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1	
   Main	
  Problems:	
  

1.	
  Manuscript	
  structure:	
  the	
  paper	
  is	
  
long	
  and	
  a	
  little	
  bit	
  convoluted.	
  In	
  
my	
  opinion	
  the	
  length	
  of	
  the	
  paper	
  
could	
  be	
  reduced	
  without	
  any	
  
important	
  loss	
  of	
  information	
  and	
  
the	
  structure	
  could	
  be	
  improved.	
  For	
  
example	
  the	
  sections	
  related	
  to	
  the	
  
cyberinfra-­‐structure	
  Landlab	
  (sect.	
  
2.2	
  and	
  figure	
  3	
  and	
  the	
  last	
  part	
  of	
  
the	
  section	
  2.3)	
  could	
  be	
  reduced	
  or	
  
removed	
  since	
  it	
  is	
  less	
  important	
  for	
  
the	
  reader	
  of	
  ESurf	
  (see	
  Aims	
  and	
  
Scope	
  of	
  the	
  ESurf	
  Journal).	
  Some	
  
parts	
  are	
  difficult	
  to	
  understand	
  (see	
  
other	
  comments)	
  and	
  there	
  are	
  
some	
  repetitions	
  that	
  can	
  be	
  
removed.	
  	
  

We	
  feel	
  that	
  the	
  manuscript	
  supports	
  the	
  aims	
  
and	
  scope	
  of	
  eSurf,	
  such	
  as	
  “numerical	
  
modelling	
  of	
  Earth	
  surface	
  processes.”	
  	
  The	
  
model	
  is	
  also	
  built	
  to	
  work	
  with	
  Landlab,	
  which	
  
was	
  described	
  earlier	
  this	
  year	
  in	
  eSurf:	
  	
  

Hobley,	
  et	
  al.,	
  Earth	
  Surf.	
  Dynam.,	
  5(1):	
  21-­‐46,	
  
2017.	
  

We	
  have	
  reduced	
  the	
  length	
  of	
  the	
  manuscript	
  
by	
  deleting	
  material	
  described	
  elsewhere	
  in	
  
cited	
  papers	
  (e.g.,	
  soil	
  evolution	
  component)	
  or	
  
the	
  software	
  User	
  Manual.	
  Reduced	
  description	
  
of	
  hydrologic	
  data	
  processing	
  in	
  Section	
  2.3.	
  
Removed	
  repetitions	
  and	
  details	
  about	
  Landlab	
  
in	
  Section	
  2.2.	
  	
  However,	
  additional	
  material	
  
was	
  added	
  to	
  address	
  referee	
  comments.	
  
	
  
We	
  choose	
  to	
  retain	
  Fig.	
  3	
  because	
  it	
  provides	
  
visual	
  context	
  of	
  the	
  study	
  area	
  and	
  mapped	
  
landslides	
  for	
  readers	
  unfamiliar	
  with	
  the	
  area.	
  

2	
   Basic	
  Assumptions:	
  
2a.	
  The	
  authors	
  fixed	
  a	
  soil	
  density	
  
equal	
  to	
  2000	
  kg/cubic	
  meter	
  
constant	
  over	
  the	
  entire	
  domain;	
  is	
  
this	
  relative	
  to	
  the	
  bulk	
  density	
  of	
  
the	
  soil	
  or	
  to	
  the	
  wet	
  soil	
  density?	
  Is	
  
this	
  assumption	
  realistic	
  considering	
  
that	
  you	
  have	
  different	
  soil	
  type	
  in	
  
your	
  domain?	
  	
  

Soil	
  density	
  represents	
  saturated	
  bulk	
  density	
  of	
  
soil	
  (as	
  stated	
  in	
  the	
  paper),	
  which	
  is	
  the	
  same	
  
as	
  wet	
  bulk	
  density.	
  	
  The	
  study	
  area	
  has	
  two	
  
similar	
  soil	
  types:	
  sandy	
  loam	
  and	
  loamy	
  sand.	
  	
  
A	
  saturated	
  bulk	
  density	
  of	
  2000	
  km/m3	
  has	
  
been	
  used	
  in	
  other	
  similar	
  models	
  and	
  studies	
  
as	
  a	
  constant	
  (e.g.,	
  Shalstab	
  by	
  Montegomery	
  
and	
  Dietrich	
  1994	
  and	
  SINMAP	
  by	
  Pack	
  et	
  al.	
  
1992).	
  	
  However,	
  model	
  flexibility	
  allows	
  users	
  
to	
  provide	
  varying	
  values	
  of	
  soil	
  density	
  and	
  
associated	
  uncertainty	
  as	
  a	
  distributed	
  field	
  
throughout	
  a	
  study	
  domain	
  as	
  constrained	
  by	
  
available	
  data.	
  	
  	
  
In	
  addition,	
  the	
  infinite	
  slope	
  stability	
  model	
  has	
  
been	
  found	
  to	
  be	
  insensitive	
  to	
  soil	
  unit	
  weight	
  
(density*g)	
  (Hammond	
  et	
  al.	
  (1992)	
  and	
  Lepore	
  
et	
  al.	
  2013);	
  text	
  added	
  Page	
  16,	
  lines	
  1-­‐2.	
  	
  



3	
   2b.	
  The	
  authors	
  assume	
  the	
  soil	
  as	
  
incoherent	
  (C=0)	
  assigning	
  all	
  the	
  
cohesion	
  to	
  the	
  root?	
  Again	
  is	
  this	
  
assumption	
  realistic?	
  Please	
  
consider	
  that	
  also	
  a	
  loamy	
  sand	
  
could	
  provide	
  a	
  cohesion	
  greater	
  
than	
  that	
  given	
  by	
  the	
  root	
  system.	
  
Please	
  try	
  to	
  justify	
  this	
  assumption	
  
using	
  field	
  data	
  relative	
  to	
  the	
  soil	
  
mechanics	
  parameters.	
  	
  

The	
  referee	
  is	
  correct	
  that	
  we	
  considered	
  soils	
  
cohesionless.	
  	
  Generally	
  soil	
  behaves	
  much	
  like	
  
cohesionless	
  soil	
  when	
  the	
  clay	
  fraction	
  is	
  <15%	
  
(Kulhawy	
  et	
  al.	
  EPRI	
  –	
  Manual	
  on	
  Estimating	
  Soil	
  
Properties	
  of	
  for	
  Foundation	
  Design,	
  EPRI	
  EL-­‐
6800,	
  1990).	
  Our	
  soils	
  have	
  less	
  than	
  10%	
  clay	
  
and	
  thus	
  low	
  in	
  cohesion	
  (DOA-­‐NRCS,	
  2012).	
  	
  
The	
  aim	
  of	
  our	
  model	
  is	
  for	
  risk	
  assessment;	
  
thus,	
  we	
  use	
  total	
  cohesion	
  given	
  the	
  
assumption	
  that	
  soil	
  cohesion	
  is	
  a	
  small	
  fraction	
  
of	
  the	
  total	
  cohesion.	
  	
  Added	
  clarification	
  on	
  
page	
  14,	
  lines	
  7-­‐11.	
  Our	
  aim	
  was	
  to	
  develop	
  a	
  
model	
  for	
  regional	
  applications	
  that	
  can	
  utilize	
  
existing	
  spatial	
  information;	
  thus,	
  no	
  field	
  data	
  
is	
  collected.	
  	
  	
  

4	
   2c.	
  The	
  authors	
  assume	
  that	
  the	
  
recharge	
  is	
  given	
  by	
  the	
  sum	
  of	
  the	
  
baseflow	
  and	
  the	
  surface	
  runoff	
  
(page	
  10)	
  at	
  each	
  VIC	
  grid	
  cell.	
  It	
  is	
  
not	
  clear	
  the	
  reason	
  of	
  such	
  an	
  
assumption	
  since	
  usually	
  the	
  
recharge	
  is	
  given	
  only	
  from	
  the	
  
subsurface	
  flow	
  (i.e.	
  part	
  of	
  the	
  
baseflow)	
  as	
  highlighted	
  by	
  the	
  
authors	
  (page	
  6	
  –	
  line	
  23-­‐25).	
  In	
  
similar	
  modelistic	
  approach	
  
(SINMAP)	
  R	
  is	
  considered	
  as	
  a	
  
climatic	
  factor	
  (rainfall).	
  Please	
  
clarify	
  this	
  apparent	
  contradiction.	
  	
  

In	
  our	
  model	
  application,	
  we	
  made	
  the	
  
assumption	
  that	
  in	
  steep	
  forested	
  mountainous	
  
landscapes	
  runoff	
  is	
  generated	
  by	
  saturation	
  
excess	
  mechanism	
  due	
  to	
  relatively	
  high	
  soil	
  
infiltration	
  capacities.	
  A	
  steady-­‐state	
  kinematic	
  
wave	
  approach	
  for	
  subsurface	
  flow	
  is	
  used	
  with	
  
a	
  depth-­‐averaged	
  hydraulic	
  conductivity.	
  This	
  
model	
  technically	
  requires	
  recharge,	
  defined	
  as	
  
precipitation	
  and	
  snowmelt	
  less	
  of	
  
evapotranspiration	
  and	
  soil	
  storage.	
  In	
  the	
  VIC	
  
model	
  this	
  corresponds	
  to	
  the	
  sum	
  of	
  surface	
  
and	
  subsurface	
  flow	
  rates	
  taken	
  and	
  averaged	
  
over	
  a	
  grid	
  cell	
  as	
  input	
  recharge	
  rate.	
  	
  This	
  
approach	
  is	
  still	
  less	
  conservative	
  than	
  using	
  
rainfall	
  directly	
  as	
  recharge	
  input	
  to	
  the	
  model.	
  
The	
  use	
  of	
  the	
  annual	
  daily	
  maximum	
  sum	
  of	
  
runoff	
  and	
  baseflow	
  is	
  designed	
  to	
  represent	
  
when	
  the	
  ground	
  is	
  likely	
  to	
  be	
  the	
  most	
  
saturated.	
  	
  Additional	
  clarifying	
  text	
  added	
  on	
  
page	
  9,	
  lines	
  11-­‐16.	
  

5	
   2d.	
  It	
  is	
  not	
  clear	
  how	
  the	
  soil	
  depth	
  
evolution	
  model	
  and	
  the	
  stability	
  
model	
  are	
  coupled	
  (if	
  they	
  are	
  
coupled).	
  I	
  thought	
  that	
  the	
  outcome	
  
of	
  soil	
  depth	
  evolution	
  model	
  is	
  
provided	
  as	
  soil	
  depth	
  map	
  (in	
  terms	
  
of	
  mode)	
  but	
  there	
  is	
  a	
  sentence	
  
(page	
  11	
  –	
  line	
  26-­‐27)	
  which	
  is	
  in	
  
contrast	
  with	
  my	
  previous	
  thoughts	
  

The	
  soil	
  evolution	
  model	
  is	
  not	
  coupled	
  to	
  the	
  
probabilistic	
  stability	
  model	
  and	
  the	
  reviewer	
  is	
  
correct	
  that	
  the	
  outcome	
  of	
  the	
  soil	
  evolution	
  
model	
  did	
  produce	
  a	
  soil	
  depth	
  map	
  used	
  as	
  the	
  
mode	
  in	
  running	
  the	
  stability	
  model.	
  This	
  map	
  is	
  
developed	
  as	
  an	
  alternative	
  to	
  SSURGO	
  to	
  
better	
  capture	
  the	
  spatial	
  granularity	
  of	
  soil	
  
depth	
  due	
  to	
  topography.	
  The	
  model	
  is	
  also	
  
used	
  to	
  obtain	
  uncertainties	
  in	
  soil	
  depth	
  due	
  to	
  



(“Eq	
  (a)	
  and	
  Eq	
  (2)	
  are	
  used	
  to	
  
calculate	
  FS	
  within	
  the	
  soil	
  evolution	
  
model”.	
  So	
  please	
  try	
  to	
  clarify	
  the	
  
connection	
  between	
  these	
  models.	
  I	
  
think	
  that	
  a	
  figure	
  with	
  a	
  flow	
  chart	
  
describing	
  models	
  and	
  connections	
  
together	
  with	
  the	
  setup	
  of	
  the	
  
experiment	
  could	
  be	
  useful	
  to	
  the	
  
readers.	
  How	
  many	
  simulations	
  did	
  
they	
  run?	
  	
  

temporal	
  fluctuations	
  as	
  a	
  result	
  of	
  episodic	
  
landslides	
  such	
  that	
  this	
  uncertainty	
  can	
  be	
  
used	
  to	
  parameterize	
  a	
  probability	
  density	
  
function.	
  	
  The	
  soil	
  evolution	
  model	
  includes	
  a	
  
infinite	
  slope	
  stability	
  model	
  within	
  it,	
  to	
  
represent	
  the	
  long-­‐term	
  effects	
  of	
  landslides	
  on	
  
the	
  temporal	
  variability	
  of	
  soil	
  thickness	
  as	
  the	
  
model	
  iterates	
  over	
  many	
  years	
  to	
  produce	
  a	
  
long-­‐term	
  soil	
  depth	
  record.	
  We	
  now	
  indicated	
  
this	
  purpose	
  clearly.	
  
	
  
Sections	
  2.4.	
  and	
  4.1.2.	
  edited	
  in	
  detail	
  in	
  
response	
  to	
  referee’s	
  comments.	
  Edits	
  clarify	
  
the	
  soil	
  evolution	
  model,	
  how	
  it	
  was	
  
implemented	
  and	
  how	
  the	
  model	
  results	
  are	
  
used	
  in	
  the	
  LandslideProbability	
  component.	
  	
  
	
  
The	
  soil	
  evolution	
  model	
  was	
  run	
  for	
  10,000	
  
years	
  (line	
  3	
  on	
  page	
  20).	
  	
  Based	
  on	
  the	
  
statistics	
  obtained	
  from	
  the	
  soil	
  evolution	
  
model,	
  the	
  infinite	
  slope	
  model	
  Monte	
  Carlo	
  
simulation	
  was	
  run	
  for	
  3,000	
  iterations	
  (line	
  8	
  
on	
  page	
  23).	
  

6	
   3.	
  Choice	
  of	
  model	
  parameters:	
  the	
  
choice	
  of	
  geotechnical	
  and	
  soil	
  
parameters	
  (mode	
  and	
  range	
  of	
  
variability	
  used	
  for	
  MonteCarlo	
  
simulation)	
  is,	
  at	
  least,	
  not	
  
convincing.	
  	
  
a.	
  The	
  internal	
  friction	
  angles	
  are	
  
fixed	
  in	
  Table	
  1	
  in	
  terms	
  of	
  mode,	
  
min	
  and	
  max.	
  I’m	
  not	
  convinced	
  by	
  
these	
  values;	
  they	
  seems	
  to	
  be	
  very	
  
high	
  especially	
  for	
  the	
  loamy	
  sand	
  
and	
  sandy	
  loam.	
  Could	
  you	
  provide	
  
references	
  or	
  field	
  data	
  used	
  to	
  fix	
  
these	
  values?	
  
b.	
  The	
  authors	
  use	
  different	
  
relationship	
  to	
  define	
  minimum	
  and	
  
maximum	
  value	
  of	
  trasmissivity	
  T	
  
and	
  friction	
  angle.	
  How	
  do	
  they	
  
define	
  these	
  relationships?	
  What	
  is	
  
the	
  impact	
  of	
  these	
  values	
  on	
  the	
  
final	
  results	
  (sensitivity	
  analysis).	
  

Section	
  3.2.1	
  describes	
  the	
  parameterization	
  of	
  
vegetation	
  and	
  soil	
  properties.	
  	
  The	
  source	
  of	
  
internal	
  friction	
  angle	
  mode	
  values	
  shown	
  in	
  
Table	
  1	
  are	
  described	
  in	
  line	
  42	
  on	
  page	
  15,	
  
specifically	
  Table	
  5.5	
  within	
  Hammond	
  et	
  al.,	
  
1992	
  and	
  Table	
  5.2	
  within	
  Shelby,	
  1993.	
  	
  The	
  
values	
  are	
  corroborated	
  by	
  online	
  sources	
  such	
  
as:	
  
http://www.geotechdata.info/parameter/angle-­‐
of-­‐friction.html.	
  
	
  
The	
  minimum	
  and	
  maximum	
  relationships	
  to	
  
mode	
  for	
  friction	
  angle	
  were	
  determined	
  by	
  the	
  
minimum	
  and	
  maximum	
  values	
  found	
  in	
  the	
  
literature	
  and	
  requisite	
  right-­‐skewed	
  
distribution.	
  	
  The	
  mean,	
  minimum,	
  and	
  
maximum	
  values	
  for	
  T	
  shown	
  in	
  Table	
  1	
  are	
  for	
  
the	
  distributed	
  T	
  values	
  over	
  the	
  study	
  area	
  and	
  
not	
  based	
  on	
  the	
  parameterized	
  relationship	
  for	
  
T	
  derived	
  as	
  a	
  function	
  of	
  mode	
  (see	
  table	
  
footnote).	
  	
  The	
  parameterized	
  relationship	
  for	
  T	
  



was	
  kept	
  consistent	
  with	
  soil	
  depth	
  (hs)	
  because	
  
T	
  is	
  partially	
  derived	
  from	
  hs,	
  along	
  with	
  Ksat.	
  	
  
At	
  the	
  regional	
  scale,	
  no	
  specific	
  field	
  data	
  is	
  
collected	
  for	
  this	
  study	
  and	
  all	
  model	
  
parameters	
  are	
  obtained	
  from	
  the	
  existing	
  
literature	
  and	
  digital	
  maps,	
  as	
  the	
  intent	
  was	
  to	
  
develop	
  a	
  regional	
  scale	
  model	
  applicable	
  with	
  
existing	
  information.	
  A	
  sensitivity	
  analysis	
  was	
  
not	
  included	
  in	
  this	
  research	
  as	
  these	
  analyses	
  
have	
  been	
  included	
  elsewhere	
  (Hammond	
  et	
  al.,	
  
1992;	
  Sidle	
  1984);	
  clarified	
  on	
  page	
  6,	
  lines	
  26-­‐
27.	
  

7	
   4.	
  Low	
  performance	
  of	
  hazard	
  maps:	
  
the	
  authors	
  affirm	
  that	
  the	
  
performance	
  of	
  pro-­‐	
  posed	
  approach	
  
is	
  modest.	
  I	
  agree	
  with	
  them	
  and	
  if	
  
the	
  aim	
  of	
  this	
  model	
  is	
  to	
  create	
  a	
  
map	
  of	
  landslide	
  hazard,	
  better	
  
results	
  could	
  be	
  achieved	
  using	
  
classical	
  susceptibility	
  approach	
  
based	
  on	
  statistical	
  methods	
  or	
  data-­‐
driven	
  methods.	
  Moreover	
  I	
  think	
  
that	
  they	
  can	
  remove	
  the	
  CD	
  
approach	
  to	
  test	
  the	
  performance	
  of	
  
the	
  proposed	
  approach.	
  The	
  CD	
  
approach	
  is	
  aimed	
  to	
  highlight	
  the	
  
existence	
  of	
  a	
  statistically	
  significant	
  
difference	
  between	
  the	
  two	
  P(F)	
  cdfs	
  
(within	
  and	
  outside)	
  for	
  fixed	
  soil	
  
depth	
  scheme.	
  The	
  authors	
  can	
  only	
  
affirm	
  that	
  the	
  two	
  cdfs	
  are	
  different	
  
but	
  this	
  does	
  not	
  imply	
  that	
  the	
  
model	
  performances	
  are	
  acceptable.	
  
I	
  understand	
  that	
  this	
  could	
  be	
  a	
  first	
  
level	
  check,	
  but	
  I	
  think	
  that	
  can	
  be	
  
removed	
  without	
  any	
  problem	
  for	
  
the	
  paper.	
  	
  

The	
  objective	
  of	
  this	
  paper	
  was	
  stated	
  in	
  the	
  
second	
  paragraph	
  of	
  Introduction,	
  which	
  did	
  not	
  
include	
  the	
  use	
  of	
  a	
  statistical	
  model.	
  Classical	
  
susceptibility	
  using	
  statistical	
  methods	
  may	
  
‘perform	
  better’	
  against	
  observed	
  landslides	
  
than	
  a	
  physical	
  model.	
  	
  However,	
  this	
  is	
  because	
  
statistical	
  approaches	
  are	
  based	
  on	
  the	
  
observations	
  while	
  physical	
  models	
  are	
  not,	
  
which	
  are	
  then	
  compared	
  to	
  the	
  model.	
  	
  Part	
  of	
  
the	
  purpose	
  for	
  the	
  Landlab	
  landslide	
  
component	
  is	
  to	
  base	
  landslide	
  prediction	
  on	
  
physical	
  processes	
  that	
  allow	
  for	
  prediction	
  	
  
(1)	
  in	
  areas	
  without	
  observed	
  landslides	
  and	
  	
  
(2)	
  under	
  conditions	
  (climate	
  and	
  vegetation)	
  
that	
  may	
  change	
  in	
  the	
  future.	
  	
  Statistical	
  
susceptibility	
  models	
  suffer	
  from	
  the	
  
assumption	
  that	
  the	
  statistically	
  derived	
  
relationships	
  between	
  historical	
  landslides	
  and	
  
site	
  conditions	
  at	
  the	
  time	
  of	
  the	
  inventory	
  
holding	
  true	
  in	
  the	
  future.	
  	
  	
  
Challenges	
  in	
  validating	
  physical	
  models	
  with	
  
observations	
  are	
  described	
  in	
  lines	
  28-­‐37	
  on	
  
page	
  33.	
  
	
  
The	
  CD	
  comparison	
  was	
  removed	
  from	
  the	
  
paper	
  as	
  suggested	
  by	
  the	
  reviewer.	
  

8	
   Other	
  comments:	
  
Page	
  7,	
  lines	
  9-­‐10:	
  The	
  sentence	
  is	
  
not	
  clear.	
  How	
  does	
  the	
  use	
  of	
  
maximum	
  annual	
  daily	
  recharge	
  help	
  
to	
  define	
  uncertainty	
  in	
  R?	
  	
  

	
  
Clarified	
  sentence	
  Page	
  6,	
  lines	
  13.	
  	
  The	
  dataset	
  
developed	
  from	
  maximum	
  annual	
  daily	
  
recharge	
  was	
  used	
  to	
  represent	
  the	
  uncertainty	
  
of	
  R	
  over	
  time	
  at	
  each	
  grid	
  cell.	
  
	
  



9	
   Page	
  7,	
  equation	
  (3a):	
  Please	
  define	
  
n	
  and	
  n(FS<1).	
  	
  

Equation	
  3a	
  has	
  been	
  clarified	
  (page	
  6)	
  to	
  
	
  𝑃 𝐹 = 	
  𝑃 𝐹𝑆	
   ≤ 1 = 	
  𝑛(𝐹𝑆 ≤ 1)/𝑁	
  
where	
  n()	
  is	
  the	
  number	
  of	
  conditions	
  met	
  in	
  
bracket	
  and	
  N	
  is	
  the	
  number	
  of	
  iterations	
  	
  

10	
   Page	
  9,	
  line	
  9-­‐21:	
  The	
  difference	
  
between	
  options	
  2	
  (lognormal)	
  and	
  3	
  
(lognormal	
  spatial)	
  is	
  not	
  enough	
  
clear.	
  Also	
  the	
  option	
  4	
  is	
  not	
  clear.	
  
