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Abstract 28	

Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet 29	
little is known about the rhythm and rates of soil erosion prior to the most recent few 30	
centuries. Here we reconstruct a Holocene erosional history from central India, as 31	
integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify 32	
terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the 33	
exported terrigenous carbon. Taken together, our data show that the monsoon decline in 34	
the late Holocene significantly increased soil erosion and the age of exported organic 35	
carbon. This acceleration of natural erosion was later exacerbated by the Neolithic 36	
adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a 37	
constantly elevated sea level since the middle Holocene, this erosion acceleration led to a 38	
rapid growth of the continental margin. We conclude that in monsoon conditions aridity 39	
boosts rather than supresses sediment and carbon export acting as a monsoon erosional 40	
pump modulated by landcover conditions. 41	
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3	
	

1. Soil Erosion in the Holocene 43	
 44	
On decadal to millennial timescales, climate is the principal natural control on soil 45	
erosion via changes in temperature and precipitation as well as their impact on vegetation 46	
type and cover (Allen and Breshears, 1998; Reichstein et al., 2013). Global sediment 47	
budgets for the Holocene indicate that humans surpassed these natural controls and 48	
became the main driver of soil erosion by at least 2000 years ago (Montgomery, 2007; 49	
Wilkinson and McElroy, 2007; Dotterweich, 2013). Transfer of sediment, carbon and 50	
solutes from land to ocean is of crucial importance for understanding continental margin 51	
architecture as well as carbon and other elemental cycles. For example, soils contain 52	
about two times more carbon than the atmosphere and, as a result, small changes in the 53	
residence time of organic carbon in soils can significantly affect the atmospheric 54	
inventory of carbon dioxide (Lal, 2004). Besides heterotrophic microbial respiration, 55	
erosion is the principal process that releases carbon from soils. Eroded carbon can 56	
subsequently be degraded/reburied along the aquatic continuum to the ocean (Stallard, 57	
1998; Aufdenkampe et al., 2011; van Oost et al., 2012).  58	

In the absence of historical documentation of human impacts, the complexity of soil 59	
erosion hampers the reconstruction of carbon transfer processes prior to the last few 60	
centuries (e.g., Hoffmann et al. 2013; Dotterweich, 2013; Vanwalleghem et al., 2017). 61	
Consequently, global carbon budgets implicitly assume steady state conditions for lateral 62	
transport and carbon degradation along the aquatic continuum in pre-industrial times 63	
(Battin et al., 2009; Regnier et al., 2013; Chappell et al., 2015). In contrast, abundant 64	
archaeological and geological evidence (e.g., van Andel et al., 1990; Bork and Lang, 65	
2003; Bayon et al., 2012; Dotterweich, 2013) as well as modeling (Kaplan et al., 2010; 66	
Wang et al., 2017) suggests widespread impacts of early human landuse on continental 67	
landscapes, soil erosion and associated carbon transfer processes.  68	

Here we present a soil erosion history from the Indian peninsula recorded in a sediment 69	
core retrieved near the mouth of Godavari River (Fig. 1) in the Bay of Bengal (NGHP-70	
01-16A at 16°35.6’N, 82°41.0’E; 1,268 m water depth; Collett et al., 2015). The age 71	
model for the core based on 11 radiocarbon dates on mixed planktonic foraminifera was 72	
previously published by Ponton et al. (2012). The Godavari basin was not affected by 73	
tectonics at the Holocene time scale, or glacial/snow meltwater and strong orographic 74	
precipitation, which augment and complicate the water and sediment discharge of the 75	
larger Himalayan rivers like the Ganges or Brahmaputra. Instead, it integrates rainfall 76	
from the core monsoon zone (CMZ), the region of central India that is representative for 77	
both the mean monsoon regime and its fluctuations over the peninsula (see Ponton et al., 78	
2012 and references therein). Consequently, over 90% of Godavari’s water discharge into 79	
the Bay of Bengal derives from summer monsoon precipitation (Rao et al., 2005), making 80	
its sedimentary deposits a prime target for continental climate reconstructions and a 81	
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repository for sedimentary proxies of erosion prior and after the Neolithic adoption of 82	
agriculture in central India. 83	

