
Reply to comments and queries of the Editor for the manuscript “Deriving principle 
channel metrics from bank and long-profile geometry with the R-package cmgo” 

Original manuscript title:  Deriving principle channel metrics from bank and long-profile geometry  

 with the R-package cmgo 

Date of first submission: May 10 2017 

Manuscript No: esurf-2017-32 

Date of first review: June 04 2017 

Resubmission:  July 19 2017 

Date of second review: August 4 2017 

 

 

Please note: 

• This document contains the comments of the Editor and our replies in black text color.  

• Line numbers of the Editor’s comments refer to the version edited by the Editor (comments-to-

author.pdf)  

 

 

 

 

 

Reply to comments of the Editor 
 

We thank the Editor for suggesting minor revisions on the manuscript. Below, we answer the comments 

one by one in detail.  

- Line [27].  

Agreed. Deleted.  

- Line [30].  

Agreed, added. 

- Line [40].  

Agreed, added. 

- Line [42].  

We have not added a hyperlink here and have nothing changed.  

- Line [44] 

Agreed. 

- Line [45] 

Agreed. 

- Line [46a] 

Agreed. 



- Line [46b] 

Agreed. 

- Line [46c] 

Agreed. 

- Line [51] 

Agreed.  

- Between line [53] and [54] 

Agreed. 

- Line [71] 

Agreed, very nice suggestion. 

- Line [75] 

Agreed. 

- Line [89] 

Agreed, good solution. 

- Line [92] 

Agreed. 

- Line [101] 

Agreed. 

- Table from line [102 ff] 

Both suggestions agreed. 

- Line [103] 

Agreed. I changed the font of the footnotes. Other suggestions how to clarify this? 

- Line [106] 

Agreed. 

- Line [109] 

Agreed, rephrased. 

- Line [110] 

Currently, the Supplementary contains only the list of parameters, which is not mentioned here. Thus, 

we did no changes here. 

- Caption Figure 2 

Thanks for the correction of the typo. 

- Line [122] 

We argue the introductory sentence is useful but it can be deleted if necessary. 

 



- Line [125] 

Agreed. 

- Line [143] 

Agreed. Good input. 

- Line [147] 

Agreed. 

- Line [163a] 

Agreed. 

- Line [163b] 

Agreed. 

- Line [179] 

Agreed, changed in the caption.  

- Line [184] 

Agreed. Thanks for the hint. 

- Line [186] 

We are open to any suggestions.  

- Line [215] 

Agreed. Thanks. 

- Line [221a] 

Corrected. This read fine for us but apparently the automatic reference broke. 

- Line [221b] 

Agreed, shortened. 

- Line [232] 

Agreed 

- Line [233a] 

Agreed. 

- Line [233b] 

Agreed. 

- Line [252] 

Agreed. 

- Line [262] 

Agreed, changed. 

- Line [267] 

Agreed. 



- Line [276] 

Agreed, caption updated. 

- Line [288] 

Agreed. 

- Caption Figure 5 

Agreed. Thanks for finding the typo. 

- Line [292] 

Agreed. 

- Line [301a] and [301b] 

Agreed. 

- Line [304] 

Agreed. Done! Found four more locations in the manuscript to change. If there is both coordinates 

mentioned, it is now it is always “x,y-coordinates” or “x- and y-coordinates” if there is an “and” or “or” 

between the coordinates. If there is only one coordinate mentioned it is “x-coordinate”. 

- Line [316] 

Agreed. 

- Line [355] 

Agreed, that was cryptic. We revised the description. 

- Caption Figure 6 

Agreed. Updated. 

- Line [366] 

Agreed. Sorry, again the automatic reference broke somewhere. Now hard-coded. 

- Caption Figure 7 

Agreed, fixed. 

- Caption Figure 8 

Agreed, updated. 

- Line [389] 

Agreed. 

- Line [406] 

Agreed. 

- Line [408] 

Agreed. 

- Line [409a] 

Agreed. Changed. 

 



- Line [409b] 

Agreed. Thanks for finding the typo. 

- Line [409c] 

Agreed. 

- Line [409d] 

Agreed. 

- Line [412] 

Agreed. Changed to “derived”.  

- Line [413] 

Agreed. 

- Line [414] 

Agreed. 

- Line [416a] 

Agreed. 

- Line [416b] 

Agreed. Clarified in caption Figure 10. 

- Line [412] 

Agreed. Rephrased. 

- Line [423] 

Agreed. 

- Header Table 3 

Agreed. 

- Line [428] 

Agreed. 

- Line [430] 

Agreed. 

- Caption Table 3 

Agreed. Updated. 

- Caption Figure 11 

Agreed. 

 

 

 



Please note: changes in the References are not tracked by Word since the information are coming out of a 

reference manger. We apologize for the inconvenience. 

- Line [475] 

Agreed. 

- Line [479a] 

Agreed. 

- Line [479b] 

Agreed. Updated link. 

- Line [483] 

Agreed. 

- Line [484] 

Agreed. 

- Line [487] 

Agreed. 

- Line [488] 

Agreed. 

- Line [493] 

Agreed. 

- Line [495] 

Agreed. 

- Line [497] 

Agreed. 

- Line [500] 

Agreed. Updated reference style for all references. 

- Line [505] 

Agreed. 

- Line [526] 

Agreed. 

- Line [528] 

Agreed. Fixed. 

 

 

 

 



1 

 

Deriving principle channel metrics from bank and long-1 

profile geometry with the R-package cmgo 2 

Antonius Golly1, Jens M. Turowski1 3 

1) German Research Centre for Geosciences (GFZ), Telegrafenberg 14473, Potsdam, Germany 4 

 5 

Correspondence to: Antonius Golly (golly@gfz-potsdam.de) 6 

Abstract 7 

Landscape patterns result from landscape forming processes. This link can be exploited in 8 

geomorphological research by reversely analyzing the geometrical content of landscapes to develop 9 

or confirm theories of the underlying processes. Since rivers represent a dominant control on 10 

landscape formation, there is a particular interest in examining channel metrics in a quantitative and 11 

objective manner. For example, river cross-section geometry is required to model local flow 12 

hydraulics which in turn determine erosion and thus channel dynamics. Similarly, channel geometry 13 

is crucial for engineering purposes, water resource management and ecological restauration efforts. 14 

These applications require a framework to capture and derive the data. In this paper we present an 15 

open-source software tool that performs the calculation of several channel metrics (length, slope, 16 

width, bank retreat, knickpoints, etc.) in an objective and reproducible way based on principle bank 17 

geometry that can be measured in the field or in a GIS. Furthermore, the software provides a 18 

framework to integrate spatial features, for example the abundance of species or the occurrence of 19 

knickpoints. The program is available https://github.com/AntoniusGolly/cmgo and is free to use, 20 

modify and redistribute under the terms of the GNU General Public License version 3 as published 21 

by the Free Software Foundation. 22 

https://github.com/AntoniusGolly/cmgo


2 

 

1. Introduction 23 

Principle channel metrics, for example channel width or gradient, convey immanent information 24 

that can be exploited for geomorphological research (Wobus et al., 2006; Cook et al., 2014) or 25 

engineering purposes (Pizzuto, 2008). For example, a snap-shot of the current local channel 26 

geometry can provide an integrated picture of the processes leading to its formation, if interpreted 27 

correctly and examined in a statistically sound manner (Ferrer-Boix et al., 2016). Repeated surveys, 28 

as time-series of channel gradients, can reveal local erosional characteristics that sharpen our 29 

understanding of the underlying processes and facilitate, inspire, and motivate further research 30 

