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Abstract. Landscape evolution models often utilize the stream power incision model to simulate river incision: E=KAmSn, 

where E = vertical incision rate, K = erodibility constant, A = upstream drainage area, S = channel gradient, and m and n are 

exponents. This simple but useful law has been employed with an imposed rock uplift rate to gain insight into steady-state 

landscapes. The most common choice of exponents satisfies m/n = 0.5. Yet all models have limitations. Here, we show that 10 

when hillslope diffusion (which operates only at small scales) is neglected, the choice m/n = 0.5 yields a curiously unrealistic 

result: the predicted landscape is invariant to horizontal stretching. That is, the steady-state landscape for a 10 km2 horizontal 

domain can be stretched so that it is identical to the corresponding landscape for a 1000 km2 domain. 

1 Introduction 

The stream power incision model (SPIM) (e.g., Howard, 1994; Howard et al., 1994) is a commonly-used physically-based 15 

model for bedrock incision. The incision rate, E, can be written as 

𝐸 = 𝐾𝐴𝑚𝑆𝑛 (1) 

where K = erodibility coefficient, A = upslope drainage area, S = downstream slope, and m and n are exponents. This simple 

model is thoroughly reviewed in Whipple and Tucker (1999) and Lague (2014), where they hypothesize that m/n is between 

0.35 and 0.60. This range is consistent with results inferred from field work and map studies (Flint, 1974; Howard and Kerby, 20 

1983; Tarboton et al., 1989; Willgoose et al., 1990; Tarboton et al., 1991; Willgoose, 1994; Moglen and Bras, 1995; Snyder et 

al., 2000). Furthermore, many researchers specifically suggest, or offer as a default, the ratio, m/n ~ 0.5 (Snyder et al., 2000; 

Banavar et al., 2001; Hobley et al. 2017). The choice of this ratio is paramount in numerical Landscape Evolution Models 

(LEMs) that utilize SPIM, such as the channel-hillslope integrated landscape development model, CHILD (Tucker et al., 2001). 

The ratio, m/n, is also used to describe the relationship between slope and drainage area in describing stream long profiles 25 

(Flint, 1974). All models using SPIM, including studies on drainage reorganization and stability (Willett et al., 2014), tectonic 

histories of landscapes (Goren et al., 2014b; Fox et al., 2014), and persistent drainage migration (Pelletier, 2004), involve 

specification of this ratio. In addition, the specific values of m and n are important (Tucker and Whipple, 2002). Here, however, 

we focus on the ratio itself, and we show a somewhat unexpected result: when m/n = 0.5, SPIM-based LEMs exhibit elevation 
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solutions that are invariant to shape-preserving stretching of horizontal domain. That is, except for the finest scales at which 

hillslope diffusion becomes important, the model predicts the same solution for a landscape with a total basin area of 10 km2 

and one with a total basin area of 1000 km2 under the constraint of identical horizontal basin shape (e.g. square). The extremity 

of this result underscores a heretofore unrecognized unrealistic aspect of SPIM. 

 5 

In this paper, we perform a scaling analysis of SPIM. First, we use a 1D model to analytically derive steady-state river profiles, 

to illustrate the problem of scale invariance, and to delineate conditions for which elevation singularities occur at the ridge. 

Then, using a 2D numerical model, we demonstrate the effects of horizontal scale on the steady-state relief of landscapes and 

infer the conditions for which elevation singularities occur at ridges. 

2 Motivation 10 

SPIM is a simple model that has been used to gain considerable insight into landscape evolution. Previous studies using SPIM 

have shown how landscapes respond to tectonic and climate forcing (e.g., Howard, 1994; Howard et al., 1994). Yet like most 

simple models, SPIM is in some sense an oversimplification. Here we demonstrate this by showing that it satisfies a curiously 

unrealistic scale invariance relation. By demonstrating this limitation, we hope to motivate the formulation of models that 

overcomes it. 15 

 

The fundamental limitation on SPIM becomes apparent when the ratio, m/n = 0.5. Under this condition, SPIM alone will 

predict the same steady-state relief for a 10 km2 domain as a 1000 km2 domain of the same horizontal shape, as illustrated 

below. LEMs utilizing SPIM often sidestep this problem with the use of a “hillslope diffusion” coefficient (e.g. Passalacqua 

et al., 2006), a useful but rather poorly-constrained parameter that lumps together a wide range of processes (Fernandes and 20 

Dietrich, 1997). Alternatively, the problem can be sidestepped with an externally specified “hillslope critical length” (Goren 

et al., 2014a) that essentially specifies the location of channel heads. For example, the model simulations of Willett et al. (2014) 

employ the specific value of 500 m for hillslope critical length in their characterization of tendencies for drainage divide 

migration. The prediction of the hillslope diffusion coefficient and the location of channels are outstanding problems in the 

field of geomorphology (Montgomery and Dietrich, 1988). The intrinsic nature of the SPIM model, however, is such that scale 25 

invariance persists for the case m/n = 0.5 at scales larger than a characteristic hillslope length scale, whether it be externally 

specified or computed from a diffusion coefficient. 

 

The existence of scale invariance exemplifies an unrealistic aspect of SPIM, which we believe to be associated with its 

omission of natural processes, such as abrasion due to sediment transport. Gilbert (1877) theorized two roles that sediment 30 

moving as bedload could play in bedrock incision, the first as an abrasive agent that incises the bed via collisions and the 

second as a protector that inhibits collisions of bedload on the bed. These observations have been implemented quantitatively 
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by many modelers (e.g., Sklar and Dietrich, 2001, Sklar and Dietrich, 2004; Sklar and Dietrich, 2006; Lamb et al., 2008; Zhang 

et al., 2015), some of whom have implemented them in LEMs (e.g. Gasparini et al., 2006, Gasparini et al., 2007). Egholm et 

al. (2013) have directly compared landscape models using SPIM on the one hand, and models using a saltation-abrasion model 

on the other hand. Here we shed light on an unrealistic behavior of SPIM with the goal of motivating the landscape evolution 

community to develop more advanced treatments that better capture the underlying physics. A further goal is to emphasize the 5 

importance of scaling and non-dimensionalization in characterizing LEMs. 

