used in implementing numerical solutions. 

 

Our 2D model was solved using the following boundary conditions: 

𝜂|𝑦=0 = 0  (16) 

𝜕𝜂 𝜕𝑦⁄ |𝑦=𝐿2𝐷
= 0  (17) 30 
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𝜂|𝑥=0 = 𝜂|𝑥=2𝐷 𝜂|𝑥=𝐿2𝐷
 (18) 

The bottom (outlet) side of the domain presented hereinin Fig. 2 is fixed at the base level η = 0 m, corresponding to an open 

boundary where flow can exit the system while satisfying Eq. (16). The top side of the domain is designated as an 

impermeable boundary to flow, i.e. the drainage divide satisfies Eq. (17). Periodic boundary conditions satisfying Eq. (18) 

are applied at the left and right boundaries. Flow, slope, and drainage area are determined using the D8 flow algorithm, 5 

where flow follows the route of steepest descent (O’Callaghan and Mark, 1984). The initial condition is a gently-sloped 

plane oriented towards the outlet with small random elevation perturbations. 

 

For the results of Fig. 2, we useduse regular grids that containedcontain 100
2
 cells. The number of cells wasis constant, 

regardless of the value of L2D. This is in contrast to makingholding cell size constant, and instead increasing the number of 10 

cells with L2D. We argue that the former shows the fundamental numerical behavior of SPIM, while the latter obscures 

thethis behavior due to the existence of slope and elevation singularities near the ridges in the landscape. The next sections 

show this singular behavior in the 2D numerical model. 

 

Figure 2a shows steady-state solutions for m/n = 0.5 and two values of L2D using the same initial condition. At each 15 

corresponding grid cell between the two solutions, the slope, S, decreases as L2D increases. However, the relief structures of 

each landscape are identical. By relief structure, we are describing the elevation value at each corresponding grid cell in the 

two steady-state solutions. This is confirmed by nondimensionalizing the horizontal scale of landscape without adjusting the 

vertical scale (Fig. 2b). Using the same numerical methods and the parameters from Fig. 2a, the results of a similar analysis 

using different ratios m/n = 0.4, 0.5, and 0.6 are shown in Fig. 2c.  20 

 

In Fig. 2c, the case of scale invariance can be seen when m/n = 0.5. For m/n = 0.4, the relief of the entire landscape increases 

with increasing L2D, and for m/n = 0.6, the relief decreases with increasing L2D. When m/n ≠ 0.5, the landscapes do not 

exhibit scale invariance. However, the overall planform drainage network structure shows resemblance across scales. That is, 

the location of the major streams and rivers in the numerical grid are similarly organized. It should be noted that the 25 

landscapes are not identical. When the landscapes are shown in dimensional space, as shown in Fig. 2a, the landscapes 

appear to be quite different. In the case of Fig. 2b, however, the smaller landscape can be stretched horizontally to be 

precisely identical to the large one. The drainage network structure described above persists in each simulation due to the 

imprinting of the initial condition, which always consists of the same randomized perturbations. 

5 2D model: quasi-theoretical analysis of singular behavior 30 

Like the 1D model, of Eq. (8), the 2D model, Eq. (15), has slope, S, approaching infinity as area, A, approaches zero at 

steady state. In contrast to the 1D model, however, general steady-state solutions for elevation in the 2D model, Eq. (15), 
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cannot be determined analytically. However, the ratio, m/n, for which elevation singularities occur can be determined by 

analyzing the behavior of the 2D numerical model in close proximity to a ridge. Here, we first develop a quasi-theoretical 

treatment to study near-ridge behavior, whichand we then use it to infer singular behavior in the numerical model. 

