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Dear Dr Castillo, 

We are grateful for your review of our manuscript, consisting of both general recommendations and detailed in text 

amendments provided in the supplement. Given the extent to which the manuscript has been restructured, we provide 

details of our amendments below as opposed to a document with tracked changes. These more closely align the manuscript 

to the I-M-R-D-C approach referred to in your review.  

- Title: We have opted to amend this to ‘Optimising 4D Surface Change Detection: An Approach for Capturing 

Rockfall Magnitude-Frequency'. We feel that this better reflects the proportion of methodological analysis in the 

paper, without overly focussing on the interpretation of magnitude-frequency. 

- Abstract: Remains unchanged. 

- Introduction: As suggested, we have split the introduction into sections. This begins with an introduction to the 

size distribution of geomorphic events followed by the importance of the temporal resolution of monitoring in 

capturing this. While our introduction now contains a more even balance between M-F and the method, we feel that 

these initial sections are critical in underpinning our motive for near-continuous monitoring. We then proceed to 

describe the sources of uncertainty involved in near-continuous monitoring, which stem from scanning from a fixed 

position. As you suggest in your in-text comments, this section should come early in the paper to outline the types 

of uncertainty that we are attempting to minimise. Our final section outlines the uncertainty in volume estimation. 

At the end of each section, we describe an associated objective. These are: 

o To capture the influence of near-constant monitoring on the magnitude-frequency distribution of 

rockfall from an actively failing rock face. 

o To minimise the errors that arise from near-continuous monitoring, in order to minimise the minimum 

detectable movement. 

o To describe the impact that a changing magnitude-frequency distribution has on the overall uncertainty 

of eroded volume through time 

- Study site and data collection: Unchanged 

- Method: Optimising event extraction from near-continuously collected point clouds.  

o Here we have maintained the same sections but have subdivided Section 3.1 into the separate filters 

suggested (AOI extraction > edge-hole filter > waveform deviation filter > partially obscured point 

clouds. At the beginning of the section we have detailed with greater clarity the aim of the method and 

the chronology of the workflow.  

o At the beginning of each section, we have outlined the objective of the particular step and, where 

appropriate, previous research. 

o We have also sought to better highlight work that is novel and work that is not. As well as in text, novel 

inputs are summarised in Fig. 3, which is discussed in further detail later in this letter. In text, an 

example of this is for the waveform deviation filter ‘While the sensitivity of the waveform to target 

geometry has previously been highlighted (Williams et al., 2013), it has not previously been documented 

as a method to filter points’. Importantly, where we refer to near-continuously collected data or to large 

numbers of scans, the method described is indeed newly presented in this manuscript. For example, we 

create a reference map of the optimal search radiuses across every point cloud. Such an action is not 

necessary where computational efficiency is of little consequence. In order to identify this as novel, 

therefore, we state ‘Importantly, identifying the optimum neighbourhood radius for 103 – 104 point 

clouds adds considerable computational cost in processing. As a compromise, the neighbourhood 



radius of each point in this study is made equal to the distance to the closest point in the reference cloud 

in Fig. 5a’. Again, this is clarified in Fig. 3. 

o In a number of instances in this section, it was suggested that elements should be moved into the results 

section. We describe moved sections below in Results. However, we feel that some elements do not 

constitute ‘results’ given that they are purely methodological, and are hence better suited to the method 

section. This applies to the map of optimal search radiuses (Section 3.3); while our use of this technique 

is new, we do not present any results specifically related to this step. It also applies to the example of 

the performance of change detection using varying cylinder lengths for the subset of points in Fig. 8 

(Section 3.4). While the three different change estimates that we find for this subset are an important 

justification for varying the cylinder length, we feel that most of this section should remain in the 

Section 3.4. However, we have opted to move the resulting decrease in LoDs (across the entire point 

cloud) into Section 4.1.  

o We have divided some of the more lengthy paragraphs (identified in the in text amendments) into 

smaller paragraphs. 

- Results: As requested, we have split this section into two, with the first half relating to results of the method and 

the second to the implications for magnitude-frequency distributions.  

o Section 4.1 provides the results of the filtering, registration, and method of change detection. These 

have been moved from the methods section as suggested. 

o Section 4.2 remains unchanged. 

- Discussion: While the content remains broadly unchanged, this has now been split into sections that more accurately 

reflect the methodological focus of the manuscript. 

- Conclusion: This more clearly highlights novel conclusions drawn from our experience of processing near-

continuous monitoring data. The final paragraph outlines our conclusions relating to the effects of temporal 

resolution. While a suggested addition was future research for near-continuous processing, we feel that this has been 

addressed in the discussion. References to previous work have been removed.  

- Figures: We have ensured that all figure captions begins with a figure ‘title’, and have shortened the captions for 

Fig. 9 and Fig. 10 (filter sensitivity analysis), as requested.  

o Fig. 1: more clearly identified lighthouses by shading grey 

o Fig. 3: added a column for software and another for developments from this study. Names, such as 

waveform deviation, are now consistent with (and within) the rest of the text. We feel that added 

citations to previous work for each step would add considerable length to the reference list and to the 

figure/table to which they would be inserted. We feel that the most relevant works have been described 

and cited in text. 

o Fig. 4 (previously 6): rockfall labelled 

o Fig. 10 (previously 5): (b) reduced to a single curve for clarity both in the plot and in the caption. 

Fig. 12: (b) recued to point data, given that kernel densities (in previous version) simply described the 

distribution of both variables.  

We hope that you feel the above amendments suitably address your suggestions. Please do not hesitate to contact us 

should you require any further clarity. 

Sincerely, 

 

Dr Jack G. Williams 

Department of Geography | Durham University | Science Laboratories | South Rd | Durham | DH1 3LE | UK 
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Abstract. We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 

3D data. Our aim is to fully characterise geomorphological change typified by an event magnitude frequency relationship that 

adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more 

than seven orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-10 

averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving 

change are not spatially independent, apparent event frequency must be partially determined by survey interval.  

The data reported has been obtained from a permanently installed terrestrial laser scanner, which permits an increased 

frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface 

and the need for computational efficiency associated with handling a large time series of 3D data. A workflow is presented 15 

that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 

algorithm is used to detect 3D change, to overcome data inconsistencies between scans. Individual rockfall geometries are then 

extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of 

~ 9 × 103 surveys acquired at ~ 1 hour intervals over 10 months. The magnitude-frequency distribution of rockfall volumes 

generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the 20 

volume contribution from small (< 0.1 m3) rockfall increases from 67% to 98% of the total, and the number of individual 

rockfall observed increases by over three orders of magnitude. High frequency monitoring therefore holds considerable 

implications for magnitude-frequency derivatives, such as hazard return intervals and erosion rates. As such, while high 

frequency monitoring has potential to describe short-term controls on geomorphological change and more realistic magnitude-

frequency relationships, the assessment of longer-term erosion rates may be more suited to less frequent data collection with 25 

lower accumulative errors. 

Keywords 
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1 Introduction 

1.1 Size distribution of geomorphic events 

The erosion and transfer of mass are fundamental drivers of landscape evolution at a range of spatial and temporal scales. The 

processes that erode landscapes involve a broad range of event sizes, the distribution of which are commonly characterised 

using magnitude-frequency curves. Wolman and Miller (1960) proposed that the frequency of events that denude the Earth’s 5 

surface is log-normally distributed, and that their geomorphic effectiveness (the product of magnitude and frequency) is 

greatest for the frequent, moderately sized events. This concept has been widely applied both to study the geomorphic efficacy 

of rivers (Wolman and Gerson, 1978; Hooke, 1980; Nash, 1994; Gintz et al., 1996) and the characteristics of landslides (Hovius 

et al., 1997; 2000; Dussauge-Peisser et al., 2002; Turcotte et al., 2002; Dussauge et al., 2003; Malamud et al., 2004; Guthrie 

and Evans, 2007; Li et al., 2016) using inverse power law distributions or similar.  10 

The exponent of the inverse power law describes the proportional contribution of increasingly small events, with larger 

exponents representing an increase in the proportion of small events in the inventory.. However, many landslide volume 

distributions have been characterised by a decrease in the frequency density of the smallest events in log magnitude-log 

frequency space, known as a ‘rollover’, (Malamud et al., 2004). At this point, the inverse power law breaks down, and so 

alternative distributions such as the double Pareto (Stark and Hovius, 2001; Guzzetti et al., 2002) or inverse Gamma (Malamud 15 

et al., 2004; Guzzetti et al., 2005) have been drawn upon to model observations. Explanations for this rollover have been 

widely considered, and include mechanical differences and physically based minimum possible event sizes (Pelletier et al., 

1997; Guzzetti et al., 2002; Guthrie and Evans, 2004), or censoring of the smallest events by the resolution or frequency of 

monitoring (Lim et al., 2010). For rockfall, Malamud et al. (2004) hypothesised that a rollover may not occur due to rock mass 

fragmentation.  20 

1.2 Temporal resolution of monitoring   

The duration of monitoring relative to the return period of all possible event sizes determines the likelihood of detecting 

changes that are representative of how a landform evolves over longer timescales. The creation of a representative 

inventoryThe completeness of an event inventory is also a function of the smallest event size that can be detected, and the 

temporal frequency of monitoring compared to the rate at which such small events occur. Abellán et al. (2014) suggested that 25 

the spatial resolution of rockfall monitoring should be sufficient to discretise the smallest events in a magnitude-frequency 

distribution, and that the recording frequency should fall below the timescale in which superimposition and coalescence may 

occur. In practice, defining this timescale a priori is challenging and requires the ability to monitor the rock face over a 

sustained period in (near) real-time. For rockfall, high-resolution monitoring also shows evolution of failures through time, 

with event sequences and patterns related to the incremental growth of scars (Rosser et al., 2007; 2013; Stock et al., 2011; 30 

Kromer et al., 2015; Rohmer and Dewez, 2015; Royán et al., 2015). Barlow et al. (2012) showed that a monitoring interval of 
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19 months underestimated the frequency distribution of small rockfall events, which coalesced into or were superimposed by 

larger rockfall. Treating rockfall as spatially and temporally independent is therefore problematic, as is experienced in other 

types of landform change. For example, Milan et al. (2007) found an increase in erosion and deposition volumes within a 

proglacial river channel when monitored using daily terrestrial laser scan (TLS) surveys as opposed to surveys separated by 

eight days. This was attributed to the temporal length scales of discharge and sediment supply, with return periods of less than 5 

eight days. The influence of monitoring or sampling interval on measured process rates are more widely considered in the 

Sadler effect, in which sediment accumulation rates observed in stratigraphic sections exhibit a negative power law dependence 

on measurement interval (Sadler, 1981; Wilkinson, 2015). Importantly, therefore, in settings that change little but often, the 

ability to capture true magnitude and frequency without higher frequency monitoring is subject to an unknown degree of 

superimposition and coalescence, and temporal coincidence. Our first aim in this study, therefore, is to capture the influence 10 

of near continuous monitoring on the magnitude-frequency distribution of rockfall from an actively failing rock face, across 

which spatially contiguous rockfall have previously been observed (Rosser et al., 2005). This draws upon a database of ~ 103 

individual 3D scans collected at ~ 1 h intervals, with each comprising > 106 points.   