(Milzow et al., 2006). However, these geometrical measures are not directly available. Typically, 31 

the measurable metrics are limited to the position of features, such as the channel bed or water 32 

surface, or the water flow path or thalweg in two- or three-dimensional coordinates. The data can 33 

be either collected during field surveys with GPS or total stations or through remote sensing, with 34 

the need of post-processing for example in a GIS (geographical information system). To effectively 35 

generate channel metrics such as channel width, an objective and reproducible processing of the 36 

geometric data is required, especially when analyzing the evolution of channel metrics over time. 37 

For river scientists and engineers a convenient processing tool should incorporate a scale-free 38 

approach applicable to a broad spectrum of environments. It should be easy to access, use, and 39 

modify, and generate output data that can be integrated in further statistical analysis. Here, we 40 

present a new algorithm that meets these requirements and describe its implementation in the R 41 

package cmgo (https://github.com/AntoniusGolly/cmgo). The package derives a reference 42 

(centerline) of one or multiple given channel shapes and calculates channel length, local and 43 

average channel widths, local and average slopes, knickpoints based on a scale-free approach 44 

(Zimmermann et al., 2008), local and average bank retreats, or and the distances from the centerline 45 

respectively, as well as allows to project additional spatial metrics to the centerline. 46 

2. Literature review 47 

Computer-aided products for studying rivers have a long tradition, and solutions for standardized 48 

assessments include many disciplines, as for example for assessing the ecological status of rivers 49 

(Asterics, 2013) or for characterizing heterogeneous reservoirs (Lopez et al., 2009). There are also 50 

numerous efforts to derive principle channel metrics from remote or in-situ measurements of 51 

topography or directly of features such as channel banks. Available products, which we review in 52 

detail next (Table 1), are helpful for many scientific applications and are used by a large 53 

https://github.com/AntoniusGolly/cmgo


3 

 

community. However, they often do not provide the degree of independency, transparency or 54 

functionality that is necessary to fit the versatile requirements of academic or applied research and 55 

thus the call for software solutions remains present (Amit, 2015). The currently available solutions 56 

can be separated into two groups: extensions for GIS applications and extensions for statistical 57 

programming languages. The first group incorporates programs that are published as extensions for 58 

the proprietary GIS software ArcMap (ESRI, 2017), which are generally not open source and are 59 

thus lacking accessibility and often transparency and modifiability. Furthermore, the individual 60 

solutions lack functionality. For example, the River Width Calculator (Mir et al., 2013) calculates 61 

the average width of a given river (single value), without providing spatially resolved information. 62 

The toolbox Perpendicular Transects (Ferreira, 2014) is capable of deriving channel transects 63 

locally, which are generally suitable for calculating the width. However, the required centerline to 64 

which the orthogonals are computed is not generated within the tool itself. Thus, the tool does not 65 

represent a full stack solution. Similarly, the Channel Migration Toolbox (Legg et al., 2014), RivEX 66 

(Hornby, 2017) and HEC-GeoRAS (Ackerman, 2011) require prerequisite products – a  centerline 67 

– to compute transects and calculate the width. A centerline could be created with the toolbox 68 

Polygon to Centerline (Dilts, 2015), but manual post-processing is required to ensure that lines 69 

connect properly. Further, the details of the algorithm are poorly documented and intermediate 70 

results are not accessible, making it difficult to understand evaluate the data quality. Apart from 71 

this, all of these products are dependent on commercial software, are bound to a graphical user 72 

interface (not scriptable) and cannot be parametrized to a high degree.  73 

The second group of solutions represent extensions for statistical scripting languages. The full stack 74 

solution RivWidth (Pavelsky and Smith, 2008) is written as a plugin for IDL, a data language with 75 

marginal use (Tiobe 2017), which recently became member- restricted usage. The program requires 76 

two binary raster masks, a channel mask and a river mask, which need to be generated in a pre-77 

processing step, using for example a GIS. Bank geometry obtained from direct measurements, for 78 

example from GPS surveys, do not represent adequate input. As a result of the usage of pixel-based 79 

data – which in the first place does not properly represent the nature of the geometrical data – 80 

computational intensive transformations are necessary, resulting in long computation times (the 81 

authors describe up to an hour for their example). More importantly, the centerline position depends 82 

on the resolution of the input rasters, and thus is scale-dependent. Good results can only be obtained 83 

when the pixel size is at least an order of magnitude smaller than the channel width. The MATLAB 84 

toolbox RivMap also works with raster data. It is well documented and has a scientific reference 85 

(Schwenk et al., 2017). However, intermediate results are not accessible. For example the transects 86 

used for generating the local width are not accessible. Thus, the tool lacks an important mechanism 87 



4 

 

to validate its results. However, since RivMap represents the best documented and most versatile 88 

tool, we choose it to compare our results from our package with this package to in the section 8. 89 

Evaluation of the data qualityEvaluation of the data quality.  90 

To quantify channel bank retreat for repeated surveys, tools designed for other purposes could 91 

potentially be used. Examples are DSAS (Thieler et al., 2009) and AMBUR (Jackson, 2009), 92 

designed for analyzing migrating shore lines. These tools also require a baseline that is not derived 93 

by the program. AMBUR, scripted in the open-source environment R (Jackson, 2009) could be 94 

adapted to channels. However, we judge its approach to derive transects to be unreliable and 95 

unsuitable for rivers, as the transects do not cross the channel orthogonally, leading to implausible 96 

results especially in regions with large curvature. A further correction step is included to alleviate 97 

this problem, but the resulting distances of the baselines seem arbitrary. Thus, although the tool is 98 

among the best documented and accessible solutions currently available, its algorithm is not 99 

suitable for generating channel metrics in an objective manner. We conclude that none of the 100 

available approaches combines the criteria of being a tool for objectively deriving channel metrics, 101 

being easy and free to use and modify, and allowing a high degree of parametrization and fine-102 

tuning. 103 

Table 1: overview of existing products, 1) the two values indicate free use of framework (first) and plugin (second value), 2) a 104 

product is considered free to modify if users can access and edit the source code and a license explicitly allows users to do so, 3) 105 

a product is considered a full-stack solution if it performs all steps from the bank geometry to the derived channel metrics, 4) 106 

relies on the publication of this manuscript, 5) gray cells indicate that no information could be gathered by the time of writing 107 

this.  108 

Name of the tool Platform Data 

format 

Last updated Free to use 1) Free to 

modify 2) 

Configurable Full-stack 

solution 3) 

Scientific 

reference 

Note 

cmgo (this paper) R Vector July 2017 yes, yes yes yes yes yes 4)  