Converting the coordinate system from Cartesian to a system that follows the streamwise direction, we rewrite Eq. (11) as 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚(− 𝜕𝜂 𝜕𝑠⁄ )𝑛  (19) 5 

where s = distance along the path of steepest descent away from the ridge. From dimensional considerations, A [L
2
] must 

scale with s
2
 [L

2
] near the ridge (s = 0), and therefore, 

𝐴 = 𝛽𝑠2 𝑎𝑠 𝑠 → 0  (20) 

where β = scaling factor. For this analysis, our nondimensionalization is 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝑠 = 𝐿𝑅 𝑠̂  (21) 10 

where LR = horizontal ridge scale. Near the ridge, Eq. (19) can be nondimensionalized into: 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃𝑅
−𝑛𝑠̂2𝑚(− 𝜕𝜂̂ 𝜕𝑠̂⁄ )𝑛   (22) 

where PR is another dimensionless Pillsbury number, here denoted as 

𝑃𝑅 = 𝐾−1 𝑛⁄ 𝛽−𝑚 𝑛⁄ 𝐿1𝐷
1−2𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔   (23) 

At steady-state (∂η/∂t = 0), Eq. (22) becomes 15 

𝑃𝑅 = 𝑠̂2𝑚 𝑛⁄ (− 𝜕𝜂̂ 𝜕𝑠̂⁄ ) (24) 

From Eq. (24), we see that at the ridge (𝑠̂ = 0), there is a singularity in slope, i.e. the slope, (− 𝜕𝜂̂ 𝜕𝑠̂⁄ ), goes to infinity. 

Integration of Eq. (24) using the downstream boundary condition, 𝜂̂|𝑠̂=1 = 0, allows for the delineation of the conditions for 

elevation singularities in the 2D model. The profile is given as 

𝜂̂ = {
−𝑃𝑅ln(𝑠̂) if 2𝑚 = 𝑛

(1 − 2𝑚 𝑛⁄ )−1𝑃𝑅(1 − 𝑠̂1−2𝑚 𝑛⁄ ) if 2𝑚 ≠ 𝑛
   (25) 20 

Instead of the elevation singularity occurring when hm/n ≥ 1 as seen in the 1D model, Eq. (10), this analysis for the 2D 

model shows an elevation singularity at the ridge when m/n ≥ 0.5. 

6 2D model: numerical analysis of singular behavior 

In Fig. 3 and Fig. 4 we present results which serve to distinguish the fundamental behavior of SPIM from the numerical 

behavior associated with varying density of discretization.. Fig. 3 and Fig. 4 each show nine steady state simulations, each 25 

using three values of M
2
 and three values of m/n, i.e. 0.4, 0.5, and 0.6. In both figures, the number of cells is quadrupled from 

column to column. The leftmost column contains 40
2
 cells, the middle column contains 80

2
 cells, and the rightmost column 

contains 160
2
 cells. Figure 3 shows simulations where the horizontal length scale, L2D, is held constant in all simulations. By 

increasing the number of cells, the grid size decreases. In all cases of m/n, the maximum relief increases with the number of 

cells.  However, our quasi-theoretical analysis predicted the absence of an elevation singularity at the ridge for m/n < 0.5. To 30 

illustrate this point, we take a different approach, shown later in this section. 
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Figure 4 contains simulations where grid size is held constant at 125 m. Here, the horizontal length scale, L2D, increases with 

the number of cells. In Fig. 4, the leftmost column contains 40
2 
cells with L2D = 5 km, the middle column contains 80

2
 cells 

with L2D = 10 km, and the rightmost column contains 160
2
 cells with L2D = 20 km. Regardless of the m/n ratio and whether 

L2D or grid size is kept constant, the maximum relief of the landscape increases as the number of cells increases. Relief 5 

increases in both sets of simulations because with more grid cells, we are numerically sampling closer to ridges, and by 

sampling closer to ridges, we are resolving the ridge singularity at a finer scale. We emphasize, however, that the issue of 

dependence of the solution on grid size is separate from the issue of scale invariance for m/n = 0.5, the latter result being 

deduced from the governing equation itself (Eq. 15) before any discretization is implemented, and illustrated in Fig. 2c. 