1.3 Scanning from a fixed positionImportantly, without higher frequency monitoring, in settings that change little but 

often, the ability to capture true magnitude and frequency is therefore subject to an unknown degree of superimposition 15 

and coalescence, and temporal coincidence. 

The improvements in temporal resolution gained by monitoring from (semi-)permanent installations is weighed against a series 

of compromises in the quality of data generated. These ultimately arise from scanning a complex surface from only a single 

position, which, due to the scarcity of near-continuous LiDAR monitoring in the geosciences, has not previously required 

consideration. monitoring installations (e.g. Kromer et al., 2017) are weighed against a series of compromises in the quality of 20 

data generated. Scanning from a single position results in occlusion, leaving ‘holes’ in the point cloud in areas invisible to the 

scanner. At topographic edges, range measurements may be averaged from multiple returns recorded from separate surfaces, 

which are intersected within a single footprint. Further, as laser scanners never measure exactly the same point twice (Hodge 

et al., 2009), the perimeter of holes and the position of topographic edges will move between successive point clouds, despite 

no movement of the instrument. The likelihood of generating similar point distributions between surveys is in part influenced 25 

by surface reflectance characteristics, such as moisture and colour, and by surface relief (Clark and Robson, 2004; Bae et al., 

2005; Litchi et al., 2007; Kaasalainen et al., 2008; 2010; Pesci et al., 2008; 2011; Soudarissanane et al., 2011; 2016). This 

includes artefacts that arise from scanning from a single position onto a complex surface, which results in occlusion, leaving 

‘holes’ in the point cloud in areas invisible to the scanner. Further, as laser scanners never measure exactly the same point 

twice (Hodge et al., 2009), the perimeter of these holes will move between successive point clouds, despite no movement of 30 

the instrument. This effect is exacerbated on surfaces with high relief due to the averaging of multiple range measurements 

within a single laser footprint (Lichti et al., 2005; Hodge et al., 2009). Scan lines in most laser scanners result in non-uniformly 

distributed data, with heterogeneity often at a scale and orientation comparable to surface structure, leading to aliasing that is 
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also inconsistent (Lichti and Jamtsho, 2006). The influence of these combined effects is exaggerated if the scanner view is 

oblique to the surface, which may not be uncommon due to logistical constraints when siting a semi-permanent instrument. 

Our second aim, therefore, is to minimise the errors that arise from near continuous monitoring, in order to reduce the minimum 

detectable movement. Kromer et al. (2015) presented a 4D smoothing technique to reduce the offset between successive point 

clouds, such as those from near continuous monitoring. Similarly, the method presented here is optimised for handling large 5 

(103 – 104) numbers of high-resolution 3D scans, critically without user intervention, but can also be applied point clouds from 

non-continuous monitoring. 

1.4 Uncertainty in near-constant monitoring 

The minimum detectable movement, or level of detection (LoD), is a fundamental parameter in the delineation and calculation 

of erosion volumes, here rockfall. This involves masking regions of change that exceed a hard threshold at the LoD, which is 10 

estimated either locally (e.g. Wheaton et al., 2010; Lague et al., 2013) or across the entire point cloud (e.g. Abellán et al., 

2009). Methods that estimate spatially variable LoDs have enhanced the ability to identify volumetric loss as compared to the 

application of a single LoD, with the latter set to exceed a significant portion of the modelled uncertainty across the area of 

interest. The spatially variable uncertainties described in Section 1.3 raise the potential for real change to be masked when 

using a single LoD but, equally, the benefits of using a single LoD are primarily in the consistency in measurement across the 15 

area of interest. For example, if the purpose of monitoring is to generate a rockfall inventory where the relative magnitude of 

events is important, a single LoD ensures consistency in the minimum detectable rockfall across the area of interest and 

minimises the potential for recording erroneous events. The application of a single LoD also becomes increasingly 

computationally efficient when dealing with a large number of surveys. While the LoD remains constant, however, the 

accuracy of volume estimates is also contingent upon the ability to accurately identify depth change within boundary cells that 20 

occupy the rockfall perimeter. Previous approaches have ignored cells with a depth change below the instrument precision, 

thereby assuming that erosion events with an aerial extent below the cell size cannot be detected (e.g. Dussauge et al., 2003; 

Rosser et al., 2005; Abellán et al., 2006). However, these often fail to model volumetric errors that arise from extrapolating 

measured depth changes across each cell at the rockfall perimeter. In accounting for this, the volumetric uncertainty increases 

as a proportion of estimated volume for smaller events and specific geometries. Our third and final aim, therefore, is to describe 25 

the impact that a changing magnitude-frequency distribution has on the overall uncertainty of eroded volume estimates through 

time.  

While studies that draw upon more frequent 3D monitoring have highlighted the benefits of capturing the frequency of small 

events, an inevitable consequence is the error in change detection between each sequential dataset that accumulates in 

proportion to the total number of scans (Brasington et al., 2000). The result is greater levels of uncertainty in the total volume 30 

of change estimates at higher survey frequencies, which increases with the duration length of the monitoring campaign. To 

handle such errors, Wheaton et al. (2010) proposed a fuzzy inference method to model spatially variable digital elevation 
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model (DEM) error prior to planar surface change detection. This approach draws upon a three-input rule system relating to 

the point cloud slope, point density and 3D point quality from GPS. This is applied cell-by-cell to individual component DEMs. 

A second approach modifies ‘DEMs of Difference’ (DoDs) based on the coherence of erosion and deposition surrounding 

each cell, which is contingent upon unidirectional change at scales greater than the cell size. For rockfall monitoring, however, 

neighbouring cells that exhibit movement in opposite directions may represent a number of important failure mechanisms at 5 

scales comparable to the cell size, such as the loss of material (erosion) from the surface of a forward-creeping wedge failure 

(deposition). The method described in this study derives change in 3D using ~ 103 individual 3D scans, with each comprising 

> 106 points. This is used to describe a full rockfall magnitude-frequency distribution, and so the approach is optimised for 

handling large (103 – 104) numbers of high-resolution 3D scans, critically without user intervention. This paper presents a 

technique for change detection from near-continuously collected 3D point cloud data. The dataset includes ~ 103 individual 10 

point clouds, with each comprising > 106 points. Using this method, we demonstrate the influence of survey frequency on 

firstly the magnitude frequency of rockfall, and secondly on the uncertainty associated with measuring volumetric change 

through time. 

2 Study site and data collection 

2 System description 15 

Datae is presented from a monitored coastal cliff in North Yorkshire, UK. The rock cliff, located at East Cliff, Whitby, is near-

vertical reaching ~ 60 m in height and is actively eroding. The erosion of this coast has previously been monitored and averages 

~ 0.1 m a-1 (Rosser et al., 2005; 2007; Miller, 2007). Typical rockfall include small-scale joint defined wedges, and larger-

scale failures released via rock bridge breakage, which can be inferred from the exposed fresh fracture surfaces visible after 

failure. Rockfall have been measured up to 2.5 × 103 m3, but the volume loss is dominated by smaller scale rockfall with 20 

median volumes approaching 1.0 × 10-3 m3 (Rosser et al., 2013). The slope monitoring system presented surveys the cliff using 

a remotely controlled Riegl VZ-1000 laser scanner, housed inside the former lantern room at the top of East Pier lighthouse 

(Fig. 1), ~ 350 m seaward of the cliff face (Fig. 2a)..  

The viewpoint of the scanner results in some loss of spatial continuity in surface measurement due to occlusion, as a result of 

surface relief and the high incidence angle of parts of the rock face relative to the scanner (Fig. 2b). The closest point on the 25 

cliff is 342 m from the scanner with an incidence angle onto the strike of the cliff of ~ 25°, while t. The furthest monitored 

point is 533 m from the scanner with an incidenceat an angle of ~ 42°. Range correction for atmospheric effects and precise 

point cloud alignment is automatically conducted every 3 h using very high resolution scanning (5.0 × 10-4 m point spacing) 

of six fixed square 0.25 25 m2 control targets, the precise relative positions (± 5.0 × 10-3 m(± 0.005 m) of which are known 

from a total station survey. Atmospheric range correction, derived from comparing scanned to surveyed target ranges typically 30 
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scales range measurements by ~ 1.0 × 10-5 with minimal diurnal fluctuation, and is therefore largely inconsequential at this 

site, but would be significant for locations with greater ranges or areas subject to more extreme atmospheric conditions. The 

TLS survey was managed using SiteMonitor4D (3D Laser Mapping Ltd.), which schedules scans, manages the atmospheric 

correction, and applies an affine rigid-body rotation matrix to compensate for tilt and yaw in the scanner position based upon 

the scanned control target positions in real-time. The reported dataset has been collected using this setup between 5th March 5 

2015 and 31st December 2015March 2015 and December 2015, totalling ~ 9 000 scans with ~ 1 h intervals between surveys. 

Gaps in the dataset arise from system outages, and are excluded from the analysis.  