Please	
  clarify	
  this	
  paragraph.	
  	
  

The	
  difference	
  between	
  the	
  lognormal	
  and	
  
lognormal-­‐spatial	
  options	
  is	
  the	
  first	
  one	
  applies	
  
a	
  lognormal	
  distribution	
  uniformly	
  over	
  the	
  
model	
  domain,	
  while	
  the	
  second	
  applies	
  a	
  
different	
  lognormal	
  distribution	
  to	
  each	
  grid	
  
cell.	
  Additional	
  clarification	
  provided	
  on	
  page	
  8,	
  
lines	
  33-­‐40.	
  

11	
   Page	
  9,	
  line	
  30:	
  what	
  is	
  core	
  node?	
  Is	
  
it	
  a	
  computational	
  element	
  of	
  spatial	
  
domain?	
  I	
  think	
  that	
  these	
  details	
  on	
  
the	
  computational	
  framework	
  are	
  
not	
  necessary	
  since	
  they	
  create	
  a	
  
little	
  bit	
  confusion	
  in	
  the	
  main	
  line	
  of	
  
the	
  paper.	
  	
  

Nodes	
  are	
  an	
  architectural	
  feature	
  of	
  Landlab	
  
and	
  represent	
  the	
  central	
  point	
  of	
  a	
  grid	
  cell.	
  	
  
Core	
  nodes	
  are	
  the	
  nodes	
  that	
  the	
  modeler	
  
chooses	
  to	
  evaluate	
  or	
  perform	
  the	
  calculations	
  
on.	
  	
  We	
  removed	
  the	
  word	
  ‘core’	
  because	
  it	
  
wasn’t	
  necessary	
  and	
  creates	
  confusion.	
  

12	
   Page	
  10,	
  lines	
  16-­‐19:	
  please	
  check	
  
the	
  sentence	
  since	
  it	
  is	
  not	
  very	
  
clear.	
  	
  

Improved	
  clarity	
  to	
  sentence	
  within	
  Sect.	
  2.3.	
  

13	
   Page	
  15,	
  line	
  11:	
  define	
  combined	
  
curvature	
  (reference).	
  Is	
  it	
  different	
  
from	
  the	
  total	
  curvature	
  used	
  
further?	
  	
  

Combined	
  and	
  total	
  curvature	
  are	
  the	
  same,	
  
also	
  referred	
  to	
  standard	
  curvatures,	
  which	
  
combines	
  plan	
  and	
  profile	
  curvatures.	
  	
  To	
  avoid	
  
confusion,	
  ‘combined’	
  was	
  changed	
  to	
  ‘total’	
  
within	
  the	
  manuscript.	
  

14	
   Page	
  16,	
  line	
  22-­‐23:	
  sentence	
  not	
  
clear;	
  lines	
  23-­‐25:	
  this	
  sentence	
  can	
  
be	
  removed.	
  	
  

Paragraph	
  was	
  deleted.	
  

15	
   Page	
  17,	
  lines	
  7-­‐8:	
  what	
  is	
  the	
  
meaning	
  of	
  “spatially	
  consistent”.	
  
You	
  can	
  use	
  consis-­‐	
  tent	
  when	
  map	
  
is	
  compared	
  with	
  the	
  field	
  data.	
  Did	
  
you	
  carry	
  out	
  this	
  task?	
  	
  

Sentence	
  (page	
  15,	
  lines	
  10-­‐11)	
  was	
  revised	
  to	
  
clarify	
  that	
  the	
  evolved	
  soil	
  map	
  is	
  more	
  
spatially	
  heterogeneous	
  than	
  the	
  SSURGO	
  soils	
  
map	
  with	
  map	
  unit	
  polygons	
  

16	
   Page	
  17,	
  lines	
  18-­‐19:	
  how	
  can	
  the	
  
authors	
  “confirm”	
  the	
  ranges	
  of	
  soil	
  
depth	
  used	
  through	
  a	
  long	
  term	
  
evolution	
  model	
  which	
  needs	
  to	
  be	
  
calibrated	
  on	
  soil	
  data	
  as	
  well?	
  	
  

The	
  soil	
  evolution	
  model	
  was	
  used	
  to	
  confirm	
  
the	
  soil	
  skewed	
  distribution	
  used	
  in	
  the	
  triangle	
  
distribution.	
  	
  Sentenced	
  revised	
  accordingly	
  on	
  
page	
  15,	
  lines	
  20-­‐22.	
  

17	
   Page	
  19,	
  lines	
  15-­‐17:	
  how	
  the	
  
authors	
  calculate	
  pore-­‐water	
  
pressure	
  starting	
  from	
  the	
  maximum	
  
daily	
  recharge?	
  Do	
  they	
  use	
  pore-­‐

R	
  is	
  an	
  input	
  to	
  calculate	
  pore-­‐water	
  pressure	
  in	
  
the	
  model,	
  which	
  is	
  intertwined	
  in	
  the	
  
formulation	
  and	
  cannot	
  be	
  immediately	
  shown.	
  	
  	
  



water	
  pressure	
  in	
  their	
  stability	
  
model?	
  I	
  think	
  they	
  use	
  directly	
  the	
  
recharge	
  (see	
  equation	
  2).	
  	
  

18	
   The	
  section	
  4.1.2	
  is	
  not	
  clear	
  
especially	
  the	
  role	
  of	
  regression	
  
based	
  equation	
  which	
  seems	
  to	
  
provide	
  the	
  soil	
  depth	
  as	
  a	
  function	
  
of	
  slope	
  and	
  curvature.	
  If	
  you	
  run	
  
the	
  soil	
  evolution	
  model,	
  why	
  do	
  you	
  
need	
  a	
  regression	
  to	
  obtain	
  soil	
  
depth?	
  	
  
	
  
In	
  the	
  same	
  section	
  it	
  is	
  not	
  clear	
  the	
  
difference	
  between	
  M-­‐SD	
  and	
  M-­‐SD	
  
LT.	
  I	
  think	
  that	
  there	
  is	
  a	
  lot	
  of	
  
information	
  but	
  this	
  is	
  not	
  well-­‐
organized.	
  	
  

We	
  improved	
  the	
  description	
  and	
  application	
  of	
  
the	
  soil	
  evolution	
  model	
  and	
  how	
  we	
  used	
  it.	
  
Section	
  2.4.	
  describes	
  broadly	
  why	
  we	
  needed	
  a	
  
soil	
  evolution	
  model,	
  what	
  we	
  obtained	
  from	
  it,	
  
and	
  how	
  we	
  used	
  the	
  modeled	
  soil	
  depth.	
  It	
  
also	
  provides	
  a	
  narrative	
  of	
  the	
  soil	
  production	
  
processes	
  modeled.	
  
	
  
Section	
  4.1.2.	
  describes	
  in	
  more	
  detail	
  how	
  the	
  
model	
  is	
  implemented	
  at	
  select	
  locations	
  that	
  
represent	
  the	
  topography	
  and	
  vegetation	
  of	
  the	
  
domain	
  and	
  how	
  this	
  limited	
  model	
  information	
  
is	
  used	
  to	
  make	
  a	
  map	
  of	
  mode	
  of	
  soil	
  depth	
  
and	
  set	
  minimum	
  and	
  maximum	
  parameters	
  of	
  
the	
  triangular	
  distributions	
  used	
  in	
  the	
  Landlab	
  
Landslide	
  Probability	
  component.	
  This	
  section	
  
clarifies	
  the	
  differences	
  between	
  M-­‐SD	
  and	
  M-­‐
SD	
  LT.	
  

19	
   Figures	
  10	
  and	
  11	
  highlight	
  the	
  same	
  
information	
  (Probability	
  or	
  return	
  
period).	
  Please	
  consider	
  removing	
  
one	
  of	
  the	
  two	
  figures.	
  	
  

We	
  would	
  like	
  to	
  retain	
  both	
  these	
  figures	
  
because,	
  while	
  they	
  highlight	
  similar	
  albeit	
  
transformed	
  data,	
  they	
  communicate	
  different	
  
information	
  about	
  landslide	
  hazard.	
  	
  This	
  may	
  
be	
  meaningful	
  for	
  different	
  readers,	
  especially	
  
resource	
  managers	
  who	
  may	
  prefer	
  return	
  
period	
  information.	
  	
  	
  

20	
   Page	
  32,	
  line	
  13:	
  The	
  authors	
  are	
  not	
  
using	
  “observations”	
  in	
  figure	
  13	
  but	
  
model	
  results.	
  Please	
  change	
  the	
  
sentence.	
  	
  

Correct,	
  changed	
  “observations”	
  to	
  ‘model	
  
results’	
  on	
  page	
  31,	
  line	
  5.	
  

21	
   Figure	
  13c:	
  in	
  the	
  legend	
  line	
  relative	
  
to	
  M-­‐SD	
  LT	
  is	
  missing.	
  	
  

The	
  mean	
  soil	
  depth	
  line	
  for	
  M-­‐SD	
  LT	
  was	
  
purposely	
  left	
  out	
  because	
  it	
  is	
  relatively	
  similar	
  
to	
  M-­‐SD	
  and	
  we	
  desired	
  minimizing	
  the	
  lines	
  
shown	
  in	
  the	
  figure.	
  

22	
   Page	
  34,	
  line	
  16:	
  since	
  the	
  authors	
  
use	
  10%	
  of	
  highest	
  elevation	
  cell,	
  I	
  
suggest	
  to	
  remove	
  20%	
  and	
  30%.	
  	
  

Suggestion	
  accepted	
  and	
  20%	
  and	
  30%	
  
reference	
  removed.	
  

23	
   Page	
  34,	
  lines	
  24-­‐26:	
  I	
  suggest	
  
specifying	
  the	
  number	
  of	
  DA	
  source	
  
cells	
  and	
  the	
  number	
  of	
  DA	
  outside	
  
source.	
  	
  

We	
  specified	
  the	
  number	
  of	
  DA	
  outside	
  source	
  
cells	
  as	
  50,000	
  sample.	
  	
  The	
  number	
  of	
  source	
  
cells	
  was	
  added	
  at	
  4318	
  grid	
  cells	
  on	
  page	
  31,	
  
line	
  31.	
  



24	
   Figure	
  14a:	
  I	
  think	
  there	
  is	
  an	
  error	
  in	
  
the	
  plot.	
  The	
  sum	
  of	
  all	
  the	
  bars	
  
must	
  be	
  equal	
  to	
  1.	
  If	
  this	
  is	
  true	
  for	
  
Outside	
  DA,	
  it	
  cannot	
  be	
  true	
  for	
  
Source	
  DA	
  since	
  for	
  each	
  bin	
  the	
  
relative	
  frequency	
  is	
  lower.	
  	
  

This	
  figure	
  has	
  been	
  removed.	
  

	
  
Response	
  to	
  Anonymous	
  Referee	
  #2	
  
	
   	
  

	
   Comment	
   Response	
  
25	
   The	
  work	
  is	
  of	
  high	
  scientific	
  value	
  

and	
  the	
  applied	
  methodologies	
  are	
  
scientifically	
  robust.	
  However,	
  to	
  my	
  
opinion,	
  the	
  paper	
  ended	
  up	
  being	
  
excessively	
  long,	
  sometimes	
  not	
  
immediately	
  clear	
  and	
  the	
  overall	
  
application	
  not	
  well	
  focused	
  on	
  clear	
  
and	
  simple	
  targets.	
  Moreover,	
  given	
  
the	
  numerous	
  details	
  of	
  the	
  
developed	
  numerical	
  model	
  system,	
  
I	
  wonder	
  if	
  a	
  journal	
  which	
  addresses	
  
to	
  models	
  development	
  or	
  
environmental	
  software	
  would	
  be	
  
more	
  appropriate.	
  Anyways,	
  to	
  my	
  
opinion,	
  it	
  needs	
  major	
  revision	
  for	
  it	
  
to	
  be	
  published	
  in	
  order	
  to	
  make	
  it	
  
clearer,	
  more	
  fluent,	
  to	
  better	
  define	
  
the	
  aims	
  of	
  the	
  application	
  and	
  to	
  
improve	
  the	
  literature	
  review	
  which	
  
lacks	
  of	
  some	
  important	
  
contributions.	
  	
  

Please	
  refer	
  to	
  response	
  to	
  referee	
  #1	
  comment	
  
#1.	
  	
  Additional	
  literature	
  review	
  with	
  citation	
  
has	
  been	
  added,	
  particularly	
  based	
  on	
  the	
  
additional	
  citations	
  supplied	
  by	
  the	
  referees.	
  
	
  
We	
  also	
  made	
  the	
  effort	
  to	
  improve	
  clarity	
  of	
  
the	
  objectives	
  of	
  the	
  paper,	
  the	
  purpose	
  of	
  
different	
  simulations,	
  findings	
  with	
  respect	
  to	
  
model	
  results,	
  and	
  related	
  observational	
  
inferences.	
  

26	
   1.	
  The	
  manuscript	
  is	
  very	
  long	
  and	
  
sometimes	
  repetitive,	
  with	
  English	
  
style	
  a	
  bit	
  verbose.	
  I	
  have	
  to	
  read	
  it	
  a	
  
couple	
  of	
  times	
  to	
  get	
  to	
  the	
  point.	
  
Some	
  parts	
  can	
  be	
  synthesized	
  and	
  
stated	
  more	
  directly.	
  	
  

We	
  agree	
  that	
  the	
  article	
  is	
  long,	
  but	
  feel	
  it	
  
reflex	
  the	
  necessary	
  information	
  to:	
  (1)	
  orient	
  
the	
  reader,	
  (2)	
  describe	
  the	
  model	
  framework	
  
and	
  cyberinfrastructure	
  designed	
  for	
  
reproducibility,	
  and	
  (3)	
  demonstrate	
  a	
  real-­‐
world	
  application.	
  Nevertheless,	
  we	
  reduced	
  
the	
  length	
  of	
  the	
  paper	
  and	
  made	
  it	
  more	
  direct	
  
to	
  point.	
  Please	
  refer	
  to	
  response	
  to	
  referee	
  #1	
  
comment	
  #1.	
  

27	
   2.	
  Literature	
  review	
  is	
  well	
  done	
  and	
  
comprehensive	
  of	
  various	
  aspects	
  
involved	
  in	
  this	
  work.	
  However,	
  it	
  

Additional	
  literature	
  has	
  been	
  cited	
  throughout	
  
the	
  manuscript,	
  in	
  particular	
  some	
  of	
  the	
  
literatures	
  noted	
  by	
  referees.	
  	
  Thirteen	
  



also	
  lacks	
  of	
  some	
  important	
  
contributions	
  in	
  the	
  specific	
  field	
  of	
  
physically	
  based	
  modeling	
  for	
  
rainfall-­‐triggered	
  landslides,	
  also	
  
with	
  regard	
  with	
  the	
  parameters	
  
uncertainty.	
  	
  

additional	
  citations	
  have	
  been	
  added	
  to	
  the	
  
references.	
  

28	
   3.	
  My	
  main	
  concern	
  is	
  whether	
  
simpler	
  and	
  more	
  computationally	
  
efficient	
  statistical	
  approaches	
  for	
  
susceptibility	
  evaluation	
  could	
  be	
  
more	
  appropriate	
  for	
  such	
  regional	
  
and	
  long	
  term	
  analysis.	
  	
  

The	
  methodology	
  is	
  based	
  on	
  the	
  use	
  
of	
  various	
  simplified	
  models	
  which	
  
make	
  it	
  complex.	
  The	
  ultimate	
  model	
  
performances	
  are	
  not	
  very	
  
satisfactory	
  in	
  terms	
  of	
  ROC	
  and	
  
AUC.	
  The	
  approach	
  is	
  classified	
  as	
  
dynamic	
  and	
  processed-­‐	
  oriented;	
  
however	
  it	
  is	
  not	
  able	
  to	
  reproduce	
  
and	
  simulate	
  specific	
  events	
  due	
  to	
  
the	
  simplifications	
  and	
  the	
  large	
  
temporal	
  scale	
  and	
  can	
  be	
  used	
  only	
  
for	
  long	
  term	
  analysis,	
  thus	
  
becoming	
  a	
  kind	
  of	
  ‘static’	
  approach.	
  
Statistical	
  models	
  are	
  very	
  robust	
  
and	
  able	
  to	
  guarantee	
  very	
  
satisfactory	
  results	
  (e.g.	
  Lepore	
  et	
  
al.,	
  2012;	
  Lee	
  and	
  Pradhan,	
  2007).	
  	
  

Lepore	
  C,	
  SA	
  Kamal,	
  P	
  Shanahan,	
  RL	
  
Bras	
  (2012).	
  Rainfall-­‐induced	
  
landslide	
  susceptibility	
  zonation	
  of	
  
Puerto	
  Rico.	
  Environmental	
  Earth	
  
Sciences	
  66	
  (6),	
  1667-­‐1681	
  	
  

Lee,	
  S.,	
  Pradhan,	
  B.	
  (2007).	
  Landslide	
  
hazard	
  mapping	
  at	
  Selangor,	
  
Malaysia	
  using	
  frequency	
  ratio	
  and	
  
logistic	
  regression	
  models.	
  Landslides	
  
4,	
  33-­‐41	
  	
  

We	
  are	
  familiar	
  with	
  the	
  literature	
  provided	
  and	
  
agree	
  that	
  statistical	
  analysis	
  is	
  a	
  powerful	
  
modeling	
  technique	
  for	
  landslide	
  hazard	
  
assessments	
  for	
  existing	
  conditions.	
  However,	
  
the	
  aim	
  of	
  our	
  research	
  is	
  different,	
  as	
  clearly	
  
indicated	
  in	
  the	
  Introduction	
  section.	
  Statistical	
  
models	
  are	
  particularly	
  useful	
  for	
  evaluating	
  
conditions	
  conducive	
  to	
  different	
  types	
  of	
  
landslides.	
  	
  Indeed,	
  some	
  of	
  the	
  authors	
  are	
  
completing	
  a	
  manuscript	
  that	
  compares	
  a	
  
statistical	
  approach	
  to	
  the	
  physical	
  model	
  used	
  
in	
  this	
  paper,	
  which	
  will	
  be	
  submitted	
  for	
  peer	
  
review	
  in	
  the	
  coming	
  months.	
  See	
  also	
  response	
  
to	
  referee	
  #1,	
  comment	
  #7.	
  	
  	
  
	
  
Our	
  model	
  can	
  be	
  used	
  at	
  event	
  scales	
  in	
  
addition	
  to	
  long	
  term.	
  When	
  using	
  for	
  a	
  
particular	
  event,	
  the	
  user	
  would	
  need	
  to	
  
quantify	
  the	
  uncertainty	
  for	
  recharge	
  and	
  other	
  
soil	
  parameters	
  to	
  reflect	
  the	
  conditions	
  at	
  the	
  
time	
  of	
  the	
  event.	
  The	
  Landlab	
  
LandslideProbability	
  component	
  is	
  based	
  on	
  a	
  
simple	
  physical	
  model	
  and	
  its	
  lack	
  of	
  complexity	
  
facilitates	
  its	
  use	
  in	
  a	
  wide	
  variety	
  of	
  settings	
  
and	
  situations.	
  	
  	
  
	
  
We	
  agree	
  that	
  the	
  performance	
  against	
  mapped	
  
debris	
  avalanches	
  with	
  the	
  physical	
  model	
  is	
  
modest	
  based	
  on	
  ROC	
  and	
  AUC	
  metrics,	
  as	
  
stated	
  on	
  line	
  19	
  on	
  page	
  32.	
  	
  Challenges	
  in	
  
validating	
  physical	
  models	
  with	
  observations	
  
are	
  described	
  in	
  lines	
  28-­‐37,	
  page	
  33.	
  	
  We	
  
believe	
  the	
  modest	
  performance	
  based	
  on	
  
observed	
  landslides	
  does	
  not	
  discount	
  the	
  value	
  
of	
  a	
  predictive	
  physical	
  model,	
  particularly	
  
where	
  data	
  are	
  limited.	
  	
  	
  

29	
   4.	
  In	
  the	
  model	
  system	
  there	
  is	
  a	
  mix	
  
of	
  temporal	
  and	
  spatial	
  resolutions	
  

Yes,	
  there	
  is	
  a	
  mix	
  of	
  temporal	
  and	
  spatial	
  
resolutions	
  used	
  in	
  the	
  demonstration	
  of	
  the	
  



(soil	
  depth	
  evolution	
  at	
  yearly	
  scale,	
  
hydrological	
  model	
  at	
  daily	
  and	
  6	
  
kmq	
  square,	
  geomorphological	
  
model	
  at	
  30	
  m).	
  If	
  I	
  understood	
  well	
  
the	
  finest	
  temporal	
  resolution	
  is	
  the	
  
daily	
  scale	
  of	
  the	
  annual	
  maximum	
  
recharge.	
  However,	
  the	
  daily	
  
resolution	
  misses	
  the	
  most	
  intense	
  
events	
  and	
  moreover,	
  the	
  daily	
  
annual	
  maximum	
  recharge	
  does	
  not	
  
guarantee	
  the	
  worst	
  ‘hydrological	
  
conditions’	
  since	
  the	
  antecedent	
  soil	
  
moisture	
  conditions	
  are	
  also	
  influent.	
  
This	
  why	
  I	
  am	
  skeptical	
  on	
  the	
  
advantage	
  of	
  this	
  approach	
  instead	
  
of	
  others	
  (comment	
  3).	
  

model.	
  	
  The	
  hydrological	
  model	
  is	
  a	
  daily	
  time-­‐
step,	
  but	
  only	
  the	
  annual	
  maximum	
  is	
  used	
  in	
  
the	
  application.	
  	
  We	
  agree	
  that	
  the	
  daily	
  
hydrology	
  time	
  step	
  misses	
  the	
  sub-­‐daily	
  
intense	
  storms,	
  which	
  may	
  lead	
  to	
  some	
  
underestimate	
  of	
  instability.	
  	
  However,	
  
landslides	
  driven	
  by	
  pore-­‐water	
  pressure	
  as	
  
subsurface	
  flow	
  develops	
  requires	
  longer	
  
durations	
  than	
  short	
  storm	
  outbursts.	
  The	
  
subsurface	
  flow	
  model	
  is	
  a	
  steady-­‐state	
  model	
  
so	
  no	
  antecedent	
  moisture	
  conditions	
  is	
  
required	
  in	
  the	
  model.	
  It	
  assumes	
  that	
  the	
  
subsurface	
  flow	
  attains	
  steady-­‐state	
  given	
  the	
  
annual	
  maximum	
  recharge	
  value.	
  	
  	
  
The	
  spatial	
  scale	
  variety	
  used	
  in	
  the	
  model	
  
application	
  is	
  a	
  result	
  of	
  the	
  native	
  resolution	
  of	
  
the	
  various	
  data	
  sources	
  as	
  well	
  as	
  the	
  
resolution	
  chosen	
  for	
  the	
  application.	
  	
  However,	
  
the	
  model	
  is	
  flexible	
  for	
  use	
  at	
  other	
  spatial	
  and	
  
temporal	
  resolutions.	
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   5.	
  Soil	
  depth	
  evolution:	
  it	
  is	
  not	
  
totally	
  clear	
  to	
  me	
  whether	
  the	
  soil	
  
depth	
  evolution	
  model	
  is	
  run	
  in	
  
conjunction	
  with	
  the	
  stability	
  
module	
  or	
  it	
  is	
  run	
  ‘off	
  line’	
  and	
  the	
  
final	
  map	
  is	
  then	
  fed	
  to	
  the	
  slope	
  
stability	
  module.	
  	