 10 

Our quasi-theoretical analysis infers the conditions for singular behavior in the 2D model. If elevation singularities exist, the 

model will not satisfy grid-invariance, causing the relief between the ridge and outlet to increase indefinitely as grid size 

decreases. In contrast, in simulations where singularities do not exist, the relief between the ridge and outlet can be expected 

to converge as the grid size decreases. In both cases, understanding ridge behavior in the 2D model requires studying 

solution behavior as grid size approaches zero. 15 

 

We do this by extracting river profiles from 13 landscape simulations of different scales for each valueof three values of m/n, 

i.e. 0.4, 0.5 and 0.6. The largest simulation is for L2D
2
 = 10

6
 km

2
; simulations were also performed at progressively one 

order-or-magnitude less in area down to L2D
2
 = 10

-6
 km

2
. The number of grid cells, M

2
, is held constant at 25

2
. In each 

simulation, then, the closest distance to the ridge that can be resolved is one grid cell, given by 20 

∆𝑙𝑖 = 10(7−𝑖) 2⁄ 25⁄ [𝑘𝑚] 𝑖 = 1,2 … 13  (26) 

From each of the simulations, we construct two synthetic river profiles, one that intersects the highest point of the basin 

divide (high profile) and one that intersects the lowest point of the basin divide (low profile). The choice of these two 

elevations was made so as to bracket the possible range of behavior; analogous results would be obtained from starting 

points along the basin divide at intermediate elevations. We use these synthetic profiles to characterize whether or not the 25 

numerical model is tending toward a singularity near ridges. We do this because the numerical model itself cannot directly 

capture singular behavior. We outline the details of the methodology for the high profile only, as the case of the low profile 

involves a transparent extension. 

 

The 13 simulations result in 13 elevation profiles i, where i = 1,2…13 each extending from Δli (i.e. one grid point from the 30 

divide) to a downstream value lDi that is somewhat larger that the value 10
3-(i/2)

 km (because the down-channel path of 

steepest descent does not follow a straight line.). We assemble a synthetic channel profile, S(l), from these as follows. The 

first leg of S(l) is identical to 1(l), and extends from l = Δl1 to lD1. We extend the synthetic profile by translating the second 
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profile upward until its elevation at its downstream point lD2 matches with S(lD2), as shown in Fig. 3a5a. The profile, S(l), 

now extends from Δl2 to lD1. As shown in Fig. 3a5a, we repeat this process until all 13 profiles have been used to assemble 

the synthetic profile, which now extends from
 
Δl13 to lD1. 

 

This procedure results in a high synthetic profile encompassing all thirteen profiles (circles) and in a low synthetic profile 5 

(crosses) (Fig. 3b5b). 1D analytical solutions, Eq. (10), are then fitted to the profiles of the 2D simulations using the 1D 

Pillsbury number, P1D, as a fitting parameter. To account for the difference in dimensionality, the 1D steady-state profiles 

with hm/n = 0.8, 1.0, and 1.2 are fitted to the 2D data for m/n = 0.4, 0.5, and 0.6, respectively. The scatter in the synthetic 

profile is due to the randomness in the pathway, as dictated by the initial conditions. 

 10 

Figure 3b5b shows good fit between the 2D results and the corresponding 1D steady-state profiles. This allows us to make 

inferences concerning asymptotic behavior at a ridge. The analytical curves for elevation that best fit the 2D data for m/n < 

0.5 converge to finite values as l approaches 0 and infinity for m/n ≥ 0.5. While these results do not constitute analytical 

proof of this asymptotic behavior, they provide strong evidence for it. 

77 Scale behavior in other landscape evolution models 15 

We offer here an example of a landscape model that does not necessarily satisfy horizontal scale invariance, i.e. that of 

Gasparini et al. (2007). They incorporate the formulation of Sklar and Dietrich (2004) for bedrock abrasion due to wear in 

their model. The rate of erosion E is given as 

𝐸 = 𝐾𝐺𝐴(1 − 𝑄𝑠/𝑄𝑡)𝑄𝑠/𝑊 (27) 

where KGA = abrasion coefficient, Qs = bedload sediment flux, W = channel width, and Qt = bedload transport capacity. 20 

Gasparini et al (2007) use the following relation for Qt. 

