

We appreciate the comments on our paper reviewing the arc of CZ research and proposing a strategy for the future design of an observatory network. We found the reviewers' comments thoughtful and helpful as discussed below. We also appreciated the comments from 5 outside the U.S.A., specifically reviewers from Sweden (K. Bishop) and Australia (E. Bui), who attest to the importance of the CZ concept.

Both E-Surf reviewers suggested we improve the structure of the manuscript. As pointed out by Tunnicliffe, we brought Section 3 forward in the article. This brings the discussion of the 10 intellectual heritage ahead of the discussion of funding strategies to provide a more logical sequence that emphasizes the evolution of scientific thinking. We also now emphasize the four common elements of CZOs earlier in the paper in the new section incorporating Section 3. We have also revised paragraphs 3 and 4 as suggested by Reviewer #2, so that they describe, in order, the research initiatives and evolution followed by the limits of those research programs 15 and the potential to go beyond those achievements. As requested by Reviewer #2, we also call out Tables 2, 3, and 4 in the manuscript.

Tunnicliffe points out that this re-organization allows the article to better live up to its title. We agree that perhaps the article as initially written and the title were a bit out of sync. After re-organizing and re-emphasizing, we returned to the title of the manuscript to see if a 20 different title was warranted and we decided to keep the title. Tunnicliffe also requested elimination of the use of the word "experiment" to describe the CZ science venture. We have edited out that word and now used a more precise term (enterprise), as suggested.

Another set of words were also the focus of a few more of Tunnicliffe's comments – paradigm and transformative. "Paradigm" is defined by Merriam Webster as "a philosophical 25 and theoretical framework of a scientific school or discipline within which theories, laws, and generalizations and the experiments performed in support of them are formulated" (accessed at <https://www.merriam-webster.com/> on 9-7-17). Scientific paradigms include definitions of what should be studied, the questions of interest, and the broad approach of study. We argue that CZ 30 science is at least a paradigm shift in that it emphasizes that the CZ is one entity and must be investigated in its entirety. Reviewer E. Bui agrees. Therefore, we have included a more complete discussion of why CZ science is a paradigm shift, and we qualify our assertions appropriately. We do respond to Tunnicliffe by using the term paradigm only for the overall CZ science initiative and not for the emergent hypotheses in Section 6, and we emphasize use of the word "transformative" for the CZ enterprise rather than the individual hypotheses in Table 4.

The reviewers had comments on figures that have now been addressed. For example, 35 Tunnicliffe suggested changing Figure 1 to emphasize biological aspects. We have considered possible revisions for Figure 1 and have selected one to replace the earlier version of that figure, because it more clearly integrates biology with the weathering profile and it has been commonly used by the CZ science community to highlight these interactions. Given that both reviewers

questioned Figure 3, we have modified the caption by pointing out in our revision that the figure includes sites associated as CZOs and that all the sites shown derive from networks within the U.S.A., Germany, France, and China, noting that some sites in China are co-funded and studied by scientists from the United Kingdom. The sites included are also ones that are registered on SiteSeeker. The RBV and Critex networks (France) include sites outside of Europe. We added this information to the caption: RBV stands for the Réseau des Bassins Versants (Network of Drainage Basins), CRITEX is not an acronym, and TERENO stands for the Terrestrial Environmental Observatories.

We agree completely with the comments about models by Tunnicliffe and Bui. As Table 3 indicates, the initial CZ modeling efforts may be characterized into four groups. The first includes modifications and adoption of existing models to incorporate new couplings between hydrology and biogeochemistry, ecology and biogeochemistry, etc. The second includes identifying and filling critical gaps or knowledge of new processes such as hyporheic exchange, weathering, etc. The third includes development of a new generation of models that takes advantage of emerging streams of high resolution data such as airborne and UAV (unmanned aerial vehicle) based LiDAR and hyperspectral data. The fourth includes coupling between fast and slow processes across many time scales. Slow processes provide the template for the fast response variable, while the accumulative effect of the latter results in the evolution of the former. Both mathematical frameworks and data to support such modeling are still in their infancy. We discuss this in the paper but we do not separate the table explicitly because of the complexity of real distinctions along these lines for many of the models.

Tunnicliffe also writes, “Table 4 is missing any mention of hypotheses related to the social science aspects of the CZ...It would be good to see how this strand of the research fits in!” Likewise, reviewer E. Bui emphasizes that the future NSF network should “address current ‘wicked’ societal problems and help formulate better land development environmental management policies.” We could not agree more. However, the CZO enterprise in the U.S.A. so far has not emphasized social science and no such hypothesis has yet emerged from the community. We emphasize in the revised manuscript that such hypotheses are needed and should be part of the future of the network. For example, in the revision we specifically mention the idea proposed by reviewers P. Shroeder and E. Bui that an urban CZO would be of great interest.

Reviewer #2 points out that “paragraph 7 mentions briefly the publication of numerous datasets (p. 7, l.1) sometimes spanning several decades of measurements...the creation of this repository as well as the website ...should be highlighted in the text.” We agree with the reviewer. Tunnicliffe noted that “Table 2 does not back up your point about long-term measurements. It would be more helpful to see the length of these records, rather than a smattering of similar measurements that may or may not relate to broader hypotheses being tested across CZOs.” This reviewer also noted that, “Pg 9, ln 307 makes reference to the ‘extremely long’ duration of the datasets - this could use some quantification.”

We have clarified these points in the revision. In short, the time-series datasets (sensor and sampler arrays, eddy covariance, hydrometeorology, vadose zone and saturated zone aqueous chemistry, etc.) have durations that are roughly equivalent to the age of the CZO sites, determined by the initiation of NSF funding, with the caveat that CZOs have often added new 5 study locations that were not among the original set. Three sites (SSCZO, BCCZO and SSHCZO) have been in operation since 2007, and so their longer-term observational datasets extend roughly over that duration. Three other sites (CJCZO, LQCZO and CRCZO) that initiated operations two years later have measurements dating to 2009, and four newer sites 10 (IMLCZO, CHCZO, RCCZO and ERCZO) have datasets dating to 2013. Therefore, at present, continuous time series datasets range in duration from ca. 4 to 10 years. In addition, however, several of the CZOs are located in sites that provide longer datasets through previous measurement programs. The question of duration of dataset is thus somewhat complex, but we have tried to make this information more transparent in the revision.

1

2

3

4 **Designing a network of critical zone observatories**
5 **to explore the living skin of the terrestrial Earth**

6 Susan L. Brantley, Earth and Environmental Systems Institute, Dept of Geosciences,
7 Pennsylvania State University, Univ. Pk, PA 16802

8 William-H. McDowell, Department of Natural Resources and the Environment, University of
9 New Hampshire, Durham, NH, 03823

10 William E. Dietrich, Department of Earth and Planetary Science, UC Berkeley, CA 94720

11 Timothy-S. White, Earth and Environmental Systems Institute, Dept of Geosciences,
12 Pennsylvania State University, Univ. Pk, PA 16802

13 Praveen Kumar, Department of Civil and Environmental Engineering, University of Illinois,
14 Urbana, Illinois 61801

15 Suzanne Anderson, Department of Geography, Institute of Arctic and Alpine Research
16 (INSTAAR), University of Colorado, Campus Box 450, Boulder, CO 80309-0450

17 Jon Chorover, Department of Soil, Water and Environmental Science, University of Arizona,
18 Tucson, AZ 85750

19 Kathleen Ann Lohse, Department of Biological Sciences, Idaho State University, Pocatello, ID
20 83209

21 Roger C. Bales, Sierra Nevada Research Institute, University of California, Merced 94530

22 Daniel deB. Richter, Nicholas School of the Environment, Duke University, Durham, North
23 Carolina 27708

24 Gordon Grant, Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR 97331

25 Jérôme Gaillardet, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS, Paris

26

Formatted: Numbering: Continuous

27 **Abstract.** The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of
28 the vegetati~~ve~~ canopy through the soil and down to fresh bedrock and the bottom of
29 groundwater. All humans live in and depend on the critical zone. This zone has three co-
30 evolving surfaces: the top of the vegetati~~ve~~ canopy, the ground surface, and a deep subsurface
31 below which Earth's materials are unweathered. The ~~US National Science Foundation supported~~
32 network of nine critical zone observatories ~~supported by the U.S. National Science Foundation~~
33 has made advances in three broad areas of critical zone research relating to the co-evolving
34 surfaces areas. First, monitoring has revealed how natural and anthropogenic inputs at the
35 vegetation canopy and ground surface cause subsurface responses in water, regolith structure,
36 minerals, and biotic activity to considerable depths. This response, in turn, impacts above-ground
37 biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface
38 of the CZ varies across landscapes, which in turn influences above-ground ecosystems. Third,
39 several new mechanistic models now provide~~ing~~ quantitative predictions of the spatial structure
40 of the subsurface of the CZ have been proposed.

41 Many countries now fund networks of critical zone observatories (CZOs) to measure the fluxes
42 of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to
43 the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each U.S.
44 observatory has succeeded in i) synthesizing observations research across disciplines into
45 convergent approaches; ii) providing long-term measurements to compare across sites; iii) testing
46 and developing models; iv) collecting and measuring baseline data for comparison to
47 catastrophic events; v) stimulating new process-based hypotheses; vi) catalyzing development of
48 new techniques and instrumentation; vii) informing the public about the CZ; viii) mentoring
49 students and teaching about emerging multi-disciplinary CZ science; and ix) discovering new
50 insights about the CZ. Many of these activities can only be accomplished with observatories.
51 Here we review the CZO experiment enterprise in the US and identify how such observatories
52 could operate in the future as a network could evolve designed to generate critical scientific
53 insights in the future. Specifically, we recognize the need for the network to study network-level
54 questions, expand the environments under investigation, accommodate both hypothesis testing
55 and monitoring, and involve more stakeholders. We propose a driving question for future CZ
56 science and a “hubs-and-campaigns” model to address that question and that promotes study
57 target of the CZ as one unit. Only with such integrative efforts will we learn to steward the life-
58 sustaining critical zone now and into the future.

59

60

61 **1 Introduction**

62 Humans live at Earth's surface – a surface that changes at timescales ranging from
63 milliseconds to millions of years. Understanding how to sustain a growing human population on
64 this changing substrate while simultaneously sustaining diverse ecosystems and the services they
65 provide is a grand challenge for scientists and decision makers (Millenium Ecosystem
66 Assessment Board, 2005; Easterling, 2007). In recognition of the critical nature of Earth's
67 surface, the United States (U.S.) National Research Council defined the zone from the upper
68 vegetative canopy through ground water as the "critical zone" and listed-identified study of this
69 "CZ" as one of the *Basic Research Opportunities in the Earth Sciences* (U.S. National Research
70 Council Committee on Basic Research Opportunities in the Earth Sciences, 2001).

71 While the critical zone was defined in 2001, oOnly recently has the critical zone been ← **Formatted:** Indent: First line: 0.5"
72 recognized as a distinct co-evolving entity driven by physical, chemical, and biological processes
73 that sustain life. To tackle the critical zone for the first time as an entity — rather rather than to
74 study pieces of it separately — presents a grand challengeis a paradigm shift in science (Fig. 1).
75 UnderstandingCurrently, understanding this zone requires researchers drawn from many
76 traditional disciplines including geology, hydrology, climate science, ecology, soil science,
77 geochemistry, geomorphology, and social science to work in collaboration. In the future, it will
78 be pursued not only by disciplinary researchers but also by new scientists trained to cross
79 disciplines. Critical-zone science uses a wide range of measurements as the foundation for
80 advances in understanding and prediction. Scientists quantifymeasure fluxes of solutes, water,
81 energy, gases, and sediments (SWEGS) as they are today and then compare them to the histories
82 and impacts of those fluxes recorded over geological time in landforms, regolith structure, soils,
83 and sediments. Critical zone scientists also relate these fluxes to natural and anthropogenic
84 drivers as well as to the structure of the critical zone, including biota, soil, and regolith
85 properties. In this way, models are developed that can scale CZ properties across the landscape
86 and project the CZ changes across time into the future. From this endeavor has emerged the
87 concept of critical zone science, a new paradigm shift that has been adopted around the world to
88 investigate Earth's surface from canopy to bedrock in its entirety as one integrated unit.

89 CZ science is defined by these criteriatypically has these attributes: i) it targets Earth's
90 surface from canopy through groundwater; ii) it encompasses timescales from milliseconds (or
91 less) to millions of years; iii) it incorporates insights from all relevant disciplines. Some have
92 described CZ science as an attempt to put more geology into watershed and ecosystem-science,
93 or the study of the interaction of rocks and ecosystems and biota. Each of those descriptors falls
94 short of the full complexity of describingunderstanding the CZ as as one entity with its own
95 identity.

96 In the U.S., observatories to study the critical zone have been established by the National ← **Formatted:** Indent: First line: 0.5"
97 Science Foundation (NSF). The physical scope of these some of these U.S. CZOs varies, as some **Formatted:** Font: (Default) Times New Roman, 12 pt
98 **Formatted:** Font: (Default) Times New Roman, 12 pt

98 ~~are~~ are defined by watershed boundaries, some by land use, others by the range of climate~~ies~~
99 conditions, and still others by contrasts in lithology or geomorphic history. The common
100 elements are: 1) the focus on the entire above- and below-ground critical zone and its fluxes, 2)
101 documentation of CZ structure, 3) mechanistic process studies, and 4) analysis of the history of
102 the landscape that gave rise to its~~the~~ current structure. This last feature is a crucial aspect of
103 CZOs that distinguishes them from previous studies that typically do not consider “deep time”
104 (i.e., geologic time) and often fail to document the critical zone below the upper soil. Previous
105 papers have described how researchers have grappled at a specific CZO with the establishment
106 of a measurement design at a specific CZO, with the overall data needs of CZOs, (Brantley et al.,
107 2016), and with a modeling design framework that might be used to tackle the complexity of
108 timescales under consideration (Horsbaugh et al., 2008; Duffy et al., 2014; Niu et al., 2014;
109 Brantley et al., 2016).

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt

110 Over the last ~~After about a~~ decade of study at individual CZOs, cross-CZO science has
111 emerged and begun to unite the observatories into a CZO network with the capacity to test
112 hypotheses across a larger ~~climate, lithology and land use~~ parameter space than can be~~s~~
113 represented by any single CZO. As a result, network-level science has begun to emerge and
114 provide opportunities that were not possible in the past. In this paper~~critical zone~~ observatories
115 (CZOs) funded by the U.S. National Science Foundation (NSF), we here review the evolution of
116 CZ science as an interdisciplinary “experiment.” We In this review of the CZO enterprise, we
117 take stock of successes and weaknesses. The goal of the paper is as a way to map strategize
118 about how to design a better CZO network to maximize future opportunities in CZ science at the
119 levels of the individual observer, the observatory and, the network and the broader Earth surface
120 science community. In this paper we Specifically, we address the broad questione address a broad
121 question: what programs and infrastructure are needed by the community to understand the CZ
122 of the future? We explicitly acknowledge that our The review is focused on the experiment in the
123 U.S. we see this approach as an experiment in interdisciplinary and network level
124 scienceeactivities and results of this endeavor to date in the U.S. like any other, and we focus this
125 paper from that perspective. We acknowledge the many other observatory networks around the
126 world (http://www.czen.org/site_seeker) and invite ecomments or future papers on how those
127 other networks are constituted and how the various observatory systems can work together. We
128 also welcome input as to how the U.S. system might better fit into the global system.

Formatted: Font: (Default) Times New Roman, 12 pt
Field Code Changed
Formatted: Font: (Default) Times New Roman, 12 pt

129 One way to review the U.S. program to date is to summarize performance through
130 quantitative metrics. As manifested today, the program funds nine CZOs situated across a range
131 of landscapes ~~in the U.S.~~ (Fig. 2). In addition, interdisciplinary field observatories that host
132 critical-zone science involve thousands of interdisciplinary investigators in more than 25 nations
133 (Fig. 3) (Giardino and Houser, 2015). Other metrics further highlight how CZ science has
134 energized people and approaches in the U.S. and abroad (Tables 1, 2, 3, 4). Indeed, the term
135 “critical zone” (White and Sharkey, 2016) has been used in 925 papers as of June 2017, in title,
136 abstract, or keyword as recorded in Web of Science. The term has even entered the realm of

137 geopolitics (Latour, 2014) and been defined in scientific dictionaries (White and Sharkey, 2016).
138 This is remarkable given that critical-zone science as an idea only dates from 2001. But less
139 quantifiable, however, is the impact of the idea of the CZ: for example, one country hosting one
140 of the longest functioning observatory networks in the world (France) is now specifically
141 specifically promoting communication among disciplines and sites. Researchers within that
142 network have pointed to the internationally-emerging paradigm of the, a specific example of the
143 power of the CZ ideas as a driver for this new level of communication. Thus, quantitative metrics
144 such as those in Table 1 do not fully illustrate the way CZ science has progressed impacted
145 science. In the rest of the paper we therefore discuss the are of ideas, evolution of observatories
146 in environmental science, other mechanisms for studying the CZ, the history of the CZO
147 program, the nine roles of CZOs, CZO measurements and models. We finish by discussing
148 the strengths and weaknesses of the CZO approach to date, and show how network-level
149 understanding is starting to emerge. In the last section we consider an overarching question to
150 drive future CZ science, and we propose a new topology for the CZO network an approach for
151 the future of CZ science.