 84	

2. The Godavari Sediment System  85	

Originating at an elevation of 920 m in the Sahyadri coastal range (aka Western Ghats) 86	
near the Arabian Sea coast, the Godavari crosses the entire Indian peninsula toward the 87	
Bay of Bengal (Fig. 1a). Currently the water discharge of the river is ~85 km3/yr with a 88	
sediment load of ~175 MT/yr (Syvitski and Saito, 2007). Because the coastal range limits 89	
penetration of the Arabian Sea moisture delivered by the monsoon, precipitation in the 90	
Godavari basin primarily originates from the Bay of Bengal (Gunnell et al. 2007). As a 91	
result, the climate is most humid at the coast (i.e., Eastern Ghats range) and becomes 92	
increasingly arid toward the interior on the Deccan Plateau (Fig. 1b). The natural 93	
vegetation reflects this gradual decrease in moisture: the headwaters on the Deccan are 94	
dominated by C4-plant thornbush savannah adapted to dry conditions, whereas C3-flora 95	
(deciduous forests) are dominant in the Eastern Ghats (Asouti and Fuller, 2008; Fig. 1c).  96	

Sediments transported by the Godavari are sourced from two major geological units 97	
(Bikshamaiah and Subramanian, 1980). The upper river basin developed on the Deccan 98	
Traps, a large igneous province consisting of relatively young flood basalts (Cretaceous 99	
to early Neogene) that largely span the Deccan Plateau. The lower river basin developed 100	
over old Proterozoic to Archaean crystalline igneous/metamorphic rocks of the Indian 101	
Craton (Fig. 1d). The relatively young Deccan basalts retain a highly radiogenic mantle-102	
derived Nd isotope composition (ɛNd of  +1±5) while the old continental crust of the 103	
Indian Craton has a relatively unradiogenic isotopic composition (ɛNd of -35±8), yielding 104	
a sharp contrast between geological end-members. Thus, the sediment provenance for the 105	
Godavari sediments can be deduced from the Nd isotopic signatures of the detrital 106	
inorganic fraction in our core because the Nd signal remains unmodified through bedrock 107	
weathering processes (McLennan and Hemming, 1992; DePaolo, 1988).  108	

Black soils cover the Deccan Plateau whereas red soils are generally typical for the 109	
Eastern Ghats (Bhattacharyya et al., 2003; Fig. 1d). Although both types of soils have 110	
been affected by landuse since prehistorical times, the black soils of the arid to semi-arid 111	
Deccan appear to be the most degraded at present (Singh et al., 1992). Intense erosion 112	
within the basin is reflected by the inordinately large sediment load of the Godavari 113	
(Bikshamaiah and Subramanian, 1980) similar to other monsoonal rivers (Summerfield 114	
and Hulton, 1994). In contrast to the dynamic Himalayan rivers of the Indo-Gangetic 115	
alluvial plain, Godavari and its tributaries are incised in rock or alluvium and have 116	
relatively stable sandy channels. As for other rivers affected by storms (Edwards and 117	
Owens, 1991; Hilton et al, 2008), extreme rainfall events are disproportionately important 118	
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for erosion in the Godavari watershed and in subsequent transport of sediments to the 119	
ocean (Kale, 2003). Given their incised morphology, shifts in channel position in 120	
response to floods are however rare above the Godavari delta (Kale, 2002). Floodplains 121	
are limited in extent (2% of the basin; Bikshamaiah and Subramanian, 1980), and loss of 122	
sediments to overbank deposition is minor (Kale, 2002). Therefore storage is minimal in 123	
these intermediate alluvial reservoirs that normally would increase the residence time of 124	
sediments, including particulate organic carbon.  125	