3 Method: Optimising event extraction from near continuously collected point clouds  

Repeatability in change detection is dependent on point clouds that consistently describe the monitored surface. 3 

Optimising point clouds for change detection 10 

While the specification of successive scans is identical here, and despite no positional change in either the instrument or the 

surface, individual point clouds differ due to the inherent uncertainties described in Section 1.3.and given that neither the 

instrument position nor the surface have changed, individual point clouds differ due to the inherent uncertainties in point clouds 

described above. Minimising the impact of these differences on the resulting rockfall inventories is the primary objective of 

the pre-processing phases of our method, involving point cloud filtering and alignment, as well as the change detection phase. 15 

Once 3D change has been calculated, the point clouds of change are interpolated and classified into 2.5D datasets from which 

3D change geometry can be analysed (Fig. 3). The data processing method described involves point cloud filtering, alignment, 

3D change detection, interpolation of the point clouds of change, and classification of this change into 2.5D datasets from 

which 3D change geometry can be analysed (Fig. 3). While this paper does not seek to create a ‘real-time’ system, the approach 

described is optimised for computational efficiency to allow data to be processed at a rate that is at least as quick as collection.  20 

3.1 Point cloud filtering 

Optimising a point cloud for change detection involves filtering points on features that cannot be consistently measured, such 

as edges and vegetation. For large numbers of scans obtained from near-continuous monitoring, an automated approach is 

required that finds and removes such points consistently for each cloud. Below we describe the application of filtering prior to 

change detection. Given that the change detection process draws on a neighbourhood of points to describe the surface 25 

morphology, filtering points in advance removes the need for change detection of erroneous measurements and ensures that 

erroneous measurements do not impact on the change detection of surrounding neighbours.  
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3.1.1 AOI extraction  

Scan data collected outside of the area of interest (AOI) can provide useful information for scan-to-scan registration, 

particularly if they cover a wider geographical area, have a distribution that is less planar than the AOI itself, or where a large 

portion of the AOI is undergoing deformation. Here, given that the control target network provides positional range estimate 

control and the scanner remains unmoved, the spatial extent of the AOI is clipped (Kemeny and Turner, 2008) at the beginning 5 

of the workflow in order to increase the speed of subsequent processing steps. For a small number of scans (< 20), this can be 

feasible to undertakeAOI extraction can be undertaken manually. However, for the ~9,000 scans used, points that lie outside 

a predefined cuboidal bounding box are automatically removed, which typically reduces the raw dataset from 

~ 1.9 × 106 to 1.1 × 106 points.A cuboidal bounding box is applied automatically here, which typically reduces the raw dataset 

from ~ 1.9 × 106 to 1.1 × 106 points. 10 

3.1.2 Edge and hole filter 

Once the AOI has been extracted, morphological (this section) and radiometric (Section 3.1.3) filters are applied to remove 

points with high positional uncertainties. These specific filters have not previously been used to our knowledge; however, the 

reasoning behind their implementation is well documented as described in Section 1.3. We refer to edges as morphological 

breaks in gradient on the slope surface and holes as features that surround regions of occlusion in the point cloud, which 15 

frequently occur at edges due to high surface inclination. Repeatability in change detection is dependent on point clouds that 

consistently describe the monitored surface. Optimising a point cloud for change detection therefore involves removing points 

on features that cannot be consistently measured, such as edges and vegetation. A morphological and radiometric filter is 

applied to remove points with high positional uncertainties in a consistent manner. To detect the presence of edges in the point 

cloudedges, neighbouring points within a fixed radius of each (query) point, q, are identified and the central position of the 20 

neighbourhood points, CoG, calculated. The 3D Euclidean distance, ED, between q and the CoG is then calculated. For a point 

at an edge, CoG tends away from the query point. The distance ED is therefore larger for query points that lie closer to an 

edge. Applying a threshold to ED needs to account for the varying point density across the cloud as in regions of low point 

density ED will always be larger. The value EH assigned to each point is therefore reported as a ratio of the distance ED to the 

number of points in a spherical domain centred on each point: 25 

 

𝐸𝐻 =
𝐸𝐷

𝑘
  (1) 

 

where k is the number of neighbouring points.  
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3.1.3 Waveform deviation filter 

In order to select a threshold EH value, the epistemic error between two point clouds was quantified once EH values above a 

specific threshold were removed. As the threshold is increased, fewer points are filtered from each cloud. The theoretical 

distance between the two point clouds is assumed to be zero given that no rockfall were observed between their collection. 

Any offset therefore represents the epistemic uncertainty, which is quantified for this purpose as the standard deviation of a 5 

3D change detection. This uncertainty is plotted against the applied threshold in Fig. 4a. As the threshold is increased, points 

with higher EH values are retained and the offset between the two point clouds also increases. The distribution of EH values 

across the cloud is presented in Fig. 4b. Using a 1 m search radius, an inflection at the 95th percentile of points occurs at 

5 × 10-4. As a threshold, this value typically removes 5% of points, which, as depicted by the dashed line in Fig.4, account for 

uncertainties > 0.5 m. In addition to identifying edge features on the cliff face, this also helps to delineate areas of occlusion 10 

within the point cloud. The point density in Eq. 1, k, is used to filter spurious ‘floating points’ in the dataset (for example birds 

or dust). k values < 4, the minimum number to accurately define a centroid with an associated error, were removed. 

A limitation of many laser scanners is the inability to quantify the accuracy of each range measurement. With the common 

absence of better more accurate data, assessing reliability is therefore challenging. In most TLS systems used for rock slope 

monitoring, range is estimated using the time of flight of a laser, where time is stamped based upon some a characteristic of 15 

the measured reflection (e.g., intensity gate, maximum intensity amplitude) that , which varies between scanners. Some systems 

have the ability to capture the full energy-time distribution of the reflection. The energy of the received laser pulse structure 

depends on the spatial and temporal energy distribution of the emitted pulse, which are modified by the geometric and 

reflectance properties of the target surface (Stilla and Jutzi, 2008; Soudarissanane et al., 2011; Hartzell et al., 2015; Telling et 

al., 2017).  This provides a means of estimating the relative quality of recorded measurements as a function of either the 20 

number of separate reflections from a single pulse, the incidence angle of the laser beam with respect to the surface (the 

elongation through time of the reflected pulse relative to the emitted pulse), and the reflectance intensity (the integral of the 

reflection energy-time distribution). Within this approachHere, the characteristics of the returned signal are used to remove 

vegetation (multiple returns per pulse) and edges (elongated reflections) are usedin order to increase the consistency between 

successive point clouds. While the sensitivity of the waveform to target geometry has previously been highlighted (Williams 25 

et al., 2013), it has not previously been documented as a method to filter points acquired from terrestrial LiDAR. 

The Riegl VZ-1000 TLS, with ‘full waveform’ capture, records the intensity of each returned signal at 2.01 × 10-9 s intervals, 

providing 15-70 amplitude measurements per pulse. The energy of the received laser pulse structure depends on the spatial 

and temporal energy distribution of the emitted pulse, which are modified by the geometric and reflectance properties of the 

target surface (Stilla and Jutzi, 2008). The ‘deviation’, δ, of the waveform describes the change in shape of the received 30 

waveform relative to a modelled (emitted) Gaussian energy-time distribution according to: 
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𝛿 = ∑|𝑠𝑖 − 𝑝𝑖|

𝑁

𝑖=1

  (2) 

 

where N is the observations in pulse si, compared to the reference values, pi. δ = 0 represents identical emitted and received 

waveforms, as would be expected from a nadir oriented planar specular surface. δ is less sensitive to target range than incidence 

angle. The former is responsible for increasing positional uncertainty by spreading the footprint over a larger area as it 

intersects an off-nadir surface, reducing the energy reflected, and increasing the period of time over which the backscattered 5 

pulse is returned to the sensor (Soudarissanane et al., 2011; Hartzell et al., 2015; Telling et al., 2017).  

3.1.4 Filtering of partially obscured point clouds 

In Fig. 5a, the point-to-point differences between non-filtered data with no physical change show point position uncertainty. 

Mean absolute change for points classified by δ shows that apparent change is only ~ 0.02 – 0.03 m for points where δ ≤ 25. 

Conversely, for points where δ > ~ 25 exhibit more significant scatter, often approaching two to three times the level of 10 

uncertainty in the whole cloud. Removing points with δ > 25 (Fig. 5b) retains 98% of points, which accounted for a standard 

deviation of error between point clouds of 0.18 m prior to removal. Similar to the edge filter, removing only those points 

associated with high levels of uncertainty removes artefacts that are often on the periphery of the point cloud but, if not 

removed, hold a significant influence on the overall repeatability of change detection. The sequence with which these filters 

are applied has little bearing on the outcome and the subset of points removed by each has common members. When combined 15 

and applied to the dataset in this study, the filters described above reduced the standard deviation of change measurements 

between two stable point clouds from 0.078 m to 0.055 m, thereby lowering the Level of Detection (LoD) that could be applied 

during rockfall or deformation identification by ~ 30%. 

In addition to the filtering of individual points considered as unreliable, entire surveys required removal from the overall 

inventory due to inclement weather conditions. In conventional monitoring with no scan schedule automation, scans that are 20 

partially or fully obscured due to inclement rain or fogweather conditions, such as rain or fog, are manually removed and/or 

repeated. Due to the frequency and duration of near-continuous constant scanning, many some scans will almost certainly be 

either partially or fully obscured. Scans that are entirely obscured can be removed automatically with relative ease. However, 

uUnobscured areas in partial scans still allow some accurate change detection and rockfall identification, and so may be 

valuable to retain. Given that change is detected between scan pairs, however, it is critical that these partial scans are removed 25 

prior to change detection, and remain unused. Figure 46 describes a scenario in which a rockfall occurs between 12.00 and 

12.30 during adverse weather, which partially obscures the impending scan at 12.30. While some areas of this scan allow 

accurate change detection of the surface, if the rockfall occurs in an obscured area, it can be omitted from the inventory entirely. 
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However, if surfaces are compared between 12.00 and the following scan at 13.00, with both captured during fair conditions, 

the rockfall will be observed and included in the inventory.  

Given the variability in the persistence of inclement poor weather during a scan, a threshold based on the number of points 

iscan be unsuited to identifying partial scansdifficult to define. At present, no automated method for detecting partial scans has 

been developed, though the removal of any scan that coincides with measured rainfall may represent a first step. Here, given 5 

that the same san line patterns are applied during each survey, partially obscured point clouds were identified as those > 1 MB 

below the average fie size. the point distribution was manually examined by creating a video of every point cloud prior to 

reanalysis of the dataset. While the maximum possible number of change detections was 8 986, these this waswere reduced to 

8 596 because of poor weather conditionscomplete obscuration and finally to 8 270 because of partial scan removal. The point 

distribution of the remaining scans was manually examined by creating a video of every point cloud prior to reanalysis of the 10 

dataset. The reduction in the number of scans has, however, has a direct impact on the time interval between scans and hence 

deformation analysis prior to failures that occur during bad weather, which may result in some of the most active periods of 

rockfall. 

3.2 Precise alignment 

While RCFs automatically scale range estimates in response to atmospheric variation, point clouds collected from a single 15 

fixed position still require alignment due to small shifts in scanner inclination that have the potential to propagate to several 

cm over distances of several hundred metres. It is therefore assumed here that successive point clouds are approximately but 

not perfectly aligned, and hence require adjustment.given the fixed scanner position. Once filtered, points clouds are 

automatically registered to a reference point cloud to improve alignment. In this section we describe the protocol for scan 

alignment applied to the near-continuous dataset. As discussed by Abellán et al. (2014), aligning point clouds can be 20 

undertaken using common surveyed and modelled targets combined with measured global coordinates (Teza et al., 2007; Olsen 

et al., 2009), feature-based registration based on the planarity and curvature of surfaces (e.g. Besl and Jain, 1988; Belton and 

Lichti, 2006; Rabbani et al., 2006), and point-to-point and point-to-surface methods, which use iterative closest point (ICP) 

alignment to progressively reduce the distance between two clouds (Besl and McKay, 1992; Chen and Medioni, 1992; Zhang, 

1994). The accuracy of alignment is one of the key sources of error when detecting change between two point clouds (Teza et 25 

al., 2007). 