  

Also,	
  how	
  the	
  soil	
  depth	
  evolution	
  
influences	
  the	
  hydrological	
  module?	
  
Theoretically,	
  the	
  soil	
  evolution	
  
model	
  itself	
  should	
  take	
  into	
  account	
  
the	
  change	
  in	
  elevation	
  due	
  to	
  the	
  
landslide.	
  Is	
  this	
  done?	
  Please	
  make	
  
it	
  clear.	
  	
  

We	
  improved	
  the	
  description	
  and	
  application	
  of	
  
the	
  soil	
  evolution	
  model	
  and	
  how	
  we	
  used	
  it.	
  
Section	
  2.4.	
  describes	
  broadly	
  why	
  we	
  needed	
  a	
  
soil	
  evolution	
  model,	
  what	
  we	
  obtained	
  from	
  it,	
  
and	
  how	
  we	
  used	
  the	
  modeled	
  soil	
  depth.	
  It	
  
also	
  provides	
  a	
  narrative	
  of	
  the	
  soil	
  production	
  
processes	
  modeled.	
  	
  
	
  
Section	
  4.1.2.	
  describes	
  in	
  more	
  detail	
  how	
  the	
  
model	
  is	
  implemented	
  at	
  select	
  locations	
  that	
  
represent	
  the	
  topography	
  and	
  vegetation	
  of	
  the	
  
domain	
  and	
  how	
  this	
  limited	
  model	
  information	
  
is	
  used	
  to	
  make	
  a	
  map	
  of	
  mode	
  of	
  soil	
  depth	
  
and	
  set	
  minimum	
  and	
  maximum	
  parameters	
  of	
  
the	
  triangular	
  distributions	
  used	
  in	
  the	
  Landlab	
  
LandslideProbability	
  component.	
  This	
  section	
  
also	
  clarifies	
  the	
  differences	
  between	
  M-­‐SD	
  and	
  
M-­‐SD	
  LT.	
  
	
  
The	
  soil	
  evolution	
  model	
  does	
  not	
  influence	
  the	
  
hydrology	
  model	
  and	
  landscape	
  elevations	
  are	
  
not	
  changed	
  with	
  soil	
  development	
  and	
  
landslides.	
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   6.	
  Authors	
  do	
  not	
  explicitly	
  discuss	
  
the	
  importance	
  of	
  the	
  effect	
  of	
  
matric	
  suction	
  and	
  the	
  ‘apparent’	
  
cohesion	
  which	
  arises	
  under	
  
unsaturated	
  soil	
  moisture	
  conditions	
  
(e.g.,	
  Simoni	
  et	
  al.,	
  2008;	
  Baum	
  et	
  al.,	
  
2002)	
  and	
  which	
  can	
  be	
  much	
  higher	
  
than	
  soil	
  and	
  also	
  root	
  cohesion	
  (e.g.,	
  
Arnone	
  et	
  al.,	
  2016).	
  They	
  discuss	
  
clearly	
  hypothesis	
  of	
  steady	
  state	
  
conditions,	
  but	
  this	
  does	
  not	
  justify	
  
the	
  neglecting	
  of	
  the	
  matric	
  suction.	
  
Moreover,	
  several	
  procedure	
  have	
  
been	
  also	
  proposed	
  to	
  predict	
  shear	
  
strength	
  under	
  unsaturated	
  soil	
  
(based	
  on	
  modified	
  Mohr-­‐Coulomb	
  
failure	
  criterion	
  (Vanapalli	
  et	
  al.,	
  
1996;	
  Fredlund	
  et	
  al.,	
  1996)),	
  which	
  
have	
  been	
  used	
  in	
  various	
  works	
  
(Montrasio	
  and	
  Valentino,	
  2008;	
  
Lepore	
  et	
  al.,	
  2013).	
  I	
  suggest	
  
referring	
  to	
  Lepore	
  et	
  al.,	
  (2013)	
  for	
  a	
  
discussion	
  on	
  this	
  point.	
  	
  

Arnone	
  E,	
  Caracciolo	
  D,	
  Noto	
  LV,	
  
Preti	
  F,	
  Bras	
  RL	
  (2016)	
  Modeling	
  the	
  
hydrological	
  and	
  mechanical	
  effect	
  
of	
  roots	
  on	
  shallow	
  landslides.	
  Water	
  
Resour	
  Res	
  52(11):8590–8612	
  	
  

Baum,	
  R.	
  L.,	
  Savage,	
  W.	
  Z.,	
  and	
  Godt,	
  
J.	
  W.	
  (2008)	
  TRIGR-­‐a	
  Fortran	
  
program	
  for	
  transient	
  rainfall	
  
infiltration	
  and	
  grid-­‐based	
  regional	
  
slope-­‐stability	
  analysis,	
  US	
  Geological	
  
Survey	
  Open	
  File	
  Report	
  2008-­‐1159,	
  
75	
  pp.	
  	
  

Fredlund,	
  D.	
  G.,	
  Xing,	
  A.,	
  and	
  
Barbour,	
  M.	
  D.(1996).	
  The	
  
relationship	
  of	
  the	
  unsaturated	
  soil	
  
shear	
  strength	
  to	
  the	
  soil	
  water	
  

We	
  recognize	
  and	
  explicitly	
  state	
  that	
  we	
  
neglect	
  apparent	
  cohesion	
  on	
  line	
  41	
  on	
  page	
  
33.	
  	
  In	
  steep	
  mountain	
  terrain	
  of	
  the	
  Pacific	
  
Northwest	
  soils,	
  are	
  loosely	
  developed	
  and	
  have	
  
large	
  particles	
  in	
  hillslope	
  soil	
  mixtures.	
  Earlier	
  
applications	
  of	
  similar	
  model	
  typically	
  use	
  
cohesionless	
  soils.	
  However,	
  we	
  recognize	
  the	
  
discoveries	
  of	
  the	
  importance	
  of	
  matric	
  suction,	
  
perhaps	
  more	
  important	
  in	
  well-­‐developed	
  
soils,	
  in	
  stability	
  analysis	
  (e.g.,	
  citations	
  referee	
  
listed)	
  and	
  highlight	
  this	
  opportunity	
  for	
  future	
  
advancements	
  in	
  the	
  Landlab	
  
LandslideProbability	
  model	
  on	
  page	
  34,	
  line	
  5-­‐6.	
  	
  
We	
  believe	
  that	
  comparison	
  of	
  our	
  model	
  with	
  
the	
  tRIBS-­‐VEGGIE	
  model	
  would	
  be	
  an	
  
interesting	
  future	
  study,	
  but	
  is	
  beyond	
  the	
  
scope	
  of	
  the	
  current	
  model	
  version.	
  
	
  
We	
  are	
  familiar	
  with	
  many	
  of	
  the	
  citations	
  
provide	
  and	
  appreciate	
  exposure	
  to	
  the	
  others.	
  
Some	
  of	
  these	
  citations	
  are	
  already	
  included	
  in	
  
the	
  manuscript,	
  but	
  the	
  literature	
  review	
  has	
  
been	
  enhanced	
  (13	
  more	
  citations)	
  using	
  these	
  
references	
  as	
  well	
  as	
  others.	
  	
  Additional	
  or	
  
modification	
  of	
  text	
  from	
  these	
  references	
  
include:	
  insensitivity	
  to	
  soil	
  unit	
  weight	
  (Page	
  
16,	
  line	
  12),	
  assumed	
  negligible	
  correlation	
  
between	
  C	
  and	
  friction	
  angle	
  (Page	
  8,	
  line	
  14),	
  
and	
  hydrologic	
  effect	
  of	
  roots	
  drying	
  out	
  soils	
  
(Page	
  31,	
  lines	
  15-­‐17).	
  



characteristic	
  curve,	
  Can.	
  Geotech.	
  J.,	
  
32,	
  440–448	
  	
  

Lepore	
  C,	
  Arnone	
  E,	
  Noto	
  LV,	
  
Sivandran	
  G,	
  Bras	
  RL.	
  (2013).	
  
Physically	
  based	
  modeling	
  of	
  rainfall-­‐
triggered	
  landslides:	
  a	
  case	
  study	
  in	
  
the	
  Luquillo	
  forest,	
  Puerto	
  Rico.	
  
Hydrology	
  and	
  Earth	
  System	
  Sciences	
  
17:	
  3371–3387.	
  DOI:	
  10.5194/hess-­‐
17-­‐3371-­‐	
  2013.	
  	
  

Montrasio,	
  L.	
  and	
  Valentino,	
  R.	
  
(2008)	
  A	
  model	
  for	
  triggering	
  
mechanisms	
  of	
  shallow	
  landslides,	
  
Nat.	
  Hazards	
  Earth	
  Syst.	
  Sci.,	
  8,	
  
1149–1159.	
  	
  

Simoni,	
  S.,	
  Zanotti,	
  F.,	
  Bertoldi,	
  G.,	
  
and	
  Rigon,	
  R.	
  (2008)	
  Modelling	
  the	
  
probability	
  of	
  occurrence	
  of	
  shallow	
  
landslides	
  and	
  channelized	
  debris	
  
flows	
  using	
  GEOtop-­‐FS,	
  Hydrol.	
  
Process.,	
  22,	
  532–545	
  	
  

Vanapalli,	
  S.	
  K.,	
  Fredlund,	
  D.	
  G.,	
  
Pufahl,	
  D.	
  E.,	
  and	
  Clifton,	
  A.	
  W.(1996)	
  
Model	
  for	
  the	
  prediction	
  of	
  shear	
  
strength	
  with	
  respect	
  to	
  soil	
  suction,	
  
Can.	
  Geotech.	
  J.,	
  33,	
  379–392	
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   7.	
  Distribution	
  of	
  soil	
  and	
  mechanical	
  
parameters	
  are	
  assumed	
  triangular	
  
and	
  then	
  distributions	
  of	
  FS	
  are	
  
estimated	
  by	
  means	
  Monte	
  Carlo	
  
approach.	
  The	
  approach	
  is	
  fine	
  but	
  
clearly	
  it	
  increases	
  the	
  
computational	
  effort.	
  Other	
  
approaches	
  to	
  estimate	
  probability	
  
of	
  FS	
  have	
  been	
  proposed	
  in	
  the	
  
literature.	
  For	
  example,	
  the	
  First-­‐
Order	
  Second	
  Moment	
  (FOSM)	
  
(Benjamin	
  and	
  Cornell,	
  1970)	
  is	
  
commonly	
  used	
  to	
  estimate	
  
analytical	
  approximations	
  of	
  the	
  

FOSM	
  approach	
  provides	
  the	
  moments	
  of	
  a	
  
random	
  function.	
  	
  Given	
  these	
  moments,	
  then	
  a	
  
theoretical	
  distribution	
  of	
  FS	
  would	
  need	
  to	
  be	
  
assumed	
  at	
  each	
  grid	
  cell.	
  	
  Monte	
  Carlo	
  
simulation	
  does	
  not	
  assume	
  any	
  distribution,	
  
but	
  estimates	
  probability	
  of	
  failure	
  based	
  on	
  the	
  
calculated	
  FS	
  values	
  <=1	
  from	
  the	
  distribution	
  of	
  
FS	
  given	
  the	
  distributions	
  of	
  input	
  variables.	
  	
  
Malkawi	
  et	
  al.	
  (2000)	
  compared	
  FOSM	
  and	
  
Monte	
  Carlo	
  simulation	
  of	
  slope	
  stability	
  and	
  
found	
  good	
  agreement	
  between	
  the	
  two	
  
approaches	
  using	
  2	
  to	
  3	
  slope	
  stability	
  methods;	
  
slight	
  differences	
  between	
  the	
  two	
  approaches	
  
for	
  the	
  Spencer	
  method	
  was	
  due	
  to	
  the	
  need	
  to	
  



spatio-­‐temporal	
  FS	
  statistics	
  (i.e.	
  
mean	
  and	
  variance),	
  that	
  can	
  be	
  
used	
  to	
  fit	
  a	
  theoretical	
  probability	
  
distribution	
  for	
  FS	
  and	
  estimate	
  the	
  
spatio-­‐temporal	
  dynamics	
  of	
  
probability	
  of	
  failure.	
  	
  

	
  

Moreover,	
  mechanical	
  parameters	
  
are	
  normally	
  assumed	
  to	
  be	
  
described	
  by	
  the	
  Normal	
  distribution	
  
(Abbaszadeh	
  et	
  al.,	
  2011;	
  you	
  can	
  
refer	
  to	
  Arnone	
  et	
  al.,	
  2016	
  and	
  
references	
  therein).	
  Please,	
  briefly	
  
discuss.	
  	
  

Abbaszadeh	
  M,	
  Shahriar	
  K,	
  
Sharifzadeh	
  M,	
  Heydari	
  M.	
  2011.	
  
Uncertainty	
  and	
  re-­‐	
  liability	
  analysis	
  
applied	
  to	
  slope	
  stability:	
  a	
  case	
  
study	
  from	
  Sungun	
  copper	
  mine.	
  
Geotechnical	
  and	
  Geological	
  
Engineering	
  29:	
  581–596.	
  	
  

Arnone	
  E,	
  Dialynas	
  YG,	
  Noto	
  LV,	
  Bras	
  
RL	
  (2016)	
  Accounting	
  for	
  soils	
  
parameter	
  un-­‐	
  certainty	
  in	
  a	
  
physically-­‐based	
  and	
  distributed	
  
approach	
  for	
  rainfall-­‐triggered	
  
landslides.	
  Hydrol	
  Process	
  30:927–
944	
  	
  

perform	
  a	
  numerical	
  approximation	
  of	
  the	
  first	
  
derivative	
  of	
  factor-­‐of-­‐safety	
  required	
  by	
  FOSM,	
  
which	
  isn’t	
  required	
  using	
  Monte	
  Carlo	
  
simulation.	
  	
  They	
  endorse	
  the	
  use	
  of	
  the	
  Monte	
  
Carlo	
  simulation	
  approach	
  given	
  the	
  capabilities	
  
of	
  computers	
  to	
  handle	
  data	
  and	
  computation.	
  
We	
  did	
  not	
  find	
  computational	
  requirements	
  
limiting	
  in	
  our	
  use	
  of	
  Monte	
  Carlo	
  simulation.	
  	
  In	
  
fact,	
  once	
  the	
  model	
  input	
  is	
  prepared,	
  the	
  
model’s	
  Monte	
  Carlo	
  simulation	
  with	
  n=3,000	
  
for	
  an	
  area	
  of	
  over	
  2,700	
  km2	
  runs	
  in	
  minutes.	
  	
  
	
  

Malkawi,  Abdallah  I.  Husein,  Waleed  F.  Hassan,  
and  Fayez  A.  Abdulla.  "Uncertainty  and  reliability  
analysis  applied  to  slope  stability."  Structural  
safety  22.2  (2000):  161-­187.  

	
  
Regarding	
  distributions	
  of	
  parameters,	
  both	
  
normal	
  and	
  uniform	
  distributions	
  are	
  often	
  used	
  
in	
  slope	
  stability	
  analysis,	
  but	
  we	
  preferred	
  to	
  
use	
  triangle	
  for	
  reasons	
  given	
  on	
  page	
  8,	
  lines	
  3-­‐
5.	
  	
  This	
  distribution	
  has	
  been	
  used	
  by	
  others	
  in	
  
slope	
  stability	
  modeling	
  using	
  Monte	
  Carlo	
  
simulations	
  (Cho,	
  2007;	
  Dou	
  et	
  al.,	
  2014;	
  
Hammond	
  et	
  al.,	
  1992;	
  El-­‐Ramly	
  et	
  al.,	
  2002;	
  
Strenk,	
  2010).	
  	
  Additionally,	
  it	
  gives	
  the	
  most	
  
weight	
  to	
  data	
  and/or	
  knowledge	
  from	
  the	
  
modeler	
  in	
  the	
  form	
  of	
  mode,	
  facilitates	
  skewed	
  
distributions,	
  and	
  avoids	
  extrapolations	
  to	
  
extreme	
  high	
  or	
  low	
  (and	
  negative)	
  values.	
  	
  
Observed/measured	
  values	
  of	
  soil	
  depth,	
  
cohesion,	
  and	
  friction	
  angle	
  are	
  typically	
  
skewed	
  and	
  not	
  normally	
  distributed	
  
(Hammond	
  et	
  al.	
  1992).	
  

33	
   8.	
  Model	
  application	
  is	
  a	
  bit	
  
confusing.	
  My	
  impression	
  is	
  that	
  it	
  is	
  
mainly	
  addressed	
  to	
  demonstrate	
  
the	
  model	
  capabilities	
  instead	
  of	
  
producing	
  reliable	
  landslide	
  hazard	
  
maps	
  for	
  the	
  study	
  areas	
  (AUC	
  are	
  
low	
  and	
  FS	
  parameters	
  are	
  not	
  site-­‐
dependent).	
  Please,	
  state	
  clearly	
  the	
  
main	
  targets	
  of	
  the	
  model	
  
application.	
  	
  

The	
  model	
  was	
  implemented	
  at	
  a	
  national	
  park	
  
to	
  provide	
  demonstration	
  of	
  the	
  model	
  and	
  
provide	
  a	
  stability	
  analysis	
  for	
  the	
  park.	
  	
  It	
  was	
  
not	
  to	
  substantiate	
  the	
  current	
  landslide	
  
inventory.	
  Explicit	
  targets	
  of	
  the	
  application	
  are	
  
provided	
  with	
  a	
  new	
  sentence	
  at	
  lines	
  36-­‐38,	
  
page	
  10.	
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   1.	
  P9L6:	
  I	
  suggest	
  moving	
  this	
  info	
  
(soil	
  density)	
  in	
  the	
  model	
  
application	
  section.	
  Please,	
  specify	
  
what	
  type	
  of	
  soil	
  density	
  this	
  value	
  
accounts	
  for	
  (total,	
  dry,	
  wet,	
  bulk	
  
density...)	
  	
  

Soil	
  density	
  is	
  wet	
  bulk	
  density	
  (see	
  response	
  to	
  
comment	
  #2	
  of	
  Referee	
  #1.	
  	
  This	
  sentence	
  was	
  
removed	
  as	
  the	
  value	
  is	
  listed	
  in	
  line	
  43	
  of	
  page	
  
15.	
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   2.	
  P9L20:	
  how	
  do	
  you	
  justify	
  this	
  low	
  
resolution	
  of	
  the	
  hydrological	
  
model?	
  Clearly,	
  this	
  is	
  not	
  able	
  to	
  
simulate	
  the	
  ‘local’	
  moisture	
  
dynamics	
  at	
  hillslope	
  scale	
  .	
  .	
  .	
  	
  

The	
  VIC	
  hydrological	
  model	
  was	
  used	
  to	
  obtain	
  
annual	
  maximum	
  daily	
  recharge	
  averaged	
  over	
  
the	
  upslope	
  contributing	
  area	
  of	
  each	
  grid	
  cell	
  
of	
  the	
  probabilistic	
  landslide	
  initiation	
  model.	
  
Local	
  relative	
  wetness	
  used	
  in	
  the	
  infinite	
  slope	
  
stability	
  model	
  was	
  calculated	
  from	
  a	
  steady-­‐
state	
  subsurface	
  flow	
  model,	
  which	
  is	
  a	
  function	
  
of	
  local	
  slope	
  and	
  transmissivity	
  at	
  the	
  
resolution	
  of	
  the	
  landslide	
  model.	
  The	
  steady-­‐
state	
  subsurface	
  model	
  does	
  not	
  consider	
  the	
  
local	
  soil	
  moisture	
  dynamics.	
  Additional	
  
justification	
  for	
  using	
  VIC	
  in	
  our	
  application	
  is	
  
provided	
  in	
  Sect.	
  3.2.2	
  on	
  page	
  17.	
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   3.	
  P15L7:	
  working	
  resolution	
  is	
  30	
  m.	
  
However,	
  if	
  I	
  understood	
  well	
  some	
  
components	
  of	
  the	
  system	
  (e.g.	
  VIC)	
  
work	
  at	
  coarser	
  resolution	
  ...	
  Is	
  any	
  
interpolation	
  method	
  being	
  used?	
  	
  

Recharge	
  at	
  the	
  30-­‐m	
  grid	
  resolution	
  is	
  provided	
  
by	
  routing	
  the	
  upstream	
  fractional	
  area	
  of	
  the	
  
coarse	
  1/16°	
  resolution	
  VIC	
  grid	
  cells	
  to	
  
calculate	
  the	
  upstream	
  proportionally-­‐averaged	
  
maximum	
  recharge	
  for	
  each	
  year.	
  	
  These	
  time	
  
series	
  are	
  used	
  in	
  an	
  interpolation	
  step	
  within	
  
the	
  component	
  to	
  generate	
  a	
  cumulative	
  
distribution	
  of	
  recharge	
  equal	
  to	
  the	
  length	
  of	
  
the	
  number	
  of	
  Monte	
  Carlo	
  iterations	
  used	
  in	
  
the	
  simulation.	
  	
  This	
  is	
  clarified	
  with	
  revisions	
  to	
  
page	
  8,	
  lines	
  37-­‐40.	
  More	
  detail	
  on	
  this	
  is	
  also	
  
provided	
  in	
  the	
  User	
  Manual	
  as	
  mentioned	
  on	
  
line	
  23,	
  page	
  9.	
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   4.	
  P16Table1:	
  maximum	
  values	
  of	
  
friction	
  angle	
  seem	
  to	
  be	
  very	
  high	
  .	
  .	
  
.	
  Do	
  you	
  have	
  references?	
  	
  

Source	
  for	
  friction	
  angle	
  is	
  provided	
  in	
  line	
  42,	
  
page	
  15;	
  highest	
  values	
  are	
  based	
  on	
  the	
  ranges	
  
in	
  the	
  literature.	
  	
  See	
  also	
  response	
  to	
  comment	
  
#	
  6	
  of	
  Referee	
  #1.	
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   5.	
  P16L9:	
  The	
  estimation	
  of	
  root	
  
cohesion	
  belong	
  to	
  a	
  further	
  ‘branch’	
  
of	
  scientific	
  literature	
  of	
  this	
  field	
  
which	
  here	
  seems	
  to	
  be	
  significantly	
  
simplified	
  (e.g.	
  Pollen	
  and	
  Simon	
  
2005;	
  Preti	
  et	
  al.,	
  2010;	
  Schwarz	
  et	
  
al.,	
  2013	
  ).	
  .	
  .	
  	
  

We	
  agree	
  that	
  estimating	
  root	
  cohesion	
  is	
  a	
  
‘branch’	
  of	
  research	
  by	
  itself	
  and	
  represents	
  
one	
  of	
  the	
  more	
  challenging	
  variables	
  to	
  
represent	
  in	
  a	
  landslide	
  model.	
  Our	
  landslide	
  
research	
  aims	
  for	
  regional	
  application	
  and	
  was	
  
not	
  focused	
  on	
  this	
  branch	
  of	
  study.	
  	
  We	
  believe	
  
basing	
  root	
  cohesion	
  estimates	
  on	
  vegetation	
  
and	
  used	
  in	
  a	
  Monte	
  Carlo	
  simulation	
  is	
  a	
  



Schwarz,	
  M.,	
  F.	
  Giadrossich,	
  and	
  D.	
  