𝑄𝑡 = 𝐾𝑡𝐴𝑚𝑡𝑆𝑛𝑡 (28) 

where Kt is a transport constant, and mt and nt are exponents. At steady state, the total sediment flux at any point in the 

landscape must equal the production rate of sediment due to rock uplift: 

𝑄𝑆 = 𝐾𝐵𝐴𝜐 (29) 25 

where KB is the fraction of sediment produced that contributes to bedload (the remainder being moved out of the system as 

washload). For channel width, they use a relation of the form  

𝑊 = 𝑘𝑤𝑄𝑏 (30) 

where Q = water flow discharge, kw = hydraulic geometry constant, b = hydraulic geometry exponent (e.g. Finnegan et al., 

2005). The value of b has been found to vary between 0.3 and 0.5 for bedrock rivers (Whipple 2004); Gasparini et al. (2007) 30 

use b = 0.5 in their model. They also estimate discharge as an effective precipitation rate, kq, multiplied by a drainage area to 

the power of c, where c ≤ 1 
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𝑄 = 𝑘𝑞𝐴𝑐 (31) 

 

The resulting relation for steady-state slope is: 

𝑆 = [(𝜕𝜂 𝜕𝑥⁄ )2 + (𝜕𝜂 𝜕𝑦⁄ )2]1 2⁄ = (𝐾𝐵𝐾𝑡
−1𝜐𝐴1−𝑚𝑡)1/𝑛𝑡(1 − 𝑘𝑞

𝑏𝑘𝑤𝐾𝐵
−1𝐾𝐺𝐴

−1𝐴𝑏𝑐−1)
−1/𝑛𝑡

 (32) 

Using the nondimensionalization terms from (12), we nondimensionalize (32) to 5 

[(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]1 2⁄ = 𝑃𝐺1𝐴̂1/𝑛𝑡−𝑚𝑡/𝑛𝑡(1 − 𝑃𝐺2𝐴̂𝑏𝑐−1)
−1/𝑛𝑡

 (33) 

where PG1 and PG2 are two dimensionless Pillsbury numbers: 

𝑃𝐺1 = 𝜐−2𝑔(𝐾𝐵𝐾𝑡
−1𝜐𝐿2𝐷

2−2𝑚𝑡+𝑛𝑡)
1/𝑛𝑡

 (34) 

𝑃𝐺2 = 𝐾𝐵
−1𝐾𝐺𝐴

−1𝐿2𝐷
2𝑏𝑐−2 (35) 

Horizontal scale invariance results only when both of these dimensionless numbers are independent of the horizontal length 10 

scale, L2D. Gasparini et al. (2007) use mt = 1.5 and nt = 1.0. This parameter does indeed make the exponent, 2 – 2mt + nt, 

equal to zero, so that PG1 is independent of L2D. The parameter PG2 is invariant to the horizontal scale when the product of b 

and c is equal to one. However, realistic values of b are between 0.3 and 0.5 (Whipple, 2004), and value of c is less than or 

equal to 1. This means that the maximum value of bc is 0.5. It follows that PG2 is not independent of the horizontal scale, and 

that the model of Gasparini et al. (2007) does not satisfy horizontal scale invariance. 15 

8. Sensitivity of relief to hillslope length and profile length 

In the river profiles of Fig. 1 and Fig. 5b, we see that a large proportion of the relief is confined to the headwaters, i.e. near a 

ridge. In our 1D model, for hm/n ≥ 1, ridge elevation is infinite, thus formally implying infinite relief. This problem has been 

sidestepped by introducing a critical hillslope length lc, upstream of which it is assumed that there is no channel (e.g. Goren 

et al., 2014a). This point may be thought of as loosely corresponding to the channel-hillslope transition in the slope-area 20 

relation discussed by Montgomery and Dietrich (1988) and Montgomery and Dietrich (1992). Here, then, we let the hillslope 

zone cover the range 0  l  lc, where lc is an appropriately small fraction of profile length L1D. Modifying Eq. (10) 

accordingly, we can determine the total relief, R, of the channel profile as follows; 