Here, once filtered, point clouds are automatically registered to a reference point cloud to improve alignment.  Registration of 

datasets into a global system has a significant impact on data file sizes due to multi-digit coordinates, which becomes 

problematic with large numbers of large point clouds from near-continuous monitoring. By retaining a local coordinate system 

in this study, resulting file sizes were halved. In this approach, a local coordinate system is retained and an ICP registration 30 

was applied using MATLAB®’s pcregrigid function (Besl and McKay, 1992; Chen and Medioni, 1992), which . This method 

searches for the closest point in the reference scan for each point in the moving scan and estimates the combination of rigid 
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rotation and translation that best aligns them (Mitra et al., 2004). Hofer (2003) showed that for point clouds that are 

approximately aligned, as here, minimising the point-to-plane distance provided the best estimate of convergence. Given that 

the raw point cloud data commonly has systematic structure (vertical or horizontal scan lines), and where the AOI is 

approximately planar (a ~≈ 2D rock face rather than a fully ≈ ~ 3D scene), the success of the ICP can be dominated by aligning 

structure in the data, rather than the macro-scale cliff geometry. Point-to-point minimisation in ICP was therefore found to be 5 

less effective than point-to-plane alignment in this instance, using point clouds down-sampled to a fixed 0.25 m point spacing. 

There is no established protocol for choosing the ideal reference scan for alignment. This reference scan may be the first 

available scan, a later single scan, or an average of a subset of previous scans. Schürch et al. (2011) aligned a series of three 

scans to the previous scan in a sequence, rather than to the first of the monitoring campaign, in order to gain more precise 

change estimates between successive surveys, at the cost of the overall positional accuracy. This procedure is advantageous as 10 

it ensures that the shape of a rapidly deforming or changing surface can be matched to the previous survey, rather than one 

captured considerably earlier. For the near-continuous monitoring dataset, however, the series of scans is aligned to the first 

survey.Here, the series of scans is aligned to the first survey. This is undertaken because ICP alignment minimises the point-

to-plane distance of down sampled point clouds, such that individual (small relative to the AOI) rockfall events do not impact 

upon the overall success of the alignment. Second, even with low alignment errors between scan pairs, the potential for the 15 

point clouds to drift over time increases with the number of scans sequentially aligned. While Schürch et al. (2011) assessed 

pairwise change between scans, high frequency data allows for change detection to be conducted over multiple intervals that 

the time-series enables, so aligning all scans with respect to each other is important. Third, given that all scans were aligned 

to the initial reference scan, these could be assigned to a single hierarchical structure created only for the reference scan.  The 

partitioning of 3D data, here into an octree structure, enables faster searching of point clouds with each point assigned a 3 × n 20 

bit code, where n is the maximum octree level (Frisken and Perry, 2002; Girardeau-Montaut et al., 2005; Jaboyedoff et al., 

2007; 2009; Elsberg et al. 2011; 2013; Hornung et al., 2013). Partitioning point clouds into a single pre-defined structure 

reduces computation time and ensures consistency in subsequent operations. For neighbourhood searches, such as during 

normal vector estimation, points from both the individual octree cube and the surrounding 26 cubes are used. As highlighted 

by Girardeau-Montaut et al. (2005), the subdivision level at which normal estimation and change detection is performed 25 

therefore influences only the computation time.  

Third, interpolation of the point clouds of change into a 2 or 2.5D raster is simplified when points consistently occupy similar 

positions, which enables the location of change to be in single locations to be analysed through time. Finally, when processing 

a time-series of scans, gains in efficiency are possible by creating a single octree structure using the reference scan, to which 

subsequent clouds can be assigned. The segmentation of each point cloud into an octree structure is therefore required only 30 

once using this approach. Here, the point clouds are segmented to perform change detection, with each point assigned a 3 × n 

bit code, where n is the maximum octree level (Frisken and Perry, 2002; Girardeau-Montaut et al., 2005; Jaboyedoff et al., 

2007; 2009; Elsberg et al. 2011; 2013; Hornung et al., 2013). For subsequent operations, such as normal vector estimation, 
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points from both the individual octree cube and the surrounding 26 cubes are used. The subdivision level at which normal 

estimation and change detection is performed therefore influences only the computation time, and not the result (Girardeau-

Montaut et al., 2005). 

3.3 Normal vector estimation 

Although the mean offset between unregistered point clouds at these sites was 0.51 m, the alignment was improved using ICP 5 

by the approach described (0.0053 m). Over all time-scales in the dataset, an average registration error of 0.005 m between 

any pair of point clouds was obtained (n to n+x, where 1 > x > 8 987). Considerable alteration to the surface topography, via 

the occurrence of a single large event or the continued spalling of material over time, would require new reference scans to be 

assigned over shorter timescales. 

 10 

3.3 Normal estimation 

The distance between successive clouds is measured along the normal vector of each point in the cloud. Accurate estimation 

of each normal vector is therefore critical in determining the magnitude and direction of change and should be derived from 

an appropriately sized neighbourhood of points that adds topological context (Riquelme et al., 2014). In this section we describe 

the widely adopted method for normal estimation and gains in efficiency that have been made in this study, including the 15 

definition of a single reference map of optimal neighbourhood radiuses. 

In order to calculate the normal direction of each neighbourhood, a tangent plane must be fitted to every point and its 

neighbours, with each being considered as a potential plane subset. Using eigenvectors calculated from principal component 

analysis, the eigenvector 𝑣3 with the smallest associated eigenvalue is orthogonal to the plane, and therefore defines the normal 

(Hoppe et al., 1992). It so follows that the plane minimises the sum of squared distances to the neighbours of query point, p: 20 

 

(𝑝𝑖 − 𝑝̅) ∙ 𝑣3 = 0  (3) 

 

and passes through the centroid, 𝑝̅: 

 

𝑝̅ =  
∑ 𝑝𝑖

𝑟
𝑖=1

𝑟
  (4) 

 25 
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where r is the number of neighbours in the neighbourhood, and 𝑝𝑖  represents the Cartesian coordinates of each point within 

the neighbourhood (Pauly et al., 2002). The identification of a local surface normal using the third eigenvector is the equivalent 

to forming a total least squares fitting plane. However, in a total least squares fitting the entities in the covariance matrix are 

not divided by k, and the smallest eigenvalue is equal to the sum of the residuals squared (Pauly et al., 2002; Belton and Lichti, 

2006).  5 

The neighbourhood size strongly determines the direction of surface normals (Mitra and Nguyen, 2003; Lalonde et al., 2005; 

Bae et al., 2009; Lague et al., 2013; Riquelme et al., 2014). If the size of the neighbourhood is below the scale of surface 

roughness, the resulting normals will fluctuate in direction and are less likely to be consistent between successive point clouds. 

Lague et al. (2013) selected the scale at which the neighbourhood of points could best be approximated by a plane. In particular, 

the neighbourhood should be allowed to vary in size to accommodate non-uniform point distributions and variations in point 10 

density, producing a planar surface from which to estimate the normal. Riquelme et al. (2014) showed that variability in the 

strike and dip of a rock face discontinuity occurred when the number of neighbourhood points, k, fell below 15, whereas values 

of k > 30 over-smoothed adjacent surfaces; 15 < k < 30 was therefore recommended. Here, by varying the size of the 

neighbourhood for each point between 0.1 – 2.5 m, the radius that produced the most planar surface is identified. An example 

of this is shown in Fig. 7a, with Fig. 7b illustrating surface planarity across East Cliff. This shows a clear similarity to the 15 

distribution of point density, such that the search radius is increased in regions of low point density. Importantly, identifying 

the optimum neighbourhood radius for 103 – 104 point clouds adds considerable computational cost in processing. As a 

compromise, the neighbourhood radius of each point is made equal to the distance to the closest point in the reference cloud 

in Fig. 7a. Notably, the normal for each point estimated uses the second cloud, such that change is accurately measured along 

the normal of a planar, post-failure surface, rather than the yet-to-fail surface (Fig. 8).  20 

The sign ambiguity of each vector is also corrected (Mitra and Nguyen, 2003; Ioannou et al., 2012). This can typically be 

resolved using the position of the query point, q, relative to the sensor position, s, by: 

 

𝑠̂ = [𝑋𝑠, 𝑌𝑠, 𝑍𝑠] − [𝑋𝑞 , 𝑌𝑞 , 𝑍𝑞] 

 
 

(5) 

 

In ℝ3: 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛(‖𝑠̂ ×  𝑛̂‖2)  (6) 

 

where × denotes the vector cross product and ∥ denotes the Euclidean norm of the cross product. α denotes the angle between 25 

the unit normal vector 𝑛̂ at q and the vector between q and s, 𝑠̂. If 𝛼 >  
𝜋

2
 or 𝛼 <  −

𝜋

2
, i.e. if the angle between the direction of 

the normal vector and the vector between the surface and the sensor is not within ± 90°, the normal direction 𝑛̂ is reversed: 
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𝑛̂𝑟𝑒𝑣〈𝑢, 𝑣, 𝑤〉 =  𝑛̂〈−𝑢, −𝑣, −𝑤〉  (7) 

 

In order to minimise the computation time required to apply Eq. 5 and Eq. 6, the axis orthogonal to the surface is introduced 

as a string of either ‘X’ or ‘Y’, similar to other point cloud processing packages such as MATLAB® and CloudCompare.. 

With this information, the relevant component of the unit vector is used to determine whether the vector should be reversed or 

not. For example, if the approximate range in a near-nadir point cloud is measured along the y-axis and the vector 𝑛̂ =5 

 〈−𝑢, +𝑣, −𝑤〉, then 𝑛̂ is directed into the surface and should be reversed using Eq. 7. For each normal, this can provide a 

~ 40-50% reduction in the time taken for sign correction relative to Eq. 5 and Eq. 6.~ 50% reduction in the time taken for sign 

correction. 

The neighbourhood size strongly determines the direction of surface normals (Mitra and Nguyen, 2003; Lalonde et al., 2005; 

Bae et al., 2009; Lague et al., 2013; Riquelme et al., 2014). If the size of the neighbourhood is below the scale of surface 10 

roughness, the resulting normals will fluctuate in direction and are less likely to be consistent between successive point clouds. 