RiverWidthCalculator ArcMap Raster June 2013 no, yes no no no yes 
• single, average value 

for a stream 

Perpendicular 

Transects 
ArcMap Vector Dec 2014 no, yes yes 

limited, no 

smoothing 
no no 

• weak output on non-

smooth centerlines 

Channel Migration 

Toolbox 
ArcMap Vector Oct 2014 no, yes no limited no yes 

• fails silently 

RivEX ArcMap Vector Feb 2017 no, no no yes no no 
• works only on demo 

data 

HEC-GeoRAS ArcMap Raster July 2017 no, yes no yes no no 
• only verified until 

ArcMap 10.2 

Polygon to Centerline ArcMap Vector Nov 2016 no, yes no 
limited, no 

smoothing 
no no 

• weak output for 

high-resolution bank 

geometry 

Fluvial Corridor 

Toolbox 
ArcMap Vector Jan 2016 no, yes no yes no yes 

• cannot be applied on 

the raw data, 

requires pre-

vectorization of 

channel features 

Stream Restoration 

Toolbox 
ArcMap Vector 5) no, yes no very limited no no 

• limited functionality 

• very highly unstable 

RivWidth IDL Raster May 2013 no, yes yes 5) 5) yes 
• limited access due to 

IDL license 

DSAS ArcMap Vector Dec 2012 no, yes no yes no yes 
• primarily designed 

for coast lines 

AMBUR R Vector June 2014 yes, yes yes limited no yes 
• no multi-temporal 

analyses allowed 

RivMap MATLAB Raster Apr 2017 no, yes yes yes limited yes 
• primarily for large 

scale river systems 

• fails silent on errors 

Formatiert: Schriftart: Kursiv

Formatiert: Hochgestellt

Formatiert: Hochgestellt

Formatiert: Hochgestellt

Formatiert: Hochgestellt

Formatiert: Hochgestellt



5 

 

3. Description of the algorithm  109 

Our aim in this paperwith this package is was to develop a program that does not have the 110 

shortcomings of previous approaches and offers a transparent and objective algorithm. The 111 

algorithm (full list of steps in Table 2Table 2 and visualization in Figure 1Figure 1) has two main 112 

parts. First, a centerline of the channel – defined by the channel bank points – is derived and second, 113 

from this centerline the metrics – channel length, width and gradient (the latter only if elevation is 114 

provided) – are calculated. Furthermore, this reference centerline allows for projecting secondary 115 

metrics (as for example the occurrence of knickpoints) and performing temporal comparisons (more 116 

information on temporal analyses in section 5). 117 

Table 2: full list of steps of the algorithm of the package cmgo and their functions 118 

 119 

Figure 1: visualization of the work flow of the package, a) the channel bank points represent the data input, b) a polygon is 120 

generated where bank points are linearly interpolated, c-d) the centerline is calculated via Voronoi polygons, e) the centerline 121 

is spatially smoothed with a mean filter, f) transects are calculated, g) the channel width is derived from the transects. 122 

Step Description Function 

1.1 Generate polygon from bank points 
CM.generatePolygon() 

1.2 Interpolate polygon points 

2.1 Create Voronoi polygons and convert to paths 

CM.calculateCenterline() 

2.2 Filter out paths that do not lie within channel polygon entirely 

2.3 Filter out paths that are dead ends (have less than 2 connections) 

2.4 Sorting of the centerline segments to generate centerline 

2.5 Spatially smooth the centerline segments (mean filter) 

2.6 Measure the centerline’s length and slope 

2.7 Project elevation to the centerline points (optional) 

3.1 Derive transects of the centerline 

CM.processCenterline() 
3.2 Calculate intersections of the centerline with the banks 

3.3 Project custom geospatial data onto centerline (optional) 

3.4 Calculate knickpoints based on scale-free approach (Zimmermann et al. 2008) 

Formatiert: Interner Link Zchn

Formatiert: Interner Link Zchn



6 

 

It follows a detailed description of all steps of the algorithm. In step 1.11.1, the algorithm creates a 123 

polygon feature from the bank points (Figure 1b), where the points are linearly interpolated (step 124 

1.2) to increase their spatial resolution. This is a crucial step for improving the shape of the resulting 125 

centerline – even for straight channel beds (see Fig. 2). From the interpolated points, Voronoi 126 

polygons (also called Dirichlet or Thiessen polygons) are calculated (2.12.1, Figure 1c). In general, 127 

Voronoi polygons are calculated around center points (here the bank points) and denote the areas 128 

within which all points are closest to that center point. Next, the polygons are disassembled into 129 

Figure 2: the plot shows two digitizations (Bank shape I and II) of the same channel stretch. They differ only in the 

arrangement of bank points which are mainly opposite (Bank shape I, left column) or offset (Bank shape II, right column) to 

each other. One can see how the offset negatively influences the shape of the centerline (top row). The problem can be 

overcome by smoothing the centerline a-posteriori (middle row) or interpolating between the bank points a-priori (bottom 

row). A combination of both methods is recommended and set as the default in cmgo. 

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.



7 

 

single line segments. The segments in the center of the channel polygon form the desired centerline 130 

(see Figure 1c). The algorithm then filters for these segments by first removing all segments that 131 

do not lie entirely within the channel banks (step 2.22.2, Figure 3b). In a second step, dead ends are 132 

removed (step 2.32.3, Figure 3c). Dead ends are segments that branch from the centerline but are 133 

not part of it, which are identified by the number of connections of each segment. All segments, 134 

other than the first and the last, must have exactly two connections. The filtering ends successfully 135 

if no further dead ends can be found. In step 2.42.4, the centerline segments are chained to one 136 

consistent line, the “original” centerline. In the final step 2.52.5 of the centerline calculation, the 137 

generated line is spatially smoothed (Figure 1e) with a mean filter with definable width (see section 138 

4.2) to correct for sharp edges and to homogenize the resolution of the centerline points. This 139 

calculated centerline, the “smoothed” centerline, is the line feature representation of the channel – 140 

for example it represents its length, which is calculated in step 2.62.6. If elevation data is provided 141 

with the bank point information (input data) the program also projects the elevation to the centerline 142 

points and calculates the slope of the centerline in step 2.72.7. The program also allows projecting 143 

custom geospatial features to the centerline – for examplesuch as the abundance of species,  or the 144 

occurrence of knickpoints, etc. – if in hand (see section 4.2). Projecting means here that elevation 145 

information or other spatial variables are assigned to the closest centerline points.  146 

 147 

Figure 3: the filtering of the Voronoi centerline segments,  (a) original Voronoi segments, b) the Voronoi segments filtered for 148 

final centerline by first taking only segments that lie fully within the channel polygon, and c (b) and then filtered out for dead 149 

ends (c). 150 

To calculate the channel metrics based on the centerline, channel transects are derived (step 3.13.1). 151 

Transects are lines perpendicular to a group of centerline points. In step 3.23.2, the intersections of 152 

the transects with the banks are calculated (Figure 1g). When transects cross the banks multiple 153 

times, the crossing point closest to the centerline is used. The distance in the x-y-plane between the 154 

intersections represent the channel width at this transect. In addition to the width, the distances 155 

from the centerline points to banks are stored separately for the left and the right bank. 156 

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.

Formatiert: Interner Link Zchn, Schriftart: (Standard) Times
New Roman, 10 Pt.