3 1D model: scale invariance and singularities  

An LEM can be implemented using the following equation of mass conservation for rock/regolith subject to uplift and 

denudation: 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐸 + 𝐷𝛻2𝜂 (2) 10 

where η = local landscape elevation, t = time, υ = rock uplift rate and D = hillslope diffusion coefficient. The term, 𝐷𝛻2𝜂, 

accounts for hillslope diffusion (Somfai and Sander, 1997; Banavar et al., 2001). The effect of diffusion is commonly neglected 

at coarse-grained resolution (Somfai and Sander, 1997; Banavar et al., 2001; Passalacqua et al., 2006), at which any resolved 

channels can be taken to be fluvially-dominated bedrock channels (Montgomery and Foufoula-Georgiou,1993). In our 

analysis, we use Eq. (1) to specify the incision term in Eq. (2). It should be noted that SPIM refers to the incision in the direction 15 

normal to the bed, implying that there are both horizontal and vertical components of incision. In much of the literature using 

SPIM, however, the horizontal component is neglected in accordance with the original formulation of Howard and Kerby 

(1983), and incision is assumed to be purely vertical downward. Here we preserve this simplification in order to better 

understand the overall behavior of SPIM. Last, in correspondence with most 2D implementations of SPIM within LEM, we 

neither resolve channels nor compute their hydraulic geometry in our 2D implementation. The focus of this paper is the most 20 

simplified form (e.g. (1)) of SPIM. This way we can analyze the most fundamental behavior of SPIM itself. 

 

Equation (2) characterizes landscape evolution in 2D; i.e. elevation  = (x,y), where x and y are horizontal coordinates. It is 

useful for some purposes, however, to simplify Eq. (2) into a 1D form. Neglecting hillslope diffusion, the 1D conservation 

equation is 25 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚(− 𝜕𝜂 𝜕𝑙⁄ )𝑛 (3) 

where l = horizontal stream distance from the ridge, at which l = 0. It should be noted that the negative sign appears front of 

the term 𝜕𝜂 𝜕𝑙⁄  because 𝜕𝜂 𝜕𝑙⁄  is negative in the downstream direction, so that streambed slope, 𝑆 = − 𝜕𝜂 𝜕𝑙⁄ . In SPIM, slope 

S is assumed to be positive. In order to solve Eq. (3), a relationship between A and l must be established. Here we assume a 

generalized form of Hack’s Law (Hack, 1957); 30 

𝐴 = 𝐶𝑙ℎ  (4) 
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where C and h are positive values. Hack’s Law assumes that upslope area increases with lh. From empirical data, Hack found 

the exponent, h, to be ~1.67 (Hack, 1957).  

 

Previous researchers have presented 1D analytical solutions for elevation profiles (Chase, 1992; Beaumont et al., 1992, 

Anderson, 1994; Kooi and Beaumont, 1994; Tucker and Slingerland, 1994; Kooi and Beaumont, 1996; Densmore et al., 1998; 5 

Willett, 1999; Whipple and Tucker, 1999; Willett, 2010). In their solutions, the effect of the horizontal scale, which in the 1D 

model we define as the total length of the stream profile, L1D, was neither shown nor discussed. Previous studies that use Eq. 

(4) (Whipple and Tucker, 1999; Willett, 2010) involve nondimensionalization of both the horizontal and vertical coordinates 

by the total horizontal length of the profile, L1D. As we show below, this step obscures the effect of the horizontal scale on the 

relief of the profile. In our study, we nondimensionalize the vertical coordinate, η, by a combination of υ and the acceleration 10 

of gravity, g. Our nondimensionalization of the coordinates is shown below. 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝑙 = 𝐿1𝐷𝑙 (5) 

Substituting Eq. (4) and Eq. (5) into Eq. (3) results in the following dimensionless conservation equation: 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃1𝐷
−𝑛𝑙ℎ𝑚(− 𝜕𝜂̂ 𝜕𝑙⁄ )

𝑛
 (6) 

where the dimensionless number P1D, termed the 1D Pillsbury number herein for convenience, is given by the relation 15 

𝑃1𝐷 = 𝐾−1 𝑛⁄ 𝐶−𝑚 𝑛⁄ 𝐿1𝐷
1−ℎ𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔 (7) 

At steady-state, Eq. (6) becomes  

𝑃1𝐷 = 𝑙ℎ𝑚 𝑛⁄ (− 𝜕𝜂̂ 𝜕𝑙⁄ ) (8) 

From this equation, we see that as we approach the ridge, i.e. 𝑙 → 0, the slope term (− 𝜕𝜂̂ 𝜕𝑙⁄ ) always approaches infinity for 

positive values of h, m, and n. 20 

 

The value of the 1D Pillsbury number P1D increases with stream profile length, L1D when hm/n < 1, is invariant to changes in 

L1D when hm/n = 1, and decreases with L1D when hm/n > 1. This can be further illustrated by integrating Eq. (8). To solve this 

first order differential equation, we need to specify a single boundary condition, shown below. 

𝜂̂|𝑙=1 = 0  (9) 25 

This boundary condition sets the location and elevation of the outlet, where flow is allowed to exit the system. Integrating Eq. 