𝑅̂ = {
−𝑃1𝐷ln(𝑙𝑐) if ℎ𝑚 = 𝑛

(1 − ℎ𝑚 𝑛⁄ )−1𝑃1𝐷 (1 − 𝑙𝑐
1−ℎ𝑚 𝑛⁄

) if ℎ𝑚 ≠ 𝑛
  (36) 

where  25 

𝑅 = 𝜐2𝑔−1𝑅̂ 𝑙𝑐 = 𝐿1𝐷𝑙𝑐  (37) 

We remind the reader that according to Eq. (7), 

𝑃1𝐷~𝐿1𝐷
1−ℎ𝑚/𝑛

  (38) 
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We now consider the scale-invariant case, hm/n = 1, and inquire as to how the relief of the basin might change. Increasing 

L1D does not increase relief, because the parameter P1D ~ L1D
0
. It is thus seen from Eqs. (36) and (37) that relief can be 

increased only by decreasing 𝑙𝑐. But from (36), 𝑅̂   as 𝑙𝑐. 0. It follows that relief is extremely sensitive to the choice of 

𝑙𝑐. Based on our previous analysis, we expect that this result carries over to the case m/n = 0.5 for the 2D model. 

 5 

We next provide an example illustrating the dependence of relief on hillslope length and profile length when hm/n  1. 

Specifically, we consider the case hm/n = 0.9, with a dimensionless hillslope length 𝑙𝑐 = 0.01. According to Eq. (36), a 

halving of 𝑙𝑐 to 0.005 increases the relief by 11.4 percent. In order to achieve the same increase in relief by changing profile 

length L1D while holding 𝑙𝑐 constant, L1D would have to be increased by 196%. It is thus seen that relief of the channel profile 

can be more sensitive to a relative change in dimensionless critical channel length than it is to a relative change in horizontal 10 

scale. 

9 Discussion and conclusion 

TheOur 1D analytical solutions, Eq. (10) and Fig. 1, characterize the scale behavior of the1D SPIM, where there iswith 

horizontal scale invariance satisfied when hm/n = 1.0. In addition, theOur 2D numerical solutionsolutions shown in Fig. 2 

confirms the existence of the condition ofillustrate our analytical result that 2D SPIM shows horizontal scale invariance 15 

when m/n = 0.5. Models That is, 2D models using SPIM with m/n = 0.5 show the same relief structure regardless of the 

horizontal scale. ScaleThis scale invariance of bothhas been previously demonstrated for neither the 1D andnor the 2D 

models haveSPIM model. an not previously been demonstrated. ThisOur result calls into question the assertion that common 

usage oft the ratio m/n = 0.5, which is the most commonly used ratio  i in landscape evolution models (e.g. Gasparini et al., 

2006), represents an “optimal” value for )..The Python-based landscape modelling environment, Landlab (Hobley et al., 20 

2017) offers a channel network (Rodriguez-Iturbe and Rinaldo, 2001). Itdefault m/n ratio of 0.5. Our result also motivates 

further investigation as to why analysis of field data commonly yields values of m/n ~ 0.5 (e.g. Snyder et al., 2000; Banavar 

et al., 2001).  

 

The numericalIn addition to the horizontal scale invariant case m/n = 0.5 for the 2D SPIM model, we also emphasize the 25 

relationship between the steady state landscape relief and horizontal when m/n  0.5. Eq. (14) and Eq. (15) and the results  in 

Fig. 2c show that the relief structure of the landscape scales with P2D. Within P2D, the horizontal length scale term is L2D
1-

2m/n
. For the m/n ratio range 0.35 to 0.6 (Whipple and Tucker 1999), the corresponding exponent range in the horizontal 

length scale term is - 0.2 to 0.3. This means that over the stated range of m/n, the relief structure has a weak dependence on 

the horizontal length scale. For m/n < 0.5, relief weakly increases with horizontal scale. For m/n > 0.5, relief weakly but 30 
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unrealistically decreases with horizontal scale. We can think of nothing about the morphodynamics of natural systems that 

would dictate such behavior. 