Lague et al. (2013) selected the scale at which the neighbourhood of points could best be approximated by a plane. In particular, 

the neighbourhood should be allowed to vary in size to accommodate non-uniform point distributions and variations in point 

density, producing a planar surface from which to estimate the normal. Riquelme et al. (2014) showed that variability in the 

strike and dip of a rock face discontinuity occurred when the number of neighbourhood points, k, fell below 15, whereas values 15 

of k > 30 over-smoothed adjacent surfaces; 15 < k < 30 was therefore recommended. Here, by varying the size of the 

neighbourhood for each point between 0.1 – 2.5 m, the radius that produced the most planar surface is identified, which is 

ideally suited to normal estimation (Lague et al., 2013). An example of this is shown in Fig. 75a, with Fig. 75b illustrating 

surface planarity across East Cliff. This shows a clear similarity to the distribution of point density, such that the search radius 

is increased in regions of low point density. Importantly, identifying the optimum neighbourhood radius for 103 – 104 point 20 

clouds adds considerable computational cost in processing. As a compromise, the neighbourhood radius of each point in this 

study is made equal to the distance to the closest point in the reference cloud in Fig. 75a. Notably, the normal for each point 

estimated uses the second cloud, such that change is accurately measured along the normal of a planar, post-failure surface, 

rather than the yet-to-fail surface (Fig. 86).  

 25 

3.4 Change detection 

The distance calculation used is based upon the structure of the M3C2 algorithm, developed by Lague et al. (2013). The 

algorithm is described first followed by a modification, which has been incorporated to improve the overall accuracy of change 

detection and to streamline the workflow when applied to large time series scan datasets.We describe below a modification 



15 

 

incorporated to improve the overall accuracy of change detection and to streamline the workflow when applied to large time 

series scan datasets.  

Once the normal vector is estimated, a bounding cylinder with a user-defined radius is created along the normal running 

through the query point. In order to enforce the boundaries of this cylinder, the orthogonal distance between every point within 

the current and neighbouring 26 octree cubes and the normal vector was estimated: 5 

 

𝑑̂ = [𝑋𝑛, 𝑌𝑛 , 𝑍𝑛] − [𝑋𝑝, 𝑌𝑝, 𝑍𝑝]  (8) 

 

where 𝑑̂ is a vector that connects each neighbour point p to a point on the normal vector 𝑛̂, such as the query point, q. The 

projection of each point onto the normal P is therefore: 

 10 

𝑃 = 𝑞 × 𝑑̂, or  (9a) 

𝑃 =  𝑞 + (
𝑑̂ ∙ 𝑛̂

𝑛̂ ∙ 𝑛̂
) × 𝑛̂  (9b) 

 

and the orthogonal distance is: 

 

𝑑𝑜𝑟𝑡ℎ = √(𝑋𝑛 − 𝑋𝑃)2 + (𝑌𝑛 − 𝑌𝑃)2 + (𝑍𝑛 − 𝑍𝑛)2  (10) 

 

Given that the position of each neighbouring point and its orthogonal distance to the normal vector are known, the cylinder 15 

boundaries can be enforced using the user-defined cylinder radius, r, retaining only points where 𝑑𝑜𝑟𝑡ℎ ≤ 𝑟 (Fig. 79). Once 

the points, c, in the cylinder are isolated for both point clouds, the mean point CoG is estimated by: 

 

𝐶𝑜𝐺 =  (
∑ 𝑥

𝑘𝑐
𝑖=1

𝑘𝑐

,
∑ 𝑦

𝑘𝑐
𝑖=1

𝑘𝑐

,
∑ 𝑧

𝑘𝑐
𝑖=1

𝑘𝑐

, )  (11) 

 

where kc is the number of points in c. Both mean points are then projected onto the normal vector using Eq. 9a and Eq. 9b. The 20 

mean projected points of each sub-cloud, CP, are subtracted to give a distance vector, 𝑣̂: 
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𝑣̂ = 𝐶𝑃2 − 𝐶𝑃1  (12) 

 

If the vector of change is along the direction of the normal vector (forward movement), the dot product of both vectors is > 0. 

If the vector of change is counter to the normal direction (backward movement), the dot product is < 0 and the vector is 

inverted.  5 

M3C2 imposes a user-defined maximum cylinder length to decrease processing times. Cylinder length is critically important 

for determining the accuracy of change estimation, particularly at topographic edges within the point cloud. As described, 

edges are likely to be more prevalent in point clouds collected from single or off-nadir viewpoints. A method to reduce the 

effect of edge change uncertainty in change detection is therefore required. In Fig. 108, the influence of the choice of cylinder 

length is illustrated with respect to a jointed rock mass surface. The plots illustrate variation in measured change for a single 10 

point. When the cylinder extends 0.25 m in both directions, only points from this surface are included in the cylinder; as such, 

the centroid positions of each point cloud are both fitted onto that surface. The measured distance for this point, the distance 

between the two centroids is +0.0011 m. With a cylinder extending ± 0.50 m, points that lie between surfaces are included in 

the change detection. Given that the distribution of points is rarely consistent between point clouds, the position of the centroid 

of each neighbourhood differs considerably from the centroids estimated using a shorter cylinder and the resulting change 15 

estimate is -0.1460 m. At a length of ±10 m, the cylinder intersects multiple surfaces and the centroid positions are averaged 

between these surfaces. The inclusion of a greater number of points over a wider area increases the similarity of the mean 

position in both point clouds, but the resulting vector of change is +0.0938 m; a difference of 0.24 m from the 0.50 m cylinder 

length and significantly higher than the true change estimate. To address this, a distance along the normal with variable cylinder 

length (DAN VCL) for each point is used. The approach begins with a cylinder that extends ± 0.10 m. If fewer than four points 20 

are found, the minimum number to estimate a centroid, the cylinder extends. This process is recursive and accepts a user-

defined range of cylinder lengths. The method significantly lowered the LoD (0.03 m) compared to that achieved using DoDs 

(1.04 m), created using the same pairs of point clouds rasterised at 0.25 m with each pixel containing > 1 point. In this specific 

instance, the LoD shows a five-fold improvement relative to the M3C2 algorithm applied using the same normal and fixed 

cylinder radius (LoD = 0.165 m). 25 

The cylinder radius determines the degree of spatial averaging over change measurements and, as such, should be informed 

by the type and scale of movements under investigation. In theory, the smaller the radius, the finer the spatial detail that can 

be established. However, this comes with a compromise in that the increase in accuracy by accounting for neighbouring points 

is reduced, the likelihood of intersecting points in the second point cloud is reduced, and the statistical significance of 

calculations is reduced by only drawing on a small number of points. Lague et al. (2013) suggest a minimum of 20 points 30 

should be included within the cylinder for each point cloud. Here, cylinder radii between 0.15 m and 2.00 m were applied to 
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scan pairs in which rockfall had and had not occurred. For scans in which no change occurred, the standard deviation of 

differences across the point cloud was greatest for the 0.15 m radius (0.018 m), which approaches the point spacing, but 

decreased and stabilised at a radius of 0.25 m (0.013 m). For scan pairs in which rockfall had occurred, the size and shape of 

rockfall was contrasted with the results of varying cylinder radii and a Hausdorff distance estimation. The Hausdorff distance 

measure itself is influenced considerably by the scan line spacing and the local point density but, for this purpose, it provides 5 

an indication of rockfall geometry with the smallest degree of spatial averaging. As the cylinder radius increases, the difference 

in shape relative to the Hausdorff approximation also increases. While a radius of 0.15 m best approximates the size and shape 

of the rockfall, this value is too close to the scan line spacing at all but the most proximal regions of the cliff face. A search 

radius of 0.25 m was therefore selected, providing similar rockfall geometries to the 0.15 m. This emphasises the potential to 

apply a variable cylinder radius across the point cloud based upon local point density, which could be helpful in future research.  10 

 

3.5 Extracting discrete changes and quantifying volumetric error 

The use of an increased number of scans over the same period increases the potential for error propagation and accumulation 

within the dataset. Here we aim to model the uncertainty of eroded volume estimates by focussing on the conversion of rockfall 

depth and area into volume for cells at the perimeter of a rockfall scar. Given that the proportion of rockfall cells at the edge 15 

of a scar decreases for a larger footprint, the uncertainty in rockfall volume estimates has the potential to vary with the temporal 

resolution of monitoring.  

The delineation of areas of geomorphic change, here rockfall, involves masking regions of change that exceed a hard threshold 

at the level of detection (LoD), that is either estimated locally (e.g. Wheaton et al., 2010; Lague et al., 2013) or is estimated 

across the entire point cloud (e.g. Abellán et al., 2009). Methods that estimate spatially variable LoDs have enhanced the ability 20 

to identify volumetric loss as compared to the application of a single LoD, with the latter set to exceed a significant portion of 

the modelled uncertainty across the area of interest. Across a rock slope, the likelihood of generating similar point distributions 

between surveys, which determines the accuracy of change detection, is primarily influenced by the target geometry relative 

to instrument position and surface reflectance characteristics. These properties may vary with lithology, the surface complexity 

and moisture, and survey geometry (Clark and Robson, 2004; Bae et al., 2005; Litchi et al., 2007; Kaasalainen et al., 2008; 25 

2010; Pesci et al., 2008; 2011; Soudarissanane et al., 2011; 2016). These factors raise the potential for real change to be masked 

when using a single LoD but, equally, the application of a single LoD becomes increasingly computationally efficient when 

dealing with a large number of surveys. The benefits of using a single LoD are primarily in the consistency in measurement 

across the area of interest. For example, if the purpose of monitoring is to generate a rockfall inventory where the relative 

magnitude of events is important, a single LoD ensures consistency in the minimum detectable rockfall across the area of 30 

interest and minimises the potential for recording erroneous events, which we demonstrate here will accumulate with an 

increasing number of surveys. A single An LoD was therefore identified between scan pairs in which no rockfall occurred as 
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two standard deviations of the 3D change, after Abellán et al. (2009). This was of comparable magnitude to the LoD recorded 

for every scan pair in the dataset; hence, the maximum-recorded LoD was applied to all scan pairs in the dataset. Similar to 

Kromer et al. (2017), these change estimates are assumed to include the registration error, which is reduced here through range 

correction using fine-scanned targets and through ICP. For sites whose geometry creates a highly variable point spacing within 

a single survey, a spatially variable LoD iwould be more appropriates appropriate even for the purpose of compiling an 5 

inventory of geomorphic events, so long as a record of the LoD across the surface is kept. Open-pit highwalls, for example, 

typically comprise a series of benches to minimise the travel distance of rockfall downslopeprevent rockfall from travelling 

further downslope. This design generates considerable variation in instrument-object distances across the slope and a spatially 

variable LoD. More broadly, spatially variable LoDs can be considered better suited to measuring total erosion budgets across 

a single surface than the relative contribution of individual events of varying sizes.  10 

The resulting LoD was used to threshold 2.5D rasters of the 3D change data, created by linear interpolation of change values 

across the x-z plane. The images produced included consistently located holes (no data) due to occlusion, which were identified 

and masked. Pixels that consistently exceeded the LoD within the first 100 point clouds, including in a non-systematic manner 

(e.g. both forward and backward movement), were also masked. This prevented several (predominantly single) pixels of noise 

from being identified as detachments.  15 

Once a change image is thresholded according to the LoD, the volume of each erosion event, VE, can be calculated as: 

 

𝑉𝐸 =  ∑ 𝑑𝑖 × 𝐴𝑐

𝑁

𝑖=1

  (13) 

 

where N is the number of cells that are classified as volume lost, di is the depth of change in cell i and AC is the cell area. 