(8) yields 

𝜂̂ = {
−𝑃1𝐷ln(𝑙) if ℎ𝑚 = 𝑛

(1 − ℎ𝑚 𝑛⁄ )−1𝑃1𝐷(1 − 𝑙1−ℎ𝑚 𝑛⁄ ) if ℎ𝑚 ≠ 𝑛
  (10) 

The steady-state profiles defined by Eq. (10) are shown in Fig. 1. Inspecting Eq. (10), we see that elevation is infinite at the 

ridge (l = 0) when hm/n ≥ 1, and elevation is finite when hm/n < 1. In addition, when hm/n = 1, P1D is no longer dependent on 30 

the horizontal scale, L1D, and 𝜂̂ is independent of the scale of the basin. Using the empirical value from Hack’s original work 
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(1957), i.e. h = 1.67, the ratio, m/n, must take the value 0.6 for scale invariance. This ratio is within the range reported in the 

literature (Whipple and Tucker, 1999). 

4 2D model: scale invariance 

In 2D, the conservation equation using SPIM and neglecting hillslope diffusion can be written as 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚[(𝜕𝜂 𝜕𝑥⁄ )2 + (𝜕𝜂 𝜕𝑦⁄ )2]𝑛 2⁄  (11) 5 

To understand the behavior of Eq. (11) in response to scale, we need to use a dimensionless formulation in a fashion similar 

to the previous 1D analysis. Here, L2D denotes the horizontal length of the entire domain, which is taken to be square for 

convenience. For the 2D analysis, our nondimensionalization is 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝐴 = 𝐿2𝐷
2 𝐴̂ 𝑥 = 𝐿2𝐷𝑥̂ 𝑦 = 𝐿2𝐷𝑦̂  (12) 

The form of Eq. (11), in which x, y, and A have been made dimensionless using the definitions shown in Eq. (12) is 10 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃2𝐷
−𝑛𝐴̂𝑚[(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]𝑛 2⁄  (13) 

where the dimensionless number P2D, termed the 2D Pillsbury number is given as 

𝑃2𝐷 = 𝐾−1 𝑛⁄ 𝐿2𝐷
1−2𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔 (14) 

At steady-state, Eq. (13) becomes 

𝑃2𝐷 = 𝐴̂𝑚 𝑛⁄ [(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]1 2⁄  (15) 15 

The form of the parameter P2D specified by Eq. (14) is similar to the 1D form, Eq. (7), but is different due to the different 

dimensionality. The parameter, P2D, scales with the relief of the landscape; as it increases, the slope term on the RHS of Eq. 

(15) also increases. The value of P2D increases with L2D for m/n < 0.5, remains constant with L2D for m/n = 0.5, and decreases 

with L2D for m/n > 0.5. For the ratio, m/n = 0.5, the exponent to which L2D is raised in Eq. (14) becomes zero, and the relief of 

the landscape becomes invariant to horizontal scale. When m/n = 0.5, the same steady-state solution to Eq. (15) prevails 20 

regardless of the value of L2D. We note here that this scale-invariance, which is the key result of this paper, is intrinsic to the 

model itself and is not a function of the discretization scheme in used in implementing numerical solutions. 

 

Our 2D model was solved using the following boundary conditions: 

𝜂|𝑦=0 = 0 (16) 25 

𝜕𝜂 𝜕𝑦⁄ |𝑦=𝐿2𝐷
= 0 (17) 

𝜂|𝑥=0 = 𝜂|𝑥=𝐿2𝐷
 (18) 

The bottom (outlet) side of the domain presented in Fig. 2 is fixed at the base level η = 0 m, corresponding to an open boundary 

where flow can exit the system while satisfying Eq. (16). The top side of the domain is designated as an impermeable boundary 

to flow, i.e. the drainage divide satisfies Eq. (17). Periodic boundary conditions satisfying Eq. (18) are applied at the left and 30 

right boundaries. Flow, slope, and drainage area are determined using the D8 flow algorithm, where flow follows the route of 
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steepest descent (O’Callaghan and Mark, 1984). The initial condition is a gently-sloped plane oriented towards the outlet with 

small random elevation perturbations. 

 

For the results of Fig. 2, we use regular grids that contain 1002 cells. The number of cells is constant, regardless of the value 

of L2D. This is in contrast to holding cell size constant and instead increasing the number of cells with L2D. We argue that the 5 

former shows the fundamental behavior of SPIM, while the latter obscures this behavior due to the existence of slope and 

elevation singularities near the ridges in the landscape. The next sections show this singular behavior in the 2D numerical 

model. 

 

Figure 2a shows steady-state solutions for m/n = 0.5 and two values of L2D using the same initial condition. At each 10 

corresponding grid cell between the two solutions, the slope, S, decreases as L2D increases. However, the relief structures of 

each landscape are identical. By relief structure, we are describing the elevation value at each corresponding grid cell in the 

two steady-state solutions. This is confirmed by nondimensionalizing the horizontal scale of landscape without adjusting the 

vertical scale (Fig. 2b). Using the same numerical methods and the parameters from Fig. 2a, the results of a similar analysis 

using different ratios m/n = 0.4, 0.5, and 0.6 are shown in Fig. 2c.  15 

 

In Fig. 2c, the case of scale invariance can be seen when m/n = 0.5. For m/n = 0.4, the relief of the entire landscape increases 

with increasing L2D, and for m/n = 0.6, the relief decreases with increasing L2D. When m/n ≠ 0.5, the landscapes do not exhibit 

scale invariance. However, the overall planform drainage network structure shows resemblance across scales. That is, the 

location of the major streams and rivers in the numerical grid are similarly organized. It should be noted that the landscapes 20 

are not identical. When the landscapes are shown in dimensional space, as shown in Fig. 2a, the landscapes appear to be quite 

different. In the case of Fig. 2b, however, the smaller landscape can be stretched horizontally to be precisely identical to the 

large one. The drainage network structure described above persists in each simulation due to the imprinting of the initial 

condition, which always consists of the same randomized perturbations. 