Once reaching the Bay of Bengal, sediment delivered by the Godavari has constructed a 126	
large Holocene delta (Rao et al. 2005; Cui et al., 2017). Offshore from the Godavari 127	
mouth, a persistent sediment plume extends over 300 km during the monsoon season 128	
when over 90% of the fluvial sediment is discharged (Sridhar et al., 2008). Because the 129	
shelf in front of the delta is unusually narrow (i.e., under 10 km at our core location) 130	
copious sediment deposition takes place directly on the continental slope, resulting in 131	
sediment accumulation rates as high as 250 cm/kyr; Ponton et al., 2012). Owing to the 132	
narrow shelf, changes in sea level would also have minimal effects on sediment 133	
deposition at our site, especially after the early Holocene when the global sea level 134	
reached within a few meters of modern values (Lambeck et al., 2014). For these reasons 135	
our core located close to the river mouth (~35 km) is unlikely to contain any significant 136	
contributions from other sediment sources, in agreement with previous studies (e.g., 137	
Bejugam and Nayak, 2017). 138	

The relatively simple sedimentary regime of the Godavari system in combination with the 139	
monsoon-dominated climatology and simple geology of the Godavari basin allows for 140	
relatively straightforward interpretation of sediment sources and transfer processes. The 141	
monsoon washload is rapidly and directly delivered to the continental margin without 142	
significant trapping in intermediate depocenters along the river. As the suspended load 143	
makes up over 95% of the total sediment transported by the Godavari (Syvitski and Saito, 144	
2007), the washload-derived terrestrial proxies are representative for the production of 145	
fine-grained sediment in the basin. Potential contributions from resuspension of shelf 146	
sediments cannot be excluded but are likely minor due to the narrowness of the shelf; 147	
furthermore, given the large sedimentation rates on the shelf itself (Forsberg et al., 2007), 148	
the resuspended sediment is expected to be quasi-contemporaneous with sediments 149	
arriving on the slope directly from the river plume.  150	

3. Hydroclimate in the Core Monsoon Zone  151	

We have previously reconstructed the Holocene paleoclimate using the same sediment 152	
core discussed herein (Ponton et al., 2012; Zorzi et al., 2015). Terrestrial reconstructions 153	
were based on the carbon isotopic compositions of higher plant leaf-wax biomarkers (i.e., 154	
long-chain n-alkanoic acids C26-32) and pollen, whereas contemporaneous sea surface 155	
paleoceanographic conditions in front of the Godavari delta came from the oxygen 156	
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isotopic composition of planktonic foraminifer Globigerinoides ruber. Sedimentary leaf 157	
waxes provide an integrated δ13C record of the flora in the CMZ that document an 158	
increase in aridity-adapted vegetation (C4 plants) after the monsoon maximum in the 159	
early Holocene (Ponton et al., 2012; Fig. 2). The overall trend of the δ13C leaf wax record 160	
agrees with the view that the seasonality of Northern Hemisphere insolation (Ponton et 161	
al., 2012) led to progressively weaker monsoons over the Holocene. However, two clear 162	
aridification steps are evident: between ~5000 and 4500 years ago, and ~1,700 years ago 163	
(Fig. 2). Pollen from the same core (Zorzi et al., 2015) reinforces these conclusions: 164	
coastal forest and mangrove pollen (Fig. 2) that are typical for the more humid coastal 165	
regions of the Eastern Ghats and Godavari delta declined over the Holocene.  166	

Dryness-adapted thornbush pollen from the Deccan Plateau increased substantially after 167	
the second aridification step ~1700 years ago, overlapping well with the maximum 168	
contribution of C4 plant-derived leaf waxes (see Zorzi et al., 2015). For the same time 169	
interval, the ice volume-corrected oxygen isotopic composition of planktonic foraminifer 170	
Globigerinoides ruber documented a series of low values interpreted as high salinity 171	
events at the Godavari mouths (see Ponton et al., 2012). Together these continental and 172	
oceanic records suggest that the CMZ aridification intensified in the latest Holocene via a 173	
series of short drier episodes (Ponton et al., 2012). This interpretation is reinforced by 174	
speleothem-derived records from central and northern India for the past thousand years 175	
(Sinha et al., 2011), and the overall evolution of the CMZ hydroclimate as seen from our 176	
core is supported by local reconstructions from the Lonar crater lake in central India 177	
(Prasad et al., 2014; Sarkar et al., 2015), Godavari delta (Cui et al., 2017) and other 178	
records from the larger Indian monsoon domain (Gupta et al., 2003; Fleitmann et al., 179	
2003; Prasad and Enzel, 2006; Berkelhammer et al., 2012; Dixit et al., 2014). 180	