Cohen	
  (2013),	
  Modeling	
  root	
  
reinforcement	
  using	
  a	
  root-­‐failure	
  
Weibull	
  survival	
  function,	
  Hydrol.	
  
Earth	
  Syst.	
  Sci.,	
  17,	
  4367–4377.	
  	
  

Pollen,	
  N.,	
  and	
  A.	
  Simon	
  (2005),	
  
Estimating	
  the	
  mechanical	
  effects	
  of	
  
riparian	
  vegetation	
  on	
  stream	
  bank	
  
stability	
  using	
  a	
  fiber	
  bundle	
  model,	
  
Water	
  Resour.	
  Res.,	
  41,	
  W07025	
  	
  

straightforward	
  approach	
  that	
  can	
  be	
  easily	
  
implemented	
  in	
  other	
  locations;	
  however,	
  the	
  
model	
  is	
  capable	
  of	
  operating	
  with	
  detailed	
  
estimates	
  of	
  root	
  cohesion	
  provided	
  by	
  the	
  
user.	
  
	
  
Citations	
  provided	
  offer	
  approaches	
  for	
  
estimating	
  root	
  cohesion	
  based	
  on	
  
quantification	
  or	
  parameterization	
  of	
  detailed	
  
root	
  strength	
  that	
  is	
  beyond	
  the	
  regional	
  
approach	
  we	
  take	
  in	
  our	
  model.	
  	
  However,	
  
recognition	
  of	
  these	
  techniques	
  was	
  added	
  to	
  
the	
  paper	
  for	
  exposure	
  to	
  interested	
  readers	
  on	
  
page	
  14,	
  line	
  11.	
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   6.	
  P19sec3.2.2:	
  please	
  give	
  some	
  
synthesis	
  of	
  the	
  characteristics	
  of	
  the	
  
hydro-­‐climatology	
  forcing	
  for	
  the	
  
area	
  (e.g.	
  some	
  characteristic	
  time	
  
series	
  ...	
  ).	
  	
  

The	
  seasonality	
  and	
  range	
  of	
  precipitation	
  is	
  
discussed	
  on	
  page	
  11,	
  lines	
  6-­‐13	
  and	
  mean	
  
annual	
  precipitation	
  is	
  spatially	
  depicted	
  in	
  Fig.	
  
2c,	
  which	
  was	
  moved	
  up	
  a	
  page.	
  	
  Additional	
  
characterization	
  of	
  recharge	
  was	
  provided	
  in	
  a	
  
sentence	
  on	
  page	
  17,	
  lines	
  14-­‐16.	
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   7.	
  Figure	
  4:	
  how	
  about	
  the	
  map	
  of	
  
soil	
  evolution	
  model?	
  

A	
  map	
  of	
  a	
  portion	
  (close	
  up)	
  of	
  the	
  evolved	
  soil	
  
depth	
  product	
  is	
  in	
  Fig.	
  7;	
  however,	
  the	
  Fig.	
  7	
  
was	
  revised	
  to	
  match	
  the	
  color	
  palette	
  of	
  Fig.	
  4’s	
  
SSURGO	
  soil	
  depth	
  map.	
  	
  A	
  relative	
  histogram	
  of	
  
a	
  spatial	
  soil	
  depth	
  product	
  is	
  also	
  provided	
  in	
  
same	
  figure.	
  	
  We	
  believe	
  this	
  information	
  is	
  
sufficient	
  to	
  provide	
  characterization	
  for	
  the	
  
comparison	
  with	
  the	
  SSURGO	
  soil	
  depth	
  
product.	
  	
  Given	
  the	
  sample	
  topography,	
  details	
  
of	
  the	
  influence	
  of	
  converging	
  and	
  diverging	
  
morphologies	
  on	
  soil	
  depth	
  can	
  be	
  more	
  clearly	
  
seen	
  in	
  a	
  close-­‐up	
  figure	
  than	
  in	
  the	
  map	
  of	
  the	
  
entire	
  domain.	
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   8.	
  Figure	
  5:	
  which	
  soil	
  properties	
  did	
  
you	
  use	
  for	
  this	
  figure?	
  I	
  don’t	
  see	
  
much	
  difference	
  in	
  concavity	
  
between	
  zone	
  (2)	
  and	
  zone	
  (3).	
  I	
  
suggest	
  adding	
  the	
  degree	
  axis	
  in	
  y,	
  
slope	
  is	
  not	
  easily	
  readable.	
  Please,	
  
specify	
  what	
  the	
  angle	
  values	
  stand	
  
for.	
  	
  

Soil	
  properties	
  are	
  listed	
  in	
  figure	
  caption,	
  but	
  
include	
  friction	
  angle	
  of	
  34	
  degrees	
  and	
  
dimensionless	
  cohesion	
  values	
  listed	
  in	
  legend.	
  
The	
  break	
  in	
  concavity	
  between	
  zone	
  2	
  and	
  3	
  is	
  
subtle,	
  but	
  was	
  guided	
  by	
  the	
  source	
  cells	
  
(triangles)	
  and	
  the	
  saturation	
  line.	
  	
  We	
  prefer	
  to	
  
retain	
  slope	
  as	
  m/m	
  rather	
  than	
  degrees	
  to	
  
facilitate	
  comparison	
  with	
  other	
  slope-­‐area	
  
geomorphic	
  analyses	
  such	
  as	
  Montgomery	
  and	
  
Dietrich	
  (1994)	
  and	
  Pack	
  et	
  al.	
  (1998).	
  	
  However,	
  



the	
  labeled	
  angles	
  in	
  degrees	
  on	
  the	
  plot	
  should	
  
help	
  orient	
  the	
  reader.	
  
Assuming	
  the	
  angle	
  values	
  referee	
  is	
  referring	
  
to	
  are	
  17,	
  35,	
  and	
  50	
  degrees.	
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   9.	
  P20L7:	
  please,	
  specify	
  the	
  color	
  of	
  
the	
  dot	
  lines.	
  

We	
  believe	
  this	
  refers	
  to	
  Fig.	
  5.	
  	
  Caption	
  
amended	
  to	
  include	
  color	
  of	
  vertical	
  lines.	
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   10.	
  P21L15:	
  why	
  is	
  it	
  tan(theta)<	
  ½	
  
tan(phi)	
  ....From	
  eq.	
  (1)	
  it	
  should	
  be	
  
simply	
  tan(theta)<tan(phi).	
  

Solving	
  the	
  FS	
  equation	
  (Eq.	
  1a)	
  for	
  tan(θ),	
  given	
  
FS=1,	
  relative	
  wetness=1,	
  cohesionless	
  soil,	
  and	
  
a	
  water	
  to	
  soil	
  density	
  ratio=	
  ½,	
  yields	
  tan(θ)	
  ≤	
  ½	
  
tan(ø)	
  for	
  unconditionally	
  stable	
  conditions.	
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   11.	
  P21L18:	
  I	
  don’t	
  see	
  where	
  
theta=17	
  degree	
  is	
  in	
  the	
  figure	
  5	
  	
  

θ=17°	
  in	
  Fig.	
  5	
  is	
  noted	
  next	
  to	
  the	
  cyan	
  line.	
  	
  
Updated	
  figure	
  caption	
  based	
  on	
  comment	
  #41	
  
eases	
  the	
  visibility	
  of	
  this	
  threshold.	
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   12.	
  P22L5:	
  specify	
  color	
  of	
  the	
  lines?	
   Colors	
  added.	
  
46	
   13.	
  Figure	
  6a,c:	
  Relative	
  frequency	
  is	
  

in	
  time	
  or	
  space?	
  	
  
This	
  is	
  in	
  time.	
  	
  Clarified	
  in	
  Fig.	
  6	
  caption.	
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   14.	
  Figure	
  6b,d:	
  consider	
  to	
  cut	
  the	
  
FS	
  values	
  ad	
  significantly	
  ‘stable’	
  
values,	
  e.g.	
  >	
  10	
  (	
  no	
  matter	
  if	
  Fs	
  is	
  
10	
  or	
  200)!	
  Otherwise	
  make	
  FS	
  in	
  
logarithm	
  scale	
  (interesting	
  values	
  
are	
  those	
  close	
  to	
  1).	
  	
  

Incorporated	
  referee’s	
  comment	
  and	
  converted	
  
FS	
  (2nd	
  Y-­‐axis)	
  to	
  logarithm	
  scale	
  to	
  emphasize	
  
the	
  values	
  closer	
  to	
  1.	
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   15.	
  Figure	
  6:	
  Interesting	
  questions	
  
here	
  could	
  be:	
  which	
  is	
  the	
  soil	
  depth	
  
which	
  causes	
  a	
  ‘critical	
  change	
  in	
  FS,	
  
i.e.	
  that	
  lead	
  the	
  FS	
  going	
  from	
  
stability	
  to	
  instability.	
  And	
  in	
  which	
  
time	
  window	
  this	
  is	
  reached?	
  	
  

The	
  referee	
  presents	
  interesting	
  questions	
  that	
  
could	
  be	
  addressed	
  in	
  the	
  soil	
  evolution	
  model.	
  	
  
However,	
  the	
  soil	
  evolution	
  model	
  is	
  not	
  the	
  
focus	
  of	
  our	
  research,	
  but	
  provides	
  a	
  
mechanism	
  to	
  estimate	
  soil	
  depth	
  to	
  compare	
  
with	
  soil	
  surveys	
  or	
  to	
  use	
  in	
  areas	
  lacking	
  soil	
  
depth	
  estimates.	
  	
  

49	
   16.	
  Figure	
  12:	
  make	
  figure	
  5	
  and	
  
figure	
  12	
  consistent	
  to	
  facilitate	
  the	
  
comparison.	
  	
  

Partially	
  adjusted	
  Fig.	
  5	
  to	
  reflect	
  the	
  same	
  
maximum	
  Y-­‐axis	
  limit	
  as	
  Fig.	
  12	
  at	
  101	
  and	
  
improved	
  legend.	
  Otherwise	
  retained	
  the	
  figure	
  
limits	
  to	
  maximize	
  the	
  display	
  of	
  data	
  within	
  the	
  
axes	
  limits.	
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   17.	
  Please,	
  note	
  that	
  the	
  obtained	
  
values	
  of	
  AUC	
  are	
  very	
  low	
  ...	
  Are	
  
you	
  able	
  to	
  identify	
  which	
  landslides	
  
are	
  you	
  missing?	
  	
  

We	
  recognize	
  and	
  report	
  that	
  the	
  AUC	
  values	
  
indicate	
  modest	
  model	
  performance	
  with	
  
observed	
  debris	
  avalanches	
  on	
  page	
  32,	
  line	
  19.	
  	
  
We	
  have	
  examined	
  the	
  landslides	
  that	
  the	
  
model	
  did	
  not	
  identified	
  as	
  high	
  probability	
  as	
  
well	
  as	
  areas	
  not	
  mapped	
  as	
  landslides,	
  but	
  with	
  
high	
  probabilities.	
  	
  We	
  have	
  not	
  identified	
  a	
  
consistent	
  pattern	
  in	
  apparent	
  “mis-­‐matches”.	
  	
  



Additional	
  evaluation	
  of	
  these	
  areas	
  is	
  noted	
  as	
  
future	
  work	
  on	
  page	
  33,	
  lines	
  24-­‐26.	
  	
  
For	
  more	
  discussion	
  about	
  performance,	
  see	
  
comment	
  #7.	
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   18.	
  Figure	
  15:	
  I	
  suggest	
  reporting	
  the	
  
AUC	
  values	
  of	
  the	
  ROC	
  curves.	
  	
  

We	
  report	
  the	
  AUC	
  values	
  in	
  the	
  text	
  on	
  page	
  
32,	
  line	
  20;	
  however,	
  we	
  repeated	
  the	
  range	
  in	
  
the	
  Fig.	
  14	
  caption.	
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Abstract 
We develop a hydro-climatological approach to modeling of regional shallow landslide initiation 15 

that integrates spatial and temporal dimensions of parametervariable uncertainty to estimate 

an annual probability of landslide initiation based on Monte Carlo simulations.  The physically-

based model couples the infinite slope stability model with a steady-state subsurface flow 

representation and operates on a digital elevation model. Spatially distributed raster gridded 

data for soil properties and a soil evolution model and vegetation classification from National 20 

Land Cover Data are used for parameter estimation ofto derive variables for probability 

distributions to represent input uncertaintyforthat characterize model parametersinput 

uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to 

subsurface flow obtained from a macroscale hydrologic model, routed on raster grid to develop 

subsurface flow. A Monte Carlo approach is used to generate model parametervariables at each 25 

grid cell and calculate probability of shallow landsliding. We demonstrate the model in a steep 

mountainous region in northern Washington, U.S.A., , using 30-m grid resolution over 2,700 

km
2
. The influence of soil depth on the probability of landslide initiation is investigated through 

comparisons among model output produced using three different soil depth scenarios 

reflecting uncertainty of soil depth and its potential long-term variability. We found elevation 30 

dependent patterns in probability of landslide initiation that showed the stabilizing effects of 

forests in low elevations, an increased landslide probability with forest decline at mid 

elevations (1,400 to 2,400 m), and soil limitation and steep topographic controls at high alpine 

elevations and post-glacial landscapes. These dominant controls manifest in a bimodal 
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distribution of spatial annual landslide probability.  Model testing with limited observations 

revealed similarly moderate model confidence for the three hazard maps, suggesting suitable 

use as relative hazard products. Validation of the model with observed landslides is hindered by 

the completeness and accuracy of the inventory, estimation of source areas, and unmapped 

landslides. The model is available as a component in Landlab, an open-source, Python-based 5 

landscape earth systems modeling environment, and is designed to be easily reproduced 

utilizing HydroShare cyberinfrastructure.  

1 Introduction 
In steep mountainous landscapes, episodic shallow landslides (generally <2 m depth; Bordoni et 

al, 2015) and landslide-triggered debris flows are often the dominant form of hillside erosion 10 

and major source of sediment into streams (Benda and Dunne, 1997a, b; Goode et al., 2012). 

Where landslide processes intersect with human development, they cause property damage, 

disruption of infrastructure, injury, and loss of life (Taylor and Brabb, 1986; Baum et al., 2008a), 

contribute to sedimentation in reservoirs (Bathurst et al., 2005), and may even lead to dam 

failures (Ghirotti, 2012). Landslides provide punctuated sediment input to streams, affecting 15 

stream geomorphology (Benda and Dunne, 1997a, 1997b) and ecosystem dynamics (Pollock, 

1998; May et al., 2009).  Landslide hazard maps are a common tool used to characterize the 

relative potential for landslide occurrence in space, either qualitatively (using susceptibility 

levels) or quantitatively (using modeled landslide probabilities) (van Westen et al., 2006; Raia et 

al., 2014).  20 

 

Our objective is to develop a parsimonious probabilistic model of regional shallow landslide 

initiation that can be implemented with minimal calibration for landslide hazard mapping using 

regionally available, spatially distributed input data for soil, vegetation type, local topography, 

and hydroclimatology. Based on the literature review presented below, we propose that a 25 

regional landslide hazard model should: (1) be flexible enough to incorporate changes in 

intrinsic and extrinsic conditions, such as vegetation and climate; (2) account for spatial 

variability in model parameters and forcings, and (3) integrate spatial and temporal dimensions 

of uncertainty to quantify landslide probability.  With these principles in mind, we develop a 

hydro-climatological approach to modeling regional landslide hazard using the Landlab earth 30 

surface modeling toolkit - an open-source, Python-based earth surface modeling framework 

that provides flexible model customization and coupling (Hobley et al., 2017).  Next, we provide 

a short literature review that guides the design of our landslide modeling approach. 

 

1.1 Geomorphology and Modeling Background 35 

Landslides occur when destabilizing forces due to gravity and pore-water pressure exceed the 

resisting forces of friction and cohesion over a failure plane. These forces are controlled by 

intrinsic hillslope conditions, including attributes of topography, such as local slope and upslope 

contributing area, and properties of rock, soil, and vegetation root cohesion; and extrinsic 

drivers of rainfall, snowmelt, and earthquakes (Crozier, 1986; Wu and Sidle, 1995; van Beek, 40 

2002; Naudet et al., 2008). There are three primary components of a landslide: (1) a source 
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area or landslide scar where the initial failure begins, (2) a transmission or scour zone, such as a 

debris flow channel, and (3) a toe or zone of deposition (Lu and Godt, 2013).   

 

Landslide susceptibility can be identified through numerous methods, which can be broadly 

grouped into empirical methods and process-based numerical models (Hammond et al., 1992; 5 

Wu and Sidle, 1995; Sidle and Ochiai, 2006).  Data-driven empirical approaches relate the 

number and frequency of historical landslide observations in a region to triggering events 

(Caine, 1980; Crozier, 1999; Glade, 2001), landscape attributes (Carrara et al., 1995; Chung et 

al., 1995; Lee et al., 2007), or a combination of both (Kirschbaum et al., 2012) using threshold 

relations and various statistical models such as logistic regression, fuzzy logic, artificial neural 10 

networks, and support vector machine (Lee et al., 2007; Pardeshi et al., 2013; Chen et al., 

2014).  Empirical methods have been used for landslide susceptibility zonation or categorizing 

the landscape into relative landslide hazards (Sidle and Ochiai 2006).   

 

Process-based models employ effective stress principles to characterize the destabilizing and 15 

resisting forces under hydrologic drivers (Iverson, 2000; Montrasio and Valentino 2016), 

offering the ability to explore changes in environmental and climatic conditions, critical for. 

Such process-based models are especially useful in areas with limited landslide inventories 

(Pardeshi et al., 2013). Recent process-based numerical models have largely focused on 

improving the characterization of the space-time dynamics of subsurface flow as a driver of 20 

pore-water pressure (e.g., Baum et al., 2008b; Raia et al., 2014; Anagnostopoulos et al., 2015; 

Montrasio and Valentino, 2016). Distributed hydrology models that use steady-state or 

transient solutions for subsurface flow depth were coupled with an infinite-slope stability 

model that solves the ratio of stabilizing to destabilizing forces on a failure plane parallel to the 

land surface (Montgomery and Dietrich, 1994; Miller, 1995; Wu and Sidle, 1995; Pack et al., 25 

1998; Borga et al., 1998; Casadei et al., 2003; Tarolli and Tarboton, 2006; Baum et al., 2008b).   

 

Steady-state models assume that lateral subsurface flow, driven by the topographic gradient, at 

each point on the landscape is in equilibrium with a steady-state recharge rate (Montgomery 

and Dietrich, 1994; Pack et al., 1998).  The degree of soil saturation is predicted proportional to 30 

the ratio of upslope contributing area to local slope, and a ratio of watershed recharge and 

local soil transmissivity, following TOPMODEL assumptions (Beven and Kirkby, 1979; O’Loughlin, 

1986; Pack et al., 1998). More recent efforts have focused on the development of transient flow 

models in various complexities by coupling vertical infiltration and redistribution processes in 

the unsaturated zone, using the Richards equation for unsaturated flow (Richards, 1931) or its 35 

variants, with lateral flow parameterizations such as kinematic wave in 1- and 2-dimensions 

(Iverson, 2000; Casadei et al., 2003; Baum et al., 2008b; Godt and McKenna, 2008; Raia et al., 

2014; Alvioli et al., 2014; Anagnostopoulos et al., 2015).   

 

While transient flow models have contributed to improved understanding of the influence of 40 

weather forcing and temporal variability in precipitation on landslide initiation, they remain 

tools typically applied for relatively small-scale assessments (Iverson, 2000; Raia et al., 2014).  

Transient models require a large number of hydrologic soil and vegetation parameters that are 
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highly variable, uncertain, and difficult to measure or estimate (Godt and McKenna 2008; Baum 

et al., 2008b). In addition, in most steep forested mountains where landslide risk is high, the 

presence of macropores due to connected root structures, biological activity, fractures, large 

clasts, and lenses, leads to preferential and funneled flows that violate the assumptions of most 

matrix-flow models (Nimmo, 2005; Sidle et al., 2001; Gabet et al., 2003; Montrasio and 5 

Valentino 2008; Beven and Germann 2013). Numerical solutions to flow equations also present 

a major computational bottleneck in large-scale applications for probabilistic quantification of 

landslide hazard.   

 

Comparison of steady-state and transient models using case studies with known extreme 10 

rainfall events that caused widespread landsliding involve statistical model performance 

evaluation (Zizioli et al., 2013).  While using transient hydrologic models provided slight 

improvements in the prediction of landslide locations, overall, statistical comparisons of model 

outputs between steady-state and transient models revealed fairly similar degrees of success 

(Gorsevski et al., 2006; Zizioli et al., 2013; Anagnostopoulos et al., 2015; Boroni et al., 2015; 15 

Formetta et al., 2016). In some applications, model complexity increased the accuracy of 

predicted landslide locations at the expense of overestimating instability on unsaturated 

hillslopes (e.g., Godt et al., 2008; Bellugi 2011).  In other cases, model precision increased while 

accuracy decreased (Gorsevski et al., 2006).   

 20 

Data uncertainty due to spatial and temporal variability of parametervariables continues to be 

one of the major challenges in predicting landslides over broad regions (Crozier, 1986; Sidle and 

Ochiai, 2006; van Westen et. al., 2006; Baum et al., 2014; Anagnostopoulos et al., 2015). These 

Parameter uncertainties and variabilities can develop from geological anomalies, inherent 

spatial heterogeneities in soil and vegetation properties and their changes over time, and 25 

sampling limitations (El-Ramly et al., 2002; Cho, 2007; Baum et al., 2014).  Uncertainties in 

hydro-climatice variablesquantities, such as precipitation, air temperature, and resulting 

hydrologic fluxes and recharge, are particularly pronounced in steep high mountain regions due 

to lack of observations to captureand complex spatial and temporal atmospheric processes 

(Roe, 2005; Wayland et al., 2016). Designating landslide hazard as a probability, rather than an 30 

index, systematically accounts for uncertainty and variability in stability analysis (Hammond et 

al., 1992; Simoni et al., 2008; Arnone et al., 2014) and more appropriately represents complex 

systems (Berti et al., 2012).  Currently, only limitedRecently, some promising advances have 

been made in process-based models accounting for data uncertainty in landslide hazard 

mapping (e.g., Pack et al., 1998; Raia et al., 2014; Arnone et al., 2016a).  35 

 

Observations and model experiments suggest that the largest landslides are usually associated 

with the largest rainfall events (e.g., Page et al. 1994; Gorsevski et al., 2006). Considering that 

hillslope hydrology is more likely to attain equilibrium conditions during prolonged wet 

conditions (e.g., Barling et al., 1994; Borga et al., 2002), a steady-state representation of 40 

subsurface flow hydrology, coupled with a process-based infinite slope stability model is an 

efficient approach for predicting the likelihood of landslide hazard at regional scales.  
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Lastly, most landslide hazard methods disregard a temporal dimension over which landslide 

probability is defined (Wu and Sidle, 1995; van Westen et al, 2006). As a result of that, instead 

of using estimated probabilities directly in the form of return periods of observed landslides or 

expected values for risks resulting from landslides, models use probability estimates as relative 

indices (eg., Pack et al., 1998) that can be used for hazard zonation (Pardeshi et al., 2013).  Lack 5 

of temporal dimension limits the incorporation of model results into risks assessments and the 

decision-making processes in high-risk regions.  