5 2D model: quasi-theoretical analysis of singular behavior 25 

Like the 1D model of Eq. (8), the 2D model, Eq. (15), has slope, S, approaching infinity as area, A, approaches zero at steady 

state. In contrast to the 1D model, however, general steady-state solutions for elevation in the 2D model, Eq. (15), cannot be 

determined analytically. However, the ratio, m/n, for which elevation singularities occur can be determined by analyzing the 

behavior of the 2D numerical model in close proximity to a ridge. Here, we first develop a quasi-theoretical treatment to study 

near-ridge behavior, and we then use it to infer singular behavior in the numerical model. Converting the coordinate system 30 

from Cartesian to a system that follows the streamwise direction, we rewrite Eq. (11) as 

𝜕𝜂 𝜕𝑡⁄ = 𝜐 − 𝐾𝐴𝑚(− 𝜕𝜂 𝜕𝑠⁄ )𝑛 (19) 
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where s = distance along the path of steepest descent away from the ridge. From dimensional considerations, A [L2] must scale 

with s2 [L2] near the ridge (s = 0), and therefore, 

𝐴 = 𝛽𝑠2 𝑎𝑠 𝑠 → 0 (20) 

where β = scaling factor. For this analysis, our nondimensionalization is 

𝜂 = 𝜐2𝑔−1𝜂̂ 𝑡 = 𝜐𝑔−1𝑡̂ 𝑠 = 𝐿𝑅 𝑠̂ (21) 5 

where LR = horizontal ridge scale. Near the ridge, Eq. (19) can be nondimensionalized into: 

𝜕𝜂̂ 𝜕𝑡̂⁄ = 1 − 𝑃𝑅
−𝑛𝑠̂2𝑚(− 𝜕𝜂̂ 𝜕𝑠̂⁄ )𝑛 (22) 

where PR is another dimensionless Pillsbury number, here denoted as 

𝑃𝑅 = 𝐾−1 𝑛⁄ 𝛽−𝑚 𝑛⁄ 𝐿1𝐷
1−2𝑚 𝑛⁄

𝜐1 𝑛⁄ −2𝑔 (23) 

At steady-state (∂η/∂t = 0), Eq. (22) becomes 10 

𝑃𝑅 = 𝑠̂2𝑚 𝑛⁄ (− 𝜕𝜂̂ 𝜕𝑠̂⁄ ) (24) 

From Eq. (24), we see that at the ridge (𝑠̂ = 0), there is a singularity in slope, i.e. the slope, (− 𝜕𝜂̂ 𝜕𝑠̂⁄ ), goes to infinity. 

Integration of Eq. (24) using the downstream boundary condition, 𝜂̂|𝑠̂=1 = 0, allows for the delineation of the conditions for 

elevation singularities in the 2D model. The profile is given as 

𝜂̂ = {
−𝑃𝑅ln(𝑠̂) if 2𝑚 = 𝑛

(1 − 2𝑚 𝑛⁄ )−1𝑃𝑅(1 − 𝑠̂1−2𝑚 𝑛⁄ ) if 2𝑚 ≠ 𝑛
 (25) 15 

Instead of the elevation singularity occurring when hm/n ≥ 1 as seen in the 1D model, Eq. (10), this analysis for the 2D model 

shows an elevation singularity at the ridge when m/n ≥ 0.5. 

6 2D model: numerical analysis of singular behavior 

In Fig. 3 and Fig. 4 we present results which serve to distinguish the fundamental behavior of SPIM from the numerical 

behavior associated with varying density of discretization. Fig. 3 and Fig. 4 each show nine steady state simulations, each 20 

using three values of M2 and three values of m/n, i.e. 0.4, 0.5, and 0.6. In both figures, the number of cells is quadrupled from 

column to column. The leftmost column contains 402 cells, the middle column contains 802 cells, and the rightmost column 

contains 1602 cells. Figure 3 shows simulations where the horizontal length scale, L2D, is held constant in all simulations. By 

increasing the number of cells, the grid size decreases. In all cases of m/n, the maximum relief increases with the number of 

cells. However, our quasi-theoretical analysis predicted the absence of an elevation singularity at the ridge for m/n < 0.5. To 25 

illustrate this point, we take a different approach, shown later in this section. 

 

Figure 4 contains simulations where grid size is held constant at 125 m. Here, the horizontal length scale, L2D, increases with 

the number of cells. In Fig. 4, the leftmost column contains 402 cells with L2D = 5 km, the middle column contains 802 cells 

with L2D = 10 km, and the rightmost column contains 1602 cells with L2D = 20 km. Regardless of the m/n ratio and whether L2D 30 

or grid size is kept constant, the maximum relief of the landscape increases as the number of cells increases. Relief increases 
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in both sets of simulations because with more grid cells, we are numerically sampling closer to ridges, and by sampling closer 

to ridges, we are resolving the ridge singularity at a finer scale. We emphasize, however, that the issue of dependence of the 

solution on grid size is separate from the issue of scale invariance for m/n = 0.5, the latter result being deduced from the 

governing equation itself (Eq. 15) before any discretization is implemented, and illustrated in Fig. 2c. 

 5 

Our quasi-theoretical analysis infers the conditions for singular behavior in the 2D model. If elevation singularities exist, the 

model will not satisfy grid-invariance, causing the relief between the ridge and outlet to increase indefinitely as grid size 

decreases. In contrast, in simulations where singularities do not exist, the relief between the ridge and outlet can be expected 

to converge as the grid size decreases. In both cases, understanding ridge behavior in the 2D model requires studying solution 

behavior as grid size approaches zero. 10 

 

We do this by extracting river profiles from 13 landscape simulations of different scales for each of three values of m/n, i.e. 

0.4, 0.5 and 0.6. The largest simulation is for L2D
2 = 106 km2; simulations were also performed at progressively one order-or-

magnitude less in area down to L2D
2 = 10-6 km2. The number of grid cells, M2, is held constant at 252. In each simulation, then, 

the closest distance to the ridge that can be resolved is one grid cell, given by 15 

∆𝑙𝑖 = 10(7−𝑖) 2⁄ 25⁄ [𝑘𝑚] 𝑖 = 1,2 … 13 (26) 

From each of the simulations, we construct two synthetic river profiles, one that intersects the highest point of the basin divide 

(high profile) and one that intersects the lowest point of the basin divide (low profile). The choice of these two elevations was 

made so as to bracket the possible range of behavior; analogous results would be obtained from starting points along the basin 

divide at intermediate elevations. We use these synthetic profiles to characterize whether or not the numerical model is tending 20 

toward a singularity near ridges. We do this because the numerical model itself cannot directly capture singular behavior. We 

outline the details of the methodology for the high profile only, as the case of the low profile involves a transparent extension. 