Previous approaches have ignored cells with a depth change below the instrument precision and assumed that erosion events 20 

with an aerial extent < AC cannot be detected but often fail to quantify uncertainty in volume estimates derived using Eq. 13 

for rockfall with areas greater than AC (e.g. Dussauge et al., 2003; Rosser et al., 2005; Abellán et al., 2006). Basic assumptions 

about how uncertainty in aerial extent propagates into volumetric uncertainty are needed, in particular for failures of varying 

geometry. This is of critical importance considering the relatively low spatial resolution of raster cells (here 0.15 m) relative 

to the accuracy of the change in depth within pixels recorded by TLS (here 1 in 10 10 000 to 1 in 100 100 000). Assuming any 25 

cell that lies on the boundary of an area of change can contain any fraction (> 0-1 and < 1) of true change, the maximum area 

of change AE_max is: 
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𝐴𝐸_𝑚𝑎𝑥 = 𝐴𝐶 × 𝑁  (14) 

 

In reality, Eq. 14 represents the largest possible area because the likelihood that border cells are entirely covered by the true 

change is small. Conversely, the theoretical minimum area AE_min approaches: 

 

𝐴𝐸_𝑚𝑖𝑛 = 𝐴𝐶(𝑁 − 𝑁𝑏)  (15) 

 5 

where Nb is the number of boundary cells. The maximum range in uncertainty associated with the area estimate of the area of 

change is then:with the area of change is then: 

 

𝐴𝑚𝑎𝑥𝑒𝑟𝑟𝑜𝑟 = 𝐴𝐸_𝑚𝑎𝑥 − 𝐴𝐸_𝑚𝑖𝑛  (16) 

 

This value can be applied as a threshold to the rockfall inventory, such that failure areas below 𝐴𝑚𝑎𝑥𝑒𝑟𝑟𝑜𝑟  are removed. This 10 

threshold, however, represents the maximum possible error associated with the rockfall area. Jahne (2000) defined the variance 

𝜎𝑥
2 of the position of a single point in an image (cell), introduced by the cell size dx, as: 

 

𝜎𝑥
2 =  

1

∆𝑥
∫ (𝑥 − 𝑥𝑛)2𝑑𝑥 =  

(∆𝑥)2

12

𝑥𝑛+∆𝑥/2

𝑥𝑛−∆𝑥/2

  (17) 

 

assuming a constant probability density function within the cell area, i.e. all positions are equally probable. The standard 15 

deviation 𝜎𝑥 is approximately 
1

√12
≈ 0.3 times the cell size. Therefore, to accommodate for uncertainty in the position of the 

area of change within each boundary cell as a function of cell size, 2σ can be used as a threshold as follows: 

 

𝐴𝐸_𝑚𝑎𝑥 = 𝐴𝐶 (𝑁 +
1

√12
𝑁𝑏)  (18a) 

𝐴𝐸_𝑚𝑖𝑛 = 𝐴𝐶 (𝑁 −
1

√12
𝑁𝑏)  (18b) 
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𝐴𝑒𝑟𝑟𝑜𝑟 = 𝐴𝐸_𝑚𝑎𝑥 − 𝐴𝐸_𝑚𝑖𝑛   (18c) 

 

The volumetric error is hence: 

 

𝑉𝑒𝑟𝑟𝑜𝑟 =  ∑ 𝑑𝑖 ×
2

√12
𝐴𝑐

𝑁𝑏

𝑖=1

  (19) 

 

Eq. 19 shows that the number of border cells relative to the total number of cells within the area of change is critical in 5 

determining the net volumetric error. A higher ratio of border cells to the total number of cells results in a greater proportional 

area (and hence volume) error. While this volumetric error assessment is applied to rasters of 3D-derived change, its use also 

extends to extraction of discrete events from DEMs of Difference (DoDs). 

The pairwise change detection method described above was applied to a near-continuous monitoring dataset collected at East 

Cliff, Whitby. In total, 8 987 point clouds were collected and processed to generate an inventory of 3D rockfall geometries. 10 

The LoD was derived for every sequential scan to ensure that no increase in registration or epistemic errors developed through 

the monitoring period. This value lay consistently between 0.01 – 0.03 m. The maximum LoD, 0.03 m, was therefore applied 

to each point cloud to prevent recording erroneous pixels in the resulting rockfall inventory. Combined with a cell size of 

0.15 m, this provided a minimum detectable rockfall across the survey area of 6.75 × 10-4 m3. More than 180 000 detachments 

were detected using the highest frequency of scans (~ hourly) over the 10-month monitoring period. The spatial and temporal 15 

distributions of rockfall observed are shown in Fig. 11.  

In order to assess the influence of more frequent monitoring on the resultant volume frequency distribution, two inventories 

were compared. These were analysed over the same monitoring duration, using scans separated by different intervals (TInt) TInt 

< 1 h (hours) and TInt = 30 d (days). 

4 Results 20 

4.1 Processing of near-constant monitoring data 

To test the influence of the filters on change detection, comparisons were undertaken between two aligned point clouds 

subjected to point removal based on various thresholds. The theoretical distance between the two point clouds is assumed to 

be zero given that no rockfall were observed between their collection. Any offset therefore represents uncertainty, which is 

quantified for this purpose as the standard deviation of a 3D change detection. This uncertainty is plotted against the applied 25 
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edge and hole threshold in Fig. 9a. As the threshold is lowered, points with higher EH values are retained and the offset between 

the two point clouds (pre-alignment) increases. The distribution of EH values across the cloud is presented in Fig. 9b and Fig. 

S1. Using a 1 m search radius, an inflection at the 95th percentile of points occurs at 5 × 10-4. As a threshold, this value typically 

removes 5% of points, which, as depicted by the dashed line in Fig. 9, generally account for uncertainties > 0.5 m. In addition 

to identifying edge features on the cliff face, this also helps to delineate areas of occlusion. The point density in Eq. 1, k, is 5 

used to filter spurious ‘floating points’ in the dataset (for example, birds or dust). k values < 4, the minimum number to 

accurately define a centroid with an associated error, were removed. 

Points removed using the waveform deviation filter (Fig. S2) occupied similar locations across the point cloud and, once 

removed, also resulted in decreased uncertainty in change estimates. In Fig. 10a, the mean absolute distance between points is 

used to the represent the positional uncertainty between point clouds. This uncertainty is ~ 0.02 – 0.03 m for points where δ ≤ 10 

25. Conversely, points where δ > ~ 25 exhibit more significant scatter, often approaching two to three times the level of 

uncertainty in the entire cloud. Removing points with δ > 25 (Fig. 10b) retains 98% of points, which accounted for a standard 

deviation of error between point clouds of 0.18 m prior to removal. The sequence with which the edge-hole and waveform 

deviation filters are applied appears to have little bearing on the outcome and the subsets of points removed by each have 

common members. When combined and applied to the dataset in this study, the filters reduced the standard deviation of change 15 

measurements between two stable point clouds from 0.078 m to 0.055 m, thereby lowering the Level of Detection (LoD) that 

could be applied during rockfall or deformation identification by ~ 30%. Although the mean offset between unregistered point 

clouds at these sites was 0.51 m, this was improved using the ICP alignment described in Section 3.2 (0.0053 m). Over the 

entire dataset, an average registration error of 0.005 m between point cloud pairs was obtained (n to n+x, where 1 > x > 8 987). 

Despite the alignment of all point clouds to the initial reference scan, no increase in error was observed through time. However, 20 

considerable alteration to the surface topography, via the occurrence of a single large event or the continued spalling of material 

over time, would require new reference scans to be assigned over shorter timescales. 

Following filtering and alignment, the DAN VCL method significantly lowered the LoD (0.03 m) compared to that achieved 

using DEMs of Difference (1.04 m). These were created using the same pairs of point clouds rasterised at 0.25 m with each 

pixel containing > 1 point. In this instance, the LoD also shows a five-fold improvement relative to the M3C2 algorithm applied 25 

using the same normal and fixed cylinder radius (LoD = 0.165 m). The LoD was derived for every sequential scan to ensure 

that no increase in registration or epistemic errors developed through the monitoring period. This value lay consistently 

between 0.01 – 0.03 m. The maximum LoD, 0.03 m, was therefore applied to each point cloud to prevent recording erroneous 

pixels in the resulting rockfall inventory. Combined with a cell size of 0.15 m, this provided a minimum detectable rockfall 

across the survey area of 6.75 × 10-4 m3. More than 180 000 detachments were detected using the highest frequency of scans 30 

(~ hourly) over the 10-month monitoring period. The spatial and temporal distributions of rockfall observed are shown in Fig. 

11.  
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4.2 Understanding the influence of survey interval in magnitude-frequency relationships 

In order to assess the influence of more frequent monitoring on the resultant volume frequency distribution, two inventories 

were compared. These were analysed over the same monitoring duration, using scans separated by different intervals (Tint) of 

1 h (hours) and 30 d (days). An increase in the number of small rockfall and the proportional contribution of small events to 

the overall rockfall volume distribution is evident at Tint < 1 h (Fig. 12a). The power law scaling exponent, β, increases from 5 

1.78 (30 d) to 2.27 (< 1 h). Notably, while a rollover occurs at Tint = 30 d, this is not apparent at Tint < 1 h. Given that both sets 

of scans were processed using the same LoD for change detection, the comparison at this site demonstrates that the observed 

rollover must be due to superimposition and coalescence of events when longer survey intervals are used.  

4 Application to rockfall from an actively failing rock slope 

 10 

An increase in the number of small rockfall and the proportional contribution of small events to the overall rockfall volume 

distribution is evident at TInt < 1 h (Fig. 12a). The power law scaling exponent, β, increases from 1.78 (30 d) to 2.27 (< 1 h). 