152 32. Historical context for Environmental observatories and networks

153 It is useful to place the CZ enterprise broadly into the context of environmental science.
154 The differentiated scientific disciplines largely did not yet exist until the 1900s, and the earliest
155 natural scientists therefore tended to be multi-disciplinary (e.g. Forbes, 1887; CFIR CSEPP,
156 2005; Warkentin, 2006; Berner, 2012; Riebe et al., 2016). These In addition to the three types of
157 initiatives summarized in the last section, environmental scientists researchers early on began to
158 articulate have long recognized the need for place-based, integrative science. This has led to z
159 This recognition has led to a rich a “deep” history and a of diverse set of diverse, place-based,
160 experimental, and long-term observation sites in the U.S. and world.

161 Early on, m Many of these observatories were established to investigate the impacts of
162 specific land use activities. One of the first was the Rothamsted Experimental Station in
163 Harpden, England, founded in 1843 to study the effects of fertilizers on crops. Not until 1910
164 did Within the U.S., the concept of using paired watersheds to investigate the hydrologic and
165 geomorphic impacts of land use treatments within the U.S. begin at Watson Wheel Gap, CO in
166 1910, where when a pair of small instrumented catchments were instituted for monitoring to
167 evaluate changes in stream flow and sediment yield at Watson Wheel Gap, Colorado (Van
168 Haveren, 1988).

← Formatted: Indent: First line: 0.5"

169 As human population and land use increased, researchers began to write about the need to
170 compare long term measurements at both pristine sites to and human-impacted sites, and began
171 emphasizing the need for -long-term measurements (Leopold, 1962). The U.S. Geological
172 Survey thus developed a hydrologic benchmark network (HBN) of 57 basins (Cobb and
173 Biesecker, 1971) to make long-term hydrologic measurements. The mandate of the HBN was
174 expanded in 2011 to include long-term observations not only of stream flow and water quality
175 but also of soil chemistry and aquatic ecology monitoring in 2011 (McHale et al., 2014). Thirty-

176 seven hydrologic benchmark watersheds are still maintained (Mast, 2013), but the original vision
177 to also characterize vegetation and geology has remained unfulfilled.

178 The paired-watershed approach pioneered in Watson Wheel Gap, COlorado, was
179 replicated much later in many other locations in the U.S., including Ceweeta Hydrologic
180 Laboratory (North Carolina), Hubbard Brook (NHew Hampshire), Reynolds Creek Experimental
181 Watershed (Idaho), Ceweeta Hydrologic Laboratory (NC), and the H.J. Andrews Experimental
182 Forest (ORegon) among others. These pioneer sites, in turn, led to the establishment of over 70
183 Experimental Fforests and Rangelands as sites sites that focused on fundamental and applied
184 questions spanning hydrology, silviculture, soil science, and climate research (Lugo et al., 2006).

185 In the early 1980s, as academic scientists pointed out the difficulties of answering
186 questions about long-term natural processes given the realities of short-term funding (Bormann
187 and Likens, 1979; Callahan, 1984), the U.S. National Science Foundation Directorate of
188 Biological Sciences created the Long-Term Ecological Research (LTER) program to carry out
189 observation-based research across a network of sites that spanned the major biotic regions of
190 North America. These efforts were aided by early work of the U.S. Forest Service to understand
191 watershed hydrology (Swank and Crossley, 1988). The LTER effort was initiated predominantly
192 by ecosystem ecologists asking questions about organisms with long life cycles, including how
193 they are maintained by natural water and nutrient fluxes in the face of long term acute
194 environmental changes that are long-term as well as episodic, acute environmental changes
195 (Dodds and al., 2012). Although not exclusively based on the study of watersheds as pioneered
196 in the late 1960s (Bormann and Likens 1967), many LTERs follow a model that emphasizes the
197 study of energy, water, and material flows through a watershed (Hynes 1975). Going forward As
198 of 2017, the LTER network contains 28 LTERs and is beginning to emphasize the need aims to
199 incorporate consideration of social science (LTER Network Office, 2011).

200 A big step was taken in 1991 toward incorporating geology into these largely water-land
201 use-ecology observatories when the U.S. Geological Survey inaugurated the Water, Energy and
202 Biogeochemical Budgets (WEBB) program. WEBB targeted interactions among water, energy,
203 and biogeochemical fluxes in five sites chosen at least partly by on the basis of their inherent
204 geological characteristics character and relatively pristine nature condition.

205 Then, in 2008, another long-term research program was called for envisioned by
206 agricultural researchers (Robertson et al. 2008). This vision resulted in the establishment of
207 the Long-Term Agroecosystem Research (LTAR) program in 2011. This network, today
208 including 18 LTARs, promotes long-term agricultural research facilities, experiments, and
209 watershed-based studies focused on sustaining agriculture and increasing crop yields under
210 changing climate conditions while minimizing or reversing any adverse environmental impacts
211 (<http://www.tucson.ars.ag.gov/ltar/>).

212 The most recent addition to the development of observatories in the U.S. is the National
213 Ecological Observatory Network (NEON). NEON is a nation U.S.-wide, distributed observatory
214 that aims to understand and forecast the impacts of climate change, land use, and invasive
215 species on ecology and ecosystem fluxes by providing a research platform for investigator-

Formatted: Font: Not Italic

216 initiated sensors, observations and experiments that can provide i) consistent, continental, long-
217 term, multi-scaled data, and ii) a research platform for investigator initiated sensors, observations
218 and experiments (Loescher et al., 2017). NEON has 84 sites across the U.S. Like LTER, NEON
219 is a program funded by the Directorate of Biological Sciences at NSF to study ecological change
220 (Golz et al., 2016).

221 As in the U.S., international observatory networks have also grown, many for
222 substantially the same reasons that they grew in the U.S. – to study land use, water, and ecology.
223 In at least one country (France), a network (OZCAR: Observatoires de la Zone Critique:
224 applications et recherche) emphasizes individual disciplines at each observatory and provides as
225 much as 50 years' worth of data to enable research in some sites. The long-term, place-based
226 ecological research that was pioneered by the U.S.A. LTER network in the U.S.A. has also been
227 adopted by the broader international community in the International LTER (ILTER) network
228 (Vanderbilt and Gaiser, 2017). Today, the European Commission is promoting an approach to
229 develop a European Research Infrastructure in the form of a network associating CZOs, LTERs
230 and LTSERs. Here, LTSER stands for Long Term Socio-Ecological Research, i.e., a network
231 that also incorporates questions from social science. Indeed, many of the European countries
232 maintain strong observatory infrastructures that are much more tightly linked with local
233 stakeholders than observatories in the U.S. This may result from the lack of truly “natural”
234 territories in Europe, given the long history of development on the continent but also the
235 willingness to co-construct research questions with stakeholders to build a sustainable
236 environmental future.

237

238 **23 Non-observatory approaches used to study the CZ**

239 Just as observatory science was beginning with the Watson Wheel Gap observatory in the
240 early 1900s, scientists also began to focus on portions of the Earth system that could be
241 understood in a reductionist sense (Riebe et al., 2016). — We start by a very brief backward
242 look to summarize approaches to investigate the CZ. Here, we do not seek to exhaustively
243 summarize history but only to place the CZO experiment within a context. For example, the
244 scientific disciplines of today largely did not yet exist until the early 1900s, and the earliest
245 natural scientists therefore tended to be multi disciplinary (e.g. Forbes, 1887; CFIR CSEPP,
246 2005; Warkentin, 2006; Berner, 2012). It was not until the 1900s that scientists began to focus on
247 portions of the Earth system that could be understood in a reductionist sense (Riebe et al., 2016).
248 It is instructive to consider the approaches to studying CZ science that have emerged during this
249 latter period.

250 First, as scientific disciplines developed throughout the 20th century, Eventually, small-grant
251 funding to single investigators or small teams became the dominant mechanism to fund research

← Formatted: Indent: First line: 0"

252 to explore questions about the CZ ~~in the U.S.~~ This targeted approach further emphasized
253 reductionism and served to grow we eventually promoted the individual disciplines of
254 geochemistry, geobiology, geomorphology, hydrology, soil science, ecology, meteorology, and
255 others. Such disciplinary growth allowed scientific endeavors in turn allowed relatively defined
256 “monodisciplinary” paradigms to mature and led to the , as exemplified in the proliferation of
257 disciplinary journals published worldwide. For example, Web of Science currently indexes 225
258 journals in the fields of environmental sciences, 184 in multidisciplinary geosciences, and 150 in
259 ecology, with some journals cross-reported in more than one category.

260 Through smaller funded projects, many different types of measurements were made.
261 However, the measurements were completed at different sites and integration of observations
262 into models was difficult to impossible. Advances in studying Earth’s surface tended to be
263 uneven because different sites were targeted and coordination among disciplinary approaches
264 was lacking. Such fragmentation accentuated the need for observatories. Other mechanisms were
265 also needed, however, as questions about environmental impacts on human health grew in the
266 U.S. throughout the 1970s (CFIR CSEPP, 2005). Second, as questions about landforms, soils,
267 water, and biota at Earth’s surface sharpened, Funding agencies began seeking teams of
268 researchers to pursue needs arose to fund multi-investigator campaigns – concerted, multi-
269 investigator, multi-year projects – targeting specific focused hypotheses about landforms, soils,
270 water, biota, in addition to human health questions. Such Campaigns were concerted, multi-
271 investigator, multi-year projects designed to understand a particular process or set of questions.
272 Perhaps the largest and most global example of a “campaign” was campaigns culminated in
273 global efforts such as the Millennium Ecosystems Assessment (Millenium Ecosystem Assessment
274 Board, 2005) and the International Geosphere-Biosphere Program (IGBP). The latter initiative
275 that engaged 10,000 scientists from more than 20 disciplines and 80 countries around the world
276 (CFIR CSEPP, 2005; Millennium Ecosystem Assessment Board, 2005). In 1970, questions about
277 environmental problems and human health grew in the U.S. and drove more funding for both
278 small investigator and campaign grants (CFIR CSEPP, 2005). Perhaps the largest and most
279 global example of a “campaign” was the International Geosphere Biosphere Program (IGBP),
280 that engaged 10,000 scientists from more than 20 disciplines and 80 countries around the world
281 (CFIR CSEPP, 2005).

282 Eventually, a third-nother type of funding paradigm mechanism to study the CZ emerged
283 in the U.S. also grew hand in hand with alongside observatory, single-investigator, and
284 campaign-style science. Specifically, centers of excellence were funded in the U.S. to draw
285 together expertise scientists into institutions to focus on specific problems or approaches. One
286 impetus for this was the inauguration in 1987 by of the NSF Science and Technology Center
287 program. This effort eventually supported two centers of especial relevance to critical zone
288 research: SAHRA (Sustainability of semiSemi-Arid Hydrology and Riparian Areas) and NCED
289 (National Center for Earth-surface Dynamics). –NCED (2002 to 2012) focused on developing a
290 quantitative, predictive Earth-surface science by integrating geomorphology, ecology, hydrology,

Field Code Changed

Formatted: No underline, Font color: Auto

Formatted: No underline, Font color: Auto

Formatted: No underline, Font color: Auto

291 sedimentary geology, engineering, social sciences, and geochemistry by combining field,
292 experiment, and computational approaches. –NCED and its reincarnation as NCED2 after 2012
293 both focus on advancing and emphasize predictive Earth-surface science. but are not focused on
294 understanding the critical zone as one entity. A similarly ambitious institution, the National
295 Center for Ecological Analysis and Synthesis (NCEAS), was established in 1995 as the first
296 national synthesis center for ecology. Neither of these centers focused on the CZ as one single
297 entity.

298 Other examples of institutionalized centers of excellence also were important in
299 developing aspects of CZ science. For example, the Community Surface Dynamics Modeling
300 System (CSDMS; http://csdms.colorado.edu/wiki/Main_Page) is building and promoting a
301 library of models for various Earth surface processes and supports by supporting a broad
302 community of modelers. The National Center for Airborne Laser Mapping (NCALM, established
303 in 2003) provides research-quality airborne light detection and ranging (LiDAR) observations to
304 the community. Another example is the Consortium of Universities for the Advancement of
305 Hydrologic Science, Inc. (CUAHSI; <https://www.cuahsi.org/>), which aims to advance hydrologic
306 sciences broadly across the U.S. and its member universities. Other centers of excellence have
307 been established to promote use of instrumentation such as the NSF-funded Purdue Rare Isotope
308 Measurement Laboratory (PRIME Lab), a dedicated research and service facility for accelerator
309 mass spectrometry (AMS) including measurement and interpretation of cosmogenic isotopes.

3 Environmental observatories and networks

310
311 In addition to the three types of initiatives summarized in the last section,
312 environmental scientists have long recognized the need for place based, integrative science. This
313 recognition has led to a “deep” history and a diverse set of place based, experimental, and long-
314 term observation sites. Early on, many of these were established to investigate impacts of
315 specific land use activities. One of the first was the Rothamsted Experimental Station in
316 Harpenden, England, founded in 1843 to study the effects of fertilizers on crops. Within the U.S.,
317 the concept of using paired watersheds to investigate the hydrologic and geomorphic impacts of
318 land use treatments began at Watson Wheel Gap, CO in 1910, where a pair of small instrumented
319 catchments were monitored to evaluate changes in stream flow and sediment yield (Van
320 Haveren, 1988).

321 As human population and land use increased, researchers began to write about the need to
322 compare long term measurements at both pristine and human impacted sites (Leopold, 1962).
323 The U.S. Geological Survey thus developed a hydrologic benchmark network (HBN) of 57
324 basins (Cobb and Bisecker, 1971) to make long term hydrologic measurements. The mandate of
325 the HBN was expanded to include observations not only of stream flow and water quality but
326 also soil chemistry and aquatic ecology monitoring in 2011 (McHale et al., 2014). Thirty seven
327 hydrologic benchmark watersheds are still maintained (Mast, 2013), but the original vision to
328 also characterize vegetation and geology has remained unfulfilled.

Formatted: Indent: First line: 0.5", Space Before: Auto, After: Auto, Line spacing: Multiple 1.15 li

Formatted: Indent: First line: 0.5"

329 The paired watershed approach pioneered in Watson Wheel Gap, CO, was replicated
330 much later in many other locations in the U.S., including Hubbard Brook (NH), Coweeta
331 Hydrologic Laboratory (NC), and the H.J. Andrews Experimental Forest (OR) among others.
332 These pioneer sites, in turn, led to the establishment of over 70 forest and rangeland sites that
333 focused on fundamental and applied questions spanning hydrology, silviculture, soil science, and
334 climate research (Lugo et al., 2006).

335 In the early 1980s, as academic scientists pointed out the difficulties of answering
336 questions about long term natural processes given the realities of short term funding (Bormann
337 and Likens, 1979; Callahan, 1984), the U.S. National Science Foundation Directorate of
338 Biological Sciences created the Long Term Ecological Research (LTER) program to carry out
339 observation based research across a network of sites that spanned the major biotic regions of
340 North America. These efforts were aided by early work of the U.S. Forest Service to understand
341 watershed hydrology (Swank and Crossley, 1988). The LTER effort was initiated predominantly
342 by ecosystem ecologists asking questions about organisms with long life cycles, including how
343 they are maintained by natural water and nutrient fluxes in the face of long term as well as
344 episodic, acute environmental changes (Dodds and al., 2012). Although not exclusively based
345 on the study of watersheds as pioneered in the late 1960s (Bormann and Likens 1967), many
346 LTERs follow a model that emphasizes the study of energy, water, and material flows through a
347 watershed (Hynes 1975). Going forward, the LTER network contains 28 LTERs and aims to
348 incorporate consideration of social science (LTER Network Office, 2011).

349 A big step was taken in 1991 toward incorporating geology into these largely water land
350 use ecology observatories when the U.S. Geological Survey inaugurated the Water, Energy and
351 Biogeochemical Budgets (WEBB) program. WEBB targetted interactions among water, energy,
352 and biogeochemical fluxes in five sites chosen at least partly by their inherent geological
353 character and pristine nature.