 

1.2 Approach Overview 

We develop a process-based modeling approach for shallow landslide initiation that 10 

incorporates imprecision s and uncertaintyies in hydro-climatological forcing, soils, and land 

cover propertiesvegetation parameters using a Monte Carlo simulation approach.  Rather than 

predicting critical rainfall intensity necessary to destabilize hillslopes (Montgomery and Dietrich 

1994) or a terrain stability index map (Pack et al. et al., 2001, 2005), Oour approach aims to 

develop a spatially continuous probability of landslide initiation that can be updated as 15 

conditions and triggers changeevolve.  The model evaluates factor of safety using  the infinite 

slope stability equation  at the scale of a grid cell from a Digital Elevation Model (DEM) through 

Mont. e Carlo simulation and calculates the probability of landslide initiation (Hammond et al., 

1992; Raia et al., 2014). A Landlab component (LandslideProbablity) and a model “driver” that 

runs the component are written and a workflow is developed for mapping shallow landslide 20 

probability. The model driver and data are deployed on HydroShare (www.hydroshare.org), an 

online collaboration environment for sharing data, models, and code (Horsburgh et al., 2016; 

Idaszak et al., 2016), and made available for cloud computing via HydroShare JupyterHub 

infrastructure using a web browser (see Sect. 2.5).   

 25 

In this work we explore the following question using Landlab and regional landslide 

observations: How do spatial patterns in hydro-climatology, vegetation, and soil depth 

influence shallow landslide initiation over large geographic scales? We demonstrate our 

approach in a mountainous region of Washington, USA. This Pacific Northwest (PNW) region is 

naturally susceptible to landslides because of high and intense rainfall, steep mountains, active 30 

tectonics, and geologic and glacial history (Nadim et al., 2006; Sidle and Ochiai, 2006).  The Oso 

landslide, which occurred in the vicinity of our study area in 2014, resulting in 43 fatalities and 

over $50 million in economic losses (Wartman et al., 2016).   

 

 35 

et al. et al., 1994) as used in our regional application, or assigned as parameters by the user.  

Raster grids derived from soil texture and vegetation cover classes are used with look-up tables 

to estimate model variables ranges obtained from the literature to quantify uncertainty. 

Through Monte Carlo simulation (Raia et al., 2014), we calculate the probability of landslide 

initiation at each landscape grid cell.  Our probability is further refined by a geomorphic soil 40 

evolution model that estimates soil depth with greater spatial heterogeneity than conventional 

soil survey map units, which is critical for slope stability analysis (Dietrich et al., 1995).  This soil 

evolution model estimates long-term soil depth based primarily on soil mass production and 
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slope-dependent sediment transport rules. 

 

 

In this work we explore the questions (1) How does regional hydro-climatology influence the 

spatial patterns of shallow landslide initiation over large geographic scales? and (2) How does 5 

distributed soil depth influence the probabilistic nature of landslide initiation compared to 

coarse-scale, homogenous soil depth estimates? We demonstrate our approach in a 

mountainous region of Washington, USA. This Pacific Northwest (PNW) region is naturally 

susceptible to landslides because of high and intense rainfall, steep mountains, active tectonics, 

and geologic and glacial history (Nadim et al., 2006; Sidle and Ochiai, 2006).  The Oso landslide, 10 

which occurred in the vicinity of our study area in 2014, resulting in 43 fatalities and over $50 

million in economic losses, provides a solemn reminder of the hazard landslides present 

(Wartman et al., 2016).  Although the Oso landslide was a deep-seated type, the greater 

frequency of shallow landslides affords utility and relevance to our model. 

2 Methodology 15 

2.1 Probabilistic approach to landslide initiation 

Our approach is based on tThe infinite slope stability equation, derived from the Mohr-

Coulomb failure law,  that predicts the factor-of-safety (FS) stability index of a hillslope parcelof 

an infinite plane from the ratio of stabilizing forces of soil cohesion and friction, reduced by 

pore-water pressure of subsurface flow, to destabilizing forces of gravity (Hammond et al., 20 

1992; Wu and Sidle, 1995). The model as given by Pack et al. (1998) is: 

                  �� =  (��+ ��)/ℎ
sin + cos tan (1−  / )

sin  (1a) 

∗ =  ( + )/ℎ  (1b) 

C* is a dimensionless cohesion (Eq. 1b) embodying the relative contribution of cohesive forces 

to slope stability. When C*>1, cohesion is sufficient to hold the soil slab vertically (Pack et al., 25 

1998). Cr and Cs are root and soil cohesion respectively [Pa], hs is the soil depth perpendicular 

to slope [m], ρs and ρw are saturated soil bulk density and water density [kg/m
3
], respectively, g 

is acceleration due to gravity [m/s
2
], θ is slope angle of the ground, and ø is soil internal friction 

angle [°]. Relative wetness, Rw, is defined as the ratio of subsurface flow depth, hw, flowing 

parallel to the soil surface, to hs. Deterministically, a hillslope element is unstable if FS < 1 and 30 

stable if FS > 1 (Sidle and Ochiai, 2006; Shelby, 1993). When FS = 1, the slope is “just-stable” or 

in a state of “limited equilibrium” (Lu and Godt, 2013).  

 

Relative wetness is arguably the most dynamic factor at short time scales, relating to water 

table depth and to recharge rate. Considering that hillslope hydrology is more likely to attain 35 

equilibrium conditions during prolonged wet conditions (e.g., Barling et al., 1994; Borga et al., 

2002), a steady-state representation of subsurface flow is used. It is derived from local 

subsurface lateral flow, qs [m
2
 d

-1
], represented by a 1-D (i.e., flow parallel to bedrock) form of 
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the kinematic wave approximated by Darcy’s law using topographic gradient of hillslope, 

qs=Kshwsinθ  (Wu and Sidle, 1995).  Under a steady-state assumption, lateral flow is in balance 

with the rate of water input, qr [m
2
 d

-1
], through a uniform rate of recharge, R [m d

-1
], defined 

across the upslope specific contributing area, a [m], qr=Ra. This assumption gives: Ra=Kshwsinθ, 

where Ks is saturated hydraulic conductivity [m d-1]. Solving this equation for hw and dividing 5 

both sides by hs gives Rw (Montgomery and Dietrich, 1994; Pack et al., 1998): 

�� =  ℎ
ℎ

= min �  
 sin , 1�     (2) 

Here T is local soil transmissivity [m2 d-1], which is depth-integrated saturated hydraulic 

conductivity, Ks. For uniform Ks within the soil profile, overlying a impermeable bedrock T=Kshs. 

Ground saturates when Rw = 1, which represents hydrostatic conditions and the maximum 10 

value for Rw . Options for user-provided T or Ks are accepted by the component; although 

comparison of resulting probabilities were found to be similar given that the value of T was 

derived from hs. We assume uniform conductivity within the soil profile overlying a relatively 

impermeable layer such as bedrock, and subsurface flow direction parallel to this drainage 

barrier (Montgomery and Dietrich, 1994).  These assumptions are appropriate for relatively 15 

steep topography and to efficiently characterize wetness over large areas (Tarolli and Tarboton, 

2006; van Westen et. al., 2006).   

 

A Monte Carlo simulation is used with equation (1a) by assuming R, T, C (C=Cr+Cs), hs and ø as 

random variables represented by probability distributions (Tobutt, 1982; Hammond et al., 20 

1992). One benefit of Monte Carlo simulation is that many of the sources of inaccuracy (e.g., 

nonlinearity, input uncertainties) are overcome (Strenk, 2010; El-Ramly et al., 2002) by 

generating a distribution of samples over a plausible range for selected variables.  The 

uncertainty in R is defined represented by using a time seriesdataset of the maximum daily 

recharge in each year (e.g., Benda and Dunne, 1997a; Borga et al., 2002; Istanbulluoglu et al., 25 

2004). The model includes both spatially uniform and spatially distributed options for sampling 

recharge (described further in Sect. 2.3).  Using sampled random variables in Eq. (1a), FS is 

calculated in each model iteration, i, during the simulation. Annual probability of failure P(F) 

and landslide return period (RP) at each grid cell are defined as (Hammond et al., 1992; Cullen 

and Frey, 1999):  30 

�(�) =  �(�� ≤ 1) =  �(�� ≤ 1)/� (3a) 

�� = �(�)�� (3b) 

∗             

 

( ) =  (  ≤ 1) =  ( ≤ 1)** USE THE ORIGINAL EQUATION the 

revised equation is not correct there is the summation version of it too in the 

drop box that is not right**. 35 

 

Comment [RS2]: We don’t multiply n 

times FS<1.  We sum up the FS<1 (count) 
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where n() is the number of conditions met in brackets and N is the number of iterations. Our 

model does not predict the size of a probable landslide at the initiation point, which can be 

smaller or larger than the size of a DEM grid. P(F) gives a relative propensity that a landslide 

could initiate within the grid cell.  The design of the model reflects the uncertainty of soil and 

vegetation within a grid cell.  Therefore, Iif some random samples lead to a low deterministic 5 

FS, they contribute to an increase of the P(F) within that cell.   Ssensitivity analysis of the infinite 

slope stability model was shown in the literature input values in the infinite slope approach 

have been performed elsewhere (see: Sidle 1984; Hammond et al., 1992). 

 

2.2 Model Development in Landlab 10 

The landslide modeling approach presented above is implemented in Landlab 

(landlab.github.io). Landlab is an open-source modeling toolkit written in Python for building 

and running two-dimensional numerical models of Earth-surface dynamics (Tucker et al., 2016; 

Hobley et al., 2017; Adams et al., 2017). A detailed explanation of the Landlab framework is 

provided in Hobley et al. (2017). Landlab is a python-based earth surface modeling toolkit 15 

(landlab.github.io). It provides a grid architecture, a suite of pre-built components for modeling 

surface or near-surface processes, and utilities that handle data creation, management, and 

interoperability among process components (Tucker et al., 2016; Hobley et al., 2017; Adams et 

al., 2017). The Landlab design allows for a “plug-and-play” style of model development, where 

process “components” can be coupled together in a user-customized “model driver”. Each 20 

component is a set of code functions that represent an individual process; the model driver has 

code used to import or generate required data, execute the component or set of components 

used in the model, and to visualize results.  For example, once a DEM is imported as a Landlab 

grid instance, any Landlab component can be used with interoperable methods to attach data 

and perform operations. Landlab landslide modeling code developed for this work is explained 25 

in detail in the user manual supportingof the Landlab LandslideProbability component available 

from eSurf and the Landlab github website(see Sect. 6). 

 

The LandslideProbability component is written in python and implemented with a model 

“driver” (written as a Jupyter Notebook) using  Landlabthe workflow developed in this regional 30 

landslide probability mapping study uses the LandslideProbability component presented in Fig. 

1.  The workflow includes preparingshown in Fig. 1 of the(see component’s User Manual (See 

Sect. 6). The driver imports Landlab and necessary Python libraries, loads and processes data, 

and executes the LandslideProbability component on RasterModelGrid (RMG), which is a 

Landlab class for creating raster grid objects. A structured grid is generated by the RMG class 35 

that covers the model domain. The spatial model parametersvariables and model forcing data 

are completed in preprocessing steps outside of Landlab. A model driver is written to run the 

LandslideProbability component on RasterModelGrid (RMG) instance only. RMG is a Landlab 

class for creating raster grids and representing the connections among grid elements. A 

structured grid is generated that covers the model domain. Spatial model parametervariables 40 

and forcing variablesThey supplied by the user are loaded and stored on gridthe nodes (the 

central point of grid cells) of the grid RMGelements as Landlab data fields, which arecomposed 

of NumPy arrays containing data associated with grid elements (in this case nodes, which 
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represent the central point of grid cells).  

 

The LandslideProbability component is instantiated by passing four arguments: the grid, 

number of iterations, recharge distribution, and recharge parameters.  Once the component 

has been instantiated, the component’s method calculate_landslide_probability() is executed in 5 

a for loop that performs the calculations at each node. The number of iterations in the range of 

700 (Malkawi et al., 2000) to >1,200 (Abbaszadeh et al., 2011) were found sufficient in the 

literature. We used 3,000 in this study. At each node the method generates unique model 

parameters, and calculates the relative wetness (Eq. 2) and FS (Eq. 1a) fort each iteration. At 

the end of the iterations, probability of saturation and probability of failure are calculated at 10 

each node.    The driver imports Landlab and necessary Python libraries as well as loads and 

processes data required for the LandslideProbability component. 

  
 

 15 

Figure 1.  Workflow for landslide modeling using the Landlab LandslideProbability component.  The user 

creates input parameter fields (purple box).  The model driver (gray) imports Landlab, Python libraries, 

and model parameter fields: ; instantiates (e.g., create an instance) the RasterModelGrid and the 

component; and runs utilities and the Landlab component (blue inside dashed box).   

Slope angle and specific contributing area are static parameters derived from a DEM in pre-20 

processing steps. Total cohesion, C (i.e., Cr+Cs), ø, hs, and T are treated as random variables 

following a triangular distribution specified with three parameters (minimum, mode, and 
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maximum) to represent spatial and temporal uncertainties in these parameters on the 

landscape (Cho, 2007; Dou et al., 2014). Options for user-provided T or Ks are accepted by the 

component; although comparison of resulting landslide probabilities were found to be similar 

given that the value of T was derived from hs. Triangular distributions give weight to the most 

likely value (i.e., mode) and have been proposed in other Monte Carlo simulation studies for 5 

slope stability (Hammond et al., 1992; El-Ramly et al., 2002; Strenk, 2010).  

 

Mode parameters of the triangular distribution used for all soil and vegetation parameters are 

developed as raster grids as part of preprocessing steps, loaded to Landlab, and assigned to 

nodes of the RMG (Fig. 1). For root cohesion we used Parameters of the triangular distribution 10 

can be assigned by relating vegetation types from the categorical vegetation cover variables, for 

example the National Land Cover Data (NLCD) (Jin, 2013; USGS, 2014b) or other map sources, 

with a lookup table for cohesion obtained from the literature (Table 1). Only for cohesion, 

minimum and maximum parameters are also provided as raster grids to represent distributed 

variation with vegetation.  and using available soils data such as griddedGridded Soil Survey 15 

Geographic Database (SSURGO) (DOA-NRCS 2016) is used, to assign øinternal friction angle, 

hssoil depth, and T transmissivity (see 3.2.13 for details). The current model design assumes 

negligible correlation between C and ø as assumed in other studies (e.g., Abbaszadeh et al., 

2011; Arnone et al., 2016a). Other spatial soil and vegetation datasets can be used in the 

preprocessing of the model. Exposed bedrock and glaciated surfaces can be excluded from the 20 

model domain by user.   Soil density is set as a constant field, 2,000 kg m-3 in our application. 

 

 

In each Monte Carlo iteration, we characterize recharge as anuse annual maximum daily 

recharge, R, which represents a steady-state uniform recharge rate defined for the upslope 25 

contributing area of each RMG node event. Local recharge (i.e., flux of water entering saturated 

zone) within the upslope contributing area of RMG nodes can be incorporated from a variety of 

grid resolutions from hydrologic models, referred to as a Hydrologic Source Domain (HSD). A 

“Source Tracking Algorithm” (STA) is developed that uses spatially variable recharge data from a 

HSD, re-sampled to the grid resolution of slope stability calculations, and routes local recharge 30 

in the downstream direction following the steepest descend until a target cell is reached. Then 

it calculates the spatially-averaged upslope recharge for each node of the RMG, used as R in the 

model. STA is described in more detail in the component’s User Manual (See Supplement).   

 

Four options for sampling recharge R are provided for Monte Carlo simulations at each node, 35 

which are identified in the model driver by selecting a probability distribution: uniform, 

lognormal, lognormal_spatial, and data_driven_spatial. The first two options assign spatially 

uniform random variables of R across the whole model domain with respective parameters of 

minimum and maximum, and mean and standard deviation. The latter two “spatial” options are 

designed to represent spatial variability in Rrecharge, constructed based on the statistics of 40 

annual maximum R obtained from a HSD using the STA utilityhistorical annual maximum daily 

recharge.  routed to each node of the model domain. The lognormal_spatial option assigns  

mean and standard deviation of R at each node derived from the modeled R data, while the 
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data_driven_spatial option uses a non-parametric sampling approach to sample from the 

cumulative distribution of R data produced for each node of the RMG. In this regional 

application of the landslide component, the VIC macroscale (1/16° or 5x6 km grid cell) 

hydrology model is used as HSD. annual maximum recharge and uses a lognormal distribution 

of recharge for simulation. The data_driven_spatial option calculates uses a non-parametric 5 

Monte Carlo sampling approach to sample directly from historical a recharge data distribution 

of . Uupslope-averaged recharge for each grid node is calculated with the Landlab Source 

Tracking Algorithm (STA) utility using recharge from a HSD, which in this study issuch as the VIC 

macroscale (1/16° or 5x6 km grid cell) hydrology model, and by interpolating a cumulative 

distribution of recharge equal to the length of the number of Monte Carlo iterations used in the 10 

simulation .  

 

Within the model driver, the user also sets any boundary conditions, such as areas to exclude 

(i.e., bedrock outcrops, glaciers) and assigning the number of Monte Carlo iterations (n>>1,000, 

Hammond et al., 1992).  The seed random number generator does not appear to affect Monte 15 

Carlo simulation results and n>700 (Malkawi et al., 2000) or n>1,200 (Abbaszadeh et al., 2011) 

is sufficient to converge to the same probability of failure.  The LandslideProbability component 

is instantiated by passing four arguments: the grid, number of iterations, recharge distribution, 

and recharge parameters.  Multiple instances of the LandslideProbability class can be 

established in one driver to compare the results from different recharge specifications.  Once 20 

the component has been instantiated, the component’s method 

calculate_landslide_probability() is run.  For each iteration, this method loops through each 

core node, generates unique model parametervariables, and calculates the relative wetness 

(Eq. 2) and deterministic FS index (Eq. 1a) at each iteration. At the end of the iterations, the P(F) 

at the node is calculated as the number of iterations in which FS≤1 divided by the number of 25 

iterations (n).  Variables output by the component at each core node include calculated 

probability of saturation and P(F), which can be queried at each node or visualized across the 

entire grid within the driver or using a command line terminal to execute commands. 

 

2.3 Hydrologic Data Processing 30 

A key aspect of the regional landslide modeling approach is the linking of landslide hazard to 

hydro-climatological forcing at regional scales. The Landlab LandslideProbabilty component is 

written with the capability to accept input from hydrologic model outputs, such as.  We used 

the VIC macroscale hydrologic model (Liang et al., 1994) we to demonstrate in this paper. this 

capability because it  VIC is semi-distributed, predominantly physics-based macro-scale 35 

hydrology model that characterizes elevation-dependent differences in regional precipitation 

and temperature forcings and their influence on recharge through regulating rain-on-snow, 

snow accumulation and melt, rain-on-snow , evapotranspiration, and soil moisture.  VIC is semi-

distributed, predominantly physics-based macro-scale hydrology model, which is advantageous 

for representing distributed parameters of hydro-climatology that are not stationary in time 40 

over large regional areas (Hamlet et al., 2013).. 
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The VIC model simulates the land surface as a large, flat, uniform grid with sub-grid 

heterogeneity (e.g., vegetation and elevation) based on statistical distributions.  Daily or sub-

daily meteorological drivers (e.g., temperature and precipitation) influence the fluxes of water 

and energy near the land surface.  Each grid is simulated independently and flows between grid 

cells are ignored (e.g., unrouted).  Precipitation enters the upper of typically three layers of soil 5 

and infiltrates to lower layers via a variable infiltration curve.  Soil water can move between 

layers vertically and is lost through evapotranspiration and from the third layer as 

base/subsurface flow via non-linear recession.  Water input in excess of infiltration forms 

surface runoff.  

 10 

The steady-state subsurface model coupled with the infinite slope stability equation in our 

model requires a steady-state recharge rate as input. Recharge refers to the input of water to 

subsurface flow from precipitation and snowmelt less of evapotranspiration and soil storage. In 

a VIC model simulation, this condition can be obtained by adding baseflow and surface runoff. 

Observations and model experiments suggest that widespread landslides is are usually 15 

associated with the largest rainfall events (e.g., Page et al., 1994; Gorsevski et al., 2006). To 

characterize the annual probability when the ground is likely to be the most saturated each 

year, daily baseflow and surface runoff are summed at each VIC grid cell to represent daily 

recharge [mm d
-1

] and the annual maximum daily value is selected for each model year of the 

dataset, similar to others (e.g., Benda and Dunne, 1997a; Borga et al., 2002; Istanbulluoglu et 20 

al., 2004). Observations and model experiments suggest that the largest landslides are usually 

associated with the largest rainfall events (e.g., Page et al., 1994; Gorsevski et al., 2006).  The 

recharge data arrays are keyed to latitude, longitude, and grid cell ID (a user-defined ID for each 

VIC grid cell, in our case) packaged as Python dictionaries (see Fig 1. of User Manual).   To help 

account for lateral fluxes in groundwater (van Beek, 2002)To obtain a steady-state average 25 

recharge rate in the upslope contributing area of each RMG, VIC recharge is routed to each 

node in the model grid using the STA Landlab STA utility is used , which also addresses the 

different spatial resolutions of VIC and the RMG (see Ssection. 2.2., and Fig 1. of User Manual 

link provide in Sect. 6).  This Landlab utility was developed to derive the fraction of annual 

maximum recharge from each VIC grid cell within the upslope contributing area of each Landlab 30 

grid node.  The fractions and VIC IDs are saved as values for two Python dictionaries keyed to 

the RMG node ID.  At each node, these dictionaries are used to calculate the upstream 

proportionally-averaged maximum recharge for each year. 

   

2.4 Soil Depth EvolutionEvolution Model 35 

Soil depth controls the temporal and spatial patterns of landsliding over geomorphic time scales 

and is considered one of the most significant parametervariables controlling the FS stability 

index, especially at depths less than 1.5 m (Benda and Dunne, 1997a; Istanbulluoglu et al., 

2004; Catani et al., 2010; Sidle and Ochiai, 2006).  Soil depth can vary in space and time as a 

function of weathering and sediment transport in relation to climate, lithology, topographic 40 

position, and vegetation cover (Dietrich et al., 1995). Despite its fine grid resolution, the 

SSURGO database (DOA-NRCS 2016) only broadly captures topographic controls on soil depth 

and reflect existing conditions in the field as it’s based on soil surveys.  In an attempt to 
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improve the representation of spatial granularity and local uncertainties of soil depth,  As an 

alternative to spatial soil maps such as the SSURGO database (DOA-NRCS 2016), which are 

often produced at the soil pedon-level, we developed a soil depth map a soil evolution model is 

used using a simple soil evolution model and topographic and land cover attributes (Dietrich et 

al., 1995; Simoni et al., 2008; Pelletier and Rasmussen, 2009; Tesfa et al., 2009; Bellugi et al., 5 

2015). The model is run to develop time series of soil depth from which triangular distribution 

parameters for soil depth (mode, minimum and maximum) can be obtained and used in 

Landlab LandslideProbability component.  

 

In the soil evolution model, change in soil depth is modeled as the annual sum of local soil 10 

production, divergence of sediment flux due to soil creep, and soil removal by landslides (e.g., 

Tucker and Slingerland, 1997; Heimsath et al., 1997; Braun et al., 2001; Istanbulluoglu et al., 

2004; Nicótina et al., 2011). The rate of soil production is related exponentially to local soil 

depth (Heimsath et al., 1997). Soil creep is linearly related to local elevation gradient (e.g., 

McKean et al., 1993). Soil removal by landslide initiation is modeled with the infinite slope 15 

stability equation, implemented with representative parameters (Table 2X). When FS≤ 1, ).  