 

The 13 simulations result in 13 elevation profiles i, where i = 1,2…13 each extending from Δli (i.e. one grid point from the 

divide) to a downstream value lDi that is somewhat larger that the value 103-(i/2) km (because the down-channel path of steepest 25 

descent does not follow a straight line.). We assemble a synthetic channel profile, S(l), from these as follows. The first leg of 

S(l) is identical to 1(l), and extends from l = Δl1 to lD1. We extend the synthetic profile by translating the second profile 

upward until its elevation at its downstream point lD2 matches with S(lD2), as shown in Fig. 5a. The profile, S(l), now extends 

from Δl2 to lD1. As shown in Fig. 5a, we repeat this process until all 13 profiles have been used to assemble the synthetic profile, 

which now extends from Δl13 to lD1. 30 

 

This procedure results in a high synthetic profile encompassing all thirteen profiles (circles) and in a low synthetic profile 

(crosses) (Fig. 5b). 1D analytical solutions, Eq. (10), are then fitted to the profiles of the 2D simulations using the 1D Pillsbury 
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number, P1D, as a fitting parameter. To account for the difference in dimensionality, the 1D steady-state profiles with hm/n = 

0.8, 1.0, and 1.2 are fitted to the 2D data for m/n = 0.4, 0.5, and 0.6, respectively. The scatter in the synthetic profile is due to 

the randomness in the pathway, as dictated by the initial conditions. 

 

Figure 5b shows good fit between the 2D results and the corresponding 1D steady-state profiles. This allows us to make 5 

inferences concerning asymptotic behavior at a ridge. The analytical curves for elevation that best fit the 2D data for m/n < 0.5 

converge to finite values as l approaches 0 and infinity for m/n ≥ 0.5. While these results do not constitute analytical proof of 

this asymptotic behavior, they provide compelling evidence for it. 

7 Scale behavior in other landscape evolution models 

We offer here an example of a landscape model that does not necessarily satisfy horizontal scale invariance, i.e. that of 10 

Gasparini et al. (2007). They incorporate the formulation of Sklar and Dietrich (2004) for bedrock abrasion due to wear in 

their model. The rate of erosion E is given as 

𝐸 = 𝐾𝐺𝐴(1 − 𝑄𝑠/𝑄𝑡)𝑄𝑠/𝑊 (27) 

where KGA = abrasion coefficient, Qs = bedload sediment flux, W = channel width, and Qt = bedload transport capacity. 

Gasparini et al (2007) use the following relation for Qt. 15 

𝑄𝑡 = 𝐾𝑡𝐴𝑚𝑡𝑆𝑛𝑡 (28) 

where Kt is a transport constant, and mt and nt are exponents. At steady state, the total sediment flux at any point in the landscape 

must equal the production rate of sediment due to rock uplift: 

𝑄𝑆 = 𝐾𝐵𝐴𝜐 (29) 

where KB is the fraction of sediment produced that contributes to bedload (the remainder being moved out of the system as 20 

washload). For channel width, they use a relation of the form  

𝑊 = 𝑘𝑤𝑄𝑏 (30) 

where Q = water flow discharge, kw = hydraulic geometry constant, b = hydraulic geometry exponent (e.g. Finnegan et al., 

2005). The value of b has been found to vary between 0.3 and 0.5 for bedrock rivers (Whipple 2004); Gasparini et al. (2007) 

use b = 0.5 in their model. They also estimate discharge as an effective precipitation rate, kq, multiplied by a drainage area to 25 

the power of c, where c ≤ 1 

𝑄 = 𝑘𝑞𝐴𝑐 (31) 

 

The resulting relation for steady-state slope is: 

𝑆 = [(𝜕𝜂 𝜕𝑥⁄ )2 + (𝜕𝜂 𝜕𝑦⁄ )2]1 2⁄ = (𝐾𝐵𝐾𝑡
−1𝜐𝐴1−𝑚𝑡)1/𝑛𝑡(1 − 𝑘𝑞

𝑏𝑘𝑤𝐾𝐵
−1𝐾𝐺𝐴

−1𝐴𝑏𝑐−1)
−1/𝑛𝑡

 (32) 30 

Using the nondimensionalization terms from (12), we nondimensionalize (32) to 
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[(𝜕𝜂̂ 𝜕𝑥̂⁄ )2 + (𝜕𝜂̂ 𝜕𝑦̂⁄ )2]1 2⁄ = 𝑃𝐺1𝐴̂1/𝑛𝑡−𝑚𝑡/𝑛𝑡(1 − 𝑃𝐺2𝐴̂𝑏𝑐−1)
−1/𝑛𝑡

 (33) 

where PG1 and PG2 are two dimensionless Pillsbury numbers: 

𝑃𝐺1 = 𝜐−2𝑔(𝐾𝐵𝐾𝑡
−1𝜐𝐿2𝐷

2−2𝑚𝑡+𝑛𝑡)
1/𝑛𝑡

 (34) 

𝑃𝐺2 = 𝐾𝐵
−1𝐾𝐺𝐴

−1𝐿2𝐷
2𝑏𝑐−2 (35) 

Horizontal scale invariance results only when both dimensionless numbers are independent of the horizontal length scale, L2D. 5 