354 Then, in 2008, another long term research program was called for by agricultural
355 researchers (Robertson et al. 2008), resulting in the establishment of the Long Term
356 Agroecosystem Research (LTAR) program in 2011. This network, today including 18 LTARs,
357 promotes long term agricultural research facilities, experiments, and watershed based studies
358 focused on sustaining agriculture and increasing crop yields under changing climate conditions
359 while minimizing or reversing any adverse environmental impacts
[360 \(http://www.tucson.ars.ag.gov/ltar/\)](http://www.tucson.ars.ag.gov/ltar/).

361 The most recent addition to the development of observatories in the U.S. is the National
362 Ecological Observatory Network (NEON). NEON is a nationwide, distributed observatory that
363 aims to understand and forecast the impacts of climate change, land use, and invasive species on
364 ecology by providing i) consistent, continental, long term, multi scaled data, and ii) a research
365 platform for investigator initiated sensors, observations and experiments (Loescher et al., 2017).
366 NEON has 84 sites across the U.S. Like LTER, NEON is a program funded by the Directorate of
367 Biological Sciences at NSF to study ecological change (Golz et al., 2016).

Formatted: Space Before: 0 pt, After: 8 pt, Line
spacing: Multiple 1.08 li

368 As in the U.S., international observatory networks have also grown, many for
369 substantially the same reasons that they grew in the U.S. – to study land use, water, and ecology.
370 In at least one country (France), a network (OZCAR: Observatoires de la Zone Critique:
371 applications et recherche) emphasizes individual disciplines at each observatory and provides as
372 much as 50 years' worth of data to enable research in some sites. The long term, place-based
373 ecological research that was pioneered by the U.S.A. LTER network has also been adopted by
374 the broader international community in the International LTER (ILTER) network (Vanderbilt
375 and Gaiser, 2017). Today, the European Commission is promoting an approach to develop a
376 European Research Infrastructure in the form of a network associating CZOs, LTERs and
377 LTSERs. Here, LTSER stands for Long Term Socio-Ecological Research. Indeed, many of the
378 European countries maintain strong observatory infrastructures that are much more tightly linked
379 with local stakeholders than observatories in the U.S. This may result from the lack of truly
380 “natural” territories in Europe, given the long history of development on the continent but also
381 the willingness to co-construct research questions with stakeholders to build a sustainable
382 environmental future.

383 **4 The CZO network program**

384 Clearly, this history shows how the pantheon of observatories has long targeted land use,
385 water, ecosystems, and agriculture. None of these efforts were intended to incorporate Even with
386 this variety of funding mechanisms for Earth and environmental science, no concerted
387 nationwide effort emerged to tackle questions and to train students to target the CZ as one entity,
388 incorporating the deep geological underpinnings and long-timescale perspectives, that have
389 come to be the hallmarks of CZ science. More specifically, none of these observatories targeted
390 the entire CZ as one entity. As suchAs a result, this the place-based environmental science that
391 developed often was forced to use had to rely on statistical approaches to explain variability
392 instead of developing more fundamental explanations that was caused by based on underlying
393 geological heterogeneity and its origins. Recognizing this the need to emphasize the geological
394 underpinnings of place-based science in the late 2000s, researchers within the water, soil,
395 geochemistry, and geomorphology communities began articulating a need for integrated science
396 across the entire zone from canopy to bedrock to incorporate the full significance of the
397 underlying geology (Anderson, 2004; Brantley et al., 2006; Chorover et al., 2007; U.S.
398 Committee on Integrated Observations for Hydrologic and Related Sciences, 2008; U.S. Steering
399 Committee for Frontiers in Soil Science, 2009; U.S. National Research Council, 2010; Banwart
400 et al., 2011; Committee on New Research Opportunities in the Earth Sciences at the National
401 Science Foundation, 2012; White and Sharkey, 2016). These researchers also recognized that
402 advances in studying Earth's surface were fragmented precisely because investigators typically
403 targeted many different sites without coordination among disciplinary approaches. Under the
404 paradigm of small funded projects, different types of measurements were made but they were
405 completed at so many different sites that integration of observations into models was difficult to
406 impossible.

407 Eventually the need to study the CZ as one integrated entity resulted in the NSF program
408 establishing the Critical Zone Observatory program in 2007 (White et al., 2015). ~~By 2007~~In this
409 initial phase, three CZOs ~~had been~~were funded (Anderson et al., 2008). Two years later, three
410 more CZOs were funded. By 2013 this number had grown to nine observatories supported
411 through a competitive selection process. In addition to the expansion of sites in 2013, a CZO
412 National Office (NO) was established ~~by NSF~~ in 2014 through an ~~NSF~~ competitive process,
413 with the intent of ~~establishing providing~~ the CZO Network ~~to provide with an~~ administrative
414 ~~network~~ structure ~~for furthering the network and function coordination~~ (White et al., 2015). The
415 number of CZOs has remained stable through 2017.

416 Inauguration of the CZO program implicitly defined the term “critical zone observatory”
417 to be distinct within the long history of observatories in the US and abroad as an observatory that
418 promotes study of the entire CZ as one entity. As implemented today, CZOs are sites or closely
419 connected sets of sites with no required size or specified range of conditions. In fact, the
420 physical scope of a CZO is set only by the fundamental questions driving the establishment of
421 the observatory. A fundamental characteristic of a CZO is that it is able to operate over a long
422 enough period to quantify ~~thoroughly~~ controlling mechanisms thoroughly and to capture
423 temporal trends that ~~may~~ reveal ~~further~~ how the critical zone operates. ~~Another Two more~~
424 characteristics of a CZO ~~is are~~ that it is amenable to study by many disciplines ~~and that it~~
425 integrates understanding of long- and short-timescale phenomena. Finally, each ~~Importantly, a~~
426 CZO ~~is~~operates as an adaptive and agile hypothesis-testing machine, not simply a monitoring
427 program.

428 ~~The physical scope of some U.S. CZOs are defined by watershed boundaries, some by~~
429 ~~land use, others by the range of climate conditions, and still others by contrasts in lithology or~~
430 ~~geomorphic history. The common elements are: 1) the focus on the entire above- and below-~~
431 ~~ground critical zone and its fluxes, 2) documentation of CZ structure, 3) mechanistic process~~
432 ~~studies, and 4) analysis of history of the landscape that gave rise to the current structure. This~~
433 ~~last feature is a crucial aspect of CZOs that distinguishes them from previous studies that~~
434 ~~typically do not consider “deep time” (i.e., geologic time) and often fail to document the critical~~
435 ~~zone below the soil. Previous papers have described how researchers have grappled at a specific~~
436 ~~CZO with the establishment of a measurement design (Brantley et al., 2016) and modeling~~
437 ~~design (Duffy et al., 2014; Niu et al., 2014). In addition to hypothesis testing, CZOs~~
438 ~~developed evolved developed in the U.S., they began to play nine important and accomplish nine~~
439 ~~additional emergent roles within the environmental scientific endeavor. These are to advance CZ~~
440 ~~science, as described in the next section, as described in the next section.~~

443 5 The nine emergent roles of CZOs

444 Here we highlight the nine important roles that can only be accomplished at of an
445 observatory are described and amplify the description of each role with examples of scientific
446 results from across the CZO network today.

447 First, CZOs act as *synthesizers of interdisciplinary research* into convergent approaches
448 at one specific site that lead to emergent novel understanding and ultimately result in more
449 deeply-informed process-based models generalized and predictive understanding (e.g. Rasmussen
450 et al., 2011b; Kumar et al., 2017, in review) (Rasmussen et al., 2011a). In other words,
451 observatories induce scientists from different disciplines to make measurements using different
452 disciplinary approaches at the same location instead of making them at disparate sites, driving
453 cross-disciplinary understanding that crosses the boundaries of disciplines in describing CZ
454 function (Hynek et al., 2016; Sullivan et al., 2016; Yan et al., 2017; Chen et al., 2017 in press).
455 To date At first, much of the synthesis has crossed only two disciplines at a time: for example,
456 several papers have emphasized how geomorphological concepts related to erosion must be
457 incorporated to understand chemical weathering, and vice versa (Rempe and Dietrich, 2014;
458 Riebe et al., 2016). Likewise, researchers have related tree roots to water cycling (Vrettas and
459 Fung, 2015). Now, researchers are targeting But many puzzles remain concerning multi-
460 disciplinary aspects of CZ entities, and much effort is currently focusing on such frontiers. For
461 example, at the Calhoun CZO, where the South Carolina landscape was severely eroded by
462 cotton farming, logistic regression models treat market and policy conditions in the context of
463 topographic characteristics (Coughlan et al. 2017). In another example, distributed CZO data
464 were used to develop a predictive framework linking regolith structure, root zone storage and
465 vegetation to dry periods (Klos et al., 2017, in review). CZOs have By fostered fostering
466 measurements from all disciplines in centralized places and this is the first step toward
467 addressing broader multi-disciplinary models describing CZ function. CZOs are discovering not
468 only how to cross disciplines but how individual such disciplines can converge (Brantley et al.,
469 2017, in press; Holbrook et al., 2017, in review).

470 Second, CZOs provide *stable platforms for* long-term measurements made over long
471 term durations (Table 2). Some of the datasets synthesized by CZOs are now available at CZOs
472 are extremely long decadal to multi-decadal in duration for decades or several decades, enabling
473 the testing of effects of inter-annual climatic variation effects as well as longer term climate or
474 land-use trends. For example, the Reynolds Creek CZO recently published 31 years of hourly
475 data that is are spatially distributed at 10 m resolution for air temperature, humidity, and
476 precipitation amount and phase across the 239 km² Reynolds Creek Experimental Watershed
477 (Kormos et al., 2016) and a Reynolds also published another 10-year data set that spans the
478 rain-snow transition zone (Enslin et al., 2016). Similarly, using water balance, climate and
479 satellite datasets, Zapata Rios et al. (2016) demonstrated decreasing trends in water and energy
480 influx in the Jemez CZO to the CZ over the past 30 years were in the Jemez CZO and recently

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

481 related to discussed the implications of these long term trends for CZ structure
482 development (Zapata-Rios et al., 2016). Major changes in soil biogeochemistry have been
483 documented by Calhoun CZO researchers over 50-years of reforestation in fields cultivated for
484 cotton (Mobley et al., 2015). T-as inferred from present day CZ structural datasets that CZO also
485 spearheads an effort to recover archived data from three eroded watersheds that were
486 farmed from the late 1940s to 1962 – as well as to re-instrument the catchments. Many
487 other multi-year of the long term datasets made at CZOs are measurements that are common to
488 all CZOs and enable have been designed to test the hypothesis that new understanding will
489 hypothesis-testing emerge about processes and function from such cross-cutting data. For
490 example, characterization of dissolved organic matter (DOM) coordinated measured with similar
491 methodology across five CZOs revealed a strong role for CZ structure in setting the origin,
492 composition and fate of DOM in streams (Miller et al., 2016). In another example, a coordinated
493 effort emerged to measure and understand the relationships among chemical species solute
494 concentrations and water discharge in streams (e.g. Kirchner, 2003; Godsey et al., 2009). This
495 led to papers published by CZ scientists in a special issue on the topic of Water Resources
496 Research (Chorover et al., 2017, in press) is pointing the way toward the use of. The goal now is
497 to use CZO knowledge of subsurface structure to explain concentration-discharge behavior a
498 priori for other settings.

Formatted: Font: (Default) Times New Roman
Formatted: Font: (Default) Times New Roman

Formatted: Font: Italic

499 Third, CZOs act as a stimulus and test-bed for modelling and prediction. Modeling the
500 CZ poses a unique challenge in that models must address the coupling across a very
501 broad range of time scales from seconds to millennia weather driven event dynamics to (Table
502 3). To tackle this challenge, CZOs are both adapting existing models and developing new
503 models. For example, one CZO is developing a hierarchy of modules to describe processes that
504 occur over seconds to millennia (Duffy et al., 2014). millennium scale geologic formation. This
505 intertwining of functional outcome at the short time scale resulting from the form or structure
506 formed at the long time scale, within the context of specific hypothesis creates unique challenges
507 of coupling across many time scales within a modeling framework. At the same time, availability
508 of novel measurements in space, time and depth is enabling CZOs to ask new questions that were
509 not possible before. To address these challenges and opportunities, CZOs have been adapting
510 existing models or developing new ones to answer questions that seem pertinent to a specific
511 CZO or have applicability across CZOs. For long timescale processes. For example, almost every
512 CZO has proposed models of soil and regolith formation, and many are summarized several have
513 been described in publications in a special issue of *Earth Surface Processes and Landforms*
514 (Riebe et al., 2016). Many At the shorter timescales, of the standard water or coupled land
515 surface-air models have also been tested and new modules have been developed at CZOs (Table
516 3) (Table 3). One CZO has contributed a hierarchy of numerical models for understanding
517 processes that occur over microseconds to millennia (Duffy et al., 2014). To exploit high
518 resolution data such as LiDAR and hyperspectral measurements, modelling efforts Another CZO
519 has contributed a model to exploit emerging high resolution data such as from LiDAR resolution
520 data and hyperspectral instruments explore to understand the role of micro-topographic and
521 vegetation variability in controlling controls on soil moisture (Le et al., 2015; Le and Kumar,
522 2017) and as well as biogeochemical changes in agricultural landscapes (Woo and Kumar, 2017)
523 in agricultural landscapes. Researchers at another CZO have likewise developed a rigorous

524 energy-balance snowmelt model that is now being used with ~~airborne LiDAR (Painter et al., 2016)~~ and other remotely sensed data for water supply forecasting (Painter et al., 2016). ~~Work at the Luquillo CZO in Puerto Rico has allowed testing of models for stream channel self-organization at many other locations (Phillips and Jerolmack, 2016).~~ In other ~~integrative~~ efforts, researchers are ~~investigating and~~ modelling how hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plants ~~combine to~~ sustain evapotranspiration through dry seasons (Quijano et al., 2012; Quijano et al., 2013; Vrettas and Fung, 2015). ~~Work at the Luquillo CZO has supported interpretations of the controls on bedload grain size and channel dimensions for rivers (Phillips and Jerolmack, 2016).~~ Researchers at ~~the Calhoun CZO~~ are using ~~distributive models to explore relationships between topographic variations and the landscape's capacity to serve as an atmospheric carbon source or sink (Dialyanis et al., 2015).~~

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt

537 Fourth, CZOs act as *baselines to understand and teach about the impact of catastrophic*
538 *events.* For example, ~~two western USA-CZOs in the U.S. have studied~~ the impacts of wildfires
539 ~~were studied~~ on soil microbiota (Weber et al., 2014), sediment yields (Pelletier and Orem, 2014),
540 snow accumulation (Harpold et al., 2014), and water quality (Murphy et al., 2012; Reale et al.,
541 2015) ~~at two CZOs in the western USA.~~ Likewise, effects of the 2013 Colorado Front Range
542 storm (Gochis et al., 2015) on debris flows (Anderson et al., 2015), soil moisture (Ebel et al.,
543 2015), cosmogenic radionuclides (Foster and Anderson, 2016), and concentration-discharge
544 behavior (Rue et al., 2017) were studied at the Boulder Creek CZO. A flash flood within ~~a~~
545 ~~research catchment of~~ Boulder Creek CZO in 2016 instigated analysis of Horton overland flow
546 in these landscapes (Klein et al., 2017). CZOs that experience catastrophic events use the
547 baseline data captured before the event to place the ~~scope of the~~ impact into perspective. ~~An~~
548 ~~additional attribute is that~~ ~~s~~Such natural disasters ~~also~~ engender public interest in research:
549 ~~Boulder Creek CZO~~ research on the 2013 Colorado Front Range storm ~~from the Boulder Creek~~
550 ~~CZO has been featured in radio, press, and public forums and wildfire and wildfire~~ research ~~from~~
551 ~~three CZOs has been~~ ~~has been featured in radio, press, and public forums~~ ~~featured in outreach~~
552 ~~from three CZOs.~~ The important role of observatories in recording catastrophic events was
553 ~~reinforced by Hurricanes Irma and Maria, which brought winds up to 250 km h⁻¹ and enormous~~
554 ~~rainfall to the island of Puerto Rico in September 2017. The Luquillo CZO quantified winds,~~
555 ~~rains, and stormflows and will document Maria's impacts to forest canopies, accelerated tree~~
556 ~~throw, and mass hillslope movements for many years to come.~~

Formatted: Superscript

557 Fifth, CZOs act as *the organizing design for systematic campaigns to investigate process-*
558 *based mechanisms* ~~in~~ ~~across various CZ environments~~ ~~different types of CZ~~. One example of this
559 is the initiative in which every CZO in the U.S. pursued geophysical measurements. Many
560 papers have been published exemplifying this approach to map out the subsurface architecture
561 (Befus et al., 2011; Holbrook et al., 2014; Orlando et al., 2015; Olyphant et al., 2016).
562 ~~Increasingly Now~~, geophysicists ~~are travelling~~ among CZOs to image the subsurface with a
563 battery of instruments ~~and evolving approaches that reveal to image~~ the below-ground landscape

Formatted: Font: Not Italic

564 (St. Clair et al. 2015). In another example, after one CZO the Boulder Creek CZO began
565 emphasizing slope aspect as a useful natural experiment to examine controls on CZ architecture
566 and function in 2009. This early abstract led to similar analyses at other CZOs led to and
567 emerging highlighted concepts of linkages between among aspect, water, biota, regolith structure,
568 and episodic events (West et al., 2014; Ebel et al., 2015; Pelletier et al., 2017), including cross-
569 CZO collaboration on theory (Pelletier et al., in press). Finally, a deep drilling projects (“drill the
570 ridge”) were was proposed and then pursued at many CZOs, and these data in turn led to a
571 special issue describing regolith formation (Riebe et al., 2016). Successful campaigns have also
572 been mounted to investigate mountain snow and water balance (Harpold et al., 2014), and the
573 distribution of micro organisms in soils (Griffin et al., 2017, in review).