 

Our work neglects the effect of hillslope diffusion because our intent is to study the behavior of SPIM itself. Without 

hillslope diffusion, SPIM causes singular behavior at ridges in both the 1D and 2D formulation. Indeed, both the 1D and 2D 5 

models exhibit singularities in slope at at ridges for all hm/n ratios (1D) and all m/n ratios (2D).. For hm/n ≥ 1 (1D) and m/ n 

≥ 0.5 (2D), the models exhibit singular behavior in elevation at ridges as well. When relief is limited by a hillslope length lc , 

elevation and slope do indeed reach finite values at the channel heads, but the effects of the singularity still persist. For 

example, for the case hm/n  1 in the 1D model, relief approaches infinity as hillslope length approaches zero. Our analysis 

of ridge singularities in SPIM shows that the choice of hillslope parameterization plays a key role in determining the relief of 10 

natural landscapes. 

 

Numerical solutions of the 2D model allows inferenceindicate that the 2D modelit cannot be grid-invariant for m/n ≥ 0.5. In 

the absence of hillslope diffusion, ridges reach infinite elevation as grid size becomes vanishingly small. This result 

underlines the critical role of hillslope diffusion in obtaining meaningful results from the 2D model. Field estimates of 15 

hillslope diffusion have been obtained at the hillslope scale, but there are unanswered questions about their application into 

large-scale models (Fernandes and Dietrich, 1997). Our results suggest that for the ratio, m/n < 0.5, there are steady-state 

grid-invariant solutions. However, the grid size below which grid-invariance is realized may be so small, e.g. sub-meter 

scale, that the validity of Eq. (1) is called into question. Issues with SPIM when used at large scale include the following. 

Studies commonly neglect the effect of hillslope diffusion when the scale of the grid is larger than the hillslope scale (Somfai 20 

and Sander, 1997; Banavar et al., 2001; Passalacqua et al., 2006). At coarse-grained scales, increasing the size of the 

numerical domain, while keeping the number of cells constant, will result in the behavior that shown in Fig. 2. That is, when 

m/n ≥ 0.5,In Fig. 4 we see that  adding more cells to compensate for the increase in size of the domain so, such that the grid 

size remains constant, produces heavily biased (i.e. ever more singular) behavior near the ridges that does not represent the 

fundamental behavior of SPIM.  25 

 

Our analysis illustrates that SPIM has two important limitations; a) unrealistic scale invariance when m/n takes the 

commonly-used value 0.5, so that a 1 m
2
10 km

2
 basin has identical relief to a 1001000 km

2
 basin, and b) singular behavior 

near the ridges for m/n  0.5 that makes maximum relief entirely and unrealistically dependent on grid size. SPIM has been 

used with much successshown to be of considerable use in the study of the general behavior of landscapes (e.g., Howard, 30 

1994; Howard et al., 1994). We believe, however, that the time has come to move on to more sophisticated models. While 

scientific questions remain that can be answered with the stream power incision model, there are many more questions that 

require a more advanced formulation (e.g.,. Gasparini et al., 2007 Crosby et al., 2007, Egholm et al., 2013). The 

development of alternative, more physically-based models for incision (e.g. Sklar and Dietrich, 2004; Lague, 2014; Zhang et 
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al., 2015) and their application to landscape evolution (e.g. Davy and Lague, 2009; Gasparini et al., 2006, 2007) offer 

exciting prospects for the future. 

8 Notation 

𝐴  upslope drainage area [L
2
] 

𝑏  exponent defining relation between channel width and flow discharge (Gasparini et al., 2007) [-]  5 

𝐵  profile width [L] 

c  exponent defining relation between flow discharge and drainage area (Gasparini et al., 2007) [-]  

𝐶  Hack’s law constant [L
2-h

] 

𝐷  hillslope diffusion coefficient [L
2
/T] 

𝐸  local erosion rate [L/T] 10 

𝑔  acceleration of gravity [L/T
2
] 

ℎ   Hack’s law exponent [-] 

𝐾  erodibility coefficient [L
(1-2m)

/T] 

𝐾𝐵  fraction of sediment produced that contributes to bedload (Gasparini et al., 2007) [-] 