Gasparini et al. (2007) use mt = 1.5 and nt = 1.0. This parameter does indeed make the exponent, 2 – 2mt + nt, equal to zero, so 

that PG1 is independent of L2D. The parameter PG2 is invariant to the horizontal scale when the product of b and c is equal to 

one. However, realistic values of b are between 0.3 and 0.5 (Whipple, 2004), and value of c is less than or equal to 1. This 

means that the maximum value of bc is 0.5. It follows that PG2 is not independent of the horizontal scale, and that the model 

of Gasparini et al. (2007) does not satisfy horizontal scale invariance. 10 

8. Sensitivity of relief to hillslope length and profile length 

In the river profiles of Fig. 1 and Fig. 5b, we see that a sizable proportion of the relief is confined to the headwaters, i.e. near 

a ridge. In our 1D model, for hm/n ≥ 1, ridge elevation is infinite, thus formally implying infinite relief. This problem has been 

sidestepped by introducing a critical hillslope length lc, upstream of which it is assumed that there is no channel (e.g. Goren et 

al., 2014a). This point may be thought of as loosely corresponding to the channel-hillslope transition in the slope-area relation 15 

discussed by Montgomery and Dietrich (1988) and Montgomery and Dietrich (1992). Here, then, we let the hillslope zone 

cover the range 0  l  lc, where lc is an appropriately small fraction of profile length L1D. Modifying Eq. (10) accordingly, we 

can determine the total relief, R, of the channel profile as follows; 

𝑅̂ = {
−𝑃1𝐷ln(𝑙𝑐) if ℎ𝑚 = 𝑛

(1 − ℎ𝑚 𝑛⁄ )−1𝑃1𝐷 (1 − 𝑙𝑐
1−ℎ𝑚 𝑛⁄

) if ℎ𝑚 ≠ 𝑛
  (36) 

where  20 

𝑅 = 𝜐2𝑔−1𝑅̂ 𝑙𝑐 = 𝐿1𝐷𝑙𝑐  (37) 

We remind the reader that according to Eq. (7), 

𝑃1𝐷~𝐿1𝐷
1−ℎ𝑚/𝑛

  (38) 

 

We now consider the scale-invariant case, hm/n = 1, and inquire as to how the relief of the basin might change. Increasing L1D 25 

does not increase relief, because the parameter P1D ~ L1D
0. It is thus seen from Eqs. (36) and (37) that relief can be increased 

only by decreasing 𝑙𝑐. But from (36), 𝑅̂   as 𝑙𝑐. 0. It follows that relief is extremely sensitive to the choice of 𝑙𝑐. Based 

on our previous analysis, we expect that this result carries over to the case m/n = 0.5 for the 2D model. 
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We next provide an example illustrating the dependence of relief on hillslope length and profile length when hm/n  1. 

Specifically, we consider the case hm/n = 0.9, with a dimensionless hillslope length 𝑙𝑐 = 0.01. According to Eq. (36), a halving 

of 𝑙𝑐 to 0.005 increases the relief by 11.4 percent. In order to achieve the same increase in relief by changing profile length L1D 

while holding 𝑙𝑐 constant, L1D would have to be increased by 196%. It is thus seen that relief of the channel profile can be more 

sensitive to a relative change in dimensionless critical channel length than it is to a relative change in horizontal scale. 5 

9 Discussion and conclusion 

Our 1D analytical solutions, Eq. (10) and Fig. 1, characterize the scale behavior of 1D SPIM, with horizontal scale invariance 

satisfied when hm/n = 1.0. Our 2D numerical solutions shown in Fig. 2 illustrate our analytical result that 2D SPIM shows 

horizontal scale invariance when m/n = 0.5. That is, 2D models using SPIM with m/n = 0.5 show the same relief structure 

regardless of the horizontal scale. This scale invariance has been previously demonstrated for neither the 1D nor the 2D SPIM 10 

model. Our result calls into question the common usage of the ratio m/n = 0.5 in landscape evolution models (Gasparini et al., 

2006).For example, the Python-based landscape modelling environment, Landlab (Hobley et al., 2017) offers a default m/n 

ratio of 0.5. Our result also motivates further investigation as to why analysis of field data commonly yields values of m/n ~ 

0.5 (e.g. Snyder et al., 2000). It should be noted that local empirical measurements indicating m/n = 0.5 do not necessarily 

mean m/n = 0.5 should be used as a universal ratio in SPIM. Gasparini and Brandon (2011) used multiple incision laws, other 15 

than SPIM, to simulate steady state landscapes, and were able to fit E, A, and S in Eq. (1) to find empirical values of m’ and n’ 

(prime denotes an empirical value). They found that the ratio of m’/n’ was sensitive to the incision model’s parameters as well 

as the rock uplift pattern in each landscape. This implies that both m’ and n’ have dependency on landscapes properties and 

are not universal from landscape to landscape. 

 20 

In addition to the horizontal scale invariant case m/n = 0.5 for the 2D SPIM model, we also emphasize the relationship between 

the steady state landscape relief and horizontal when m/n  0.5. Eq. (14) and Eq. (15) and the results in Fig. 2c show that the 

relief structure of the landscape scales with P2D. Within P2D, the horizontal length scale term is L2D
1-2m/n. For the m/n ratio range 

0.35 to 0.6 (Whipple and Tucker 1999), the corresponding exponent range in the horizontal length scale term is - 0.2 to 0.3. 