574 Sixth, CZOs act as *catalysts for the development of new techniques and instrumentation*
575 from all disciplines which can then be tested globally. –For example, at the Eel River CZO, a
576 unique vadose zone monitoring system (VMS) has been installed consisting of 19 m long holes
577 drilled along contour of into a hillslope at 55° relative to the horizontal and filled with sleeves
578 with to monitors for temperature, pressure, and electrical conductivity. This is giving access to
579 VMS probes the generally inaccessible deep vadose zone in the weathered bedrock to test
580 reactive transport models incorporating gas and water chemistry (Druhan et al., 2017). At
581 another CZO, rainfall simulation experiments designed to improve management practices for
582 erosion have elucidated controls on the ratio of the concentration of carbon in eroded sediment to
583 that of and original soil in order to improve management practices for erosion (Papanicolaou et
584 al., 2015). One CZO is exploring weathering reactions through pioneering the use of neutron
585 scattering (NS) to analyze pores as small as nanometers in rocks and how they contribute to
586 weathering reactions (Navarre-Sitchler et al., 2013). Water-balance instrumentation using robust
587 wireless-sensor networks, developed at the Southern Sierra CZO (Kerkez et al., 2012), has been
588 extended to the river-basin scale (Zhang et al., 2017), and is being deployed at other locations
589 across the U.S. An approach developed to scale annual evapotranspiration measured at flux
590 towers across the broader forested landscape of the Sierra Nevada (Goulden et al., 2012) is also
591 being applied to flux-tower sites and forested areas across the western U.S.

592 Seventh, CZOs serve as *hubs for informing regional resource-management decisions, and*
593 *for educating the public about societally relevant problems*. For example, measurements of
594 evapotranspiration made at one CZO and scaled across the Sierras provide a basis for estimating
595 sustainable forest densities today and into the future when in both current the climate and a will
596 be warmer, and drier climate (Goulden and Bales, 2014). While it is accepted that the overly
597 dense forests that are in part the result of decades of fire suppression are at high risk of wildfire
598 and drought induced mortality, action to restore forests remains slow. This work has major
599 implications for forest restoration and payment for ecosystem services. Research on water
600 resources is routinely communicated to water managers in California and the intermountain west
601 by the Southern Sierra and Boulder Creek CZOs through briefings, workshops and data products.
602 Results from Catalina-Jemez CZO studies of wildfire impacts on watershed-scale sediment

603 transport are now also being considered in the development of forest management strategies in
604 AZ and NM two states. Research on snowpack and water resources by the Boulder Creek CZO
605 for water managers in Colorado, Utah and Wyoming has similarly been communicated in a series
606 of workshops for water managers in Colorado, Utah and Wyoming co-organized by the Boulder

607 Creek CZO in 2015. In other parts of the country, the Eel River CZO team is documenting
608 controls on the summer spread of cyanobacteria in the Eel River, and information is disseminated
609 in which has led to biannual gatherings of students, agency members, native Americans, and
610 practitioners to learn to recognize algae types. IMLCZO is developing and disseminating a series
611 of courses to for crop advisors through the extension program in the US agricultural Midwest.
612 Finally Other, CZO investigators routinely write op-eds and produce video that are distributed for
613 distribution to media audiences and teach-use in pre-college classrooms. For example, the
614 Southern Sierra CZO is a contributor to the *Sustainable California* web TV channel that was
615 launched with other collaborators. The CZOs and the national CZO office and other CZO have
616 an active presence and following in are active in the social media.

617 Eighth, CZOs act as *incubators that grow innovative teaching and mentor junior*
618 *scientists who easily readily* work across multiple disciplines. As shown in Table 1, 39 post-
619 doctoral scholars worked at CZOs in 2015 along with 106 undergraduate and 186 graduate
620 students. As more and more institutions in the United States have advertised positions that
621 mention critical zone science, these CZO students have moved easily into university department
622 faculties where they are changing the research and education environment. Likewise, the recently
623 completed InTeGrate project, *Introduction to Critical Zone Science*, is a one-semester
624 undergraduate curriculum with lecture slides, online resources, and data drawn from the CZOs.
625 This innovative new course uses the CZ as a unifying approach to teach complex Earth and
626 environmental sciences (White et al., 2017). Many other teaching and training workshops have
627 also been presented by the CZOs. For example, a Modeling Institute was presented in 2016 on
628 the *Dhara* model (Le and Kumar, 2017, Woo and Kumar, 2017) and a training workshop was
629 presented on the Role of Runoff and Erosion on Soil Carbon Stocks: From Soilscapes to
630 Landscapes in collaboration with CUAHSI.

Formatted: Font: Italic

Formatted: Font: Italic

631 Ninth, CZOs act as *impetus for discoveries and emergent hypotheses* that can only result
632 from systematic and multi-disciplinary observations across multiple or within specific CZ
633 environments. Some Some of these hypotheses are disciplinary while others are cross-
634 disciplinary disciplines. A full elucidation of these hypotheses is beyond the scope of this paper-
635 indeed, only and only a subset are of these are shown in Table 4. M while many have been
636 published elsewhere in collaborative papers (Rempe and Dietrich, 2014; Riebe et al., 2016; Li et
637 al., 2017; Pelletier et al., 2017; Yan et al., 2017; Brantley et al., 2017, in press). Here we
638 summarize three of the most multi-disciplinary of the discoveries that As it happens, all three
639 have large implications for the prediction of flowpaths relevant to the largest supply of accessible
640 and drinkable water available to humans -- water contained in rock and regolith (Fetter, 2001;
641 Banks et al., 2009). These three discoveries have been made both by non-CZO scientists and

Formatted: Font: Not Italic

642 scientists within a CZO. For example first, one geophysics group outside of a specific CZO
643 discovered a distinct geometry at depth that is consistent with the influence of regional tectonic
644 stress fields on patterns of fractures and weathering through under hillslopes at CZOs and other
645 locations (St. Clair et al., 2015). The theoretical underpinning proposed for this so-called
646 “bowtie-shaped” geometry has important implications for predicting flowpaths of water in
647 regolith *a priori*. CZOs also discovered significant water storage that is seasonally available in
648 the vadose zone of weathered bedrock and that moves as preferential flow along fractures (Bales
649 et al., 2011; Salve et al., 2012). This “rock moisture”, missing from land surface models, has very
650 significant implications for understanding and predicting climate. Finally, CZO workers have
651 also identified depth intervals in the subsurface in some sites that document mineralogical
652 reactions and that roughly mimic the land surface topography albeit with lower relief (Brantley et
653 al., 2013). Such “reaction fronts” can inform researchers about sub-surface flow paths (Brantley
654 et al., 2017). All of these ideas are being tested at other settings around the world.

Formatted: Font: Italic

655 6 CZO measurements and models

656 As mentioned above, common measurements are being made (Table 2) and models are
657 being used across sites (Table 3). The measurements target the “SWEGS” fluxes – solute, water,
658 energy, gas, and sediments -- as they move through the CZ, as well as such features as the form
659 and age of the landscape and ecosystems (Fig. 4). Some of the observations are more extensive
660 than others: for example, hydrometeorological data, soil moisture dynamics, and measurements
661 of concentration and discharge in streams are the focus of on-going efforts at every CZO.

Formatted: Indent: First line: 0.5"

662 The CZOs’ datasets are maintained publicly available
663 (<http://criticalzone.org/national/data/>) and are intended to serve the research community beyond
664 those involved in each CZO. The types of data commonly include sensor and sampler
665 measurements showing the temporal response of different locations in the CZ to meteoric events,
666 spatially-resolved geophysical and geochemical measurements of CZ structure, and LiDAR
667 measurements of vegetation and bare earth topography, among others. The CZOs are
668 coordinating to ensure that measurements are comparable across sites (i.e., the “common
669 measurements” effort). Likewise, efforts are ongoing so that the posted datasets can be used
670 easily by others to make cross-site comparisons and conduct cross-site studies.

Formatted: Normal, None, Indent: First line: 0.38", Line

spacing: single

671 The duration of time for individual data sets varies across the network. Generally, the
672 time-series datasets (sensor and sampler arrays, eddy covariance, hydrometeorology, vadose
673 zone and saturated zone aqueous chemistry, etc.) have durations that are roughly equivalent to
674 the age of the CZO sites, determined by the initiation of NSF funding. One caveat is that CZOs
675 have often added new study locations that were not among the original set, affecting the duration
676 time interval of data that are available at each location. In other cases, measurement series may
677 have been terminated as new measurements were brought on line.

678 Three sites (SSCZO, BCCZO and SSHCZO) have been in operation since 2007, and so
679 their longer-term observational datasets extend roughly over that duration. -Three other sites
680 (CJCZO, LQCZO and CRCZO) that began operating two years later have measurements dating
681 to 2009. Three Four newer sites (IMLCZO, CHCZO, RCCZO and ERCZO) have datasets dating
682 to 2013. -One observatory (CRCZO) ceased functioning as a CZO in 20xx14. Therefore, at
683 present, continuous time series datasets range in duration from ca. 4 to 10 years. In addition,
684 however, several of the CZOs are located in sites that provide longer datasets through previous
685 measurement programs (for example, the extremely long datasets available at the Reynolds
686 Creek CZO). -The nature of question of duration of dataset duration is thus somewhat complex,
687 and varies depending upon data type and site, but the generalized intent is to enable assessment
688 of inter-annual variation on over decadal time scales. The datasets are starting to drive
689 extrapolations from the individual study sites to regional and continental scales. The duration of
690 datasets also depends upon the residence times and mixing times of the various measured entities
691 (Fig. 4).

Formatted: Left, Indent: First line: 0.5", Widow/Orphan control, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

692
693 To integrate the measurements at different sites and to extrapolate forward and backward
694 in time requires One means of extending process understanding beyond specific sites is through
695 process-based modeling. As the common observational data accumulate, CZOs have been both
696 developing new models and pursuing data comparisons with established models (Table 3), and
697 the datasets are starting to drive extrapolations from the individual study sites to regional and
698 continental scales. Currently, as Table 3 indicates, the initial CZ modeling efforts may be
699 characterized into four groups as discussed below (Table 3).

Formatted: Left, Indent: First line: 0.5", Widow/Orphan control, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

Formatted: Font: (Default) Times New Roman, Not Bold, Not Italic

700 The first includes the modification and coupling of existing codesmodifications and a
701 adoption of existing models to couplelink aspects of various CZ processes (e.g., land-atmosphere
702 exchange, saturated-unsaturated zone hydrology and, biogeochemistry, ecology, and
703 biogeochemistry, etc.) that are typically segregated in distinct models, but whose coupling is
704 being revealed through CZ science measurements. The second includes identifying and filling
705 critical gaps or knowledge of new processes such as hyporheic exchange, weathering, etc. The
706 third includes development of a new generation of models that takes advantage of emerging
707 streams of high-resolution data such as airborne- and UAV (unmanned aerial vehicle)-based
708 LiDAR and hyperspectral data. The fourth includes coupling between fast and slow processes
709 across many time scales. Slow processes provide the template for the fast response variable,
710 while the accumulative effect of the latter results in the evolution of the former. Both
711 mathematical frameworks and data to support such modeling are still in their infancy.

Formatted: Left, Widow/Orphan control, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers

712 7 Emergent network-level concepts

713 A central challenge of CZ science is the need to generalize from the place-based studies at
714 observatories to principles-based understanding across the network or across the globe. One way
715 to do this (perhaps the only way) is with models. Dialogue is ongoing as to whether the critical

Formatted: Normal, Justified, Indent: First line: 0.38", Line spacing: single, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

Formatted: Font: (Default) Times New Roman

716 zone community will be best served through a single modeling framework or a library of existing
717 models that allows more targeted exploration. Place-based studies can demand very specific
718 investigations that are highly tuned to the biogeomorphic setting of a specific location, but that
719 provide little deeper understanding. In contrast, a model that is broadly applicable may simplify
720 the representation of a given site so much that the model results in reduced accuracy of prediction.
721 Therefore, both the advancement of critical zone science and critical zone modeling will likely
722 progress in an intertwined manner.

723 One way to further the evolution from place-based to principles-based understanding is to
724 drive development of fundamental understanding at a network level, rather than the level of a
725 single observatory. In fact, since initiation of the CZO effort in 2007, t

726 As mentioned above, common measurements are being made at all the CZOs in the U.S.
727 (Table 2). In general, these measurements target the “SWEGS” fluxes—solute, water, energy, gas,
728 and sediments—as they move through the CZ, as well as such features as the form and age of the
729 landscape. Some of the observations are more extensive than others: for example,
730 hydrometeorological data, soil moisture dynamics, and measurements of concentration and
731 discharge in streams are on going at every CZO. As the common observational data accumulate,
732 CZOs have been both developing new models and pursuing data comparisons with established
733 models (Table 3). In the last several years, researchers have not only been integrating observations
734 within a CZO but also integrating across multiple CZOs. At the highest level of cross network
735 synthesis, three general, overarching paradigms/concepts have emerged which we describe
736 below at the network level. Each of these describes deeper process- and principles-based
737 understanding as summarized below.

738
739 First, we have observed that differences in natural and anthropogenic inputs at Earth’s surface
740 translate into differences in water, regolith structure, minerals, and biotic activity at depth, and we
741 are starting to detect how these deep properties also impact the biota, climate, and CZ services
742 (e.g. Richter and Billings, 2015; Sullivan et al., 2016; Richardson and Kumar, 2017; Chorover et
743 al., 2011). (Richter and Billings, 2015).

744 Second, we have observed how the deep surface of the Critical Zone varies across
745 landscapes. Under hills, imaging has revealed locally consistent patterns of subsurface critical
746 zone structure ~~of that can relate~~ depth, fracture density, porosity, and weathering (e.g. Befus et
747 al., 2011; Brantley et al., 2013; Orlando et al., 2015; St. Clair et al., 2015).

748 Third, we now have mechanistic models that provide quantitative predictions of the
749 spatial structure of the deep surface relative to the ground surface topography (e.g. Lebedeva and
750 Brantley, 2013; Rempe and Dietrich, 2014; Rasmussen et al., 2015; Riebe et al., 2016). These
751 three broad generalizations have been informed by up to ten years of work at multiple CZOs as
752 well as work by the greater critical zone science community (Banwart et al., 2011).

Formatted: Font: (Default) Times New Roman

Formatted: Font: Bold, Italic

Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold, Not Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Not Bold, Not Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: Bold, Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: Times New Roman

753 In addition to the emergence of these network-level science concepts, With this ongoing
754 integration of paradigms across CZOs, scientists have also begun to discern an important link has
755 emerged between the CZ and the evolving conceptualization of "ecosystem services". This
756 concept emphasizes how biodiversity, ecological processes, and spatial patterns in the near-
757 surface environment provide services to society (MEA, 2005). As discussed by CZO network
758 scientists (Field et al., 2015; 2016), CZ science demonstrates the contribution of the deeper CZ to
759 ecosystem "provisioning" and elucidates the longer time scales of CZ evolution, leading to the
760 idea of "critical zone services". Through this lens, services such as water quality regulation, soil
761 development, and carbon stabilization are seen as tightly dependent on CZ function, evolution
762 and architecture. The valuation of CZ services offers and approach for assessment of human
763 impact that takes into consideration both the short- and long-time scale processes ((Richardson
764 and Kumar 2017)). Indeed, the CZ is the ideal context for integrating deep subsurface and long
765 time-scale perspectives from geosciences into the otherwise bio-centric conceptualization of
766 ecosystem services. Doing so remains an emphasis of CZO network activities.