When FS<1, Change in soil depth depends on soil production by bedrock weathering and slope-

dependent sediment transport expressed as (Nicótina et al., 2011; Tucker and Slingerland, 

1997; Heimsath et al., 1997): 
�� 
�! =  −�"#−$ℎ& (5) 20 

where Po is the soil production rate from exposed bedrock (i.e., no soil cover) and α is the rate 

of exponential decay with depth.  Diffusive sediment transport characterized in the second 

term on the right side of Eq. (4) can be represented by a simple soil creep function dominant in 

convex hillslopes as (Nicótina et al., 2011; Istanbulluoglu et al., 2004): 

∇() =  −*+∇,-F (6) 25 

where Kd is a linear hillslope diffusion coefficient and ∇ 2 is Laplacian of elevation.  Dividing Eq. 

(4) by ρr, multiplying by the ratio of ρr / ρs , and substituting Eq. (5) and Eq. (6) into Eq. (4), 

yields the following instantaneous soil depth equation:    
�./
�! =  01

0/
�"#−$ℎ& +  *+∇,- (7)Variable curvature profiles, steep and planar hillslopes, and 

abrupt knife edge drainage divides indicate nonlinear transport processes such as mass wasting 30 

(Roering et al., 2004, 1999).  These landscape characteristics are common in the steep terrain; 

therefore, in every iteration of the model, Eq. (1a) and Eq. (2) are used to calculate FS within 

the soil evolution model.  This deterministic FS is independent of the FS values calculated 

during the Monte Carlo simulations described in Sect. 2.2.  When FS≤1, soil is removed to 

bedrock by setting it to a very small value ( of 0.005 m) to be consistent with the creep 35 

equation. In each model iteration, C and T, were randomly sampled and used deterministically 

in the FS Eq. (1a).  Calibration of the soil evolution model is done by adjusting Po  soil 

production rate and Kd hillslope diffusion coefficientdiffusivity parameter to obtain long-term 

soil loss consistent with for the location of the landslide analysis based on published long-term 

regional rates of erosion rates and diffusion. Details on model application and the utilization of 40 

model outputs are presented in  Creation, calibration, and application of the soil evolution 

model are detailed in Sect. 4.1.2.  
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2.5 Reproducibility  

To publish a reproducible version of this research, we used the HydroShare 

(www.hydroshare.org) cyberinfrastructure platform, which is designed explicitly to encourage 

thefor reproducing, reusing and sharing of models (Tarboton et al., 2014; Horsburgh et al., 5 

2016; Morsy et al., 2017).  Steps that supported reproducibility included using the HydroShare 

sharing settings with a workflow that started with Private while data and models were 

developed, Discoverable while research was being shared with colleagues for review, and 

Public, once our results were accepted for publication.  We used the Select a license function to 

add No Commercial (NC) use to our Creative Commons license.  We made use of the Groups 10 

social collaboration, by making early versions of our research results available to invited 

participants of workshops and tutorial demonstrations to our Landlab group in HydroShare. The 

data and model are accessed by launching Jupyter Notebooks that access Landlab installed on 

JupyterHub servers at the National Center for Supercomputing Applications (Yin et al, 2017; 

Castranova, 2017). HydroShare features enable our current and future researchers to use the 15 

Copy Resource function to replicate our published resource (i.e., the landslide model) in their 

own account with Derived from metadata that references back to the published resource DOI, 

to serve as a starting point for their work. The Supplement provides instructions on how to 

access Hydroshare and run a Jupyter Notebook that reproduces portions of the application 

below. 20 

3 Model Aapplication 

3.1 Study Area 

The model described above is applied within the geographical limits of the North Cascades 

National Park Complex (NOCA) in the state of Washington, U.S.A, managed by the U.S. National 

Park Service (Fig. 2).  In recent decades, NOCA has experienced damaging and disruptive 25 

landslides that have impacted infrastructure and the public.  Furthermore, the park area is 

covered by a recent soil survey between 2003 and 2009, including field investigation (DOA-

NRCS and DOI-NPS, 2012), and has a complete map of mass wasting processes visually observed 

in the field (Riedel and Probala, 2005). The application is designed to demonstrate the potential 

capability of Landlab LandslideProbability component using existing data in a real setting and to 30 

provide a site-specific stability analysis for landslide susceptibility that indicates potential areas 

susceptible to landsliding for NOCA land management.  

 

NOCA is approximately 2,757 km
2
, with 93% wilderness,  (in which no permission forwhere 

motorized or mechanized devices are not allowed are permitted;( DOI-NPS, 2012), which is 35 

ideal for studying naturally triggered landslides.  The elevation ranges from about 100 m to 

2,800 m (Fig. 2a). The terrain is composed of rock slopes at the highest elevations, short (<100 

m) soil-mantled hillslopes, and landslides upslope of relatively straight debris flow channels 

connected to the fluvial system. Over 300 glaciers occupy mountain peaks in NOCA.  The 

influence of the Pacific Ocean, approximately 80 km to the west, provides a humid temperate 40 



 15 

climate.  However, the north-south oriented Cascade Mountains create an effective orographic 

climate boundary, separating a wetter west side from a drier east side.  Reported mean annual 

precipitation ranges from about 708 mm in the low elevations of the eastern slopes to 4,575 

mm at the highest mountain elevations west of the Cascade crest, with about 70% falling in 

November through March (Fig. 2b). This spatial precipitation gradient is the result of 5 

orographically-enhanced precipitation that leads to a strong rain shadow (Roe 2005).  Average 

annual air temperatures range from -2 to 11°C, depending on elevation (DOA-NRCS and DOI-

NPS, 2012).  

 
Figure 2. North Cascades National Park Complex (NOCA) in northern Washington state, U.S.A:  10 
(a) a 30-m DEM of the domain overlain by debris avalanches and major water bodies; (b) slope derived 

from DEM; and (c) mean annual precipitation (1981-2010 average) mapped at 800-m resolution from 

PRISM (Daly et al., 2008).Is this how PRISM data is cited..? 

Vegetation is mainly coniferous trees, with deciduous trees along river floodplains, and shrubs, 

meadows, and barren land in the subalpine and alpine environments. In this study vegetation 15 

classes were grouped into herbaceous, shrubland, and forest using the 2014 NLCD data, which 
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is based on the land use/land cover (LULC) classification of 2011 Landsat satellite imagery (Jin, 

2013; USGS, 2014b).  Other LULC types include water, wetland, snow/ice, barren, and 

developed (e.g., roads, campgrounds), covering about 13% of NOCA. Based on this 

classification, forest, shrublands, and herbaceous vegetation represent 58%, 17%, and 12% of 

the park, respectively. Elevation ranges for these vegetation classes are from 106 to 2363 m 5 

(forest), 110 to 2465 m (shrubs), and 121 to 2759 m (herbaceous), showing vegetation co-

existence.  OTHER TYPES OCCUPY X%. 

 

The park geology is composed of a complex mosaic that includes mostly complexly faulted and 

folded sedimentary and volcanic rocks on the west side, unmetamorphosed sedimentary and 10 

volcanic rock on the eastern edge, and highly squeezed and recrystallized metamorphic rock 

originating from great depth in middle (Haugerud and Tabor, 2009).  Alpine and continental 

glaciation, along with rivers and mass-wasting processes linking peaks with rivers, have created 

the landscape we observe today. The glaciers eroded U-shaped valleys with steep valley walls 

prone to landslides and flat valley floors with gravel-bed rivers. The lower ends of many valleys 15 

on the east side with lower precipitation were not covered in alpine glaciers and have narrow, 

winding V-shaped canyons and steep, narrow rivers. 

 

A park-wide landform mapping study identified six different types of mass wasting landforms: 

rock fall/topple, debris avalanche, debris torrent, slump/creep, sackung, and snow avalanche-20 

impacted landforms (Riedel et al., 2015). Mass wasting landforms were identified in the 

landform mapping using 1998 air photos at 1:12,000 scale, 7.5 minute topographic maps, 

bedrock geology maps, and field investigations.  The minimum mapping unit was approximately 

1,000 m2, except for a few smaller slump units. In this study, we only used mapped debris 

avalanches for model confirmation as they often initiate by a shallow landslide processes. 25 

Debris avalanches typically represent a mixture of failed rock and debris. Tand their mapping 

included  mapped polygons that combine included head scars, transport and scour channelss, 

and deposition zones represented in a single polygon (Fig 3a).  We extract the highest 10% of 

the elevations in the mapped debris avalanche polygons as landslide source areas through 

comparison to aerial imagery (Tarolli and Tarboton, 2006). This analysis located 75% of 30 

landslide source areas Landslide sources are more frequent in the intermediate elevations from 

1,200 m to 2,000 i. In the NOCA region, 75% of landslide source areas are located in the 1,200 

m to 2,000 m elevation range (Fig. 3b). 

 

  35 
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Figure 2. North Cascades National Park Complex (NOCA) in northern Washington state, U.S.A:  

(a) a 30-m DEM of the domain overlain by debris avalanches and major water bodies; (b) slope derived 

from DEM; and (c) mean annual precipitation (1981-2010 average) mapped at 800-m resolution from 

PRISM (PRISM Climate Group, 2004).  5 

Some areas in mountainous regions are covered by glaciers, permanent snowfields, and 

exposed bedrock, which are unsuitable locations to model landslides on soil-mantled hillslopes 

using thewith the infinite slope model (Borga et al., 2002). These landforms.  Furthermore, they 

are not expected to be destabilized by precipitation, although other forces could cause failures 

(e.g., earthquake, volcanic activity, and temperature).  We exclude high elevation areas covered 10 

by glaciers, permanent snowfields and exposed bedrock (Fig 3c), as well as wetlands and other 

water surfaces are excluded , based on landform mapping and maps of lithology and LULC, from 

our modeling domain and geomorphic analysis because shallow landslides are not typically 

observed on these landforms. The total area excluded from the stability analysis accounts for 

about 21% of NOCA’s land area. 15 
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Figure 3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. Contours are in 100-

m intervals. Aerial image source from World Imagery, Esri Inc.1; (b) elevation distribution of the relative 

frequency of mapped debris avalanche source areas (upper 10%); and (c) High elevation rock and glacier 

mapped surrounding Spiral Glacier in North Cascades showing a bedrock glacier cirque with thin barren 5 
soils and moraine deposits (photo by John Scurlock used with permission).   

3.2 Model Input Fields  

We used a grid resolution of 30 m from the National Elevation Dataset (NED) (USGS, 2014a) to 

evaluate and compare our regional model of landslide probability to a limited set of landslide 

observations. Evaluation of model performance was intended at this resolution for regional 10 

modeling as NASA’s Shuttle Radar Topography Mission (SRTM) DEM is available globally at a 30 

-m resolution. A 30-m grid cell size is consistent with theThe minimum mapping unit used for 

landslidess is  30 m for NOCA  (Riedel et al., 2015; see also Regmi et al., 2014; Arnone et al., 

2016). Slope (S=tanθ), combined total curvature (Curv) (i.e., both planar and profile), and 

contributing area (CA) attributes were derived from a 30-m DEM acquired from National 15 

Elevation Dataset (NED) (USGS, 2014a) from the DEM (Fig. 2a).  In addition, the NLCD data for 

vegetation classification and the SSURGO soils database we used in this study both have 

available 30-m grid resolutions. To show the model potential for regional applications, a global 

coverage of 30-m DEM from the NASA Shuttle Radar Topography Mission (SRTM) is available 

                                                        
1
 Images created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and 

are used herein under license. Copyright © Esri. All rights reserved. For more information about Esri® software, 
please visit www.esri.com. 
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(USGS 2017). Thus, showing the model’s potential at this resolution is intended in this paper, 

especially for regional applications beyond the use in a single watershed across the globe.    

 

3.2.1. Vegetation and Soil parameters 

Vegetation classes are obtained from the National Land Cover Data (NLCD -201X) in 30 m 5 

resolution (Jin, 2013; USGS, 2014b).  Parameters of a triangular distribution for C, ø, T, and hs 

are provided in Table 1. In our case study, C represents root cohesion. Soils across the study 

domain are assumed  because we assumed soils to be primarily cohesionless, due to low clay 

content (<10%)  in this mountain substrate with large clasts (Kulhawy et al., 1990), particularly 

in comparison to root cohesion. Estimating root cohesion is challengingchallenge because of 10 

temporal and spatial variability in roots density and size, differential breakage or pullout 

mechanisms, interaction among roots, and difficulty in measuring at a field scale (Pollen and 

Simon 2005; Schwarz et al., 2013).  We developed simple spatial coverages for minimum, mode, 

and maximum C for NOCA by relating vegetation classes with corresponding published C values 

in the literature (Table 1), where field observations suggest right-skewed distribution 15 

(Hammond et al., 1992; Schmidt et al., 2001; Gabet and Dunne 2002; Hales et al. et al., 2013). 

Based on ranges available in the literature, we selected a mode value as a commonly reported 

value, minimum parameter as 30% of the mode, representing death and loss of productivity 

(Sidle, 1991; 1992), and a maximum near the highest reported value for C.  Forest have higher C 

than shrubland because of the greater root area and deeper rootrs (Arnone et al., 2016b). 20 

Other LULC types include water, wetland, snow/ice, barren, and developed (e.g., roads, 

campground). Small C values are assigned for barren and developed land uses (~14% of the 

domain) having minimal vegetation. Mode values of C mapped over NOCA are given shown in 

Fig. 4b. Forest communities of the valley bottom and lower valley walls show high values of C, 

which declines as vegetation transitions from forests to shrublands to herbaceous communities 25 

with increasing elevation. 

 

 

Table 1.  Parameters defined for vegetation and soil types in the study region. For spatially 

continuous parametervariables T and hs obtained directly from SSURGO, values represent 30 

spatial the statistics for the model domain with (mean) values in parentheses. 
ParameterVariable Minimum Mode (Mean) Maximum 

Root Cohesion [kPa] 

Barren/Developed  

Forest (coniferous) 

Shrubland 

Herbaceous 

 

0.03 

3 

1.2 

0.6 

 

0.10 

10 

4 

2 

 

0.15 

20 

10 

5 

Internal angle of friction [°]
1 

Loamy sand 

Sandy loam 

Developed areas (loamy, sandy) 

  

26.2 

28.7 

28.7, 31.2 

  

32 

35 

35, 38 

  

42.2 

46.2 

46.2, 50.2 

Transmissivity [m
2
 d

-1
] 2 0.42 (3.39) 16.4 

Soil depth [m] †2 0.09 (0.62) 2.01 
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1
 Developed areas within the two soil types, respectively, have mode values 3

o
 larger due to compaction. 

2  Values for the continuous variables, transmissivity and soil depth, represent the minimum, mean, and  

maximum for spatial statistics for the study area, not individual soil map units. 

 

Despite the aggregation of plant types into functional plant communities (Fig. 4a), considerable 

spatial variability in C is present within the park (Fig. 4b), with the greatest values in the forest 

communities of the valley bottom and lower valley walls.  C declines aAs vegetation 

communities transitions from forests to shrublands to herbaceous species communities with 5 

increasing elevation, C declines.  Note that herbaceous species are likely composed of 

considerable woody vegetation in this alpine region, but of diminutive stature.  

 

In order to investigate the contribution of soil depth to mapping landslide probability, we 

developed and used two alternative soil depth products: 1) based on SSURGO and 2) based on a 10 

soil evolution model. The nationally available SSURGO database maintained by the Natural 

Resources Conservation Service (NRCS) is a readily available data source that includes depth-to-

restrictive layer (DOA-NRCS 2016), which we used to specify the mode of soil depth (Fig. 4c). 

Using the Soil Data Viewer of Esri ArcGIS (DOA-NRCS, 2015a), the weighted-average aggregation 

option is used to extract soil depth within each soil map unit (DOA-NRCS and DOI-NPS, 2012).  15 

SSURGO soil depth (SSURGO-SD) is uniform for each soil map unit and thus, lacks finer scale 

spatial heterogeneity and create edge incongruities (Fig. 4c), a limitation also identified 

previously for landslide modelingin other landslide modeling studies (Bordoni et al., 2015). A 

smoother and more spatially consistent heterogeneous soil depth map is developedachieved 

using the output of a soil evolution model.  20 

 

SSURGO-SD represents the recent conditions in soil depth. The difference between the actual 

soil depth in the field and the SSURGO reported soil depth will likely be associated with the 

limited number of soil depth measurements used to develop SSURGO maps, measurement 

errors, and spatial interpolation assumptions. In addition, for the locations that have already 25 

produced landslides before SSURGO mapping, we assume that the maximum value of the 

triangular distribution represents the soil depth prior to a landslide. To represent uncertainty, 

minimum hs is assumed to be 70% of the mode and maximum hs adds 10% to the mode value. 

These values give a left-skewed triangular distribution, commonly used observed for soil depth 

in probabilistic landslide models (Hammond et. al., 1992). The sSelected skewed 30 

rangesdistribution was were confirmed by the soil evolution model discussed in Sect. 4.1.2.    

 

Transmissivity is derived as the product of weighted-average aggregated Ks of all soil layers 

above the restrictive layer and hs for each soil map unit (DOA-NRCS, 2015a). Similar to hs, this T 

value was considered the mode (Fig. 4d) and the minimum and maximum values needed for an 35 

asymmetrical triangular distribution calculated as: Tmin = Tmode - 0.3*Tmode and Tmax = Tmode + 

0.1*Tmode. Closely related to soil depth, transmissivity T is high in valley bottoms as well on 

plateaus because of deeper soils, thus, more water can move through the soil when saturated 

(Fig. 4d). Transmissivity T is low in the thin veneer soils below retreating glaciers as well on 

steeper side slopes. 40 



 21 

 

Soil surface texture is a grouping used to describe the particle size distribution of granular 

media, and can be used as an indicator of ø (Nimmo, 2005).  The percent sand, silt, and clay 

(weighted-average aggregation) for each soil map unit in NOCA were derived from SSURGO 

data using Soil Data Viewer (DOA-NRCS, 2015b). This revealed largely sandy loam or loamy sand 5 

soil textures, based on USDA classification, across the NOCA.  These soil textures corresponded 

to Unified Soil Classification System (USCS) soil types silty sand and well-graded (diverse particle 

size) fine to coarse sand, respectively.  Reported ø values for these USCS soil types were 

assigned as the mode of ø, ømode used in triangular distributions(i.e., Table 5.5 in Hammond et 

al., 1992 and Table 5.2 in Shelby, 1993). Developed land cover type was assigned an additional 10 

3° to the mode to compensate for higher soil density from development activity, such as 

compaction (Sidle and Ochiai, 2006). The map of ø exhibits the least variability in NOCA due to 

the relatively narrow range of soil textures, with lower angles typical at higher elevation and 

higher angles farther downslope (figure not shown). Given the mode and ranges of ø for these 

soil types, minimum and maximum ø were calculated to generate right-skewed distributions for 15 

both soil types as: ømin = ømode - 0.18*ømode and ømax = ømode + 0.32*ømode., based on literatures 

review (i.e., Table 5.5 in Hammond et al., 1992 and Table 5.2 in Shelby, 1993).  The soil and 

water density terms in Eq. (1a), were assigned a constant value of 2,000 kg m
-3

 and 1,000 kg m
-

3
, respectively similar to (Pack et al., (2005).  Factor-of-safety has been found to be insensitive 

to soil density (Hammond et al., 1992; Lepore et al., 2013). 20 
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Figure 4. NOCA Distributed parametervariables used in the landslide model over NOCA, includingmaps 

for: (a) LULC classified from NLCD (2014); (b) root cohesion based on LULC; (c) soil depth from SSURGO; 

and (d) transmissivity based on SSURGO soil depth.  Mapped values in (b) through (d) represent the 5 
mode values used in triangular distribution for Monte Carlo simulationsthe parametervariable 

distributions. Insert shows zoomed-in area with 100 m contours.   

 

3.2.2. Model Recharge  

EWe used existing The model is designed with a flexible approach to parameterizing recharge. 10 

Available probability distributions include uniform, lognormal, lognormal spatial, and data 

driven spatial. Supplemental materials include a Jupyter Notebook that reproduces these four 

recharge options on a synthetic grid.  To provide the hydro-climatology forcing to drive our 

landslide model, our model application leverages the existing detailed simulations of VIC model 
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runs for in the PNW region developed through the Columbia Basin Climate Change Scenarios 

Project (Elsner et al., 2010; Hamlet et al., 2013).  The project developed a calibrated 

implementation of VIC (1/16° or 5x7 km grid resolution) covering the Columbia River basin in 

Washington to produce validated historical hydrologic simulations (water years 1916-2006) 

driven by spatially interpolated daily station observations of temperature and precipitation 5 

(Hamlet et al., 2013). Archived model output at a daily-time-step includes gridded baseflow and 

runoff.  Hydrologic simulations using VIC have also been run for all of the contiguous United 

States (CONUS) (Data available from:; Livneh et al., 2013, 2015).  Thus, acquisition of hydrologic 

model output is readily available to apply the landslide model anywhere throughout the 

CONUS. We determined the maximum daily recharge for each year to generate a 91-year long 10 

time series to calculate represent a surrogate forcharacterize the wettest ground saturation 

conditions for shallow landsliding the annual highest pore-water pressure at each VIC grid cell..  

Modeling with maximum recharge provides an indicator of individual storm events that 

typically trigger shallow landslides (Lu and Godt, 2013), although lesser amounts of recharge 

may also be sufficient to trigger landslides in some locations.  The average annual maximum 15 

daily recharge over NOCA is about 35 mm/d (± 15 mm/d), ranging from a low of 7 mm/d along 

the eastern edge of the park to a high of 79 mm/d on the western edge and at higher elevation 

peaks. 

4 Results and Discussion 

4.1. Geomorphic Analysis and Soil Evolution 20 

Understanding the spatial distribution of dominant geomorphic processes can aid the 

development of landslide hazard maps consistent with geomorphic theory. In this section, we 

discuss the mapping of dominant processes on the landscape on the slope and area domain, 

and explore the proposed soil evolution model to develop modeled soil depth maps.  

 25 

4.1.1. Investigation of Process Domains 

Hillslope diffusion, landslide, debris flow, and fluvial transport processes leave unique imprints 

on landforms, manifested in the slope-contributing area (S-CA) domain as different scaling 

relationships (Montgomery and Dietrich, 1992; Tucker and Bras, 1998; Montgomery, 2001; 

Stock and Dietrich, 2003; Tarolli and Fontana, 2009).  The infinite-slope factor-of-safety model 30 

is only applicable to the initiation of landslides. Therefore, hazards associated with debris flow 

scour and deposition cannot be predicted by this model. We used a S-CA plot and the infinite 

slope stability theory to: (1) identify process domains and limit the analysis of the landscape to 

slopes where there is shallow landslide potential, (2) evaluate observations of debris 

avalanches to identify landslide source areas, and (3) infer plausible ranges of the infinite slope 35 

stability model parameters to corroborate those we compiled from the literature for NOCA 

(Table 1).   