8 

 

4. Implementation and execution 157 

The program is written as a package for the statistical programming language R (R Development 158 

Core Team, 2011). The program can be divided into three main parts which are worked through 159 

during a project: 1. initialization (loading data and parameters, section 4.1), 2. data processing 160 

(calculating centerline and channel metrics, section 4.2), and 3. review of results (plotting or writing 161 

results to file, section 4.3). 162 

4.1. INITIALIZATION: INPUT DATA AND PARAMETERS 163 

The package cmgo requires basic geometrical information of the points that determine a channel 164 

shape – the bank points (Figure 1a) – while in addition of to the coordinates, the side of the channel 165 

must be specified for each point. In principle, a text file with the three columns “x”, “y” and “side” 166 

represent the minimum input data required to run the program (Codebox 1). The coordinates “x” 167 

and “y” can be given in any number format representing Cartesian coordinates, and the column 168 

“side” must contain strings (e.g. “left” and “right”) as it represents information to which of the 169 

banks the given point is associated. Throughout this paper we refer to left and right of the channel 170 

always in regard to these attributes. Thus, the user is generally free to choose which side to name 171 

“left”. However, we recommend to stick to the convention to name the banks looking in 172 

downstream direction. In addition, a fourth column “z” can be provided to specify the elevation of 173 

the points. This allows for example for the calculation of the channel gradient. Note, that the order 174 

of the bank points matter. By default it is expected that the provided list are all bank points in 175 

upstream direction. If one – this can be the case when exporting the channel bed from a polygon 176 

shape – or both banks are reversed, the parameters bank.reverse.left and/or bank.reverse.right 177 

should be set TRUE. The units of the provided coordinates can be specified in the parameter 178 

input.units and defaults to m (meters). 179 

 180 

Codebox 1: example of input data table with columns side and x,y,z--coordinates. 181 

The data can be either collected during field surveys with GPS or total stations or through remote 182 

sensing techniques with further digitizing for example in a GIS. In the latter case the data needs to 183 

Name POINT_X POINT_Y 
right 401601.0819 3106437.335 
right 401586.5327 3106406.896 
right 401568.3238 3106383.586 
right 401558.4961 3106364.129 
... 
left 401621.4337 3106431.134 
left 401602.9913 3106405.991 
left 401574.6073 3106352.232 
left 401582.2671 3106323.134 

... 



9 

 

be exported accordingly. The input can be given in any ASCII table format. By default, the program 184 

expects a table with tab-delimited columns and one header line with the column names POINT_X, 185 

POINT_Y and POINT_Z (the coordinates of the bank points) where the z component is optional and Names 186 

(for the side). The tab delimiter and the expected column names can be changed in the parameters 187 

(see SM I for details). The input file(s) – for multiple files see also section 5 – have to be placed in 188 

the input directory specified by the parameter input.dir (defaults to "./input") and can have any file 189 

extension (.txt, .csv, etc.). The data reading function iterates over all files in that directory and 190 

creates a data set for each file. 191 

All the data and parameters used during runtime are stored in one variable of type list (see R 192 

documentation): the global data object. Throughout the following examples this variable is named 193 

cmgo.obj and its structure is shown in Codebox 2. The global data object also contains the parameter 194 

list, a list of more than 50 parameters specifying the generation and plotting of the model results. 195 

The full list of parameters with explanations can be found in SM I. 196 

197 

Codebox 2: structure of the global data object containing data and parameters. 198 

To create this object, the function CM.ini(cmgo.obj, par) is used. Initially, the function builds a 199 

parameter object based on the second argument par. If the par argument is left empty, the default 200 

configuration is loaded. Alternatively, a parameter filename can be specified (see the R 201 

documentation of CM.par() for further information). Once the parameter object is built, the function 202 

fills the data object by the following rules (if one rule was successful, the routine stops and returns 203 

the global data object): 204 

1. If cmgo.obj$par$workspace.read is TRUE (default) the function looks for an .RData workspace 205 

file named cmgo.obj$par$workspace.filename (defaults to "./user_workspace.RData"). Note: 206 

there will be no such workspace file once a new project is started, since it needs to be saved 207 

by the user with CM.writeData(). If such a workspace file exists the global data object is 208 

created from this source, otherwise the next source is tested. 209 

cmgo.obj = list( 
data = list(                # the data set(s), different surveys of the channel 
    set1 = list(            # survey 1 
      filename  = "input.1.csv”,  # corresponding filename 
      channel = list(),       # input coordinates of banks 
      polygon.bank.interpolate  = TRUE,  
      polygon = list(),  # polygon object 
      polygon.bank.interpolate.max.dist = 6,  
      cl  = list(),  # centerlines (original and smoothed) 
      metrics = list()  # calculated metrics (width, etc.) 
    ),             
    set2 = list()           # survey 2 
    # ... 
  ), 
  par  = list()             # all model and plotting parameters 
) 

 



10 

 

2. If data input files are available in the directory cmgo.obj$par$input.dir (defaults to "./input") 210 

the function iterates over all files in this directory and creates the data object from this 211 

source (see section "Input data" above for further information on the data format). In this 212 

case the program starts with the bank geometry data set(s) found in the file(s). Otherwise 213 

the next source is tested. 214 

3. If the cmgo.obj argument is a string or NULL, the function will check for a demo data set with 215 

the same name or “demo” if NULL. Available demo data sets are "demo", "demo1", "demo2" 216 

and "demo3"“demo3” (section 7). 217 

CM.ini() returns the global data object which must be assigned to a variable, as for example 218 

cmgo.obj = CM.ini(). Once the object is created, the data processing can be started. 219 

4.2. CONTROLLING THE DATA PROCESSING  220 

The processing includes all steps from the input data (bank points) to the derivation of the channel 221 

metrics (Figure 1). Next, we describe the parameters that are relevant during the processing 222 

described in section 33. When generating the channel polygon the original bank points are the 223 

spatial resolution of the bank points is increased by linearly interpolatedion (Figure 1b) in order to 224 

increase the resulting resolution of the channel centerline. . The interpolation is controlled through 225 

the parameters cmgo.obj$par$bank.interpolate and cmgo.obj$par$bank.interpolate.max.dist. The first 226 

is a Boolean (TRUE/FALSE) that enables or disables the interpolation (default TRUE). The second 227 

determines the maximum distance of the interpolated points. The unit is the same as of the input 228 

coordinates, which means, if input coordinates are given in meters, a value of 6 (default) means 229 

that the points have a maximum distance of 6 meters to each other. These parameters have to be 230 

determined by the user and are crucial for the centerline generation. Guidance of how to select and 231 

test these parameters can be found in paragraph 6. Technical fails and how to prevent them.  232 

During the filtering of the centerline paths, there is a routine that checks for dead ends. This routine 233 

is arranged in a loop that stops when there is are no further paths to remove. In cases, where the 234 

centerline paths exhibit gaps (see section 6), this loop would run indefinitely. To prevent this, there 235 

is a parameter bank.filter2.max.it (defaults to 12) that controls the maximum number of iterations 236 

used during the filtering.  237 

In the final step of the centerline calculation, the generated line gets spatially smoothed with a mean 238 

filter (Figure 1e) where the width of smoothing in numbers of points can be adjusted through the 239 

parameter cmgo.obj$par$centerline.smoothing.width (by default equals 7). Note, that the degree of 240 

smoothing has an effect on the centerline length (e.g. a higher degree of smoothing shortens the 241 

centerline). Similar to the coast line paradox (Mandelbrot, 1967), the length of a channel depends 242 