767 **7-8 Strengths and weaknesses of the current CZO network**

768 The current CZO network as constituted in the U.S. and abroad has many strengths.
769 Students are trained to cross disciplines within their graduate work, and they graduate with
770 convergent expertise in the new field of CZ science. CZ science, which is harmonizing
771 developing its own vocabulary and conceptual understanding across disciplines, and is setting a
772 research agenda, and an integrated approach. Postdoctoral scholars are educated learn from with
773 observatory personnel that derive from many disciplines. Such scientists now are able to
774 communicate as effectively, for example, on about sapflow in trees as about on seasonal
775 variations in groundwater flow, as the two are increasingly recognized as interdependent.
776 Collaborations are constantly developing and allowing scientists to see problems in new ways,
777 and accepting new and with different perspectives. Ideas are growing across the network about
778 regolith formation (Riebe et al., 2016), snow hydrology (Harpold et al., 2014; Tennant et al.,
779 2017), microbial diversity (Fierer et al., 2003), trees (Brantley et al., 2017, in press), critical
780 transitions (Kumar et al., 2017, in review), and many other topics. We have produced an
781 enormous datasets (<http://criticalzone.org/national/data/datasets/>). We no longer treat parts of the
782 CZ as mere isolated components or black boxes: instead, we incorporate more specificity and
783 understanding when we describe the integrated system. We are finding innovative ways to
784 communicate the CZ concept to the public. We have stimulated and promoted development of
785 CZOs worldwide.

786 Although there have been many successes, we have also observed several weaknesses in
787 the approach as it is constituted today. Since each observatory is individually funded based on
788 the merits of its targeted science and management, there is an obvious competition within each
789 CZO for allocation of resources in addressing to address common (network wide) measurements
790 versus site-specific measurements activities. This competition for time and resources leads to

791 results in a less-than-optimal approach to finding identification of emergent network-scale
792 outcomes as opposed to individual, site-based outcomes. Of course, individual site-specific
793 outcomes can have implications and impacts that are just as important as network-scale
794 outcomes. Thus and we need to find mechanisms to foster all such approaches while
795 acknowledging limitations in resources. Further, given how new CZ science is, we are
796 just insights are only just beginning to articulate emerge transformative ideas that cut across
797 multiple disciplines. We still have occasional difficulty communicating these ideas discoveries in
798 a simple fashion on a transparent and inviting website. One specific example of a need for cross-
799 disciplinary ideas and communication arises from the fact that the CZO network in the U.S.
800 never emphasized social science. Thus, hypotheses have yet to emerge that target social science
801 aspects of the CZ. Another challenge, and perhaps our biggest, Perhaps one of our biggest
802 challenges is maintaining the integrity of an inter-disciplinary suite of measurements in a
803 common database and managing site data (Fig. 4) in ways that invite other researchers to find
804 and use the datasets and use the field sites (Hinckley et al., 2016). The need for better data
805 management is especially important given the many new data-driven approaches that are arising
806 within environmental science (Bui, 2016).

807 These considerations in the context of the overview in this paper lead to a basic
808 question: what is the best way how might we design the best mechanism to advance CZ science?
809 From review We point to four specific challenges, posed here as questions, going forward that
810 loom large in designing the future network. First, what is the best approach for generalizing and
811 scaling place-based studies to principles based understanding through coordinated team effort to
812 developing broadly-applicable principles from observatory-based investigations? Second, how
813 do we link appropriately with other programs in the U.S. and worldwide to develop a set of
814 representative sites across the large number of possible environmental gradients to advance a
815 broad understanding of CZ science? Third, how should we balance the roles of CZOs in
816 providing infrastructure for monitoring while always also supporting hypothesis driven
817 science how should we balance the roles of CZOs in developing long-term observational records
818 versus shifting measurement strategies to advance and test new hypotheses? Fourth, what
819 funding and management models would enable increased and broader involvement of the
820 broader community of CZ scientists who are not yet part of a core CZO team? These four issues
821 are addressed in the next section where we propose a new model for the future of the network.

Formatted: Font: Italic

822 8-9 The future network

823 Different approaches Mechanisms that have been successful in stimulating deeper
824 understanding of investigating aspects of the environment were described above. These strategies
825 can be summarized as i) small investigator grants projects targeting parts of the CZ, ii)
826 campaign-style multi-investigator grants projects targeting multiple sites, iii) modelling center-
827 based efforts, and iv) observatories. Looking into the future, all are needed.

828 For example, individual grants (example (i) from above) can ~~support testing of~~ sharply
829 focused hypotheses that may lead to important discoveries about ~~individual elements or specific~~
830 ~~processes entities or processes of the CZ~~. This kind of research, typically supported by a core
831 grant from within a specific discipline (e.g., hydrology) sustains both the discipline and advances
832 CZ science. The last decades of research has clearly shown that some advances come from
833 single investigator research.

834 **Approach Mechanism** (ii), campaign-style research, has the advantage of exploring CZ
835 questions over a range of conditions (Larsen et al., 2015). Such campaigns ~~are more likely to~~
836 ~~often~~ focus on material properties ~~than or~~ process dynamics. ~~C and~~ campaign-style research can
837 focus many different one-time measurements, or measurements across a larger spatial scale, than
838 CZOs can routinely accomplish. [Campaigns typically incorporate small teams of researchers.](#)

839 **Modelling Establishment of centers** (approach iii) is ~~always another~~ important ~~as a~~ means
840 to guide and test field data collection and to probe for deeper understanding ~~by fostering~~
841 ~~communication and collaboration among many researchers~~. ~~The~~ However, the Critical Zone
842 Observatory~~ZO~~ approach (iv) is the only approach that ~~tackles forces diverse researchers to~~
843 ~~tackle~~ fundamental questions ~~at a single location and while also can also provide~~ ~~in performing~~
844 the nine important roles described above. In particular, only observatories ~~can~~ provide the long-
845 term data and the diverse co-located observations from all disciplines that we need to understand
846 the CZ. By working together with ~~modelling organizations~~ ~~centers~~, only place-based
847 observatories can knit together disparate views by acting as ~~Mecca~~ [gathering points](#) for
848 scientists from all disciplines with all ~~their~~ [skills, instruments, and models](#).

849 However, ~~because the CZ is highly heterogeneous, the network must be designed to~~
850 promote the emergence of informative ideas that ~~can supersede~~ [the heterogeneity of the CZ this](#)
851 [heterogeneity. In other words](#), CZOs ~~still need to perform more must~~ collaborative ~~to engender by~~
852 ~~as a~~ [network-level insights](#). Given this need, one approach may be for the community to identify
853 a broad common-question for the future and then to design the future network to target this
854 overall question. One proposed example for the next decade of CZO research is the following
855 question of central importance:

856 *[How can we increase our understanding of surface and subsurface](#)*
857 *[landscapes and fluxes as we face climate, land use, and other](#)*
858 *[anthropogenic changes in the future?](#)*

Formatted: Font: Italic

Formatted: Indent: Left: 1", Right: 1"

859 *[How can we increase our understanding of surface and subsurface landscapes](#)*
860 *[and fluxes as we face climate and other anthropogenic changes in the future?](#)*

861 With such a question, the entire CZO network could ~~then~~ test sub-questions and sub-hypotheses
862 together, but with experiments at different sites with different characteristics.

863 ~~To~~Even if the CZOs target address this question together, some adjustments to the
864 current topology of the CZO network should be evaluated and updated ~~so as~~ to ~~continue~~
865 ~~performing the nine observatory roles listed above, or and to perform emerging roles promote the~~
866 ~~emergence of network-level ideas~~. Indeed, many other topologies can be imagined (Fig. 45).
867 ~~Going back as early as the 1960s (Leopold, 1962), many~~Many scientists have similarly
868 considered aspects of what is needed for environmental networks (Leopold, 1962). For example,
869 one topology might be to choose new observatories to fill in gaps among the current nine CZOs,
870 as shown schematically in the diagram. Another model might be to continue the current nine
871 CZOs as the future network in order to sustain both their unique observational records and the
872 theoretical advances these advances enable. Another model might be to choose nine (or some
873 other optimized number) completely new CZOs, i.e., treating the country as a blank slate.
874 Another model might be to complete a careful analysis of the current CZOs in the context of
875 Long Term Ecological Research (LTER) sites and Long Term Agricultural Research (LTAR) sites
876 and then to extend the network appropriately (see Richter et al., submitted). NEON should also
877 be part of this leveraging, as it becomes operational nationwide. A fifth model might be to
878 establish one~~various~~ “hub” locations and then choose smaller sites along environmental
879 gradients extending out from the hub. Finally, many CZOs might be funded for research along
880 with smaller satellite sites that extend from the central CZO.

881 In thinking about the future network topology, we emphasize the need to find solutions to
882 the four problems, stated as questions at the end of the last section: 1) the need to advance
883 principles-based understanding from observatories; 2) the need to coordinate with other US
884 programs and CZOs world-wide to sample a wide range of CZ conditions; 3) the need for
885 balance between measurements for hypothesis-testing and common, core measurements as
886 network infrastructure; and 4) the desire to incorporate an even broader community of
887 researchers into the CZO program.

888 + 1) the need to generalize from place-based to principles-based understanding; 2) the
889 inadequacy of nine observatories in elucidating the highly heterogeneous and variable CZ; 3) the
890 need for balance between measurements for hypothesis testing and common, core measurements
891 as network infrastructure; and 4) the need to incorporate the broader community of researchers
892 into the CZO program.

893 The best way topology to address these issues appears to be is to a design something like the
894 hub-and-spoke model but with multiple hubs and a high degree of scientific coordination with
895 the other networks noted above. In addition, instead of spokes, i.e., lines of satellite sites that
896 extend geographically out from the hub, we prefer to call these “campaigns”, noting that in some
897 cases these satellites might indeed be spokes, but in other cases they might be located in vastly
898 disparate locations. This model would promote answer the need for long-term measurements (at
899 carefully chosen hubs), the need for short-term targeted measurements at specific locations both
900 within the U.S.A. and abroad (carefully chosen campaign sites), and involve the need for new
901 mechanisms to engage many new more investigators (funding to bring in scientists from outside
902 the hub network) as well. This long-term hub and short-term campaign emphasis has been

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: 12 pt, Not Italic
Formatted: Font: (Default) MS Mincho, 12 pt, Not Italic
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Normal, Line spacing: single

Formatted: Font:
Formatted: Font: (Default) Times New Roman, 12 pt

903 promoted in the literature by researchers both inside and outside the current CZO funding
904 framework (Banwart et al., 2012; Larsen et al., 2015). Fundamentally, the argument for the hub
905 and campaign approach is that the two methods benefit from each other: Specifically, -the hub
906 provides the unique opportunity to dig deep into understanding mechanisms and process
907 dynamics, whereas The campaign approach provides an opportunity to test the generality of
908 specific findings, ideas, or theories across some relevant gradient of controls e.g., in climate,
909 land use, -or lithology-tectonic activity while bringing in outside researchers.

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

910 Specifically, we propose a “hubs-and-campaign” network that would consist of several
911 (or all) of the CZOs as hubs that would provide the infrastructure for common measurements –
912 and would be stimuli for ephemeral campaigns that would be funded for shorter time periods
913 with more constrained purposes that incorporate non-CZO personnel. The hubs would perform
914 all nine of the CZO roles listed above and would receive stable funding. In contrast, the
915 campaigns would be funded in efforts for shorter time periods to test specific hypotheses or
916 ideas. In this way, the network would be able to change appropriately with time and cover more
917 environments, would provide both infrastructure and hypothesis testing, and could be nimble and
918 inviting for more groups to participate.

919 In this regard, it makes sense if for the hubs were to be located in settings of broad interest
920 from a scientific and societal point of view. For example, an urban CZO could be considered.
921 Alternately (or in addition), the hubs could be located to test specific hypotheses about critical
922 zone structure and controls across gradients of attributes such as . Such gradients could include
923 climate or lithology-tectonic activity or disturbance. Hubs might be chosen for their strategic and
924 scientific importance. Hubs would presumably also be chosen in recognition of the needs of
925 human resources for education and outreach, and for of the need for both applied and curiosity-
926 driven science. The potential use of hubs as attractors for students and scientists and platforms
927 for increasing diversity in the Earth and environmental sciences would need to be stressed.

928

929 9–10 Conclusions

930 We now recognize the critical zone as an entity composed of very intriguing co-evolving
931 systems that create a the remarkable structured dynamic skin of the Earth. We are seeing the first
932 maps of this structure as they emerge and we are discovering how the structure influences water
933 resources and hydrologic processes, vegetation, ecosystems, erosion, biogeochemical processes,
934 and even regional climate. Surface and deep processes are connected. The A first set of testable
935 models has been proposed emerged and now points to specific measurement programs. -But this
936 is only the beginning. While progress has been made, the central questions remain: what
937 controls the critical zone properties and processes, how does the critical zones respond to climate
938 and land use change, and how can we use our advancing understanding to benefit societal needs?

939 These fundamental questions will require a sustained research commitment. -The critical zone is
940 a frontier area of science where only the first observations have been obtained. New methods,
941 instrumentation, and theory are needed to lay a foundation for continue to grow -convergent
942 understanding.

943 Here we suggestFuture research in critical zone science in future research may will be
944 best advanced through a combination of distributed long-term observatories strongly coupled
945 with focused. campaign-style focused investigations. -These field-campaigns would target new
946 sites that might radiate from the central hub observatory to test specific hypotheses and theories
947 across controlling gradients.- The observatories would focus on the necessary long-term
948 monitoring to reveal mechanisms and dynamics. -The field campaigns would collect data over
949 shorter periods.

950 The decision by the US National Science Foundation to support a network of Critical
951 Zone Observatories since 2007 has laid the foundation of for a new discipline of critical zone
952 science that has driven the convergence of individual scientific disciplines since 2007. -Former
953 graduate students supported at the CZOs are now taking up faculty posts and rapidly introducing
954 new courses that span the many disciplines needed to reveal critical zone workings. Another The
955 next generation is in the making. -Findings from the CZOs are being absorbed by agencies and
956 put to practice. -The power of the critical zone concept has spread across the globe and
957 stimulated the building of numerous critical zone observatories. -We are seeing just the
958 beginning and it is time for the next chapter.

959

960 **Acknowledgements.** We acknowledge the help of S. Sharkey (funded by the CZO Science Across
961 Virtual Institutes Project-National Office), T. Bernier, and D. Lambert, and funding from NSF
962 grants EAR 13-31726 to S.L. Brantley, EAR 13-31906 to P. Kumar, EAR 13-31872 to K. Lohse,
963 EAR 13-31846 to Richter, D., EAR 13-31408 to J. Chorover, EAR13-31828 to S.P. Anderson,
964 EAR 14-45246 to T. White, EARICER-13-31841 to W.H. McDowell, and EAR13-31940 to W.E.
965 Dietrich. The manuscript benefitted from reviews by J. Tunnicliffe and an anonymous reviewer,
966 and comments from K. Bishop, P. Schroeder, and E. Bui and editorial handling by J.M. Turowski.