 

Our geomorphic analysis was based on plotting, in log-log scale, S, (=(as tan(θ), and CA pairs of 

each DEM grid cell in NOCA, cells within mapped debris avalanches (including depositional 40 
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areas), and most likely source areas of landslides identified as the single highest elevation grid 

cell within each mapped debris avalanche (Fig. 5). The general trend in the S-CA relationship is 

acquired for all grid cells of NOCA as well as debris avalanche (DA) cells by binning the data with 

respect to CA and calculating the mean S for each CA bin. The negative linear relation in the log-

log plot suggest a power-law scaling in the form of S~CA-B where B is the slope of the S-CA 5 

relation on the log-log domain, which reflects channel longitudinal profile concavity. Concavity 

is generally associated with fluid driven processes fluvial processes (including debris flows) the 

role of discharge (CA is used as a surrogate in this plot) in enhancing sediment transport, while 

the degree of concavity is tightly related to how the nonlinearity of the dominant fluvial 

transport is with respect to S and CA (Roering et al, 1999; Montgomery 2001; Stock and Dietrich 10 

2003; Istanbulluoglu 2009).  the Based on the scaling transitions that mark changes in 

concavity, process domains interpreted in Fig 5 areGeomorphic process domains interpreted 

from the binned S-CA plot portrayed in Fig. 5 include: (1) a hillslope zone where slope-

dependent processes such as dry ravel and soil creep dominate, leading to convex slopes, (2) a 

landsliding zone where pore-pressure driven slope failures introduce concavity as landslides 15 

arise with shallower slopes as recharge CA grows, (3) a debris flow or saturated landslide zone 

in headwater channels where mass wasting processes are supplemented with higher fluidity 

andin saturated ground saturation leading to S and CA drivenevolve into high-concentration 

transport (Iverson et al., 1997), and (4) a fluvial region where stream-dominated erosion and 

transport processes ensue (Montgomery and Foufoula-Georgiou, 1993; Tucker and Bras, 1998). 20 

Dominant process domains in the S-CA plot are identified by visual inspection of the scaling 

transitions that mark changes in concavity.  It is well documented that dDebris flow-dominated 

slopess were shown to exhibit reduced concavity relative to both channels and pore-pressure 

driven landslide zones in the S-CA domain (Montgomery and Foufoula-Georgiou, 1993; Tucker 

and Bras, 1998; Stock and Dietrich, 2003).  The highest profile concavity results from fluvial 25 

transport (Fig. 5).  

 

 



 25 

 
Figure 5. Slope-contributing area (S-CA) log-log plot for North Cascades National Park Complex.  Mean S 

for bins of CA are indicated by blue dots and cyan dots for all cells and debris avalanche (DA) cells, 

respectively.  DA source cells (orange triangles) are the single highest elevation grid cell within mapped 5 
debris avalanches (gray).  Horizontal Sslope stability curves plot the solution of S (Eq. 1a and 2) as a 

function of CA, given FS=1, R/T=0.0005, ø=34° and select values of dimensionless cohesion, C*; S for 
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horizontal line portion (fully saturated regions) are labeled in ° for ease of understandingof Eq. (1a) for 

FS=1, given C* and ø=34°. Above each curve landscape is unstable for a given C*.  Saturation line (red 

curve) separates partially saturated areas (left) from saturated areas (right).  Blue Vvertical lines divide 

the plot into geomorphic process domains in relation to CA of the landscape (e.g., Montgomery 2001). 

Cyan horizontal line at 17° generally separates potential landslide dominated areas from fluvial 5 
dominated areas.  

A threshold CA of approximately 1 km
2
 and a slope threshold of θ=17° generally separates 

colluvial mass wasting and debris transport processes from fluvial processes (Fig. 5; see also 

Legg et al., 2014). Nearly all grid cells within mapped debris avalanches plot to the left of the 1 

km2 dashed line.  An average θ value of 17° may also correspond to a low-end of a slope 10 

threshold for landsliding. Fully saturated cohesionless soils are unconditionally stable at tan(θ) ≤ 

½ tan(ø) (i.e. half of ø), assuming a ratio of water to saturated soil density of 0.5 (e.g., 

Montgomery and Dietrich, 1994). Solving for ø when θ = 17° gives 34°, generally consistent with 

selected ø values from soil texture (Table 1) (Hammond et al., 1992).  Approximately 85% of 

NOCA landscape lies above θ > 17°, suggesting a dominant role of mass wasting processes in 15 

this landscape. We included areas above this slope threshold in our landslide model domain.  

 

The red saturation curve is calculated as aR/T, where R/T is calibrated to 0.0005 m
-1

 (e.g., a/sinθ 

= 2000 m) to capture most of landslide source cells (left of curve) and a scaling break in the 

binned S-CA plot (Fig. 5).  The saturation curve partitions the landscape into partially saturated 20 

(left) and saturated (right) areas, which generally delineates the S-CA pairs separating 

landsliding from debris flow tracks that form under full soil saturation. For a T = 10 m
2
 d

-1
, R is 5 

mm d-1, which is within the range of the lowest maximum annual modeled recharge values in 

most of the study area, indicating that the plotted saturation line could reasonably map regions 

that experience saturation annually.  25 

 

The three lines stacked vertically (i.e., cyan, green, and pink) plot the solution of S in the infinite 

slope stability equation (Eq. 1a and 2) as a function of CA, and given FS=1, R/T=0.0005, ø=34° 

and select values of dimensionless cohesion, C*. Conditioned on the C* value, slopes that plot 

above the S-CA solution are unstable. Consistent with the binned S-CA data, the solution of the 30 

infinite slope stability equation curves down as a function of CA, and following soil saturation, a 

constant instability S threshold is reached.   Root cohesion is approximately 6 kPa for C*=0.3 

(middle green line) and 12 kPa for C*=0.6 (upper pink line), assuming a soil depth of 1 m and 

cohesionless soil.  These root cohesion values are reasonable for shrub and mature forest 

vegetation found in the literature (Table 1) and they facilitate stability with steeper slopes.  35 

When C*=0 (bottom cyan line), landslides initiate at lower slopes than when cohesion is 

greater. This solution also envelops the low slope-end of nearly all landslide source S-CA pairs 

identified from debris avalanche data.  Only a small portion of the unstable areas plot above 

the C*=0.6 solution of Eq. (1a), which implies areas with higher root cohesion. 

 40 
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4.1.2. Evolved Soil DepthModeled Soil Depth  

We ran the soil evolution model described in Sect. 2.4 at a population of at representative 

topographic conditions and vegetation types (forest, shrub, herb) instead of running the 

simulations over the whole study domain. and used the results in a nonlinear regression 

analysis to estimate soil depth from slope (θ [o]) and, and total curvatureCurv.  As the study 5 

domain is large, we used a representative population of θ [o], CA, and Curv values to run the soil 

evolution model for different vegetation types. The resulting nonlinear equations were used to 

estimate the mode of modeled soil depth (M-SD) of each vegetated grid cell of the study 

domain. Capitalizing on the S-CA analysis (see Sect. 4.1.1), local (θ [
o
]), CA, and Curv triplets in 

each of the CA bins are used from the landscape dominated by colluvial transport processes 10 

(θ>17o and CA≤1 km2).  In order to further classify landscapes within each CA bin, θ and Curv 

pairs are grouped into shallow (θ ≤ the 10th percentile θ), moderately steep (between 10th and 

90th percentiles of θ), and steep (θ ≥ the 90th percentile θ) slope classes.  Within each class, θ 

and Curv are averaged. This led to 53 number of triplets used for the soil evolution model, with 

the assumption that landslides do not significantly change local θ and Curv, implying long-term 15 

equilibrium conditions. The model is run for 10,000 years to represent the postglacial landscape 

(i.e., roughly the current interglacial period or Holocene) using the calibrated parameters listed 

in Table 2.  

 

Local erosion is calculated within the soil evolution model. Calibration of the soil evolution 20 

model was performed by adjusting model parameters from the literature (e.g., Tucker and 

Slingerland, 1997; Nicótina et al., 2011) and comparing the mean annual rock erosion rate 

estimated by the model to long-term average rock erosion rates published for the Cascade 

Mountains, which range from 0.02 to 0.5 mm y-1 over roughly the last several Ma (Reiners et 

al., 2002, 2003) and slightly higher rates over the last millennia of 0.08 to 0.57 mm y-1 (Moon et 25 

al., 2011).  In addition to published erosion rates, the resulting soil depths were compared to 

the SSURGO-SD, which ranged from 0.09 to 2.01 m across NOCA. 

 

In Fig. 6 we show modeled mean annual erosion rates in relation to mode of modeled soil 

depth (M-SD) for a steep and moderate slope class, and illustrate the local variability of 30 

modeled soil depth under forest and shrub conditions. The relative frequency histogram of local 

soil depth resembles a triangular distribution, with mode values generally higher than mean 

values, indicating a negatively (left) skewed distribution for soil depth (Fig. 6a, 6c).  Therefore, 

there is a higher frequency of deeper soil relative to shallower soils.  Soil creep fills hollows, 

thickening soils, as FS gradually drops, leading to episodic landslides that evacuate sediment 35 

(Fig. 6b, 6d). 
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Table 2. Model parameters used in the soil evolution model 

Parameter Value Units 

h(initial) – initial soil depth 0.01 m 

α – rate of exponential decay with depth 3 m
-1 

Po – soil production rate from exposed bedrock 0.0005 m yr-1 

Kd – linear hillslope diffusion coefficient 0.01 m2 yr-1 

ρr  / ρs – Rock to soil density density 2.65/2 [-] 

Ks – saturated hydraulic conductivity 7 m d
-1

 

ø – internal angle of friction 35 Degrees 

Root cohesion1 Varies kPa 

Recharge (mean)2 and Coefficient of variation  32, 0.35  mm d-1 
1
 Root cohesion varied by vegetation type based on Table 1 and soil cohesion was assumed to be zero. 

2
 Recharge extracted from average values found at four representative VIC grid cells within NOCA. 

 

Both θ and Curv have been found to be correlated with soil depth (Heimsath et al., 1997; Braun 

et al., 2001; Mitchell and Montgomery, 2006; Hren et al., 2007). A multivariate nonlinear 

regression in the form of y=β1∙x1
m

+β2∙x2+C was fit to mean and mode of soil depth (predictand, 5 

y) given θ and Curv (predictors, x1 and x2) for each vegetation type with R2 >0.9 for all slope 

classes (not reported). Maps for mode of the modeled soil depth (M-SD) were developed over 

the portion of the NOCA domain by applying the regression equations using the distributed θ 

and Curv appropriate forand vegetation type at each grid cell.  Minimum soil depth was set at 

0.005 m if the regression calculated negative depths and maximum soil depth were set at 0.005 10 

andwas set to 2 m, respectively.  Outside the colluvial transport process domain are conditions 

outside the regression analysis; therefore, vegetated areas were assigned a depth of 0.5, 1, and 

2 m for herbaceous, shrubland, and forest, respectively, to generate a contiguous soil depth 

map for NOCA consistent with SSURGO. Areas with barren land cover were assigned a soil 

depth of 0.05 m, representing the minimum range of modeled herbaceous areas. Developed 15 

areas were assigned a value of 0.5 m. Areas assigned a such fixed values are about 2% of the 

model domain.  

 

As an alternative to the SSURGO-SD, the map of the mode values of M-SD was used to 

represent the most likely soil depth at each grid cell in the landslide probability model.  The 20 

evolved soil depth was also used to revise T, using the Ks provided by SSURGO, which provides 

a more-distributed continuous field of T.  The revised T map is used when Landlab is run based 

on mode from M-SD.   
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Figure 6. Illustration of the soil evolution model run using (a, b) steep slope class and forest vegetation 

and (c, d) moderately steep slope class and shrub vegetation. (a, c) Modeled mean annual erosion rates 

plotted with respect to model of modeled soil depth, along with soil depth temporal relative histogram 5 
for a representative convergent location. (b, d) Temporal evolution of soil depth and FS (logarithmic 

scale) for a representative convergent location with: (a) S=40o and Curv=-0.01; and (b) S=29o and Curv=-

0.01.  

Comparison of the SSURGO-SD with the M-SD indicates that there is value in a long-term 

geomorphic perspective in supplying a spatiospatial-temporal soil depth.  M-SD exhibits 10 



 30 

substantially more spatial variability than the SSURGO-SD (Fig. 7).  While both spatial soil depth 

distributions have similar median values, M-SD has a wider distribution with a higher 

proportion of shallower and deeper soils than SSURGO-SD.  In general, the M-SD is shallower 

than SSURGO-SD on steeper, convex hillslopes with herbaceous or shrub vegetation and deeper 

on gentler, concave hillslope with forest vegetation. For both modelsdatasets, soil depth is 5 

deepergreater in the valleys and shallower near the ridge tops (Fig. 7c, d), consistent with other 

studiesreporting (Anagnostopoulos et al., 2015; Montgomery and Dietrich, 1994).    
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Figure 7. Sample illustration of the soil evolution model. Relative histograms of soil depths within NOCA: 

(a) SSURGO-SD and (b) mode of M-SD, with respective spatial mean and coefficient of variation (COV).  

Example location (~6 km2) within NOCAMapped soil depth, with mapped debris avalanches outlined in 

black and contours are at 100-m for:   5 
(c) SSURGO-SD and (d) M-SD.  

Mapped debris avalanches are outlined in cyan black and contours are at 100-m. 

 

The maximum and minimum soil depth parameters of the triangular distribution to characterize 

soil depth variability were obtained by analyzing soil evolution model results. At most θ, CA, 10 

and Curv triplets using in the soil evolution modelused, a landslide occurred at least once over 

the modeled duration.  As described in Sect. 3.2.1, gGiven the negatively-skewed nature of the 

temporally evolved soil depth (Figure 6 a,c), the maximum evolved soil depth parameter of the 

triangular distribution was set equal to 10% of the mode in all model simulations. Two 

scenarios for the minimum parameter of the triangular distribution were used to reflect soil 15 

depth uncertainty for contemporary and long-term conditions.  In the first case, we set the 

minimum parameter as 70% of the mode. The LandslideProbability model was run for this 

scenarios for both SSURGO (SSURGO-SD) and modeled soil depth (M-SD) input. In the long-term 

scenario, the minimum soil depth was set to 0.005 m, reflecting bedrock scour conditions by 

landslides.  We argue that this assumption implicitly introduces a temporal uncertainty 20 

component to soil depth, which may be used to more accurately estimate landslide return 
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period over the long-term. The model run was called M-SD LT for this case.Two scenarios for 

the minimum parameter of the triangular distribution were used M-SD. scenarios were 

developed to compare with SSURGO-SD In the first approach we focus on existing 

contemporary soil depth conditions in the field by running two simulations called SSURGO-SD 

and M-SD where we set the minimum parameter as 70% of the mode. Second, we aimed to 5 

reflect the longer-term perspective of soil evolution on the uncertainty of soil depth (called M-

SD LT simulation) by setting the minimum soil depth to 0.005 m, reflecting bedrock scour 

conditions by landslides. This assumption implicitly introduces a temporal uncertainty 

component to soil depth, which can be used to more accurately estimate landslide return 

period over the long-term.      10 

 

4.2 Probability of Failure 

Modeled annual probability of failure of shallow landslides, P(F), for NOCA simulated by the 

Landlab LandslideProbability component using SSURGO-SD and two M-SD scenarios are shown 

in Fig. 8.   In each runmodel runsimulation, 3,000 values were sampled (i.e., iterations) for 15 

model parametervariables at each grid cell in the Monte Carlo simulations. 

 

P(F) derived from simulations exhibit low probabilities where slopes are moderate and cohesion 

is high (e.g., forest). Highly unstable areas largely correspond to steep barren landscape (13% of 

the model domain) mostly located below retreating alpine glaciers, with steep glacial 20 

landforms, transitioning from glacier to colluvial processes (similar to Guthrie and Brown 2008; 

Tarolli et al., 2008; Legg et al., 2014) (Fig. 9). These areas with a thin veneer colluvium, except 

for moraines, appear to be “continuously sliding” (Borga et al., 2002) or “chronically unstable” 

(Montgomery, 2001). Frequent slides impede the colonization of vegetation (Dietrich et al., 

1995; Istanbulluoglu and Bras, 2005). Slides in barren areas were not completely included in our 25 

landslide inventory as they do not pose major risks to humans and infrastructure.  
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s (i.e., 3,000 iterations in each simulation).  

 

a) SSURGO-SD  b) M-SD   c) M-SD LT 

 
d)  SSURGO-SD  e) M-SD   f) M-SD LT 5 
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Figure 8. Landslide annual P(F) map for NOCA overlain with mapped debris avalanches for simulations 

with: (a) SSURGO-SD; (b) M-SD; (c) M-SD LT. Zoomed-in areas are shown for greater detail in the lower 

panel in the same order and according to number designated. Purple areas are considered chronically 

unstable and areas excluded from analysis are shown as gray. Contours are at 100 m. Aerial images of 

zoomed-in areas are provided in Fig. 3.  5 

 

P(F) derived from simulations exhibit low probabilities where slopes are moderate and cohesion 

is high (e.g., forest). Highly unstable areas largely correspond to steep barren landscape (13% of 

the model domain) mostly located below retreating alpine glaciers, with steep glacial 

landforms, transitioning from glacier to colluvial processes (similar to Guthrie and Brown 2008; 10 

Tarolli et al., 2008; Legg et al., 2014) (Fig. 9). Barren areas cover ~13% of the modeled domain. 

These areas with a thin veneer colluvium, except for moraines, appear to be “continuously 

sliding” (Borga et al., 2002) or “chronically unstable” (Montgomery, 2001). Frequent slides, 

which also impedees the colonization of vegetation (Dietrich et al., 1995; Istanbulluoglu and 

Bras, 2005). Shallow soils can enhance the probability of saturation, leading to high pore-water 15 

pressure and saturated overland flows with moderate storms (Pelletier and Rasmussen 2009). 

Mass wasting activitySlides in barren areas were not completely included in our landslide 

inventory as they exhibit chronic small-scale slides that do not pose major risks or substantial 

deposition  to humans and infrastructurezones.  

 20 

a) b) 

 
Figure 9.  Illustration of highly unstable steep areas: (a) High resolution (0.3 m) imagery of a NOCA 

mountain (World Imagery, Esri Inc.)1 compared to (b) P(F) simulated by M-SD with mapped debris 

avalanches.  Contours at 100 m. Notice the barren areas below retreating glaciers with high P(F). 25 

 

Other locations of higher P(F) are located in topographic hollows (Fig. 8, 9).  These converging 

areas accumulate deeper soils, which decreases the effectiveness of root cohesion, and 

enhance pore pressure through attract subsurface flow, leading to enhancedconvergence ofing 

subsurface flow enhance pore-pressure (Dietrich et al., 1995). Converging areas often 30 

correspond to the upper portions of mapped debris avalanches, which displaythatwhich clearly 
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display higher landslide probabilities than the runout portions in simulationsdownstream.  

Thus, the landslide probability visually appears to capture the source area of debris avalanches.  

 

Substantial differences between P(F) derived with different soil depth maps are evident (Fig. 8 

and Fig. 10) and corroborate previous studies showing the influence of various soil depth 5 

estimates on landslide susceptibility (Dietrich et al., 1995; Okimura, 1998).  In general, 

probabilities are higher and more spatially extensive when the model is parameterized using 

SSURGO-SD compared to both M-SD scenarios.  Given that other parametervariables are kept 

consistent, these differences are attributed to spatial variability of soil depth and related 

adjustments to transmissivity.  10 

 

To investigate the spatial distribution of P(F) in relation to soil depth, we plot the cumulative 

distribution of P(F), referred to as the fraction of modeled area where P(F) is less than or equal 

to a given value, for each simulation (Fig 10a). We present our general observations of the 

spatial distribution of P(F) in the order of SSURGO-SD, M-SD, and M-SD LT as depicted in Fig 8. 15 

Simulations show approximately 26%, 38%, and 49% of the modeled domain (79% of NOCA, 

where θ>17°) as stable (i.e., P(F)=0) under the current vegetation cover and climate. We refer 

to these sites as unconditionally stable (i.e., stable even when saturated, and with minimum C 

and ø sampled) (Pack et al., 1998; Montgomery 2001). A bimodal spatial distribution for P(F) is 

evident (Fig. 10a, 10b). Areas with low probabilities, around P(F)≤0.1, dominate the spatial 20 

distribution of P(F), manifested with a steep rise in the fraction of area from P(F)=0 to P(F)=0.1 

(Fig 10a).  For P(F)≤0.1 (RP≥10 years), the order of aerial cover for the model domain, including 

the stable regions, is 72%, 85%, and 87%. When the unconditionally stable areas are excluded, 

the percentages become 46%, 47% and 38%, respectively, for the three soil depth products 

used. This region approximately marks the first peak of the relative histogram of P(F) (Fig. 10b).  25 

 

In the broad 0.9>P(F)≥0.1 range, the increase in fraction of area with P(F) is gradual especially 

for the two M-SD simulations (Fig. 10a). In the highly unstable regions, with P(F)≥0.9 (RP≤1.1) as 

mapped in Fig. 8 and 9, the fractional area begins to rise again in all simulations (Fig 10a).  

P(F)=1 occupies 11% and 7% of the modeled area in the SSURGO-SD and M-SD simulations, 30 

which can be conceptually named as unconditionally unstable (i.e., unstable even when dry and 

with the highest combinations of C and ø sampled) (Pack et al., 1998; Montgomery 2001).  The 

model run using M-SD LT soil scenario shows a smaller area percentage, ~6%, with P(F)≥0.9, 

while SSURGO-SD and M-SD had 16% and 10%. M-SD LT soil scenario provides a more realistic 

estimate as some locations are not likely to produce slope failures annually due to limited soil 35 

development.  The second peak of the relative frequency histogram of P(F) appears when 

P(F)>0.9, largely associated with postglacial barren lands with steep mountain slopes, and 

converging topography, especially in the case of SSURGO-SD (Fig. 10b). Dominant factors that 

control the relative frequency of P(F) are labeled in Fig 10b, and further discussed in 

subsequent sections. 40 
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Figure 10. (a) Cumulative distribution and (b) relative frequency of P(F) (bin size ∆P(F)=0.025) mapped 

over NOCA from Landlab simulations using SSURGO-SD and two M-SD scenarios. Labels indicate 

dominant controls on the distribution of P(F) in (b). Fraction of area is used for cumulative spatial 

probability, plotted using the Weibull plotting position. Return Period for landslides are illustrated only 5 
for SSURGO-SD. 

  

We expressed the annual probability of landsliding in the form of a RP, plotted with respect to 

fraction of area for all three simulations, and mapped RPs for the M-SD LT scenario in Fig. 11. 