4. Erosion in the Godavari Basin 181	

The Holocene sediment flux at our core location (Fig. 2) is representative for the 182	
Godavari continental slope (Mazumdar et al., 2009; Ramprasad et al. 2011; Joshi et al., 183	
2014) and is driven by changes in the siliciclastic sedimentation rate as dilution by 184	
biogenic carbonates is less than 5% (Johnson et al., 2014). Despite a lower sea level at 185	
the time, the flux was relatively small in the early Holocene (~25 g/cm2/kyr) but began to 186	
increase after 6000 years ago (~40 g/cm2/kyr), as soon as the monsoon started to decline 187	
but well before the adoption of Neolithic agriculture and settlement of the savannah zone 188	
of the central peninsula (~4500 years ago; Fuller, 2011). Between 4000 and 3500 years 189	
ago permanent agricultural settlements spread throughout the Deccan Plateau. The 190	
associated small-scale metallurgy (copper-working) requiring firewood together with the 191	
agricultural intensification probably also affected erosion via widespread deployment of 192	
two cropping seasons (Kajale, 1988; Fuller and Madella, 2001). As the climate remained 193	
arid, sediment fluxes stayed high despite a phase of agricultural abandonment and 194	
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depopulation between ~3,200 and 2,900 years ago (Dhavalikar, 1984; Roberts et al., 195	
2016). 196	

A further step increase in the sediment flux (~90 g/cm2/kyr on average) occurred after 197	
~3000 years ago, this time with no apparent concurrent change in climate. The Nd 198	
isotopic signal points to an increase in the Deccan sedimentary output at the time, after a 199	
muted variability earlier in the Holocene when the Indian Craton consistently provided 200	
~50-60% of the sediments (Fig. 2; see Supplementary Materials). Ferrimagnetic minerals 201	
interpreted as originating from the Deccan (Sangode et al., 2001; Kulkarni et al., 2014) 202	
also increase in late Holocene sediments in the Godavari delta (Cui et al., 2017) and Bay 203	
of Bengal (Kulkarni et al., 2015) supporting our interpretation. Augmented Deccan input 204	
was suggested for the Godavari delta even earlier after ~6000 years ago (Cui et al., 2017),  205	
in step with the initial aridification.  206	

New improvements in agricultural technology became widespread in the Deccan Plateau, 207	
including use of iron agricultural tools (Mohanty and Selvakumar, 2001) that required 208	
firewood-fuelled smelting Fuller, 2008). A new phase of agricultural settlement began in 209	
the middle Godavari basin (eastern Maharashtra) between ~3000 to ~2800 years ago 210	
(Brubaker 2000). However, the largest boost in sediment flux occurred after ~2000 years 211	
ago, when the monsoon reached its driest phase and when further increases in population 212	
occurred resulting in the founding of towns and the first cities of the region at the 213	
beginning of the Historic period (Allchin 1995; Parabrahma Sastry 2003). This doubling 214	
in sediment flux relative to the early Holocene values involved a basin-wide increase in 215	
erosion. The contribution from the Deccan Plateau, although at its maximum according to 216	
the Nd isotope mixing model, only accounts for a 15% shift in sediment source (Fig. 2).  217	

Overall, watersheds with high precipitation have higher discharge and discharge 218	
magnitude is considered a primary regulator for sediment and carbon erosional fluxes to 219	
the ocean (e.g., Summerfield and Hulton, 1994; Ludwig et al., 1996; Galy et al., 2015). 220	
However, our Godavari record shows that erosional output is maximized by aridity 221	
because significant rain and seasonal floods still occur during the summer monsoon 222	
season (Mujumdar et al., 1970; Kale, 2003). Aridification and/or agricultural expansion 223	
lead to changes in vegetation type (i.e., forest decrease in favour of savannah) and cover 224	
(i.e., shrinking of naturally vegetated lands in favour of agricultural and/or degrading arid 225	
lands) that exacerbate soil erosion (i.e., Langbein and Schum, 1958; Dunne, 1979; 226	
Walling and Webb, 1983; Istanbulluoglu and Bras, 2005; Vanacker et al., 2007; Collins 227	
and Bras, 2008).  228	