967

← Formatted: Left

968 Table 1. Metrics enumerating the U.S. CZO experiment

969	CZOs in the United States	9
970	CZOs worldwide	45*
971	Countries with interdisciplinary field observatories hosting CZ science**	25
972	Papers citing critical zone in keyword WOS as of 2017 [#]	926
973	Papers listing critical zone in title in WOS as of 2017	242
974	Post-doctoral students educated at CZOs in 2015	39
975	Graduate students educated at CZOs in 2015	186
976	Undergraduate students educated at CZOs in 2015	106

977

978 *Includes Germany (TERENO), France (RBV/CRITEX), UK, and China

979 **Giardano and Houser (2015)

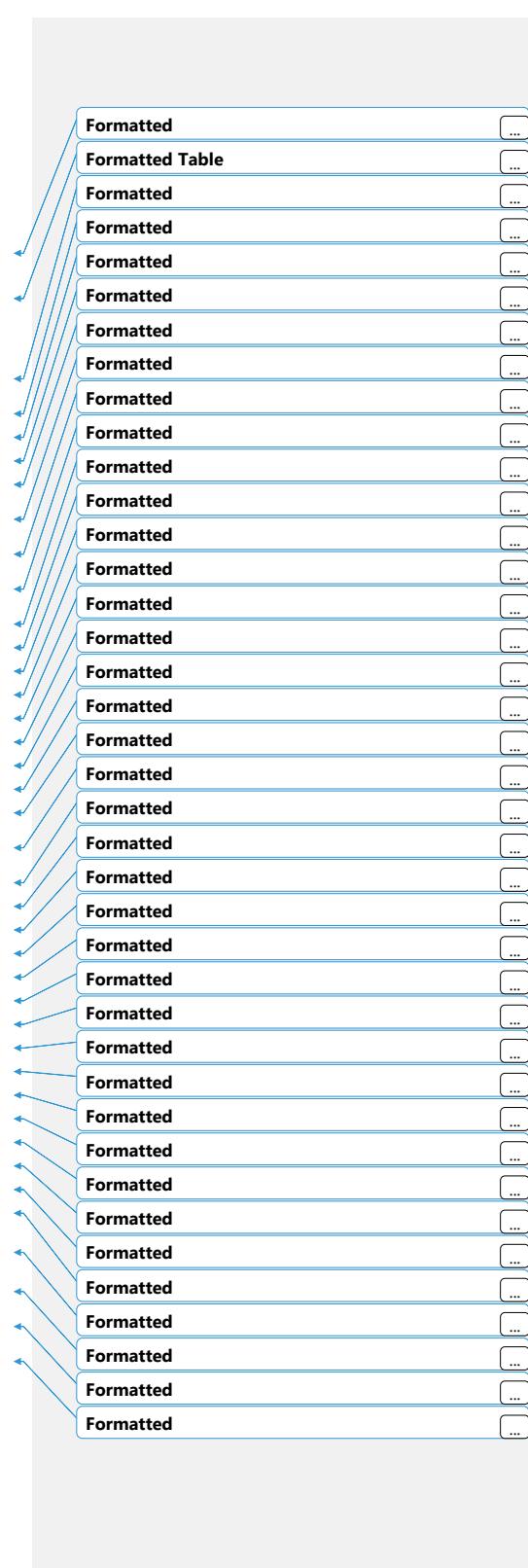
980 #Papers returned through searching Web of Science (WOS) as of 05/28/2017 that include “critical zone”
981 in title or key word or abstract etc. (not including abstracts for meetings)

982

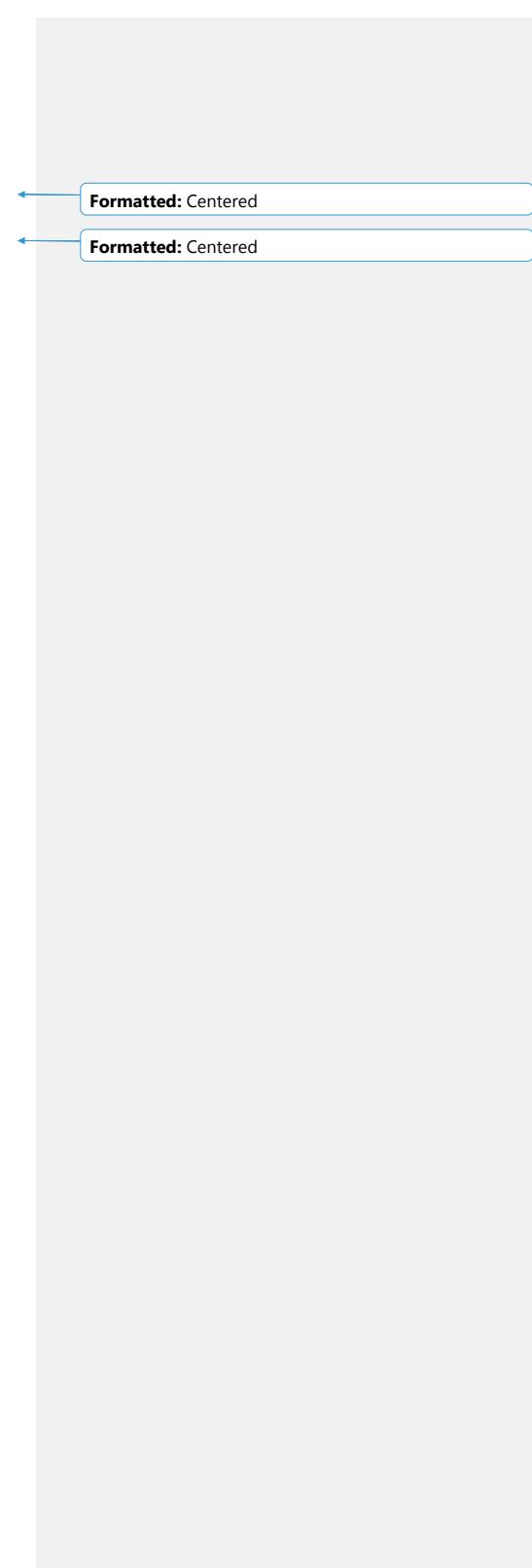
983
984
985
986

Table 2. Common measurements made at the CZO network in the U.S.A.

Critical Zone Observatory – Measurement Type	Boulder Creek	Cal-houn	Catalina-Jemez	Eel River	Intensively Managed Landscapes	Luquillo	Reynolds Creek	Susque ^{hanna} Shale Hills	S. Sierra
Land-Atmosphere Exchange									
LIDAR	X	X	X	X	X	X	Y,Z	X	X,Y
Eddy flux	Y	Z	X		X,Y,Z		Y	X	X,Y,Z
Wind speed and direction	X	Z	X	X	X,Y	Y	Y	X	X
Precipitation and throughfall	X	X,Z	X	X	X,Y	Y	Y	X	X,Y
Wet deposition and bulk deposition	X	Z	X		Y	Y	Y	x	X,Y
Snowpack distribution and duration	X		X						X
Vegetation and Microbiota									
Structure and function above and below biomass	X	X	X	X	X	Y	Y,Z	X	X,Y
Microbial composition ^{above and below ground}	X	X	X	X	X	Y	X	<u>X</u>	X
ET-species composition and structure relationships	Y	Z	X	Y	Y		Y,Z	X	X
Soil (Vadose Zone)									
Solid - elemental composition and mineralogy	X	X	X	X	X	X	Z	X	X,Y
Solid - texture and physical characterization	X	X	X	X	X	X	Z	X	X,Y
Solid – organic matter content	X	X	X	X	X	X	Z	X	X
Solid – radiogenic isotope composition	X	X	X		X	X		X	X,Z
Fluid – soil moisture (sensors)	X	X	X	X	X	X	Y,Z	X	X
Fluid – soil temperature (sensors)	X	X	X	X	X	X	Y,Z	X	X
Fluid – soil solution chemistry (samplers)	X	Z	X		X	X		X	X,Y
Fluid – soil gas chemistry (samplers/sensors)		X	X	X		X,Y	Z	X	X
Saprolite and Bedrock (Saturated Zone)									
Solid – petrology and mineralogy	X	X	X	X	Y	X	Z	X	X,Z
Solid – elemental composition and OM content	X	X	X	X	X	X	Z	X	X,Z
Solid – texture, physical/architectural constraints	X	X	X	X	X	X	Z	X	X
Fluid – potentiometric head, temperature (sensors)	X	X	X	X	X	X	Y	X	X
Fluid – groundwater chemistry (samplers/sensors)	X	X	X	X	X	X	Y	X	X
Fluid – saprolite/weathered bedrock gas chemistry		X	Z	X				<u>X</u>	
Geophysical surveys – depth to bedrock	X	X	X		X	X		X	X
Surface Water									
Instantaneous discharge	X	X	X	X	X,Y	X,Y,Z	Y	X	X,Y
Stable isotopes of water	X	X	X		X	X		X	X
Stream water chemistry (samplers/sensors)	X	X	X	X	X	X,Y,Z	Z	X	X,Y
Sediments (samplers/sensors)	X	X	X	X	X	X,Y,Z	Y,Z	X	Y,X
Extent of wetted channel				X					Y,X
Aquatic biota (invertebrates, fish, etc.)				X		Y			Y
Age or rate constraints									
Cosmogenic radionuclides	X	X	X			X		<u>X</u>	X
¹⁴ C ages	X	X	X			X		<u>X</u>	
Optical Stimulated Luminescence ages	X								


Formatted Table

987
988
989
x: instrumentation in place or sampling is occurring, owned and operated by the CZO; y indicates instrumentation is currently in place, owned and operated by a partner of the CZO; z indicates that it is planned to be installed or implemented in the future by the CZO


Formatted: Font: 9 pt

991 Table 3: Models used by the U.S. CZOs (observatory abbreviations in Fig. 2)

Model name	Systems modeled	Future Possible X-CZO application?	CZOs using model
PIHM	Hydrology	Possible	CR, SH, CL
Flux-PIHM	Hydrology, land/atmosphere	Possible	SH
tRIBS	Hydrology		LQ, CL
hsB-SM	Hydrology		CJ
VS2D	Unsaturated hydrology		BC
Dhara	Near surface critical zone	Possible	IML, SH
Optimal sensing	Soil moisture		CL
Hydropedo Toolbox (Matlab)	Soil moisture		SH
OTIS	Streambed hydrologic exchange		SH
Alpine glaciers 1&2d	Ice motion		BC
Fluid exchange model	Estuary fluid flux		CR
PHREEQC	Aqueous geochemistry		LQ
WITCH	Weathering	Possible	SH, CL
ROMS	Ocean		EL
WRF	Weather forecasting		EL, RC
ISNOBAL	Snowcover mass		RC, SS
SHAW	Heat and Water fluxes		RC
CHILD	Erosion, sediment transport, surface evolution	Possible	BC, CL
SOrCERO	Erosion and deposition		CL
Digital glacier bed	Elevation of glacier bed		BC
Gully Erosion Profiler	Channel profile evolution		BC
Hillslope Trajectory	Erosion		BC
Range and Basin	Mountain evolution		BC
Landlab	General 2d models		BC
FEMDOC-2D	Hillslope DOC transport		CR
IDOCM_1D	Heat and DOC in soils		CR
CENTURY	Soil carbon		LQ
CN reforest dynamics	Tree/soil C and N		CL
BIOME BGC	Carbon		SH, RC
Plant-soil feedback	Plant-soil, soil production		CL
Root deformation	Soil deformation from roots		BC
GASH	ET and throughfall		LQ
NPZD	Ecosystem		EL
PIHMSed	Hydrology, Water/-sediment transport, uplift, weathering	Possible	SH
PIHM-DOC	Hydrology, dissolved organic carbon		CR, SH
TIMS	Hydrology, [±] microbial, _± geochemical, _± geomorph- _± ecology	Possible	CJ
RHESSys	Hydrology, ecology	Possible	SS

AWESOM	Atmosphere/ Watershed / watershed / Ecology / ecology / Stream - stream and/ Ocean - ocean Model	Possible	EL
tRIBS-ECO	Hydrology, erosion, soil C		CL
WEPP/CENTURY-WEPP/WEPP-Rill1D(3ST1D)	Soil erosion, biogeochemistry	X	IML
OpenFOAM/BioChemFOAM	Riverine transport	X	IML
CRUNCH	Reactive transport	X	SH , IML , EL
Delft3D	Surface/subsurface transport	X	EL
Nays2D	Flood	X	IML
992	WEPP/CENTURY-WEPP/WEPP-Rill1D(3ST1D)	Soil erosion, biogeochemistry	Possible IML
993	OpenFOAM/BioChemFOAM	Riverine transport	Possible IML
994	CRUNCH	Reactive Transport	Possible SH/IML/EL
995	Delft3D	Surface/sub-surface transport	Possible EL
996	Nays2D	Flood	Possible IML
997			
998			

999 Table 4. A few emergent hypotheses from the CZO network

1000 1) CZ architecture controls hydrologic and geochemical processes that drive concentration-
1001 discharge relationships in rivers.

1002 2) The depth to fresh bedrock across uplands landscapes may be predictable from models that
1003 account for regional stress fields, advancing chemical reaction fronts, drainage of the fresh
1004 bedrock, and/or fracturing from freeze-thaw.

1005 3) Aspect differences can be used to reveal the mechanisms and effects of climate on the CZ.

1006 4) The deep microbial community is linked to overlying vegetation: microbial community is
1007 distinctly different under agriculture fields, brush, grassland, perennial forest and deciduous
1008 forest.

1009 5) The deep microbial community is linked to lithology: the microbial community is distinctly
1010 different on granite, basalt, shale, and sandstone.

1011 6) The deep architecture of the Critical Zone controls water availability to plants and microbial
1012 communities, which in turn influence regional climates.

1013 7) Subsurface reaction fronts may sometimes often be used to map flow paths in the subsurface.

1014 8) Human impact in intensively managed landscapes has resulted in a critical transition that has
1015 changed the landscape from primarily a transformation-dominated system characterized by long
1016 residence times of water, carbon, and nutrients, to a transport-dominated system characterized by
1017 fast movement of water, sediment, carbon, and nutrients through the landscape into receiving
1018 water bodies.

1019

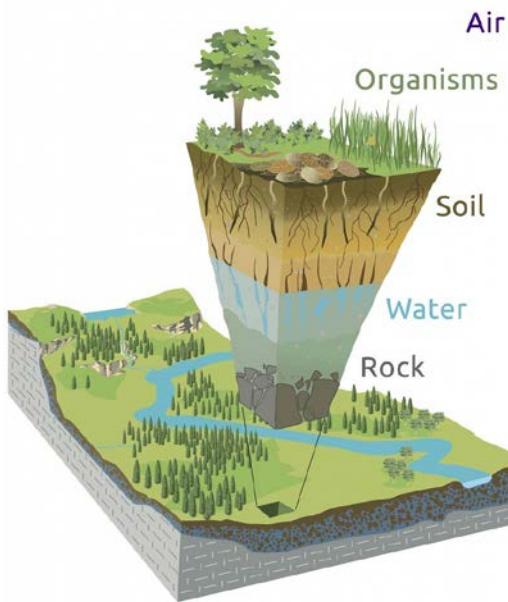


Figure 1. Understanding the critical zone requires harnessing insight from many disciplines on processes and fluxes from the top of the vegetation canopy down into groundwater, at all spatial scales, across timescales from milliseconds to millennia. Figure reproduced from [Anderson Chorover et al. \(2004\)](#), after an original drawing artwork by R. Kindlimann.

← Formatted: Left

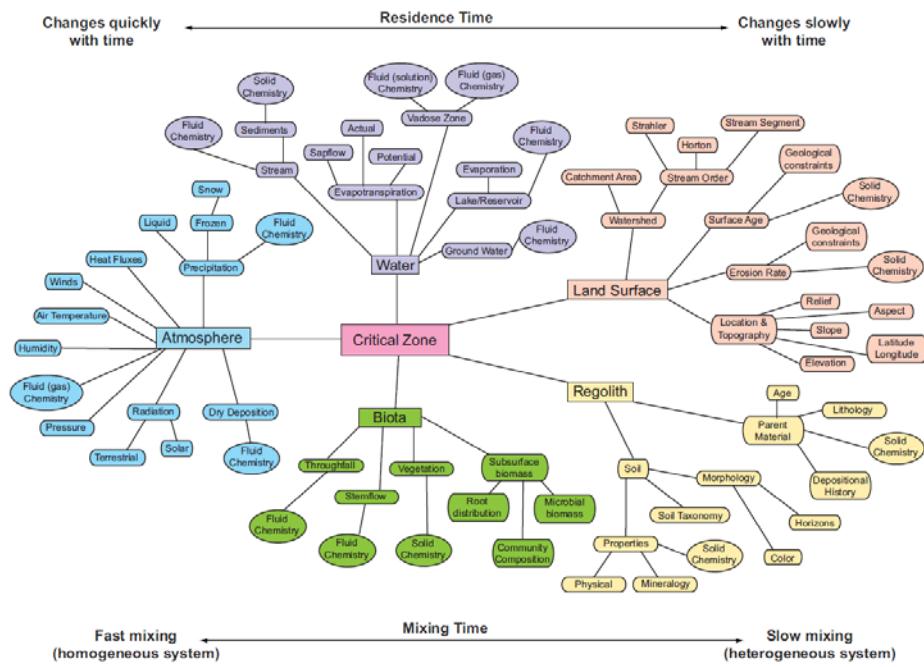


Figure 2. The current network of ~~9~~^{nine} Critical Zone Observatories funded in the United States to investigate all aspects of the critical zone. Abbreviations used in Table 2: Eel River (ER), Southern Sierra (SS), Jemez Catalina (JC), Boulder Creek (BC), Reynolds Creek (RC), Intensively Managed Landscapes (IML), Susquehanna Shale Hills (SH), Calhoun (CL), Luquillo (L).

Figure 3. Location map of the 45 CZO locations in the U.S., Germany (TERENO), France (RBV/CRITEX), UK, and China [that have been registered on Site Seeker](#) (http://www.czen.org/site_seeker). The sites outside of Europe that are not in China are all operated by the French RBV/CRITEX program.