The M-SD LT reduces the probability and increases the return period estimates of landslide 10 

initiation, revealing the influence of long-term memory of landsliding on the probability 

distribution of soil thickness obtained from the soil evolution model.  Therefore, the M-SD LT 

scenario would better suit the definition of RP, while the other two simulations provide 

reference for relative comparisons. In general and in concert with the P(F), landslides at nearly 

all RPs affect a greater proportion of the domain when SSURGO-SD is used.  Approximately 28% 15 

of the model domain is simulated to have a landslide return period of less than or equal to 10 

years (i.e., P(F)≥0.1 or frequent slides) based on SSURGO-SD, compared to half as much area, 

15%, for simulations using M-SD; M-SD LT had slightly less at 13%. Low return periods (i.e., < 10 

years) coincide with steep slopes in barren areas that show chronic landsliding, low-cohesion 

vegetation type, such as herbaceous, as well as some steep hollows.  20 

 

At the high end of the return period, 46% of the model domain was simulated to have 

landslides with a return period of ≥500 years for SSURGO-SD scenario, including stable areas, 

Comment [EI3]: I think the RP 10 

arrows should be going along the curves – 

to the left RP<10 and to the right RP<10.. 
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compared to 52% and 70% for model runs that used M-SD and M-SD LT scenario, respectively 

(Fig. 11).   High return periods (i.e., RP>500 years, P(F)< 0.002) are found where slopes are 

gentler, on divergent topography, and in forest forested areas.  The fraction of the model 

domain with a landslide return period between 100 and 500 years is 10%, 18%, and 21% for 

SSURGO-SD, M-SD, and M-SD LT, respectively, showing a larger fraction in the M-SD products. 5 

These landslide frequency rates relate to long-term averages and the actual failures are likely to 

be clustered in space and time depending on triggering event and the time since the last 

landslide at the same location (Guthrie and Evans, 2004).   

 
Figure 11.  Modeled landslide return period simulations with M-SD LT for NOCA overlain with mapped 10 
debris avalanches, including zoomed in areas at top for greater detail. Cumulative distribution of return 

periods for SSURGO-SD, M-SD, and M-SD LT scenarios, plotted on a log-log scale using the Weibull 

plotting position.   

 

As soils in landslide locations are formed by sediment accumulation from surrounding hillsides 15 

and weathering of the local bedrock, landslides can be the main source of denudation across 

landslide-prone regions. The expected values of mean annual denudation rate is approximated 

by the spatial mean of : mean(P(F)*hs)/( ρr /ρs) for each simulation. This gives spatial average of 

the long-term denudation rates due to landslides as 51.9 mm y
-1

, 7.06 mm y
-1

, and 5.04 mm y
-1

 

for SSURGO-SD, M-SD, and M-SD-LT scenarios, respectively. While these rates are higher than 20 

the reported mean annual denudation rates in this region over the last millennia of 0.08 to 0.57 

mm y-1 (Moon et al., 2011), M-SD-LT clearly gives the closest estimates to observations among 
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the three soil depth scenarios. Over an order of magnitude variation in denudation rates is also 

common as part of long-term records of erosion rates (e.g., Molnar, 2004).   

 

A critical question that remains is: what are the dominant controls that lead to the bimodal 

distribution of landslide probability in the modeled domain? First, we examined if topography 5 

alone, represented by S and CA pairs, can explain this behavior. The S-CA data pairs from each 

model grid cell are colored by the value of P(F) in the order from low to high value using output 

from the M-SD LT scenario (Fig. 12).  As slopes get steeper (S>0.45 or 24.2o), a relatively rapid 

increase in P(F) in relation to slope from P(F)=0.4 to 1.0 can be seen, surrounded with lower 

probabilities. CA does not seem to impose a visually detectable increase in P(F), which is likely 10 

largely due to the wet climate in region. The landslide source cells identified from the highest 

elevation of debris avalanche shapefiles fall in the “eye” of this high-P(F) region in the S-CA 

domain. Interestingly, P(F) diminishes in the steepest slopes of most CAs. While the trend of 

increasing P(F) as slope gets steeper generally shows the influence of slope in Eq. (1a), 

landscape with P(F)≥0.4 only constitute about 11% of the model domain (Fig. 10a). For 15 

comparison P(F)≥0.1 was 13%. On the other hand, about 57% of the domain has steeper slopes 

than 24.2o (S=0.45m/m). Locations with slopes less than this are rarely found with P(F)>0.4. This 

suggest that the majority of the domain with similar pairs of S and CA exhibit lower landslide 

probability, which can be largely attributed to the spatial distribution and influence of 

vegetation type and soil depth (e.g., Roering et al., 2003). 20 

 

 
Figure 12. S-CA plot colored by the P(F) simulated with from the M-SD LT.  Source cells (orange triangles) 

are the single highest-elevation grid cell within mapped debris avalanches.  Comparable to Fig. 5. High 

probabilities plot over low probabilities.  25 
 

We investigated the roles of vegetation, slope steepness, and soil depth on P(F) in relation to 

elevation (Fig 13). From low to high elevations, vegetation changes from predominantly forest 

(elevation <1,400 m) to coexisting shrub, herbaceous plants, and barren land (1,400 m to 2,200 
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m) as a result of elevation-dependent ecoclimatic controls (e.g., temperature) on vegetation 

survival and growth (Fig. 13a).   In this region of ecosystem transition, the mean P(F) shows a 

persistent increase from 1,400 m until a maximum is reached between 2,200 and 2,400 m, 

depending on simulation (Fig. 13b, 13c). Observations of debris avalanche by elevation confirm 

the pattern of P(F) dependence on elevation in relation to ecosystem change; 75% of the 5 

extracted landslide initiation zones from mapped debris avalanches are located between 1,200 

m to 2,000 m (Fig. 3b). In the 1,400 to 1,900 m elevation range of the ecosystem transition 

zone, mean slope is relatively constant ~0.75 m/m (~37
o
), and rises up to 0.9 m/m (42

o
) 

between 1,900 and 2,200 m (Fig 13c), consistent with the binned-averaged slopes of the 

landslide source area in the S-CA plot in Fig 5. Mean soil depth begins to drop in both SSURGO 10 

and modeled soil depth products above 2,200 m.  

 

These observations model results confirm the strong control of ecosystem transition on 

landslide activity in the region.  Below about 1,400 m (~40% of NOCA), forested vegetation 

combined with deeper soils and moderate slopes keep P(F) low. In the 1,400 to 2,200 m range, 15 

loss of root cohesion with ecosystem transition combined with gradual increase in landscape 

slopes contribute to increased P(F).  Above 2,200 m elevation, soils become very shallow and 

slopes exhibit the steepest angles in the modeled domain. This combination leads to the largest 

variability in P(F), combining the highest P(F) values,  (P(F)≥0.9) mostly attributed to barren 

areas (~6% of the model domain in the M-SD LT scenario), with lower P(F) values where thinner 20 

soils reduce the driving force within Eq. (1a). Total cohesion has been found to affect FS 

estimates more on thin soil than on thick soils (Hammond et al., 1992). The sensitivity of FS to 

cohesion is even more pronounced on steep slopes, especially when saturated (Sidle 1984). 

Forest vegetation has also been found to stabilize slopes through the hydrological process or 

root water updake and transpiration, which leads to drier soil conditions (Arnone et al., 2016b).  25 

In aggregate, thinner soils at higher elevations lead to lower mean P(F), which we referred to as 

soil depth control (see also Sidle 1984). The general contribution of elevation on the spatial 

organization of P(F) is labeled in Fig 10b.  
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Figure 13. Elevation (200 m bands or bin) influence on: (a) vegetation cover fraction for NOCA, taken as 

fraction of vegetation type within each elevation band, (b) mean P(F) using SSURGO-SD and two M-SD 

scenarios, along with compact box-whisker plots for P(F) of M-SD LT scenario, where circles-dot symbols 5 
represents median (outliers not shown, greater than 1.5 interquartile distance), overlaid with 

hypsometric curve for NOCA, and (c) mean soil depth for SSURGO-SD and M-SD products with mean 

slope.  Mean values calculated within each 200-m elevation band.  



 43 

 

4.3 Model Evaluation 

The performance of a landslide model is often based on its ability to capture existing mapped 

landslides. W In Sect. 4.2 we evaluated our model through visual comparison of modeled P(F) to 

observed landslide locations (e.g., Fig. 8, 9). In this section, a more quantitative approach is 5 

presented for model evaluation.  We statistically evaluated our model using multiple 

approaches, including cumulative distribution (CD) of P(F) comparisons as well as Receiver 

Operating Characteristics (ROC) (Fawcett, 2006) and Success Rate (SR) curves (Bellugi et al., 

2015).   

 10 

For the statistical analysis, Wwe limited our performance assessment to the source areas of the 

mapped debris avalanches.  Source areas of debris avalanches were not mapped separately 

from the remaining debris avalanche features (i.e., transition and deposition zones), hindering 

the evaluation of model predictions (Tarolli and Tarboton, 2006). Because we anticipate that 

the source areas could originate from a neighboring grid cell, we considered source cells as a 15 

collection of grid cells in the upper 10, 20, and 30% highest elevation cells within each mapped 

debris avalanche shapefile.  Source areas we identified in relation to elevationThese 

populations of source cells (4318 samples) were treated as ‘observed’ landslide source cells 

during validation of the landslide probability using CD, SROC and SROC performance metrics. In 

this validation, we excluded barren areas with slopes ≥ 37° (~5% of the model domain), which 20 

characterizes slopes of active small-scale dry landslides (failure depth ≤ soil depth) more 

appropriately represented by nonlinear hillslope diffusion models (see Roering et al., 1999; 

DiBiase et al., 2010; Pelletier et al., 2013).   

 

For comparison of P(F) with source area cells, we randomly sampled 50,000 grid cells outside 25 

mapped debris avalanches (~2% of the modeled domain), similar to the number of grid cells 

within entire mapped debris avalanche areas.  The majority of the source grid cells and outside 

debris avalanches cells are located at elevations between 1200 and 1800 m (Fig. 14a). Grid cells 

in the random sample outside debris avalanches were constrained to the elevation range of the 

source cells to allow unbiased comparison. We recognize that the areas outside mapped debris 30 

avalanches have the potential to be unmapped landslides, other landslide types, or unstable 

areas deficient a triggering event; therefore, we interpret the test results conservatively.  We 

expect the simulated P(F) should estimate lower probability outside debris avalanches 

compared to source areas of mapped debris avalanches.   

 35 

At low and mid elevations, simulations generally showed a greater fraction of high probabilities 

in source areas compared to outside of debris avalanches (Fig. 14b, c).  However, when only 

high elevation (>1,800 m) data were considered, the pattern was reversed with a larger fraction 

of high probabilities found outside debris avalanches than source areas (Fig. 14d).  At this 

higher elevation, much of the land cover is barren or herbaceous (i.e., low root cohesion), 40 

resulting in high probabilities of failure throughout the model domain (Fig. 12a). While there 

are extensive shallow failures in these regions only limited amount of those that turned into 

debris avalanches were mapped.  This reverse pattern is also present at mid-elevations (~1,200 
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to 1,800) for both M-SD scenarios, only for 10% of the sample data, when P(F)>0.03 and 

P(F)>0.1 for M-SD and M-SD LT, respectively (note the crossing curves in Fig. 14b).  At low 

elevation (~125 to 1,200 m), there were no source areas with P(F)>0.4 in M-SD and M-SD LT 

scenarios. 

 5 

The performance of the model results we are presenting in this paper are specific to a sample 

comparison of 10% source area of mapped debris avalanches and random sampling outside 

debris avalanches.  When examining the validation datasets in their entirety (i.e., regardless of 

elevation), the median P(F) of the 10% source DA cells is 13 times the median P(F) of outside DA 

for SSURGO-SD and four times the median P(F) for M-SD; median is zero for outside DA cells in 10 

the M-SD LT.  The Kolmogorov-Smirnov test (Chakravart et al., 1967) test show paired 

comparison between DA source area cells and cells outside DA for all three scenarios are 

statistically different (p<<0.01). 

 
Figure 14. a) Relative histogram of source areas in upper 10% elevation of debris avalanches (DAs) and 15 
for 50,000 grid cells outside DAs.  Cumulative distributions of P(F) plots limited to P(F) ≤ 0.2, or return 

period ≥ 5 years, to highlight detail in simulation using SSURGO-SD, M-SD, and M-SD LT at: b) low 

(<1,200 m), c) mid (1,200 to 1,800 m), and d) high (>1,800 m) elevations as depicted in a).  Thicker lines 

represent probabilities for source areas of (DAs) and thin lines represent probabilities for cells outside 

DAs.  20 

 

Another statistical analysis uses ROC curves wereare used to examine how our model compares 

with randomly distributed landslides over the landscape.  These curves are constructed from 
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confusion matrices generated from comparisons between observed and modeled landslides, 

based on varying P(F) threshold (e.g., 0.1, 0.2, 0.3, etc.). Details on calculating metrics used to 

generates these curves have been provided elsewhere (see: True positives (TP) are those cases 

within observed landslides where probabilities are equal to or greater than threshold.  False 

negatives (FN) are probabilities within landslides that fall below the threshold.  False positives 5 

(FP) occur outside observed landslides with simulated probabilities equal to or above the 

threshold.  True negatives (TN) are also outside observed landslides, but with probabilities 

below the threshold. From these metrics, true positive rate (TPR) or fraction of landslides 

captured and false positive rate (FPR) or fraction of false alarms can be calculated as follows: 

2�� =  34
(34567) (8) 10 

��� =  64
(64537) (9) 

The advantage of the ROC curve over a standard confusion matrix is the ability to vary the 

probability threshold for assigning model simulations to a modeled landslide (positive) or no 

landslide (negative) classification, generating different positive and negative comparisons 

(Mancini et al., 2010; El-Ramly et al., 2002; Anagnostopoulos et al., 2015).  A better performing 15 

model will exhibit a curve toward the upper left of a FPR false positive rate (x-axis) and TPR true 

positive rate (y-axis) plot.  A 1:1 line in the plot represents a trivial model that randomly assigns 

stable and unstable cells. The area under the curve (AUC) generated by ROC curve quantifies 

the performance of a model for identifying landslide and non-landslide locations.  The AUC 

statistic represents the probability of correctly ranking a landslide and non-landslide pair 20 

randomly selected from those two datasets (Hanley and McNeil, 1982).  SR curves are similar to 

ROC curves, with TPR as the y-axis, but plot compares this to the fraction of landscape 

predicted as unstable (x-axis), calculated as (TP+FP)/(TP+FP+TN+FN).  Again, a relatively well 

performing model would plots farther away from the 1:1 line representing a trivial model.   

 25 

For this comparison, we used the same datasets used in the cumulative probability analysis 

discussed Sect. 4.2.  Both simulations using SSURGO and M-SD modeled 10% source areas and 

non-landslide areas better than random selection as demonstrated by the curves plotted above 

the 1:1 line (Fig. 1514).  The classification is stronger as the source area fraction is reduced.  

However, the model’s strength in the classification is modest as indicated by the AUC values of 30 

between 0.60 and 0.61, compared to an AUC of 1 representing a perfect classification.  The 

TRIGRS-P probabilistic landslide model tested by Raia et al. (2014) found higher AUC results 

(i.e., 0.65 to 0.73).  However, their study tested small areas (3 to 6 km
2
) that were well studied 

locations with detailed inventories of landslides resulting from one or two winter rainfall 

seasons and the entire landslide was tested rather than source areas only. 35 
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Figure 1514. a) ROC curves and b) SR curves for simulations using SSURGO-SD, M-SD, and M-SD long-

term (LT). Comparison represent P(F) for the upper 10% of DA as observed landslides to a random 

sample of 5,000 cells outside DAs.  Thresholds for simulated probabilities associated with positive 5 
classification of a source areas declines along the curves from lower left to upper right. Black diagonal 

line on a 1:1 line represents the case of a trivial or random classification model.  AUC values range from 

0.60 to 0.61. 

 

ROC and SR curves provide an indication of how well the modeled simulations of P(F) classify 10 

both observed landslide source cells and non-landslide grid cells compared to random 

classification.  The crossing of ROC and SR curves in the simulations with M-SD (Fig. 1514) 

implies that at higher probability thresholds, simulated probabilities delineate more false 

alarms (e.g., areas outside DAs as unstable) than capturing source areas. This may be indicative 

of the high probability values at high elevations even outside the debris avalanches where 15 

vegetation is sparse, as was indicated above in the analysis of cumulative distribution plots.  We 

found for our case study that the optimal probability threshold to maximizing landslides 

captured and minimizing false alarms (i.e., point around the apex of the ROC curves) declines by 

half depending on the simulation: P(F)≥0.008 (i.e., RP≤125 years) for SSURGO-SD, P(F)≥0.004 

(i.e., RP≤250 years) for M-SD, and P(F)≥0.002 (i.e., RP≤500 years) for M-SD LT.  20 

 

The modeled potentially unstable landscape has generally been greater than observed 

landslides when infinite slope stability models are calibrated with limited observations (Sidle 

and Ochiai, 2006; Baum et al., 2010).   As pointed out by Borga et al. (2002), concluding 

“overrepresentation” of areas potentially subject to shallow landsliding can be misleading 25 

because the absence of mapped landslides does not necessarily indicate an absence of 
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landslide hazard over time across the landscape.  Locations with high landslide probability 

outside mapped landslides in both simulations could be indicators of where to conduct 

additional investigations for missed landslides or areas on the verge of failing. 

 

Validating hazard maps is challenging, especially in large areas of remote mountainous regions, 5 

because inventories are typically incomplete, lack the date of landslide occurrence, different 

landslide types likely have different meteorological triggers, environmental conditions change 

after a landslide event, and unidentified high probability areas may fail in the near future even 

though they appear to be stable during an inventory (van Westen et al., 2006; Tarolli and 

Tarboton, 2006).  Additional evaluation of model performance would benefit from field 10 

investigation in areas of high and low modeled P(F) to identify any landslides or instability that 

may have been missed during the original inventory.  Future work that couples the volume of 

sediment available for landsliding will lead to further improvements in estimating hazards and 

potential impacts from landslides.  

 15 

4.4. Model Limitations 

For model design and computation efficiency, we made several simplifying assumptions.  We 

neglect groundwater leakage to the bedrock in recharge estimation and apparent soil cohesion 

through the effect of surface tension in unsaturated zones (e.g., Lepore et al., 2013), both of 

which could be added to future updates to the component.  Tree and snow surcharge is also 20 

disregarded, although it may have some stabilizing effect where soils are shallower than 1 m 

(Hammond et al., 1992). Our approach does not simulate the actual number of landslides, 

landslide type, nor the size of the landslide because the discretized nature of the failure field 

precludes specific knowledge of which and how many grid units may be involved in a failure at a 

particular time.  These model omissions present opportunities for future customization of the 25 

component or coupling with other models.  

 

Modeled probability does not capture the runout of debris avalanches, which can travel 

considerable distances in steep mountainous environments.  Some unexpected results depicted 

higher probability in runout portions of some debris avalanches when using SSURGO-SD, but 30 

these probabilities were lower when M-SD scenarios were used (e.g., Fig. 8, middle zoomed-in 

panels).  Mis-mapping of probabilities of failure and observed landslide are likely attributed to 

variations in soil depth, material properties, and hydrologic routing (Schmidt et al., 2001).  

Model parametervariables such as slope derived from DEMs developed with post-landslide 

mapping can also contribute to reduced probabilities in observed landslides where slope and 35 

soil depth were reduced.  Furthermore, inventories over broad areas are challenging as 

landslides are isolated processes that may occur with regularity, but may not be large in size 

(Van Westen et al., 2006). Finally, steady-state flow that we used for subsurface flow neglects 

transient processes and roles of macro-pores. Macropores from decayed roots or animal 

activity can be important in transporting water relatively quickly from the surface to deeper soil 40 

layers and groundwater (Sidle et at., 2001; Gabet et al., 2003; Beven and Germann, 2013).  
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5 Conclusion 
We develop a regional model of probabilistic shallow landslide initiation based on the infinite 

slope stability equation coupled by steady-state subsurface hydrology driven by groundwater 

recharge. Uncertainty in model parametervariables is explicitly accounted for through Monte 

Carlo simulation.  A geomorphic soil evolution model provides a spatially-distributed soil depth 5 

alternative to homogeneous patches of soil depths provided by SSURGO.  This feature allows 

the landslide model to be used where soil depth information is uncertain, sparse, or absent. 

Our model workflow framework developed in Landlab (Hobley et al., 2017) is made up of a 

landsliding component, a Landlab utility for hydrologic data processing, and a model driver that 

runs the component.  The model driver can be run on personal computers or online via 10 

Hydroshare through cloud computing creating reproducible results.  Our approach 

demonstrates: 

 

● Regional maps of landslide hazard produced with three different soil depth scenarios 

reveal alternative simulations of probability of landslide initiation, reflecting the 15 

importance in soil depth in landslide hazard prediction.  

● Simulations using SSURGO-SD returned higher probability of failures and shorter return 

periods than simulations using modeled soil depth products (M-SD and M-SD LT).  The 

M-SD LT simulation further reduces the probability of failure and increases the return 

period. Mean annual denudation estimates from the M-SD LT scenario show closer 20 

estimates to published rates of denudation over the last millennia than the other 

simulations.  

● SSURGO-SD scenario provide a short-term tool for high risk planning using conservative 

estimates of probability of failure, while M-SD LT provides long-term estimates arguably 

more consistent with landslide frequency in the region and useful for management of 25 

ecosystems and aquatic habitats, and estimation of sediment budgets for watershed 

planning. 

● Elevation dependent patterns in probability of landslide initiation show the stabilizing 

effects of forests in low elevations, an increased landslide probability with forest decline 

at mid elevations (1,400 to 2,400 m), and soil limitation and steep topographic controls 30 

at high alpine elevations and post-glacial landscapes. These dominant controls manifest 

in a bimodal distribution of spatial annual landslide probability, modes peaks controlled 

by highly stable forested and chronically unstable post-glacial domains and other barren 

areas. This suggests that furtherpotential declines in forest cover with climate change 

could lead to widespread landslide activity. 35 

● Model testing confirmation with limited observations revealed similar model confidence 

for the three hazard maps, suggesting suitable use as relative hazard products. 

Validation of the model with observed landslides is hindered by the completeness and 

accuracy of the inventory, estimation of source areas, and unmapped landslides. 

● Our shallow landslide hazard model provides regional scale estimates of the relative 40 

annual probability of shallow landslide initiation as well as landslide return period, 
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which is useful for civil protection through land use planning to minimize geohazard 

consequences from precipitation triggers. 

6 Data and Model Availability     
To facilitate ease of use of the landslide hazard model, we developed the landslide model as a 

component of Landlab, an open-source Python toolkit for two-dimensional numerical modeling 5 

of Earth-surface dynamics available at GitHub:  http://github.com/landlab/landlab (Hobley et 

al., 2017).  Documentation, installation instructions, and software dependencies for the entire 

Landlab project can be found at: http://landlab.github.io/.  The Landlab project is tested on 

recent-generation Mac, Linux and Windows platforms using Python versions 2.7, 3.4, and 3.5. 

The Landlab modeling framework is distributed under a MIT open-source license.  A component 10 

user User manual Manual and driver scripts for the application of the Landlab 

LandsideProbability component can be found at 

https://github.com/RondaStrauch/pub_strauch_etal_esurfhttps://github.com/landlab/pub_str

auch_etal_esurf (Strauch, GitHub Repository). 

 15 

Online access to the Landlab LandslideProbability model is freely provided through 

https://www.hydroshare.org, where data and code drivers are available to demonstrate and 

explore the model using interactive IPython notebooks in a JupyterHub.  Thus, users can access, 

test, adapt, and apply the landslide model for their area of interest without downloading 

Landlab or the components.  Data and driver code used in this analysis are available at 20 

hydroshare (Strauch et al., 2017).  Existing demonstration driver codes can be adapted to fit 

data provided in raster format by the user to create distributed data fields used as 

parametervariables in the component. Instructions for accessing HydroShare and the online 

demonstrations, codes, and data used in this paper are provided in the Ssupplemental material.  

 25 
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