11 

 

on the scale of the observations. Technically, the length diverges to a maximum length at an 243 

infinitely high resolution of the bank points. However, practically there is an appropriate choice of 244 

a minimum feature size where more detail in the bank geometry only increases the computational 245 

costs without adding meaningful information. The user has to determine this scale individually and 246 

should be aware of this choice. To check the consequences of this choice, the decrease in length 247 

due to smoothing is saved as fraction value in the global data object under 248 

cmgo.obj$data[[set]]$cl$length.factor. A value of 0.95 means that the length of the smoothed 249 

centerline is 95% the length of the original centerline paths. For the further calculations of transects 250 

and channel metrics by default the smoothed version of the centerline is used.  251 

The program will project automatically the elevation of the bank points to the centerline if elevation 252 

information is provided in the input files (z component of bank points, see paragraph 4.1). Also 253 

additional custom geospatial features – if available to the user – can be projected to the centerline, 254 

such as for example the abundance of species or, the occurrence of knickpoints, etc. Additional 255 

features are required to be stored in the global data object as lists with x,y-coordinates (Codebox 3) 256 

to be automatically projected to the centerline. Projecting here means that features with x,y-257 

coordinates are assigned to the closest centerline point. The distance and the index of the 258 

corresponding centerline point are stored within the global data object.  259 

 260 

Codebox 3: the format of secondary spatial features to be projected to the centerline. 261 

To calculate the channel metrics based on the centerline channel transects are derived. Transects 262 

are lines perpendicular to a group of n centerline points, where the sizen – also called the transect 263 

span – of that group is defined by the parameter cmgo.obj$par$transects.span. By default this span 264 

equals three, which means for each group of three centerline points a line is created through the 265 

outer points of that group to which the perpendicular – the transect – is calculated (see Figure 4b). 266 

The number of resulting transects equals the number of centerline points and for each centerline 267 

point the width w and further metrics are calculated (see Codebox 4). The distances of the centerline 268 

points to the banks is stored separately for the left and the right bank (d.r. and d.l), as well as a 269 

factor (r.r and r.l) of +/- 1 representing the side of the bank with regard to the centerline. Normally, 270 

looking downstream the right bank is also always right to the centerline (value of -1) and the left 271 

cmgo.obj$data[[set]]$features = list( 
  custom_feature_1 = list( 
    x = c(), 
    y = c() 
  ), 
  knickpoints = list( 
    x = c(), 
    y = c() 
  ) 
) 



12 

 

bank is always left to the centerline (value of +1). However, when using a reference centerline to 272 

compare different channel surveys, the centerline can be outside the channel banks for which the 273 

metrics are calculated. To resolve the real position of the banks for tracing their long-term evolution 274 

(e.g. bank erosion and aggradation) the factors of r.r. and r.l must be considered for further 275 

calculations (see also section 5.1). A sample result for a reach of a natural channel is provided in 276 

Figure 5.  277 

 278 

Figure 4: a) the from the smoothed centerline, b) (a) transects are calculated (b) by taking a group of centerline points and , 279 

creatinge a line through the outer points and calculate . Tthe perpendicular to that line, c) is the transect. The algorithm now 280 

calculating the checks for the intersections of the transects with the channel banks (c). 281 

 282 

Codebox 4: the calculated metrics and their variable names (stored in the global data object under cmgo.obj$data[[set]]). 283 

4.3. REVIEW RESULTS: PLOTTING AND WRITING OF THE OUTPUTS 284 

After the metrics are calculated and stored within the global data object, the results can be plotted 285 

or written to data files. The plotting functions include a map-like type plan view plot 286 

(CM.plotPlanView()), a plot of the spatial evolution of the channel width (CM.plotWidth()) and a plot 287 

of the spatial and temporal evolution of the bank shift (CM.plotMetrics()). All plotting functions 288 

require a data set to be specified that is plotted (by default “set1”). Additionally, all plotting 289 

functions offer ways to specify the plot extent to zoom to a portion of the stream for detailed 290 

$metrics$tr       # linear equations of the transects 
$metrics$cp.r     # coordinates of crossing points transects / right bank 
$metrics$cp.l     # coordinates of crossing points transects / left bank 
$metrics$d.r      # distance of reference centerline point / right bank 
$metrics$d.l      # distance of reference centerline point / left bank 
$metrics$w        # channel width 
$metrics$r.r      # direction value: -1 for right, +1 for left to the centerline 
$metrics$r.l      # direction value: -1 for right, +1 for left to the centerline 
$metrics$diff.r   # difference between right bank point of actual time series and right bank  
                  # point of reference series 
$metrics$diff.l   # difference between left bank point of actual time series and left  
                  # bank point of reference series 



13 

 

analyses. In the plan view plot, multiple ways exists to define the plot region (also called extent), 291 

which is determined by a center coordinate (x,y- coordinate) and the range on the x and y axes 292 

(zoom length). The zoom length is given via the function parameter zoom.length, or – if left empty 293 

– is taken from the global parameter cmgo.obj$par$plot.zoom.extent.length (140 m by default).  294 

Multiple ways exists to determine the center coordinate: via pre-defined plot extent, via centerline 295 

point index, or directly by x,/y- coordinates. Pre-defined plot extents allow for quickly accessing 296 

frequently considered reaches of the stream and are stored in the parameter list (see Codebox 5). 297 

Figure 5: a) plan view of a short channel reach showing two channel surveys, 2014a (dashed channel outline) and 2017a (solid 

channel outline. A centerline is calculated for both, but due to an enabled reference mode, the centerline of 2014a is used for 

both surveys. This allows for the calculation of bank shift in b). The two stars mark two random locations to compare the 

calculated metrics to each other. 



14 

 

The list contains named vectors, each with one x- and one y -coordinate. To apply a pre-defined 298 

extent the name of the vector has to be passed to the plot function as in CM.plotPlanView(cmgo.obj, 299 

extent=”extent_name”). Another way of specifying the plot region is via a centerline point index, for 300 

example CM.plotPlanView(cmgo.obj, cl=268). This method guarantees that the plot gets centered on 301 

the channel. To find out the index of a desired centerline point, centerline text labels can be enabled 302 

with cmgo.obj$par$plot.planview.cl.tx = TRUE. Finally, the plot center coordinate can be given 303 

directly by specifying either an x- or y-coordinate or both. If either an x- or y-coordinate is provided, 304 

the plot centers at that coordinate and the corresponding coordinate will be determined 305 

automatically by checking where the centerline crosses this coordinate (if it crosses the coordinate 306 

multiple times, the minimum is taken). If both x- and y- coordinates are provided, the plot centers 307 

at these coordinates. 308 

309 

Codebox 5: definition of pre-defined plot extents that allow to quickly plot frequently used map regions. The names, here “e1”, 310 

“e2”, “e3”, contain a vector of two elements, the x and y- coordinates where the plot is centered at. To plot a pre-defined 311 

region call  for example CM.plotPlanView(cmgo.obj, extent=”e2”). 312 

A plot of the width of the whole channel (default) or for a portion (via cl argument) can be created 313 

with CM.plotWidth(). Two data sets with the same reference centerline can also be compared. The cl 314 

argument accepts the range of centerline points to be plotted, if NULL (default) the full channel length 315 

is plotted. If a vector of two elements is provided (e.g. c(200, 500)), this cl range is plotted. If a 316 

string is provided (e.g. "cl1"), the range defined in cmgo.obj$par$plot.cl.ranges$cl1 is plotted. 317 