𝐾𝐺𝐴  constant defining relation for the general abrasion model (Gasparini et al., 2007) [L
-1

] 15 

𝑘𝑞  effective precipitation rate (Gasparini et al., 2007) [L
(3-2c)

/T] 

𝐾𝑡  constant defining relation for bedload transport capacity (Gasparini et al., 2007) [L
(3-2mt)

/T] 

𝑘𝑤  constant defining relationship between channel width and flow discharge (Gasparini et al., 2007) [L
(1-3b)

T
b
] 

𝑖  index denoting the profile, 1,2…13 [-] 

𝑙  horizontal distance from the ridge in the 1D profile [L] 20 

𝑙 dimensionless horizontal distance from the ridge in the 1D profile, 𝑙 𝐿1𝐷⁄  [-] 

𝑙𝐷𝑖𝑙𝑐  critical hillslope length[L] 

𝑙𝑐 dimensionless critical hillslope length, 𝑙𝑐 𝐿1𝐷⁄  [-]𝑙𝐷𝑖 total length of profile, i [L] 

𝑙𝑖 horizontal distance from the ridge of profile, i [L] 

𝐿1𝐷  horizontal length scale, profile length [L]  25 

𝐿2𝐷  horizontal length scale, basin size [L] 

𝐿𝑅   horizontal length scale, ridge [L] 

𝑚  exponent above A in SPIM [-] 

𝑚𝑡  exponent above A in sediment transport capacity equation (Gasparini et al., 2007) [-] 

𝑀2 number of numerical cells [cells
2
]  30 

𝑛  exponent above S in SPIM [-] 
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𝑛𝑡  exponent above S in sediment transport capacity equation (Gasparini et al., 2007) [-] 

𝑃1𝐷 Pillsbury number for the 1D analysis [-] 

𝑃2𝐷 Pillsbury number for the 2D analysis [-] 

𝑃𝐺𝑞  first Pillsbury number for the Gasparini et at. (2007) analysis [-] 

𝑃𝐺2 second Pillsbury number for the Gasparini et at. (2007) analysis [-] 5 

𝑃𝑅 Pillsbury number for the 2D ridge analysis [-] 

𝑄𝑠 bedload sediment flux [L
3
/T] 

𝑄𝑡 bedload transport capcity [L
3
/T] 

𝑅 total relief of the channel profile [L] 

𝑅̂ dimensionless total relief, 𝑅𝑔 𝜐2⁄  [-] 10 

𝑠 distance from the ridge [L] 

𝑠̂ dimensionless distance from the ridge, 𝑠 𝐿𝑅⁄  [-] 

𝑆 stream gradient [-] 

𝑡 time [T]  

𝑡̂ dimensionless time, 𝑡𝑔 𝜐⁄  [-] 15 

𝑊 channel width [L]  

𝑥 horizontal coordinate orthogonal to y [L] 

𝑥̂ dimensionless horizontal coordinate, 𝑥 𝐿2𝐷⁄  [-]  

y horizontal coordinate orthogonal to x [L] 

𝑦̂ dimensionless horizontal coordinate, 𝑦 𝐿2𝐷⁄  [-] 20 

𝛽 ridge scaling constant [-] 

∆𝑙𝑖 grid size for profile, i [L] 

𝜂 elevation [L] 

𝜂̂ dimensionless elevation, 𝜂𝑔 𝜐2⁄  [-] 

𝜂𝑖 elevation of profile, i [L] 25 

𝜂𝑆 elevation of synthetic profile [L] 

𝜐 uplift rate [L/T] 
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Figure 1: 1D analytical dimensionless solutions for elevation profiles at steady-state equilibrium over a range of ratios hm/n 