5. Carbon Export from the Godavari Basin  229	

The terrigenous organic carbon exported by rivers consists of a mixture of dissolved and 230	
particulate components derived from contemporary vegetation and of carbon stored in 231	
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bedrock, soils and fluvial sediments that may be significantly pre-aged (Smittenberg et 232	
al., 2006; Galy and Eglinton, 2011; Feng et al., 2013). On the Godavari slope, the 233	
terrigenous fraction dominates the total organic carbon (TOC) in marine sediments 234	
(Johnson et al., 2014). In agreement with this, TOC radiocarbon ages in our core have 235	
been previously found to be remarkably similar to co-located ages of the strictly 236	
terrigenous higher plant leaf wax fraction (Ponton, 2012). This age similarity also 237	
excludes interferences from within-river biological productivity (e.g., Eglinton and 238	
Hamilton, 1967; Eglinton and Eglinton, 2008). To assess the variability of the terrigenous 239	
carbon age exported by Godavari River based on this understanding we used high 240	
resolution TOC radiocarbon measurements to calculate radiocarbon age offsets relative to 241	
the atmosphere (Soulet et al., 2016; see Supplementary Materials). Over the Holocene, 242	
these biospheric organic carbon radiocarbon age offsets in our core mirror the history of 243	
erosion in the basin (Fig. 2).  244	

As a first order observation, TOC ages (Fig. 2 and Supplementary Materials) are 245	
significantly older (~200 to 2000 14C years) than their depositional age in our Godavari 246	
core. Before 5000 years ago the bulk organic carbon radiocarbon age offset were ~600 247	
14C years old on average. In contrast, the highly erosional regime under both climatic and 248	
early human pressure in the late Holocene led to the export of significantly older carbon 249	
from the terrestrial biosphere, i.e., ~1300 14C on average. This increase in radiocarbon 250	
age offset occurred largely during the two aridification steps identified by Ponton et al. 251	
(2012): more abruptly between ~5000 and 4500 years ago and more gradually after 252	
~1700 years ago (Fig. 2). 253	

In the absence of significant storage in alluvial sediments in the Godavari catchment, 254	
several processes can explain the doubling in age offset over the Holocene: an overall 255	
slowing of soil carbon turnover in the drying climate of central India, a decrease in TOC 256	
contribution from contemporaneous vegetation relative to older (pre-aged) soil carbon 257	
input and/or deeper exhumation of soils contributing increasingly older carbon. Given the 258	
drastic changes in vegetation cover and increase in erosion in the Godavari basin, a 259	
decrease in soil turnover is unlikely during the Holocene aridification process (Carvalhais 260	
et al. 2014). In turn, the good agreement between the pollen and leaf-wax δ13C records in 261	
our core (Ponton et al., 2012; Zorzi et al., 2015) with independent monsoon 262	
reconstructions suggests sustained delivery of recently fixed biospheric organic carbon to 263	
the delta. Thus, the doubling in age offset over the Holocene is best explained by 264	
increasing contributions from an older soil component, which could only come through 265	
deeper erosion. Because the age of soil organic carbon in soil profiles increases with 266	
depth (Trumbore, 2009), older mixtures imply a deeper soil erosion, whether uniform, or 267	
through gullies, which are common especially on the Deccan Plateau (Kothyari, 1996).  268	