Alternatively to the range of centerline indices, a range of centerline lengths can be provided with 318 

argument d. If a single value (e.g. 500) is given 50 m around this distance is plotted. If a vector with 319 

two elements is given (e.g. c(280, 620)) this distance range is plotted. 320 

The third plot function creates a plot of the bank shift (bank erosion and aggradation). This plot is 321 

only available when using multiple channel observations in the reference centerline mode (see 322 

section 5.1). The arguments of the function regarding the definition of the plot region is the same 323 

as of the function CM.plotWidth(). 324 

In addition to the plotting, the results can be written to output files and to an R workspace file with 325 

the function CM.writeData(). The outputs written by the function depend on the settings in the 326 

parameter object. If cmgo.obj$par$workspace.write = TRUE (default is FALSE) a workspace file is 327 

written containing the global data object. The filename is defined in 328 

plot.zoom.extents = list(       # presets (customizable list) of plot regions 
  e1  = c(400480,  3103130),      # plot region definition e1 with x/y center coordinate 
  e2  = c(399445,  3096220), 
  e3  = c(401623,  3105925), 
  all = NULL 
) 



15 

 

cmgo.obj$par$workspace.filename. Further, ASCII tables can be written containing the centerline 329 

geometry and the calculated metrics. If cmgo.obj$par$output.write = TRUE (default is FALSE) an output 330 

file for each data set is written to the output folder specified in cmgo.obj$par$output.dir. The file 331 

names are the same as the input filenames with the prefixes cl_* and metrics_*. All parameters 332 

regarding the output generation can be accessed with ?CM.par executed in the R console or can be 333 

found in the SM I. 334 

5. Temporal analysis of multiple surveys 335 

The program can perform analyses on time series of channel shapes. To do this, multiple input files 336 

have to be stored in the input directory (see section 4.1). A data set for each file will be created in 337 

global data object, mapped to the sub lists “set1”, “set2”, etc. (see Codebox 1). The program 338 

automatically iterates over all data sets, processing each set separately. The order of the data sets is 339 

determined by the filenames. Thus, the files need to be named according to their temporal 340 

progression, e.g. “channelsurvey_2017.csv", "channelsurvey_2018.csv", etc. The mapping of the 341 

filenames to data sets is printed to the console and stored in each data set under 342 

cmgo.obj$data[[set]]$filename.  343 

5.1. REFERENCE CENTERLINE 344 

The channel metrics are calculated based on the centerline, which exists for every river bed 345 

geometry. When there are multiple temporal surveys of a river geometry, a centerline for each data 346 

set exists. Multiple centerlines prevent a direct comparison of the channel metrics as they can be 347 

seen as individual channels. Thus, for temporal comparisons of the channel metrics, two modes 348 

exist. Metrics are either calculated for each channel geometry individually. In this mode, the 349 

channel metrics are the most accurate representation for that channel observation, for example 350 

channel width is most accurately measured, but do not allow for a direct comparison of consecutive 351 

surveys. In a second approach, a reference centerline for all metrics calculations can be determined. 352 

In this approach, all metrics for the various bank surveys are calculated based on the centerline of 353 

the data set defined in cmgo.obj$par$centerline.reference (default "set1"). This mode must be 354 

enabled manually (see Codebox 6). This option but should only be used only if the bank surveys 355 

differ only slightly. If there is profound channel migration or a fundamental change in the bed 356 

geometry, the calculated channel metrics might not be representative (shown in Figure 6). To 357 

compare channel geometries of which the individual centerlines are not nearly parallel differing 358 

like that we recommend to calculate the metrics based on individual centerlines and develop a 359 

proper spatial projection for temporal comparisons. 360 



16 

 

6. Technical fails and how to prevent them 361 

There are certain geometrical cases in which the algorithm can fail with the default parametrization. 362 

To prevent this, a customized parametrization of the model is required. The program prints 363 

notifications to the console during runtime if the generation of the centerline fails and offers 364 

solutions to overcome the issue. The main reason for failure occurs if the resolution of channel 365 

bank points (controlled via cmgo.obj$par$bank.interpolate.max.dist) is relatively low compared to 366 

the channel width. In tests, a cmgo.obj$par$bank.interpolat.max.dist less than the average channel 367 

width was usually appropriate. Otherwise, the desired centerline segments produced by the Voronoi 368 

polygonization can protrude the bank polygon (Figure 7a) and thus do not pass the initial filter of 369 

the centerline calculation (see section 33), since this filter mechanism first checks for segments that 370 

lie fully within the channel polygon. This creates a gap in the centerline, which results in an endless 371 

loop during the filtering for dead ends. Thus, if problems with the calculation of the centerline arise, 372 

an increase of the spatial resolution of bank points via cmgo.obj$par$bank.interpolat.max.dist is 373 

advised to naturally smooth the centerline segments (see Figure 7b).  374 

cmgo.obj$par$centerline.use.reference = TRUE 
cmgo.obj$par$centerline.reference     = "set1" 

Figure 6: two consecutive channel geometries (surveys I and II) with a profound reorganization of the channel bed. In the 

reference mode a centerline of one survey is used to build transects. Here, using the centerline of the first survey (blue line) as a 

reference is not suitable to capture the channel width correctly for the second survey (dashed line) as the exemplary transect 

(dashed orange line) suggests. 

Codebox 6: the parameters to enable the reference mode for channel metrics calculations (only necessary for time series 

analyses). 



17 

 

Another problem can arise from an unsuitable setting during the calculation of transects. If the 375 

channel bed exhibits a sharp curvature a misinterpretation of the channel width can result (see 376 

Figure 8). In that case, one of the red transects does not touch the left bank of the channel properly, 377 

thus leading to an overestimated channel width at this location. To prevent this, the span of the 378 

transect calculation can be increased. The results have to be checked visually by using one of the 379 

plotting functions of the package.  380 

 381 

Figure 8: left: a) the transects (perpendiculars to the centerline) do not intersect with banks properly, thus the channel width is 382 

overrepresented. Right: b) an increased transect span fixes the problem and channel width is now identified correctly. 383 

Figure 7: a) a gap in the centerline occurs when the spacing of the bank points is too high large compared to the channel 

width (left) , b) which can the gap be fixed by previously increasing the resolution of the bank points (right)through the 

parameter par$bank.interpolate.max.dist. 