Formatted: Not Highlight

Figure 4. A schematic diagram showing some of the major entities that can be measured as part of the critical zone. The colors code entries related to the atmosphere (aqua), water (indigo), land surface features (beige), regolith (yellow), and biota (green). As shown by arrows, the entities are organized on the diagram from short to long residence times (left to right respectively), and these correlate with generally fast to slow mixing times respectively. Reproduced with permission from Niu et al. (2014).

1034

1035

1036

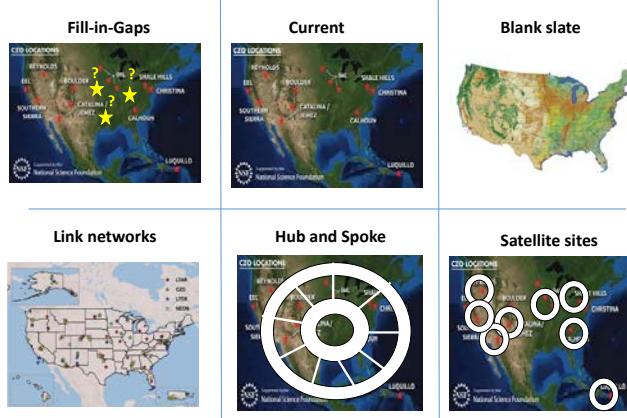


Figure 45. Possible configurations of a future CZO network discussed in the text. The most effective topology is likely to be a combination of the observatory framework with smaller campaign-style science as discussed in the text, i.e., a “hubs-and-campaign” strategy.

1037 References

1038

1039 Anderson, S. P., Blum, J., Brantley, S. L., Chadwick, O., Chorover, J., Derry, L. A., Drever,
1040 J. I., Hering, J. G., Kirchner, J. W., Kump, L. R., Richter, D., White, A. F.: Proposed initiative would
1041 study Earth's weathering engine, *EOS, Transactions of the American Geophysical Union*, 85,
1042 265-269, 2004.

1043

1044 Anderson, S. W., Anderson, S. P., and Anderson, R. S.: Exhumation by debris flows in the 2013
1045 Colorado Front Range storm, *Geology*, 43, 391-394, 2015.

1046

1047 Bales, R. C., Hopmans, J. W., O'Geen, A. T., Meadows, M., Hartsough, P. C., Kirchner, P.,
1048 Hunsaker, C. T., and Beaudette, D.: Soil moisture response to snowmelt and rainfall in a Sierra
1049 Nevada mixed-conifer forest, *Vadose Zone Journal*, 10, 786-799, 2011.

1050

1051 Banks, E. W., Simmons, C. T., Love, A. J., Cranswick, R., Werner, A. D., Bestland, E. A.,
1052 Wood, M., and Wilson, T.: Fractured bedrock and saprolite hydrogeologic controls on
1053 groundwater/surface-water interaction: A conceptual model (Australia), *Hydrogeology Journal*,
1054 17, 1969-1989, 2009.

1055

1056 Banwart, S., Bernasconi, S. M., Bloem, J., Blum, W., Brandao, M., Brantley, S. L., Chabaux, F.,
1057 Duffy, C. J., Kram, P., Lair, G., Lundin, L., Nikolaidis, N., Novak, M., Panagos, P.,
1058 Ragnarsdottir, K. V., Reynolds, B., Rousseva, S., de Ruiter, P., van Gaans, P., van Riemsdijk,
1059 W., White, T. S., and Zhang, B.: Soil processes and functions in Critical Zone Observatories:
1060 Hypotheses and experimental design., *Vadose Zone Journal Special Section: Critical Zone*
1061 *Observatories* 10, 974-987, 2011.

1062

1063 Banwart, S., Menon, M., Bernasconi, S. M., Bloem, J., Blum, W. E. H., Souza, D. M. d.,
1064 Davidsdotir, B., Duffy, C., Lair, G. J., Kram, P., Lamacova, A., Lundin, L., Nikolaidis, N. P.,
1065 Novak, M., Panagos, P., Ragnarsdottir, K. V., Reynolds, B., Robinson, D., Rousseva, S., de
1066 Ruiter, P., van Gaans, P., Weng, L., White, T., and Zhang, B.: Soil processes and functions
1067 across an international network of Critical Zone Observatories: Introduction to experimental
1068 methods and initial results, *Comptes Rendus Geoscience*, 344, 758-772, 2012.

1069

1070 Befus, K. M., Sheehan, A. F., Leopold, M., Anderson, S. P., and Anderson, R. S.: Seismic
1071 constraints on critical zone architecture, *Boulder Creek Watershed, Colorado, Vadose Zone*
1072 *Journal* 10, 915-927, doi:910.2136/vzj2010.0108, 2011.

1073

1074 Berner, R. A.: Jacques-Joseph Ebelmen, the founder of earth system science, *Comptes Rendus*
1075 *Geoscience*, 344, 544-548, 2012.

1077 Bormann, F. H. and Likens, G. E.: Pattern and process in a forested ecosystem: disturbance,
1078 development, and the steady state based on the Hubbard Brook ecosystem study, Springer-
1079 Verlag, New York, 1979.

1080

1081 Brantley, S. L., DiBiase, R. A., Russo, T. A., Shi, Y., Lin, H., Davis, K. J., Kaye, M., Hill, L.,
1082 Kaye, J., Eissenstat, D. M., Hoagland, B., Dere, A. L., Neal, A. L., Brubaker, K. M., and Arthur,
1083 D. K.: Designing a suite of measurements to understand the critical zone, *Earth Surface
1084 Dynamics*, 4, 1-25; doi:10.5194/esurf-5194-5191-2016, 2016.

1085

1086 Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan,
1087 D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J.,
1088 and Weathers, K. C.: Reviews and syntheses: On the roles tree roots and mycorrhizal fungi play
1089 in building and plumbing the Critical Zone, *Biogeosciences*, 2017, in press. 2017, in press.

1090

1091 Brantley, S. L., Holleran, M. E., Jin, L., and Bazilevskaya, E.: Probing deep weathering in the
1092 Shale Hills Critical Zone Observatory, Pennsylvania (U.S.A.): the hypothesis of nested chemical
1093 reaction fronts in the subsurface, *Earth Surface Processes and Landforms*, doi:10.1002/esp.3415,
1094 2013.

1095

1096 Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P. L., and Stinchcomb,
1097 G.: Toward a conceptual model relating chemical reaction fronts to water flow paths in hills,
1098 *Geomorphology*, 277, 100-117, doi.org/110.1016/j.geomorph.2016.1009.1027, 2017.

1099

1100 Brantley, S. L., White, T. S., White, A. F., Sparks, D., Richter, D., Pregitzer, K., Derry, L.,
1101 Chorover, J., Chadwick, O., April, R., Anderson, S., and Amundson, R.: *Frontiers in Exploration
1102 of the Critical Zone: Report of a workshop sponsored by the NSF Newark, DE*, 30 pp., 2006.

1103

1104 Bui, E. N.: Data-driven Critical Zone science: A new paradigm, *Science of the Total
1105 Environment*, 568, 587-593, 2016.

1106

1107 Callahan, J. T.: Long-term ecological research, *BioScience*, 34, 363-367, 1984.

1108

1109 CFIR CSEPP: Facilitating interdisciplinary science, Committee Facilitating Interdisciplinary
1110 Research and Committee on Science Engineering and Public Policy, The National Academies
1111 Press, Washington, D.C. , 2005.

1112

1113 Chen, X., Kumar, M., Mau, Y., and Richter, D. d.: Impact of gully incision on hillslope
1114 hydrology, *Water Resources Research*, 2017, in press.

1115

1116 Chorover, J., Kretzschmar, R., Garcia-Pichel, F., and Sparks, D. L.: Soil biogeochemical
1117 processes within the Critical Zone, *Elements*, 3, 321-326, 2007.

1118

1119 Chorover, J., McDowell, W. H., and Derry, L. A.: Concentration-discharge relations in the
1120 critical zone: Implications for resolving critical zone structure, function and evolution, Water
1121 Resources Research, 2017, in press.

1122

1123 Chorover, J., Troch, P. A., Rasmussen, C., Brooks, P. D., Pelletier, J. D., Breshears, D. D.,
1124 Huxman, T. E., Kurc, S. A., Lohse, K. A., McIntosh, J. C., Meixner, T., Schaap, M. G., Litvak,
1125 M. E., Perdrial, J., Harpold, A., and Durcik, M.: How water, carbon, and energy drive landscape
1126 evolution and surface water dynamics: The Jemez River Basin – Santa Catalina Mountains
1127 Critical Zone Observatory, Vadose Zone J., Special Issue on the Critical Zone, 10, 884-889,
1128 doi:810.2136/vzj2010.0132, 2011.

1129

1130 Cobb, E. D. and Biesecker, J. E.: The National Hydrologic Bench-Mark Network, U.S.
1131 Geological Survey Circular 460-D, 1971.

1132

1133 Committee on New Research Opportunities in the Earth Sciences at the National Science
1134 Foundation: New research opportunities in Earth Sciences, National Research Council, National
1135 Academies Press, 2012.

1136

1137 Dodds, W. K. and al., e.: Surprises and insights from long-term aquatic data sets and
1138 experiments, BioScience, 62, 709-721, 2012.

1139

1140 Druhan, J. L., Fernandez, N. M., Wang, J., Dietrich, W. E., and Rempe, D.: Seasonal shifts in the
1141 solute ion ratios of vadose zone rock moisture from the EEL River Critical Zone Observatory,
1142 Acta Geochimica doi: 10.1007/s11631-017-0169-z, 2017.

1143

1144 Duffy, C., Shi, Y., Davis, K., Slingerland, R., Li, L., Sullivan, P. L., Godderis, Y., and Brantley,
1145 S. L.: Designing a suite of models to explore critical zone function, Procedia Earth and Planetary
1146 Science, 2014. 7-15, doi: 10.1016/j.proeps.2014.1008.1003, 2014.

1147

1148 Easterling, W. E.: Climate change and the adequacy of food and timber in the 21st century,
1149 Proceedings of the National Academy of Sciences of the United States of America, 104, 19679-
1150 19679, 2007.

1151

1152 Ebel, B. A., Rengers, F. K., and Tucker, G. E.: Aspect-dependent soil saturation and insight into
1153 debris-flow initiation during extreme rainfall in the Colorado Front Range, Geology, 43, 659-
1154 662, 2015.

1155

1156 Enslin, C., Godsey, S., Marks, D. G., Kormos, P. R., Seyfried, M. S., Link, T., and McNamara, J.:
1157 Data set: A modeling dataset that spans the rain - snow transition zone: Johnston Draw

1158 catchment, Reynolds Creek Experimental Watershed, Idaho, USA. Ag Data Commons, USDA
1159 National Agricultural Library, <http://dx.doi.org/10.15482/USDA.ADC/1258769>, 2016.
1160

1161 Fetter, C. W.: *Applied Hydrogeology*, Prentice Hall, Upper Saddle River, New Jersey (U.S.A.),
1162 2001.
1163

1164 Fierer, N., Schimel, J. P., and Holden, P. A.: Variations in microbial community composition
1165 through two soil depth profiles, *Soil Biology and Biochemistry*, 35, 167-176, 2003.
1166

1167 Forbes, S. T.: The lake as a microcosm, *Bulletin Peoria (Illinois) Scientific Association*, 1887.
1168 77-87, 1887.
1169

1170 Foster, M. A. and Anderson, R. S.: Assessing the effect of a major storm on ^{10}Be concentrations
1171 and inferred basin-averaged denudation rates, *Quaternary Geochronology*, 34, 58-68, 2016.
1172

1173 Giardino, J. R. and Houser, C.: *Principles and Dynamics of the Critical Zone*, Elsevier Press,
1174 2015.
1175

1176 Gochis, D., Schumacher, R., Friedrich, K., Doesken, N., Kelsch, M., Sun, J., Ikeda, K., Lindsey,
1177 D., Wood, A., Dolan, B., Matrosov, S., Newman, A., Mahoney, K., Rutledge, S., Johnson, R.,
1178 Kucera, P., Kennedy, P., Sempere-Torres, D., Steiner, M., Roberts, R., Wilson, J., Yu, W.,
1179 Chandrasekar, V., Rasmussen, R., Anderson, A., and Brown, B.: The Great Colorado Flood of
1180 September 2013, *Bulletin of the American Meteorological Society*, 96, 1461-1487,
1181 doi:10.1175/BAMS-D-1413.00241.00241, 2015.
1182

1183 Godsey, S. E., Kirchner, J. W., and Clow, D. W.: Concentration-discharge relationships reflect
1184 chemostatic characteristics of US catchments, *Hydrological Processes*, 23, 1844-1864,
1185 doi:10.1002/hyp.7315, 2009.
1186

1187 Golz, H. L., Marinelli, R., and Taylor, P. R.: Reflections on LTER from NSF Program Director's
1188 Perspectives. In: *Long-Term Ecological Research, Changing the Nature of Scientists*, Willig, M.
1189 R. and Walker, L. R. (Eds.), Oxford University Press, 2016.
1190

1191 Goulden, M. L. and Bales, R. C.: Mountain runoff vulnerability to increased evapotranspiration
1192 with vegetation expansion, *Proceedings of the National Academy of Sciences*, 111, 14071-
1193 14075, 2014.
1194

1195 Goulden, M. L., Bales, R. C., Kelly, A. E., Meadows, M., and Winston, G. C.:
1196 Evapotranspiration along an elevation gradient in California's Sierra Nevada, *Journal of
1197 Geophysical Research: Biogeosciences*, 117, 2012.
1198

1199 Harpold, A. A., Biederman, J. A., Condon, K., Merino, M., Korgaonkar, Y., Nan, T., Sloat, L. L.,
1200 Ross, M., and Brooks, P. D.: Changes in snow accumulation and ablation following the Las
1201 Conchas Forest Fire, New Mexico, USA, *Ecohydrology*, 7, 440-452, 2014.
1202

1203 Hinckley, E.-L., Anderson, S. P., Baron, J. S., Blanken, P. D., Bonan, G. B., Bowman, W. D.,
1204 Elmendorf, S. C., Fierer, N., Fox, A. M., Goodman, K. J., Jones, K. D., Lombardozzi, D. L.,
1205 Lunch, C. K., Neff, J. C., Sanclements, M. D., Suding, K. N., and Wieder, W. R.: Optimizing
1206 available network resources to address questions in environmental biogeochemistry, *BioScience*,
1207 2016. 2016.
1208

1209 Holbrook, W. S., Riebe, C. S., Elwaseif, M., Hayes, J. L., Basler-Reeder, K., Harry, D. L.,
1210 Malazian, A., Dosseto, A., Hartsough, P. C., and Hopmans, J. W.: Geophysical constraints on
1211 deep weathering and water storage potential in the Southern Sierra Critical Zone Observatory,
1212 *Earth Surface Processes and Landforms*, 39, 366-380, doi:10.1002/esp.3502, 2014.
1213

1214 Horsbaugh, J. S., Tarboton, D. G., Maidment, D. R., and Zaslavsky, I.: A relational model for
1215 environmental and water resources data, *Water Resources Research*, 44, W05406,
1216 <http://dx.doi.org/10.1029/02007WR006392>, 2008.
1217

1218 Hynek, S., Comas, X., and Brantley, S. L.: The effect of fractures on weathering of igneous and
1219 volcaniclastic sedimentary rocks in the Puerto Rican tropical rain forest, *Procedia Earth and*
1220 *Planetary Science*, 2016. 2016.
1221

1222 Kerkez, B., Glaser, S. D., Bales, R. C., and Meadows, M. W.: Design and performance of a
1223 wireless sensor network for catchment-scale snow and soil moisture measurements, *Water*
1224 *Resources Research*, 48, W09515, 2012.
1225

1226 Kirchner, J. W.: A double paradox in catchment hydrology and geochemistry, *Hydrological*
1227 *Processes*, 17, 871-874, 2003.
1228

1229 Klein, T. I., Anderson, S. P., Murphy, S. F., Ross, M., Hammack, G., and Anderson, R. S.: High-
1230 intensity rain storm connects hillslopes to channels in a steep semi-arid catchment, AGU
1231 Chapman Conference on Extreme Climate Events on Aquatic Biogeochemical Cycles and
1232 Fluxes, San Juan, Puerto Rico, 2017.
1233

1234 Kormos, P. R., Marks, D. G., Seyfried, M. S., Havens, S. C., Hedrick, A., Lohse, K., Masarik,
1235 M., and Flores, A.: Data set: 31 years of spatially distributed air temperature, humidity,
1236 precipitation amount and precipitation phase from a mountain catchment in the rain-snow
1237 transition zone. Boise State University, Reynolds Creek Critical Zone Observatory.
1238 <http://doi.org/10.18122/B2B59V>, 2016.
1239