6. The Monsoon Erosional Pump 269	
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Overall, these multiple lines of evidence indicate that soil erosion in the CMZ, as 270	
integrated by the Godavari River, increased throughout the basin immediately as climate 271	
began to dry at the end of mid Holocene, and was further enhanced by Deccan 272	
agricultural activities in the late Holocene. The likely mechanism for this erosion 273	
acceleration is the extreme seasonal distribution of the rainfall that characterizes the 274	
monsoon (Wang and Ding, 2008), which promoted erosion on the more sparsely 275	
vegetated landscapes (Molnar, 2001; DiBiase and Whipple, 2011; Plink-Bjorklund, 276	
2015). Our findings thus point to a veritable “monsoon erosional pump” that accelerates 277	
during minimum landcover conditions when the protective role of vegetation is reduced, 278	
whether naturally or by humans. The volume of total eroded sediments since the mid 279	
Holocene must have been considerable as the continental margin growth accelerated with 280	
the shelf edge aggrading ~80 meters in the last ~2000 years alone (Forsberg et al., 2007).  281	

This “landcover-mode” of the monsoon erosional pump must have been active before the 282	
Holocene as well, affecting the transfer of terrigenous sediment, solutes and carbon from 283	
land to the ocean. The beat of monsoon precipitation on orbital timescales is not well 284	
constrained but considered to be modulated by at a combination of precession and 285	
obliquity frequencies based on monsoon wind reconstructions (e.g., Clemens and Prell, 286	
2003). Such complex variability did not inevitably follow the sea level cyclicity (e.g., 287	
Goodbred and Kuehl, 2000), which is usually assumed to control most of the sediment 288	
transfer from land to the deep ocean (see Blum and Hattier-Womack, 2009 and references 289	
therein for an analysis underlining the increased recognition for a climate role). Thus 290	
untangling the effects of the monsoon is difficult especially during the Quaternary (e.g., 291	
Phillips et al., 2014), but may be easier to discern earlier when the sea level change 292	
magnitude was reduced. Landcover effects are less likely to occur in the upper basins of 293	
Himalayan monsoonal rivers where there are other sources of water such as snow or 294	
glaciers and where elevation (i.e., temperature) and orographic precipitation promote 295	
ecological stability (Galy et al., 2008a). The erosional pump in these high, steep regions 296	
is still active due to monsoonal seasonality but in a “topographic-mode” dominated 297	
primarily by landslides (Montgomery and Brandon, 2002; but see Olen et al., 2016 for an 298	
alternative viewpoint). However, the landcover-mode for the erosional pump should still 299	
be active in their lower basins where aridity controls vegetation type and cover (e.g., 300	
Galy et al. 2008b). 301	

Recent coupled erosion-carbon cycling modeling suggests that long-term anthropogenic 302	
acceleration of erosion has had a significant impact on the global carbon cycle by 303	
intensifying the burial of terrigenous carbon (Wang et al., 2017). Prior to damming, the 304	
monsoon domain supplied ~70% of the sediment load coming from large rivers (Syvitski 305	
and Saito, 2007), although it only covers ~15% of the Earth’s surface (Hsu et al., 2011). 306	
Therefore, we suspect that the cumulative effect of the monsoon erosional pump on the 307	
carbon budget was substantial in augmenting the burial of terrigenous carbon during the 308	
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Holocene and needs to be estimated for inclusion in assessments of the net soil–309	
atmosphere carbon exchange.  310	

 311	

  312	
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Figure 1. Godavari River drainage basin in 
its (a) physiographical, (b) hydroclimatic 
(Asouti and Fuller, 2008), (c) ecological 
(Asouti and Fuller, 2008), (d) geological 
(Bikshamaiah and Subramanian, 1980) and 
(e) soil cover context (NBSS&LUP, 1983). 
Core NGHP-01-16A location is indicated 
in (a) by the red dot. Average bedrock ɛNd 
values are shown in (d). 
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Figure 2. Paleoenvironmental reconstructions from core NGHP-01-16A for the CMZ as 615	
integrated by the Godavari River: (a) Sediment fluxes as mass accumulation rates and 616	
sediment sources from Nd isotope fingerprinting (Deccan Trap sediment contribution is 617	
estimated from a two-end member model; see text and Supplementary Materials); (b) 618	
TOC radiocarbon age offset relative to depositional age; (c) Hydroclimate and ecology 619	
from pollen (Zorzi et al., 2015) and leaf wax carbon isotopes (Ponton et al., 2012). 620	
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