(Hack’s Law) =0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 and P1D = 1.0. 
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Figure 2: (a) 2D numerical landscapes at steady-state using a ratio of m/n = 0.5, n = 1.0, υ = 4 mm/yr, K = 2.83x10-11 s-1, M2 = 1002 

cells, and L2D
2 = 125 km2 and 2000 km2. For each case, the 2D Pillsbury number was the same, 2.73x1021. (b) Results of (a) 

expressed in terms of dimensionless horizontal scale. Each basin is made dimensionless by its basin size, L2D. (c) Nine 2D numerical 

simulations at dynamic equilibrium for three different values of L2D and three different values of m/n. The value of K has been 5 
chosen to be different for each value of m/n for clarity in the figures. From left to right, the L2D

2 = 5x102 km2, 5x104 km2, and 5x106 

km2. To make the relief of the landscapes comparable, the 2D Pillsbury number, P2D, is set to 2.73x1021 for solutions of all m/n 

ratios with L2D
2 = 5x102 km2. To achieve this for υ = 4 mm/yr, K = 2.10x10-10 m0.2/s, 2.83x10-11 s-1, and 3.82x10-12 m-0.2/s for m/n = 

0.4, 0.5, and 0.6, respectively. 

  10 
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Figure 3: Nine 2D numerical simulations at steady state for three different values of M2 and three different values of m/n. In this 

figure, the horizontal scale is kept constant; L2D = 10 km for all solutions. The value of K has been chosen to be different for each 

value of m/n for clarity in the figures. From left to right, the number of cells M2 = 402, 802, and 1602. To make the relief of the 

landscapes comparable, the 2D Pillsbury number, P2D, is set to 3.10x1023 for solutions of all m/n ratios with L2D = 10 km. To 5 
achieve this for υ = 1 mm/yr, K = 6.31x10-12 m0.2/s, 1.00x10-12 s-1, and 1.58x10-13 m-0.2/s for m/n = 0.4, 0.5, and 0.6, respectively. Relief 

increases with the number of cells because the ridge singularity is resolved at finer resolution. 
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Figure 4: Nine 2D numerical simulations at steady state for three different values of M2 and three different values of m/n. In this 

figure, the grid size, L2D/M = 125 m, is used in all the solutions. The value of K has been chosen to be different for each value of m/n 

for clarity in the figures. From left to right, the number of cellsM2 = 402, 802, and 1602. To make the relief of the landscapes 

comparable, the 2D Pillsbury number, P2D, is set to 3.10x1023 for solutions of all m/n ratios with L2D = 10 km. To achieve this for υ 5 
= 1 mm/yr, K = 6.31x10-12 m0.2/s, 1.00x10-12 s-1, and 1.58x10-13 m-0.2/s for m/n = 0.4, 0.5, and 0.6, respectively. Like Figure 4, relief 

increases with the number of cells because the ridge singularity is resolved at a finer resolution. 
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Figure 5: (a) Construction of the synthetic profile, S(l). The opaque points represent the synthetic profile, and the transparent 

points represent the untranslated profiles. The green points represent the profile for i = 1, blue represent i = 2, and red represent i 

= 3. After 13(l) has been utilized in S(l), the synthetic profile is complete. (b) 1D steady-state equilibrium analytical solutions 

fitted to 2D numerical results using P1D. Each m/n ratio contains two profiles, one generated from a flow path from the highest 5 
point on the ridge corresponding to the basin divide (HP) and one from the lowest point on the basin divide (LP). The circles (HP) 

and crosses (LP) represent the 2D model data, and the red (HP) and blue (LP) line represent the 1D analytical model. For each 

m/n ratio, υ = 3 mm/yr, M2 = 252 cells, n = 1.0, and L2D
2 = 10-6 km2 to 106 km2. (I) Using K = 5.00x10-12 m0.2/s, m/n = 0.4 (2D), and 

hm/n = 0.8 (1D), P1D = 6.45x1021 (LP) and P1D = 7.89x1021 (HP). (II) Using K = 2.83x10-11 s-1, m/n = 0.5 (2D), and hm/n = 1.0 (1D), 

P1D = 5.79x1021 (LP) and P1D = 6.47x1021 (HP). (III) Using K = 3.82x10-12 m-0.2/s, m/n = 0.6 (2D), and hm/n = 1.2 (1D), P1D = 10 
2.13x1023 (LP) and P1D = 2.15x1023 (HP). 

 

 