Notably, while a rollover occurs at TInt = 30 d, this is not apparent at TInt < 1 h. Given that both sets of scans were processed 

using the same LoD for change detection, the comparison at this site demonstrates that the observed rollover must be due to 

superimposition and coalescence of events when longer survey intervals are used. 15 

For all rockfall observed at TiInt < 1 h, volume error was modelled according to Eq. 19 (Fig. 12b). Larger rockfall volumes 

exhibit a smaller error in proportion to their volume. Importantly however, as the vast majority of rockfall volumes are between 

0.001 m3 (a minimum of two pixels) and 0.01 m3 (a minimum of 14 pixels), the uncertainty in volume ranges between 80% 

and 160% of the estimate. A consequence is that the total volumetric uncertainty over 10 months of the TiInt < 1 h rockfall 

inventory is greater than that collected at TiInt = 30 d. High frequency monitoring where change is dominated by a high 20 

frequency of low magnitude events is not well suited to accurate measurement of total change through time. The error estimates 

demonstrate that the uncertainty in volume is greatest for the datasets where TiInt is low. For the highest frequency dataset, the 

total estimated volume is 110.87 ± 52.44 m3 (± 47%), while the total estimated volume for the 30 d dataset is 72.37 ± 27.51 

51 m3 (± 38%) (Fig. 13). In summary, magnitude-frequency analysis of rockfall volumes (Fig. 12a) indicates that more frequent 

scanning detects a greater proportion of smaller rockfall events. Consequently, more frequent scanning also presents increased 25 

uncertainty in cumulative volume. Cumulatively, this error can be significant relative to the total over the monitoring period 

given that the size distribution of rockfall volumes adheres to a power-law. 
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5 Discussion 

5.1 Processing techniques for near-continuous surface monitoring 

Improvements in near-continuous near constant point cloud acquisition currently outstrip the development of standardised 

approaches totechniques for data treatment and analysis (Eitel et al., 2016; Kromer et al., 2017). Near-continuous terrestrial 

laser scanning Near constant scanning has the potential to generate a considerable number of point clouds (> 103-104), more 5 

representing athan two to three orders of magnitude increase in data volume over previous terrestrial LiDAR monitoring 

campaigns with lower temporal resolutionhigher than many previous LiDAR monitoring campaigns (e.g. Teza et al., 2007; 

Abellán et al., 2010; Rosser et al., 2013; Royán et al., 2015). Key attributes of the techniques developed to process such datasets 

therefore relate to computational efficiency, the ability to automate processing, and minimising the accumulation of error 

between each survey pair. These have necessitated tailored approaches to LiDAR processing, such as those described here, 10 

which may often differ from previous applications.  

The relative gains of each processing step applied are evident in a gradual improvement to the applied LoD. A lowering of 

30% improvement with the application of radiometric and morphological filters occurs due to the removal of points considered 

to be both less accurate and less repeatable. This approach to the removal of unreliable points can also be used in alternative 

processing techniques; for example, as members of the fuzzy inference approach developed by Wheaton et al. (2010) to 15 

quantify spatially variable DoD uncertainty.The removal of these points prior to change detection, as opposed to the post-

filtering of erroneous change measurements, was undertaken to minimise their impact upon normal estimation and 3D change 

detection. Their identification may also be used in alternative processing techniques; for example, as members of the fuzzy 

inference approach developed by Wheaton et al. (2010) to quantify spatially variable DoD uncertainty.  The approach to change 

detection adopted in this study also yielded an improvement to the LoD, highlighting the importance of precise calculation of 20 

difference, here as a function of the cylinder length, for scenarios in which multiple surfaces may be intersected by the same 

normal vector in the resulting point cloud. highlighting the importance of cylinder length for scenarios in which multiple 

surfaces may be intersected by the same normal vector in the resulting point cloud. Such surfaces can be characterised as 

increasingly three-dimensional at the scale of the applied cylinder length (e.g. Brodu and Lague, 2013) or as rough surfaces 

that are surveyed at oblique viewing angles (Hodge et al., 2009). This problem is exacerbated for near-continuous constant 25 

monitoring, given that scanning from a fixed position increases the width of occluded zones on surfaces inclined away from 

the scanner, yielding higher offsets between measured surfaces inclined towards the scanner. Critically, adaptive change 

detection techniques are necessary to account for the variability in point cloud quality across surfaces surveyed from a fixed 

position, where the installation location may yield unfavourable target geometries. These may take several forms, including 

spatially variable LoDs, varying cylinder lengths, or varying cylinder widths.including varying cylinder lengths, widths, or 30 

spatially variable LoDs. 
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The cylinder radius determines the degree of spatial averaging over change measurements and, as such, should be informed 

by the style and scale of movements under investigation. In theory, the smaller the radius, the finer the spatial detail that can 

be established. However, this comes with a compromise in that the increase in accuracy by accounting for neighbouring points 

is reduced, the likelihood of intersecting points in the second point cloud is reduced, and the statistical significance of 

calculations is reduced by only drawing on a small number of points. Future development of a variable cylinder radius may 5 

draw upon the same point density estimated during normal estimation, varying in size until ~ 20 points, the minimum suggested 

by Lague et al. (2013), are found. Here, cylinder radii between 0.15 m and 2.00 m were applied to scan pairs in which rockfall 

had, and had not, occurred from East Cliff. For scans in which no change occurred, the standard deviation of differences across 

the point cloud was greatest for the 0.15 m radius (0.018 m), approaching the point spacing, but decreased and stabilised at a 

radius of 0.25 m (0.013 m). For scan pairs in which rockfall had occurred, the size and shape of rockfall was contrasted with 10 

the results of varying cylinder radii and a Hausdorff distance estimation. The Hausdorff distance measure itself is influenced 

considerably by the scan line spacing and the local point density but, for this purpose, it provides an indication of rockfall 

geometry with the smallest degree of spatial averaging. As the cylinder radius increases, the difference in shape relative to the 

Hausdorff distance also increases. While a radius of 0.15 m best approximates the size and shape of the rockfall, this value is 

too close to the scan line spacing at all but the most proximal regions of the cliff face. A search radius of 0.25 m was therefore 15 

selected, providing similar rockfall geometries to the 0.15 m. This emphasises the potential to apply a variable cylinder radius 

across the point cloud based upon local point density, which could be helpful in future research. 

The applied method removes scans undertaken during rain/fogpoor weather conditions (e.g. rain/fog) in order to preserve the 

accuracy of the resulting rockfall inventory. Given the potential for rockfall to occur during poor weather conditions, this 

constitutes an important drawback of near-continuous TLS monitoring for rockfall inventory compilation. This limits the 20 

ability to relate rockfall occurrence derived from near-constant monitoring to real-time rainfall datasets. Techniques that can 

operate during inclement weather conditions, such as ground-based InSAR, are therefore better suited to maintaining temporal 

consistency in rockfall datasets. While the precision and measurement frequency of InSAR monitoring surpasses that of 

LiDAR instruments, however, highly precise change measurements are spatially averaged across large pixel sizes, resulting in 

a minimum detectable rockfall volume several orders of magnitude higher (~ 1 m3) as compared to terrestrial LiDAR datasets. 25 

While small magnitude changes that occur across large areas can be accurately characterised at high frequency, detecting the 

frequency density of small erosion events is compromised. Point cloud generation for slope monitoring has been supplemented 

in recent years by the development of new photogrammetric techniques, in particular Structure from Motion (SfM; 

Niethammer et al., 2011; Westoby et al., 2012 Lucieer et al., 2013; Turner et al., 2015; Carrivick et al., 2016). When imagery 

is acquired from Unmanned Aerial Vehicles, SfM has the advantage of far lower operational costs than TLS, minimising areas 30 

of occlusion that occur from ground-level monitoring, and providing highly dense point clouds due to the potentially small 

distances between the UAV and the slope. At present, however, the technique requires further development before it can be 

deployed for near-continuous near constant monitoring of a surface.  
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5.2 Future developments in processing near-continuous TLS collection 

Surface models exhibit a degree of uncertainty irrespective of the monitoring instrument and change detection technique used 

(Brasington et al., 2003; Lane et al., 2003; James et al., 2012). If analysis of time series data is required, error increases in 

proportion to the number of comparisons undertaken. For example, if the error between scan pairs is assumed to be constant, 

monitoring over the same period using 1 000 scans produces 1 000 units of error, while monitoring over the same period using 5 

scans at the beginning and ending produces only two. At present, there is no consensus method to overcome this, even with 

the application of 4D smoothing techniques (Kromer et al., 2015). This suggests that monitoring at lower frequencies may 

provide more accurate estimates of rates of total change over longer periods. This is related to both the longer and hence time-

averaged conditions captured, but also to the fact that the same level of change measured infrequently has less volumetric error 

than when measured frequently, particularly when change is accrued by many small, discrete events. A decrease in TInt that 10 

approaches near-constant monitoring, 1 h, results in a shift in the exponent of the inverse power law of rockfall volumes from 

to 1.78 (30 d) to 2.27 (1 h). With a maximum plausible volume error, uncertainty in total rockfall volume ranged from 20% - 

160% of the measured volume. Although critical to measure the full rockfall volume distribution, high frequency monitoring 

in this setting is not suitable for measuring net volume accumulated through large numbers of small events.  

Given that small events present the highest aerial, and hence volumetric, uncertainty, the recent development of 3D volume 15 

estimation from point clouds (Carrea et al., 2012; Benjamin et al., 2016) may play an important role in nearnear continuous 

constant  scanning. The uncertainty of these techniques is determined by the precision of the point cloud, thereby eliminating 

uncertainty in object aerial extents due to linear interpolation into a fixed grid. However, these techniques also contain 

uncertainties, which arise in part from the meshing approach adopted (Soudarissanane et al., 2011; Hartzell et al., 2015; Telling 

et al., 2017). Due to the dependence of these techniques on a minimum of four points to create a closed hull, fully 3D techniques 20 

also are limited in their ability to resolve small, single point detachments. The development of scanners with increasingly small 

angular step widths and increased rates of point acquisition, however, will decrease the minimum resolvable detachment. At 

present, the 3D clustering required to isolate points belonging to geomorphic change, combined with subsequent meshing of 

these points, comes at a considerable computational cost. These techniques therefore remain to be applied for > 10 scans (e.g. 

Carrea et al., 2012; Benjamin et al., 2016; van Veen et al., 2017). 25 

This study demonstrates the need to adjust the frequency of data collection and processing in accordance with the study 

objectivesaccording to the study aim. Here, monitoring has been undertaken to detect near instantaneous discrete changes to 

the slope (rockfall) where both the spatial and temporal resolution of monitoring are important. Longer-term total change is 

more prone to error when change accrues from many small events, and big changes can occur in both the short and long term. 