This means that over the stated range of m/n, the relief structure has a weak dependence on the horizontal length scale. For 25 

m/n < 0.5, relief weakly increases with horizontal scale. For m/n > 0.5, relief weakly but unrealistically decreases with 

horizontal scale. The underlying physics of channel and hillslope processes that might dictate such behaviour are, at present, 

unhelpfully opaque. In natural systems, larger landscapes would yield longer rivers. Since elevation monotonically increases 

with upstream distance, one would expect relief to increase with horizontal scale. The results of SPIM, where m/n ≥ 0.5, clearly 

contradict this intuitive understanding. 30 
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Our work neglects the effect of hillslope diffusion because our intent is to study the behavior of SPIM itself. Without hillslope 

diffusion, SPIM causes singular behavior at ridges in both the 1D and 2D formulation. Indeed, both the 1D and 2D models 

exhibit singularities in slope at ridges for all hm/n ratios (1D) and all m/n ratios (2D). For hm/n ≥ 1 (1D) and m/ n ≥ 0.5 (2D), 

the models exhibit singular behavior in elevation at ridges as well. When relief is limited by a hillslope length lc, elevation and 

slope do indeed reach finite values at the channel heads, but the effects of the singularity persist. For example, for the case 5 

hm/n  1 in the 1D model, relief approaches infinity as hillslope length approaches zero. Our analysis of ridge singularities in 

SPIM shows that the choice of hillslope parameterization plays a key role in determining the relief of natural landscapes. 

 

Numerical solutions of the 2D model indicate that it cannot be grid-invariant for m/n ≥ 0.5. In the absence of hillslope diffusion, 

ridges reach infinite elevation as grid size becomes vanishingly small. This result underlines the critical role of hillslope 10 

diffusion in obtaining meaningful results from the 2D model. Field estimates of hillslope diffusion have been obtained at the 

hillslope scale, but there are unanswered questions about their application to large-scale models (Fernandes and Dietrich, 

1997). Our results suggest that for the ratio, m/n < 0.5, there are steady-state grid-invariant solutions. However, the grid size 

below which grid-invariance is realized may be so small, e.g. sub-meter scale, that the validity of Eq. (1) is called into question. 

Issues with SPIM when used at large scales include the following. Studies commonly neglect the effect of hillslope diffusion 15 

when the scale of the grid is larger than the hillslope scale (Somfai and Sander, 1997; Banavar et al., 2001; Passalacqua et al., 

2006). At coarse-grained scales, increasing the size of the numerical domain, while keeping the number of cells constant, will 

result in the behavior shown in Fig. 2. In Fig. 4 we see that adding more cells to compensate for the increase in size of the 

domain, such that the grid size remains constant, produces heavily biased (i.e. ever more singular) behavior near the ridges.  

 20 

Our analysis illustrates that SPIM has two important limitations; a) unrealistic scale invariance when m/n takes the commonly-

used value 0.5, so that a 10 km2 basin has identical relief to a 1000 km2 basin, and b) singular behavior near the ridges for m/n 

 0.5 that makes maximum relief entirely and unrealistically dependent on grid size. SPIM has been shown to be of 

considerable use in the study of the general behavior of landscapes (e.g., Howard, 1994; Howard et al., 1994). We believe, 

however, that the time has come to move on to more sophisticated models. While scientific questions remain that can be 25 

answered with the stream power incision model, there are many more questions that require a more advanced formulation (e.g. 

Gasparini et al., 2007 Crosby et al., 2007, Egholm et al., 2013). The development of alternative, more physically-based models 

for incision (e.g. Sklar and Dietrich, 2004; Lague, 2014; Zhang et al., 2015) and their application to landscape evolution (e.g. 

Davy and Lague, 2009; Gasparini et al., 2006, 2007) offer exciting prospects for the future. 

10 Notation 30 

𝐴  upslope drainage area [L2] 

𝑏  exponent defining relation between channel width and flow discharge (Gasparini et al., 2007) [-]  
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𝐵  profile width [L] 

c  exponent defining relation between flow discharge and drainage area (Gasparini et al., 2007) [-]  

𝐶  Hack’s law constant [L2-h] 

𝐷  hillslope diffusion coefficient [L2/T] 

𝐸  local erosion rate [L/T] 5 

𝑔  acceleration of gravity [L/T2] 

ℎ  Hack’s law exponent [-] 

𝐾  erodibility coefficient [L(1-2m)/T] 

𝐾𝐵  fraction of sediment produced that contributes to bedload (Gasparini et al., 2007) [-] 

𝐾𝐺𝐴  constant defining relation for the general abrasion model (Gasparini et al., 2007) [L-1] 10 

𝑘𝑞  effective precipitation rate (Gasparini et al., 2007) [L(3-2c)/T] 

𝐾𝑡  constant defining relation for bedload transport capacity (Gasparini et al., 2007) [L(3-2mt)/T] 

𝑘𝑤  constant defining relationship between channel width and flow discharge (Gasparini et al., 2007) [L(1-3b)Tb] 

𝑖  index denoting the profile, 1,2…13 [-] 

𝑙  horizontal distance from the ridge in the 1D profile [L] 15 

𝑙 dimensionless horizontal distance from the ridge in the 1D profile, 𝑙 𝐿1𝐷⁄  [-] 

𝑙𝑐  critical hillslope length[L] 

𝑙𝑐 dimensionless critical hillslope length, 𝑙𝑐 𝐿1𝐷⁄  [-]𝑙𝐷𝑖 total length of profile, i [L] 

𝑙𝑖 horizontal distance from the ridge of profile, i [L] 

𝐿1𝐷  horizontal length scale, profile length [L]  20 

𝐿2𝐷  horizontal length scale, basin size [L] 

𝐿𝑅   horizontal length scale, ridge [L] 

𝑚  exponent above A in SPIM [-] 

𝑚𝑡  exponent above A in sediment transport capacity equation (Gasparini et al., 2007) [-] 

𝑀2 number of numerical cells [cells2]  25 

𝑛  exponent above S in SPIM [-] 

𝑛𝑡  exponent above S in sediment transport capacity equation (Gasparini et al., 2007) [-] 

𝑃1𝐷 Pillsbury number for the 1D analysis [-] 

𝑃2𝐷 Pillsbury number for the 2D analysis [-] 

𝑃𝐺1 first Pillsbury number for the Gasparini et at. (2007) analysis [-] 30 

𝑃𝐺2 second Pillsbury number for the Gasparini et at. (2007) analysis [-] 

𝑃𝑅 Pillsbury number for the 2D ridge analysis [-] 