18 

 

7. How to use the program: step by step instructions 384 

cmgo can be used even without comprehensive R knowledge and the following instructions do not 385 

require preparatory measures other than an installed R environment (R Development Core Team, 386 

2011). Once the R console is started, installation of the cmgo package is done with the 387 

install.packages() function (Codebox 7). 388 

To quickly get started with cmgo, we provide four demo data sets. Using these data sets the 389 

following examples demonstrate the main functions of the package, but, more importantly, allow 390 

to investigate the proper data structure of the global data object. This is of particular importance 391 

when trouble shooting failures with custom input data. 392 

The general execution sequence includes initialization, processing, and reviewing the results, with 393 

a standard execution sequence shown in Codebox 8. To switch from demo data to custom data, 394 

input files have to be placed in the specified input folder (“./input” by default) and CM.ini() has to 395 

be called without any arguments. Since the file format of the custom input files can differ from the 396 

expected default format, all program parameters regarding the data reading should be considered. 397 

A list of all parameters available can be accessed with ?CM.par executed in the R console or can be 398 

found in the SM I. To change a parameter, the new parameter value is assigned directly within the 399 

global data object (e.g. cmgo.obj$par$input.dir = "./input"). 400 

The plotting functions include a map-like plan view plot (CM.plotPlanView()), a line chart with the 401 

channel width (CM.plotWidth()) and, if available, a plot of the bank retreat (CM.plotMetrics()). The 402 

latter is only available in the reference centerline mode (see section 5.1). 403 

404 

Codebox 78: installation and embedding of the package in R 405 

 406 

Codebox 89: minimal example script to run cmgo with demo data set. 407 

# installation of dependencies (required only once) 
install.packages(c("spatstat", "zoo", "sp", "stringr")) 
 
# installation (required only once) 
install.packages("cmgo", repos="http://code.backtosquareone.de", type="source") 
 
# include the package (required for every start of an R session) 
library(cmgo) 

# initialization: load data and parameters 
cmgo.obj = CM.ini("demo")      # check the data structure with str(cmgo.obj) 
 

# processing 
cmgo.obj = CM.generatePolygon(cmgo.obj) 
cmgo.obj = CM.calculateCenterline(cmgo.obj) 
cmgo.obj = CM.processCenterline(cmgo.obj) 
 

# view results 
CM.plotPlanView(cmgo.obj)      # plot a map with pre-defined extent 
CM.plotWidth(cmgo.obj)         # plot the channel width in downstream direction 
CM.plotMetrics(cmgo.obj)       # plot a comparison of bank profiles 



19 

 

8. Evaluation of the data quality 408 

We evaluated the quality of the derived channel width by cmgo to manually measured data and to 409 

the best documented and versatile product of our literature review RivMap (Table 1). First, we 410 

compared the evolution of the channel width derived by the two automated products showing that 411 

there is a general agreement (Figure 9). We then identified picked 15 locations randomly (vertical 412 

dashed lines Figure 9) , marked with the dashed vertical lines, where we assessed the channel width 413 

manually in a GIS (Figure 10). In a GIS we measured channel width manually at these 15 locations 414 

on a “best guess” approach. 415 

 416 

Figure 9: channel width as observed derived by cmgo (blue line) and RivMap (red line) for 1506 locations along a 449 m reach 417 

of a natural channel (Figure 10) in upstream direction. The vertical dashed lines mark our points where we investigated the 418 

width manually nextin a GIS. 419 



20 

 

 420 

Figure 10: 15 Fifteen random locations (yellow stars) of the 1506 centerline points (red dots) where we evaluated the width 421 

manually in a GIS (example in the inlet) and that are compared to the width of the automated products. 422 

The channel width at the transects is generally well captured by the automated products (Table 3) 423 

as the mean errors are relatively low compared to the absolute width. However, compared to the 424 

manually derived average width of 3.49 m the average width of all transects deviates only -0.07 m 425 

for cmgo while it deviates -0.42 m for RivMap. Thus, cmgo performs generally better in deriving 426 

the channel width for the test channel reach and overall RivMap seems to consistently 427 

underestimates the channel width. This is also expressed in the smaller standard deviation of the 428 

differences which is 0.098 m for cmgo and 0.736 m for RivMap. The large scatter can also be 429 

observed in Figure. 9. Compared to the error of the in-situ measurements of the channel banks with 430 

a total station (1 cm) the precision of the channel width calculations by cmgo is within the same 431 

order of magnitude while it is an order of magnitude larger for RivMap. 432 

The channel centerlines of the two products differ in length. While the centerline of cmgo has a 433 

length of 449 m along the river reach, the centerline of RivMap has a length of 588 m (3031% 434 

longer). Looking at the shape of the centerlines (Figure 11) we argue that the centerline of cmgo 435 

better represents the channel in terms of large scale phenomena. It may for example be more useful 436 

accurate for reach-averaged calculations of bankfull flow. The centerline of RivMap contains a 437 

stronger signal of the micro topography of the banks due to the way the centerline is created 438 

(eroding banks). The difference in length also has an influence on slope calculations which will be 439 

lower for RivMap. 440 

Transect 
[No.] 

Manual 
approach [m] 

cmCMgo 
width [m] 

CMgo cmgo 
difference to 
manual [m] 

RivMap width 
[m] 

RivMap difference 
to manual [m] 

1 4.01 4.02 0.01 2.83 -1.18 

2 5.01 5.02 0.00 3.75 -1.27 



21 

 

 441 

Figure 11: the two different centerlines of the products cmgo (green line) and RivMap (red line) reveal differences in the shape 442 

that influence also the channel length. 443 

9. Concluding remarks 444 

The presented package cmgo offers a stand-alone solution to calculate channel metrics in an 445 

objective and reproducible manner. At this, cmgo allows for close look into the interior of the 446 

processing. All intermediate results are accessible and comprehensible. Problems that arise for 447 

complex geometries can be overcome due to the high degree of parametrization. cmgo qualifies for 448 

a highly accurate tool suited to analyze especially complex channel geometries. However, if 449 

complex geometries should be compared to each other, for example when analyzing the evolution 450 

3 4.57 4.55 -0.01 4.03 -0.54 

4 2.66 2.59 -0.07 2.60 -0.06 

5 6.79 6.83 0.04 5.37 -1.41 

6 2.82 2.66 -0.15 2.12 -0.70 

7 3.02 2.97 -0.06 2.55 -0.48 

8 1.76 1.67 -0.09 2.60 0.84 

9 2.27 1.93 -0.34 2.60 0.33 

10 3.90 3.91 0.01 2.83 -1.07 

11 3.82 3.66 -0.17 4.40 0.58 

12 4.19 4.14 -0.05 3.04 -1.15 

13 2.04 1.89 -0.15 1.34 -0.70 

14 3.37 3.37 0.00 3.50 0.13 

15 2.14 2.11 -0.03 2.50 0.36 

avg. 3.49 3.42 -0.07 3.07 -0.42 

st. dev. 1.340 1.399 0.098 0.997 0.736 

Table 3: channel width at 15 randomly selected locations along a natural channel. The width was identified manually in a GIS, 

by CMgo cmgo, and by RivMap. Differences of the width from the automated products were compared to the manual 

approach. 