1240 Larsen, L., Hajek, E., Maher, K., Paola, C., Merritts, D., Bralower, T., Montanez, I., Wing, S.,
1241 Snyder, N., Hochella, M., Kump, L., and Person, M.: Taking the pulse of the Earth's surface
1242 systems, EOS, 96, doi:10.1029/2015EO040525, 2015.
1243

1244 Latour, B.: Some advantages of the notion of "Critical Zone" for geopolitics, Procedia Earth and
1245 Planetary Science, 10, 3-6, 2014.
1246

1247 Le, P. V. V. and Kumar, P.: Interaction between ecohydrologic dynamics and microtopographic
1248 variability under climate change, Water Resources Research, 2017.
1249 doi:10.1002/2017WR020377, 2017.
1250

1251 Le, P. V. V., Kumar, P., Valocchi, A., and Dang, V. H.: GPU-based high-performance
1252 computing for surface – sub-surface conjunctive flow modeling, Env. Modeling and Software,
1253 73, 1-13, doi:10.1016/j.envsoft.2015.1007.1015, 2015.
1254

1255 Lebedeva, M. and Brantley, S. L.: Exploring geochemical controls on weathering and erosion of
1256 convex hillslopes: beyond the empirical regolith production function, Earth Surface Processes
1257 and Landforms, 2013. 1793-1807, doi: 1710.1002/esp.3424, 2013.
1258

1259 Leopold, L. B.: A National Network of Hydrologic Bench Marks, USGS Circular 460-B, U.S.
1260 Geological Survey, Department of the Interior, Washington D.C., 1962.
1261

1262 Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial,
1263 J., Sullivan, P., Thompson, A., Jin, L. X., Bolton, E. W., Brantley, S. L., Dietrich, W. E., Mayer,
1264 K. U., Steefel, C. I., Valocchi, A., Zachara, J., Kocar, B., McIntosh, J., Tutolo, B. M., Kumar,
1265 M., Sonnenthal, E., Bao, C., and Beisman, J.: Expanding the role of reactive transport models in
1266 critical zone processes, Earth-Sci. Rev., 165, 280-301, 2017.
1267

1268 Loescher, H. W., Kelly, E. f., and Lea, R.: National Ecological Observatory Network:
1269 Beginnings, Programmatic and Scientific Challenges, and Ecological Forecasting. In: Terrestrial
1270 Ecosystem Research Infrastructures: Challenges and Opportunities, Chabbi, A. and Loescher, H.
1271 W. (Eds.), CRC Press, Boca Raton, FL, 2017.
1272

1273 Lugo, A. E., Swanson, F. J., and Gonzalez, O. R.: Long-term research at the USDA Forest
1274 Service's experimental forests and ranges, BioScience, 56, 39-48, 2006.
1275

1276 Mast, M. A.: Evaluation of stream chemistry trends in US Geological Survey reference
1277 watersheds, 1970–2010, Environmental Monitoring and Assessment, 185, 9343-9359, 2013.
1278

1279 McHale, M. R., Siemion, J., Lawrence, G. B., and Mast, M. A.: Long-term Soil Monitoring at
1280 U.S. Geological Survey Reference Watersheds, U.S. Geological Survey Fact Sheet, 2014. 2 p,
1281 2014.

1282

1283 Millennium Ecosystem Assessment Board: Living Beyond our Means: Natural Assets and Human
1284 Well-Being, 2005.

1285

1286 Miller, M. P., Boyer, E. W., McKnight, D. M., Brown, M. G., Gabor, R. S., Hunsaker, C. T.,
1287 Iavorivska, L., Inamdar, S., Johnson, D. W., Kaplan, L. A., Lin, H., McDowell, W. H., and
1288 Perdrial, J. N.: Variation of organic matter quantity and quality in streams at Critical Zone
1289 Observatory watersheds Water Resources Research 52, 8202-8216, 2016.

1290

1291 Mobley, M. L., Lajtha, K., Kramer, M. G., Bacon, A. R., Heine, P. R., and Richter, D. d.:
1292 Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest
1293 development, Global Change Biology, 21, 986-996, 2015.

1294

1295 Murphy, S. F., McCleskey, R. B., and Writer, J. W.: Effects of flow regime on stream turbidity
1296 and suspended solids after wildfire, Colorado Front Range, Banff, Canada, June 11-14, 2012
1297 2012, 354.

1298

1299 Navarre-Sitchler, A., Cole, D. R., Rother, G., Jin, L., Buss, H. L., and Brantley, S. L.: Porosity
1300 and surface area evolution during weathering of two igneous rocks, Geochimica Cosmochimica
1301 Acta, 109, 400-413, doi.org/10.1016/j.gca.2013.1002.1012, 2013.

1302

1303 Niu, G.-Y., Paniconi, C., Troch, P. A., Scott, R. L., Durcik, M., Zeng, X., Huxman, T., and
1304 Goodrich, D. C.: An integrated modelling framework of catchment-scale ecohydrological
1305 processes: 1. Model description and tests over an energy-limited watershed, Ecohydrology, 2014.
1306 DOI: 10.1002/eco.1362, 2014.

1307

1308 Olyphant, J., Pelletier, J. D., and Johnson, R.: Topographic correlations with soil and regolith
1309 thickness from shallow-seismic refraction constraints across upland hillslopes in the Valles
1310 Caldera, New Mexico, Earth Surface Processes and Landforms, 41, 1684–1696, 2016.

1311

1312 Orlando, J., Comas, X., Hynek, S., Buss, H. L., and Brantley, S. L.: Architecture of the deep
1313 critical zone in the Rio Icacos watershed (Luquillo Critical Zone Observatory, Puerto Rico)
1314 inferred from drilling and ground penetrating radar (GPR), Earth Surface Processes and
1315 Landforms, 2015. doi:10.1002/esp.3948, 2015.

1316

1317 Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F.,
1318 Hedrick, A., Joyce, M., Laidlaw, R., Marks, D., Mattmann, C., McGurk, B., Ramirez, P.,
1319 Richardson, M., Skiles, S. M., Seidel, F. C., and Winstral, A.: The Airborne Snow Observatory:

1320 Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping
1321 snow water equivalent and snow albedo, *Remote Sens. Environ.*, 184, 139-152, 2016.
1322

1323 Papanicolaou, A. N., Wacha, K. M., Abban, B. K., Wilson, C. G., Hatfield, J., Stanier, C., and
1324 Filley, T.: From soilscapes to landscapes: A landscape-oriented approach to simulate soil organic
1325 carbon dynamics in intensively managed landscapes, *Journal of Geophysical Research: Biogeosciences*, 2015. DOI: 10.1002/2015JG003078, 2015.
1326

1327

1328 Pelletier, J. D., Barron-Gafford, G. A., Gutierrez-Jurado, H., Hinckley, E.-L. S., Istanbulluoglu, E., McGuire, L. A., Niu, G.-Y., Poulos, M. J., Rasmussen, C., Richardson, P., Swetnam, T. L., and Tucker, G. E.: Which way do you lean? Using slope aspect variations to understand Critical
1329 Zone processes and feedbacks, *Earth Surface Processes and Landforms*, 2017, in press.
1330

1331

1332

1333 Pelletier, J. D. and Orem, C. A.: How do sediment yields from post-wildfire debris-laden flows
1334 depend on terrain slope, soil burn severity class, and drainage basin area? Insights from airborne-
1335 lidar change detection, *Earth Surface Processes and Landforms*, 39, 1822-1832, 2014.
1336

1337 Phillips, C. B. and Jerolmack, D. J.: Self-organization of river channels as a critical filter on
1338 climate signals, *Science*, 352, 694-697, 2016.
1339

1340 Quijano, J., Kumar, P., and Drewry, D.: Passive Regulation of Soil Biogeochemical Cycling by
1341 Root Water Uptake, *Water Resources Research*, 49, 3729-3746, DOI: 3710.1002/wrcr.20310,
1342 22013, 2013.
1343

1344 Quijano, J. C., Kumar, P., Drewry, D. T., Goldstein, A., and Mission, L.: Competitive and
1345 Mutualistic Dependencies in Multi-Species Vegetation Dynamics Enabled by Hydraulic
1346 Redistribution, *Water Resources Research*, 48, W05518, doi:05510.01029/02011WR011416,
1347 2012.
1348

1349 Rasmussen, C., Brantley, S. L., de B. Richter, D., Blum, A. E., Dixon, J., and White, A. F.:
1350 Strong climate and tectonic control on plagioclase weathering in granitic terrain, *Earth Planetary
1351 Science Letters*, 301, 521-530, doi:510.1016/j.epsl.2010.1011.1037, 2011a.
1352

1353 Rasmussen, C., Pelletier, J. D., Troch, P. A., Swetnam, T. L., and Chorover, J.: Quantifying
1354 topographic and vegetation effects on the transfer of energy and mass to the critical zone, *Vadose
1355 Zone Journal*, 15, 1-16. doi:10.2136/vzj2014.2107.0102, 2015.
1356

1357 Rasmussen, C., Troch, P. A., Chorover, J., Brooks, P., Pelletier, J., and Huxman, T. E.: An open
1358 system framework for integrating critical zone structure and function, *Biogeochemistry*, 102, 15-
1359 29, 2011b.
1360

1361 Reale, J. K., Van Horn, D. J., Condon, K. E., and Dahm, C. N.: The effects of catastrophic
1362 wildfire on water quality along a river continuum, *Freshwater Science*, 34, 1426-1442, 2015.
1363

1364 Rempe, D. M. and Dietrich, W. E.: A bottom-up control on fresh-bedrock topography under
1365 landscapes, *Proceedings of the National Academy of Sciences of the United States of America*,
1366 111, 6576-6581, 2014.
1367

1368 Richardson, M. and Kumar, P.: Critical zone services as environmental assessment criteria in
1369 intensively managed landscapes, *Earth's Future*, 4, doi:10.1002/2016EF000517, 2017.
1370

1371 Richter, D. and Billings, S. A.: 'One physical system': Tansley's ecosystem as Earth's critical
1372 zone, *New Phytologist*, 206, 900-912, 2015.
1373

1374 Riebe, C. S., Hahm, W. J., and Brantley, S. L.: State of Science: Controls on deep critical zone
1375 architecture: a historical review and four testable hypotheses, *Earth Surface Processes and*
1376 *Landforms*, 2016. DOI: 10.1002/esp.4052, 2016.
1377

1378 Rue, G. P., Rock, N. D., Gabor, R. S., Pitlick, J., Tfaily, M., and McKnight, D. M.:
1379 Concentration-discharge relationships during an extreme event: Contrasting behavior of solutes
1380 and changes to chemical quality of dissolved organic material in the Boulder Creek Watershed
1381 during the September 2013 flood, *Water Resources Research*, doi: 10.1002/2016WR019708,
1382 2017. 2017.
1383

1384 Salve, R., Rempe, D. M., and Dietrich, W. E.: Rain, rock moisture dynamics, and the rapid
1385 response of perched groundwater in weathered, fractured argillite underlying a steep hillslope,
1386 *Water Resources Research*, 48, 25, 2012.
1387

1388 St. Clair, J., Moon, S., Holbrook, S., Perron, J. T., Riebe, C. S., Martel, S., Carr, B., Harman, C.,
1389 Singha, K., and Richter, D.: Geophysical imaging reveals topographic stress control of bedrock
1390 weathering, *Science*, 350, 534-538, doi: 510.1126/science.aab2210, 2015.
1391

1392 Sullivan, P. L., Hynek, S. A., Gu, X., Singha, K., White, T., West, N., Kim, H., Clarke, B.,
1393 Kirby, E., Duffy, C., and Brantley, S. L.: Oxidative dissolution under the channel leads
1394 geomorphological evolution at the Shale Hills catchment, *Am. J. Sci.*, 316, 981-1026, 2016.
1395

1396 Tennant, C. J., Harpold, A. A., Lohse, K. A., Godsey, S. E., Crosby, B. T., Larsen, L. G.,
1397 Brooks, P. D., and Van Kirk, R. W.: Regional sensitivities of seasonal snow cover to elevation,
1398 aspect, and vegetation structure in western North America, *Water Resources Research*, 53,
1399 doi:10.1002/2016WR019374, 2017.
1400

1401 U.S. Committee on Integrated Observations for Hydrologic and Related Sciences: Integrating
1402 Multiscale Observations of U.S. Waters, National Academies Press, Washington D.C., 2008.
1403

1404 U.S. National Research Council: Landscapes on the Edge: New Horizons for Research on Earth's
1405 Surface, The National Academies Press, Washington, D.C., 2010.
1406

1407 U.S. National Research Council Committee on Basic Research Opportunities in the Earth
1408 Sciences: Basic Research Opportunities in Earth Science, National Academy Press, Washington,
1409 D.C., 2001.
1410

1411 U.S. Steering Committee for Frontiers in Soil Science: Frontiers in Soil Science Research, U. S.
1412 National Academies Press, Washington, D.C., 2009.
1413

1414 Van Haveren, B. P.: A re-evaluation of the Wagon Wheel Gap Forest Watersehd Experiment,
1415 Forest Science, Forest Science, 34, 208-214, 1988.
1416

1417 Vanderbilt, K. and Gaiser, E.: The international long term ecological research network: a
1418 platform for collaborations, *Ecosphere*, 8, doi:10.1002/ecs2.1697, 2017.
1419

1420 Vrettas, M. D. and Fung, I. Y.: Toward a new parameterization of hydraulic conductivity in
1421 climate models: Simulation of rapid groundwater fluctuations in Northern California, *J. Adv.*
1422 *Model. Earth Syst.*, 7, 2105-2135, 2015.
1423

1424 Warkentin, B. P. (Ed.): *Footprints in the Soil: People and Ideas in Soil History*, Elsevier,
1425 Amsterdam, 2006.
1426

1427 Weber, C. F., Lockhart, J. S., Charaska, E., Aho, K., and Lohse, K. A.: Bacterial composition of
1428 soils in ponderosa pine and mixed conifer forest exposed to different wildfire burn severity, *Soil*
1429 *Biology and Biochemistry*, 69, 242-250, 2014.
1430

1431 West, N., Kirby, E., Bierman, P. R., and Clarke, B. A.: Aspect-dependent variations in regolith
1432 creep revealed by meteoric ^{10}Be , *Geology*, 42, doi:10.1130/G35357.35351, 2014.
1433

1434 White, T., Brantley, S., Banwart, S., Chorover, J., Dietrich, W., Derry, L., Lohse, K., Anderson,
1435 S., Aufdendkampe, A., Bales, R., Kumar, P., Richter, D., and McDowell, B.: The role of critical
1436 zone observatories in critical zone science, Chapter 2. In: *Principles and Dynamics of the Critical*
1437 *Zone, Developments in Earth Surface Processes*, v. 19 Giardino, R. and Hauser, C. (Eds.),
1438 Elsevier, 2015.
1439

1440 White, T. and Sharkey, S.: Critical Zone. In: Oxford Bibliographies in Environmental Science,
1441 Wohl, E. (Ed.), Oxford University Press, New York, 2016.

1442

1443 White, T., Wymore, A., Dere, A., Hoffman, A., Washburne, J., and Conklin, M.: Integrated
1444 interdisciplinary science of the Critical Zone as a foundational curriculum for addressing issues
1445 of sustainability, *Journal of Geoscience Education*, 65, 136-145, 2017.

1446

1447 Woo, D. K. and Kumar, P.: Role of micro-topographic variability on age of soil nitrogen in
1448 intensively managed landscape, *Water Resources Research*, 2017. doi:10.1002/2017WR021053,
1449 2017.

1450

1451 Yan, Q., Iwasaki, T., Stumpf, A. J., Parker, G., Belmont, P., and Kumar, P.:
1452 Hydrogeomorphological understanding of alluvial river valley development in glaciated
1453 landscapes, *Earth Surface Processes and Landforms*, 2017. DOI: 10.1002/esp.4234, 2017.

1454

1455 Zapata-Rios, X., Brooks, P. D., Troch, P. A., McIntosh, J., and Rasmussen, C.: Influence of
1456 climate variability on water partitioning and effective energy and mass transfer in a semi-arid
1457 critical zone, *Hydrol. Earth Syst. Sci.*, 20, 1103-1115, 2016.

1458

1459 Zhang, Z., Glaser, S. D., Bales, R. C., Conklin, M., Rice, R., and Marks, D. G.: Technical report:
1460 The design and evaluation of a basin-scale wireless sensor network for mountain hydrology,
1461 *Water Resources Research*, 53, 2017.

1462