𝑄𝑠 bedload sediment flux [L3/T] 
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𝑄𝑡 bedload transport capacity [L3/T] 

𝑅 total relief of the channel profile [L] 

𝑅̂ dimensionless total relief, 𝑅𝑔 𝜐2⁄  [-] 

𝑠 distance from the ridge [L] 

𝑠̂ dimensionless distance from the ridge, 𝑠 𝐿𝑅⁄  [-] 5 

𝑆 stream gradient [-] 

𝑡 time [T]  

𝑡̂ dimensionless time, 𝑡𝑔 𝜐⁄  [-] 

𝑊 channel width [L]  

𝑥 horizontal coordinate orthogonal to y [L] 10 

𝑥̂ dimensionless horizontal coordinate, 𝑥 𝐿2𝐷⁄  [-]  

y horizontal coordinate orthogonal to x [L] 

𝑦̂ dimensionless horizontal coordinate, 𝑦 𝐿2𝐷⁄  [-] 

𝛽 ridge scaling constant [-] 

∆𝑙𝑖 grid size for profile, i [L] 15 

𝜂 elevation [L] 

𝜂̂ dimensionless elevation, 𝜂𝑔 𝜐2⁄  [-] 

𝜂𝑖 elevation of profile, i [L] 

𝜂𝑆 elevation of synthetic profile [L] 

𝜐 uplift rate [L/T] 20 
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Figure 1: 1D analytical dimensionless solutions for elevation profiles at steady-state equilibrium over a range of ratios hm/n (Hack’s 

Law) =0.7, 0.8, 0.9, 1.0, 1.1, and 1.2 and P1D = 1.0. 
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Figure 2: (a) 2D numerical landscapes at steady-state using a ratio of m/n = 0.5, n = 1.0, υ = 4 mm/yr, K = 2.83x10-11 s-1, M2 = 1002 

cells, and L2D
2 = 125 km2 and 2000 km2. For each case, the 2D Pillsbury number was the same, 2.73x1021. (b) Results of (a) expressed 

in terms of dimensionless horizontal scale. Each basin is made dimensionless by its basin size, L2D. (c) Nine 2D numerical simulations 

at dynamic equilibrium for three different values of L2D and three different values of m/n. The value of K has been chosen to be 5 
different for each value of m/n for clarity in the figures. From left to right, the L2D

2 = 5x102 km2, 5x104 km2, and 5x106 km2. To make 

the relief of the landscapes comparable, the 2D Pillsbury number, P2D, is set to 2.73x1021 for solutions of all m/n ratios with L2D
2 = 

5x102 km2. To achieve this for υ = 4 mm/yr, K = 2.10x10-10 m0.2/s, 2.83x10-11 s-1, and 3.82x10-12 m-0.2/s for m/n = 0.4, 0.5, and 0.6, 

respectively. 
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Figure 3: Nine 2D numerical simulations at steady state for three different values of M2 and three different values of m/n. In this 

figure, the horizontal scale is kept constant; L2D = 10 km for all solutions. The value of K has been chosen to be different for each 

value of m/n for clarity in the figures. From left to right, the number of cells M2 = 402, 802, and 1602. To make the relief of the 

landscapes comparable, the 2D Pillsbury number, P2D, is set to 3.10x1023 for solutions of all m/n ratios with L2D = 10 km. To achieve 5 
this for υ = 1 mm/yr, K = 6.31x10-12 m0.2/s, 1.00x10-12 s-1, and 1.58x10-13 m-0.2/s for m/n = 0.4, 0.5, and 0.6, respectively. Relief increases 

with the number of cells because the ridge singularity is resolved at finer resolution. 
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Figure 4: Nine 2D numerical simulations at steady state for three different values of M2 and three different values of m/n. In this 

figure, the grid size, L2D/M = 125 m, is used in all the solutions. The value of K has been chosen to be different for each value of m/n 

for clarity in the figures. From left to right, the number of cellsM2 = 402, 802, and 1602. To make the relief of the landscapes 

comparable, the 2D Pillsbury number, P2D, is set to 3.10x1023 for solutions of all m/n ratios with L2D = 10 km. To achieve this for υ = 5 
1 mm/yr, K = 6.31x10-12 m0.2/s, 1.00x10-12 s-1, and 1.58x10-13 m-0.2/s for m/n = 0.4, 0.5, and 0.6, respectively. Like Figure 4, relief 

increases with the number of cells because the ridge singularity is resolved at a finer resolution. 
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Figure 5: (a) Construction of the synthetic profile, S(l). The opaque points represent the synthetic profile, and the transparent 

points represent the untranslated profiles. The green points represent the profile for i = 1, blue represent i = 2, and red represent i 

= 3. After 13(l) has been utilized in S(l), the synthetic profile is complete. (b) 1D steady-state equilibrium analytical solutions fitted 

to 2D numerical results using P1D. Each m/n ratio contains two profiles, one generated from a flow path from the highest point on 5 
the ridge corresponding to the basin divide (HP) and one from the lowest point on the basin divide (LP). The circles (HP) and crosses 

(LP) represent the 2D model data, and the red (HP) and blue (LP) line represent the 1D analytical model. For each m/n ratio, υ = 3 

mm/yr, M2 = 252 cells, n = 1.0, and L2D
2 = 10-6 km2 to 106 km2. (I) Using K = 5.00x10-12 m0.2/s, m/n = 0.4 (2D), and hm/n = 0.8 (1D), P1D 

= 6.45x1021 (LP) and P1D = 7.89x1021 (HP). (II) Using K = 2.83x10-11 s-1, m/n = 0.5 (2D), and hm/n = 1.0 (1D), P1D = 5.79x1021 (LP) and 

P1D = 6.47x1021 (HP). (III) Using K = 3.82x10-12 m-0.2/s, m/n = 0.6 (2D), and hm/n = 1.2 (1D), P1D = 2.13x1023 (LP) and P1D = 2.15x1023 10 
(HP). 