22 

 

of meandering channels, our product does not offer the ideal solution due to the style cmgo treats 451 

the reference of the channels. Thus, our product should be the tool of choice if precise 452 

measurements – both in location and quantity – are required and if geometrical and other spatial 453 

data should be statistically analyzed. However, when large time series of meandering rivers are the 454 

main purpose of the effort, other products, as for example the Channel Migration Toolbox, are more 455 

suitable.  456 

Since cmgo does not come with graphical user interface only static map views of the channel can 457 

be obtained by scripting them. cmgo offers various plotting functions to do this which allow for 458 

predictable and reproducible plot. The downside of this approach is that plots are naturally not 459 

interactive which is the case for GIS applications. For people who prefer this functionality an export 460 

of the intermediate and end results to GIS is recommended.  461 

The only requirement for running cmgo is an installed environment of the open source framework 462 

R. Thus, the prerequisites are narrowed down to a minimum to facilitate an easy integration and 463 

wide a distribution for scientific or practical use. The license under which the package is provided 464 

allows modifications to the source code. The nature of R packages determines the organization of 465 

the source code in functions. This encapsulation comes at the cost of a sometimes untransparent 466 

architecture making it difficult to modify or understand the code. Thus, for advanced users, who 467 

desire a more flexible way of interacting with the algorithm, we refer to the raw source codes at 468 

GitHub (https://github.com/AntoniusGolly/cmgo). 469 

10. Code and Data availability 470 

All codes and demo data are available at https://github.com/AntoniusGolly/cmgo. 471 

11. Team list 472 

Antonius Golly (Programming, Manuscript), Jens Turowski (Manuscript) 473 

12. Competing interests 474 

The authors declare that they have no conflict of interests. 475 

13. Acknowledgments 476 

https://github.com/AntoniusGolly/cmgo
https://github.com/AntoniusGolly/cmgo


23 

 

We thank Michael Dietze for giving the helpful R-courses that facilitate the development of cmgo 477 

as an R-package and for the support during the debugging, Kristin Cook for providing the sample 478 

data for the demo data sets and Marisa Repasch-Elder for the guidance in MATLAB.  479 



24 

 

References 480 

Ackerman, P. E. C. T. (2011) ‘HEC-GeoRAS GIS Tools for Support of HEC-RAS using 481 

ArcGIS User’s Manual’, (February 2011), p. 244. 482 

Amit (2015) Estimating river Channel Width using Python/ArcGIS/MATLAB/R?, Sep 24, 483 

2015. Available at: http://gis.stackexchange.com/questions/164169/estimating-river-484 

channel-width-using-python-arcgis-matlab-r (Accessed: 14 March 2017). 485 

Asterics, S. (2013) ‘Software-Handbuch ASTERICS, Version 4.1’, pp. 1–120. Available 486 

at: 487 

http://www.fliessgewaesserbewertung.de/downloads/ASTERICS_Softwarehandbuch_Ve488 

rsion4.pdf. 489 

Cook, K. L., Turowski, J. M. and Hovius, N. (2014) ‘River gorge eradication by 490 

downstream sweep erosion’, Nature Geoscience, 7(9), pp. 682–686. , 491 

https://doi.org/10.1038/ngeo2224. 492 

Dilts, T. E. (2015) Polygon to Centerline Tool for ArcGIS, University of Nevada Reno. 493 

Available at: 494 

http://www.arcgis.com/home/item.html?id=bc642731870740aabf48134f90aa6165 495 

(Accessed: 15 March 2017). 496 

ESRI (2017) ‘ESRI ArcMap Desktop’. Environmental Systems Research Institute: 497 

Redlands, CA: Environmental Systems Research Institute. Available at: 498 

http://desktop.arcgis.com/de/. 499 

Ferreira, M. (2014) Perpendicular Transects. Available at: 500 

http://gis4geomorphology.com/stream-transects-partial/ (Accessed: 15 March 2017). 501 

Ferrer-Boix, C. et al. (2016) ‘On how spatial variations of channel width influence river 502 

profile curvature’, Geophysical Research Letters. , 503 

https://doi.org/10.1002/2016GL069824. 504 

Hornby, D. (2017) RivEX. Available at: http://www.rivex.co.uk/Online-Manual/RivEX-505 

Online-Manual.html?Extractchannelwidths.html (Accessed: 15 March 2017). 506 

Jackson, C. W. (2009) The Ambur project: Analyzing Moving Boundaries Using R, 507 

Department of Geology & Geography Georgia Southern University. Available at: 508 

http://ambur.r-forge.r-project.org/ (Accessed: 27 March 2017). 509 

Legg, N. et al. (2014) ‘The Channel Migration Toolbox: ArcGIS Tools for Measuring 510 

Stream Channel Migration’, (Publication no. 14-no. 06-no. 032). Available at: 511 

https://fortress.wa.gov/ecy/publications/SummaryPages/1406032.html. 512 

Lopez, S. et al. (2009) ‘Process-Based Stochastic Modelling: Meandering Channelized 513 

Reservoirs’, in Analogue and Numerical Modelling of Sedimentary Systems: From 514 

Understanding to Prediction, pp. 139–144. , https://doi.org/10.1002/9781444303131.ch5. 515 

Mandelbrot, B. (1967) ‘How Long Is the Coast of Britain? Statistical Self-Similarity and 516 

Fractional Dimension’, Science, 156(3775), pp. 636–638. , 517 

https://doi.org/10.1126/science.156.3775.636. 518 

Milzow, C. et al. (2006) ‘Spatial organization in the step-pool structure of a steep mountain 519 

stream (Vogelbach, Switzerland)’, Water Resources Research, 42(4), pp. 1–11. , 520 

https://doi.org/10.1029/2004WR003870. 521 

Mir, K., Tariq, A. and Atif, S. (2013) ‘River Width Calculator’. Available at: 522 

http://www.arcgis.com/home/item.html?id=4e7c9370e3e8455e8ff57d6b23baf760. 523 



25 

 

Pavelsky, T. M. and Smith, L. C. (2008) ‘RivWidth: A Software Tool for the Calculation 524 

of River Widths From Remotely Sensed Imagery’, IEEE Geoscience and Remote Sensing 525 

Letters, 5(1), pp. 70–73. , https://doi.org/10.1109/LGRS.2007.908305. 526 

Pizzuto, J. E. (2008) ‘Streambank Erosion and River Width Adjustment’, in Sedimentation 527 

Engineering. Reston, VA: American Society of Civil Engineers, pp. 387–438. , 528 

https://doi.org/10.1061/9780784408148.ch07. 529 

R Development Core Team (2011) R: A Language and Environment for Statistical 530 

Computing, R Foundation for Statistical Computing. R Foundation for Statistical 531 

Computing, Vienna, Austria. , https://doi.org/10.1007/978-3-540-74686-7. 532 

Schwenk, J. et al. (2017) ‘High spatiotemporal resolution of river planform dynamics from 533 

Landsat: The RivMAP toolbox and results from the Ucayali River’, Earth and Space 534 

Science. , https://doi.org/10.1002/2016EA000196. 535 

Thieler, E. R. et al. (2009) ‘Digital Shoreline Analysis System (DSAS) version 4.0— An 536 

ArcGIS extension for calculating shoreline change’, U.S. Geological Survey Open-File 537 

Report 2008, p. 1278. Available at: http://woodshole.er.usgs.gov/project-pages/DSAS/. 538 

Wobus, C. et al. (2006) ‘Tectonics from topography: procedurses, promise, and pitfalls’, 539 

Geological Society of America Special Paper, 398(4), pp. 55–74. , 540 

https://doi.org/10.1130/2006.2398(04). 541 

Zimmermann, A., Church, M. and Hassan, M. (2008) ‘Identification of steps and pools 542 

from stream longitudinal profile data’, Geomorphology, 102(3–4), pp. 395–406. , 543 

https://doi.org/10.1016/j.geomorph.2008.04.009. 544 

545 

 546 


	Reply_to_Editor.pdf (p.1-6)
	esurf-2017-32-author_response-version2.pdf (p.7-31)