There existsis a lack of research into this trade-off in spatial and temporal resolution but approaches that allow this to occur 30 

would be helpful in future. The collection of a high frequency time-series of scan data presents the opportunity to reduce 

uncertainty by averaging point positions through both time and space as points are independent in neither space nor in time. 
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This averaging can take the form of averaging the 3D position of each point, as utilised here, and in M3C2 (Lague et al., 2013), 

or the averaging of differences between points (Abellán et al., 2009; Kromer et al., 2015). Kromer et al. (2015) devised a 

method of averaging the distance between point clouds, whereby the change between them was assigned based on the median 

change for a neighbourhood of points along the normal direction.  

5.3 Implications for rockfall magnitude-frequency 5 

While the precise magnitude-frequency exponent reported is specific to East Cliff, the scale-invariant behaviour of rockfall is 

similar to that observed in other rockfall inventories, albeit across a narrower range of magnitudes. Along the same stretch of 

coastline, previous monthly monitoring has yielded exponents of β = 1.43-1.91 (Rosser et al. 2007; Barlow et al., 2012), similar 

to that identified in this study using the TiInt = 30 d inventory (β = 1.78). Both the exponent and presence of a rollover show a 

dependence upon monitoring interval at temporal scales considerably lower than the intervals used by Barlow et al. (2012). 10 

For rockfall distributions created from TLS surveys, Young et al. (2011) noted that the ability to resolve small-scale changes 

should not introduce a rollover, because the smallest reported rockfall is larger than the minimum detectable event identifiable 

in change mapping. From a statistical perspective, this statement holds true as long as the frequency density is not estimated 

using a moving kernel, which enforces an extrapolation of density that extends one kernel half width beyond the range of the 

observations both below the minimum and above the maximum, introducing inflections in the frequency density at the tails 15 

(Lim et al., 2010). Here, a rollover in the magnitude-frequency distribution is identified for the TiInt = 30 d inventory. However, 

this rollover was not present in the TiInt < 1 h dataset. Only rockfall larger than the 0.03 m (LoD) × 0.15 m × 0.15 m (the area 

of each cell, which exceeds the minimum point spacing) were analysed, which equates to a volume of 6.75 × 10-4 m3. Critically, 

this implies that where events coincide, or coalesce, (here < ~ 0.01 m3) or where the mechanisms driving change are not 

spatially independent, event frequency is partially determined by survey interval. Given the development of spatially 20 

contiguous rockfall scars that has been observed in this setting (Fig. 11) and in other studies (Rosser et al., 2007; 2013; Stock 

et al., 2011; Kromer et al., 2015; Rohmer and Dewez, 2015; Royán et al., 2015), the creation of magnitude-frequency 

distributions from near constant monitoring has the potential to generate improved understanding of the mechanisms of 

geomorphic change.  underlying mechanisms of rockfall failure. 

Monitoring at lower frequencies may provide more accurate estimates of rates of total change over longer periods. This is 25 

related to both the longer and hence time-averaged conditions captured, but also to the fact that the same level of change 

measured infrequently has less volumetric error than when measured frequently, particularly when change is accrued by many 

small, discrete events. A decrease in Tint that approaches near-continuous monitoring, 1 h, results in a shift in the exponent of 

the inverse power law of rockfall volumes from to 1.78 (30 d) to 2.27 (1 h). With a maximum plausible volume error, 

uncertainty in total rockfall volume ranged from 20% - 160% of the measured volume. Although critical to measure the full 30 

rockfall volume distribution, high frequency monitoring in this setting is not suitable for measuring net volume loss as a result 

of large numbers of small events. In summary, magnitude-frequency analysis of rockfall volumes (Fig. 12a) indicates that 
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more frequent scanning detects a greater proportion of smaller rockfall events. Consequently, more frequent scanning also 

presents increased uncertainty in cumulative volume. Cumulatively, this error can be significant relative to the total flux over 

the monitoring period given that the size distribution of rockfall volumes adheres to a power law. 

6 Conclusion 

The magnitude-frequency distribution of geomorphic change is an important descriptor of the relative efficacy of event sizes, 5 

and the nature of the hazard that they pose. Improvements in the ability to resolve the magnitude of events have surpassed the 

ability to constrain event frequency over short time intervals (< days). However, increasing the temporal resolution of 

monitoring of a changing surface increases the cumulative error over the same monitoring periods, particularly where change 

is dominated by numerous small events. In this study, we have discussed the practicalities and techniques to reduce this error 

for near-continuously acquired 3D monitoring data, using one of the highest temporal resolution 3D datasets collected to date.  10 

The findings of our workflow can be distilled into the following elements: Both morphological and radiometric filters can be 

effective in removing unreliable points, such as edges, surfaces of high incidence angle, and vegetation, the effects of which 

become increasingly prominent when scanning from a fixed position. Applying these filters lowered the standard deviation of 

change detected between two stable point clouds from 0.078 m to 0.055 m. Scans with any degree of occlusion, arising from 

atmospheric conditions (e.g. rain) should be entirely removed to ensure that no rockfall, which are more probable during these 15 

conditions, are likely to be missed in pairwise change detection. The alignment of large numbers of scans (102-104) to the first 

scan of the dataset prevents drift without detriment to the overall alignment accuracy, though this may not apply in settings 

where the overall slope morphology changes through the monitoring period. Three-dimensional change detection improves 

the LoD in relation to 2.5D change detection techniques (DoDs); however, having been applied to an actively failing rock 

slope, the DAN VCL approach described here yielded a fivefold decrease in uncertainty between point clouds relative to 20 

M3C2, the effectiveness of which increases with the frequency of holes and edges in the dataset.  

By comparing rockfall inventories collected at Tint < 1 h and Tint = 30 d, it is apparent that more frequent monitoring captures 

a higher proportion of small rockfall. Importantly, both the size and shape of rasterised events determines the ability to 

accurately quantify their volume, with smaller events and events with a higher proportion of boundary cells producing a higher 

degree of volume uncertainty. The method proposed to quantify this uncertainty represents an important consideration for 25 

volume estimation during future near-continuous monitoring campaigns. Critically, a higher proportion of small rockfall in an 

inventory, represented by a higher power law scaling coefficient, increases volumetric uncertainty, which accumulates because 

of the increased frequency of these events. Net long-term eroded volume is therefore best estimated between the first and last 

survey of a monitoring period. 

those relating to our ability to constrain event frequency. More frequent monitoring of a changing surface increases the 30 

cumulative error over comparable monitoring periods. This study has reduced this error through a workflow that filters features 
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based on their reliability, or repeatability between point clouds. The use of a morphological and radiometric filter identifies 

such points that belong to such features, in particular edges, surfaces of high incline and vegetation. Surfaces that appear three-

dimensional at the scale of the cylinder length used in 3D change detection are also accounted for, by drawing upon a variable 

length cylinder. This avoids uncertainty in change detection between point clouds of an unchanged surface, in which multiple 

surfaces may be intersected by the same normal vector. Having been applied to an actively failing rock slope, this adaptation 5 

of the M3C2 algorithm (Lague et al., 2013) yielded a fivefold decrease in uncertainty between point clouds. The procedure 

was applied to a dataset of 103 point clouds. Without significant morphological change to the monitored surface, alignment of 

this number of scans was undertaken to the first scan of the dataset given that this avoids drift due to atmospheric variation but 

does not detriment the alignment accuracy. Rockfall inventories collected at TInt < 1 h and TInt = 30 d highlight that more 

frequent monitoring discerns a higher proportion of small rockfall than at TInt = 30 d. Both the size and shape of rasterised 10 

events determines the ability to accurately quantify their volume, with smaller events and events with higher perimeter to area 

ratios yielding a higher degree of uncertainty. A means of quantifying this uncertainty has therefore been proposed, which is 

necessary to carry forward into any quantification of volumetric loss during near constant monitoring campaigns.   
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Figure 1: Map of Whitby with the area scanned delineated with red lines. A Riegl VZ-1000 scanner is installed within East Pier 

Lighthouse. The targets installed for the SiteMonitor4D Range Correction Factor estimation are illustrated (T1 – T6) in addition to 

the weather stations. Whitby Abbey lies 180 m from the cliff top. Map produced using shapefiles from Ordnance Survey © Crown 

Copyright and Database Right 2016. Ordnance Survey (Digimap Licence). 5 
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Figure 2: (a) Image of the cliff taken 1 h before high tide on 25th November 2015. Horizontally bedded strata are evident, with upper 

beds stained orange from downslope wash from glacial till of variable depth. The lower buttress comprises shales and some 

sandstone, while the near-vertical upper portion of the cliff comprises outcropping sandstone and sandstone interbedded with 

carbonaceous muds. (b) Slope model of the cliff showing the area covered by the TLS (light grey) draped over a 3D model of the 5 
cliff, surveyed from multiple positions along the foreshore (dark grey). The total area measured is 8 561 m2, or 89% of the cliff face 

area (9 592 m2). The cliff is ~ 210 m across and ~ 60 m high. 
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Figure 3: Flow diagram representing the stages of  optimised near-constant monitoring change detection methodrockfall inventory 

compilation. All stages following ASCII to MAT conversion were written in MATLAB®, with ICP alignment and rockfall 

vectorisation using the built-in functions pcregrigid and bwboundaries. Point clouds are initially rotated to become approximately 

planar across the x-z plane, enabling the removal of points outside a tight bounding cuboid and rasterising of the point clouds of 5 
change. This rotation also enables an efficient solution to subsequent normal direction ambiguity, where the y component of each 

normal vector should always point out of the surface.  
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Figure 4: Conceptual illustration of the significance of removing partial scans. While parts of these scans provide accurate estimates 

of surface change, if a rockfall occurs in an area of no data, the failure will be missed using pairwise change. These scans should 

therefore be removed prior to change detection of the scan database. 

 5 
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Figure 5: Search radiuses used for normal estimation across the rock face. (a) The radius for each point on the cliff at which the 

point clouds is most planar, with a mean value of 1.1 m, used to estimate the normal vector prior to change detection. This point 

cloud was used as a reference model, such that the normal radius of points in subsequent scans was assigned based on the radius of 

closest point in this scan, (b) Surface planarity at a radius of 1 m, where higher values indicate a more 3D neighbourhood. These 

occur at inflections in slope profile and in areas of high local relief, such as the sandstone beds near the cliff-top. Gaps in point cloud 5 
are zones of occlusion illustrated in Fig. 2b.  

 

 

Figure 6: Conceptual variation in the distance along the normal for a rockfall. (a) Change detection along a surface normal direction 

estimated from the pre-failure surface (Cloud 1). (b) The normal direction estimated using a planar, post-failure surface more 10 
accurately represents the direction of change than the post-failure surface vector, due to the complexity of the pre-failure surface. 

With both change detections originating in the same approximate positions on the cliff face, the difference in vector lengths illustrates 

the sensitivity of the 3D change measurements to the normal estimation.  

 

 15 
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Figure 7: Approach to change detection used in this study based on empirical rockfall data. (a) A 2 m wide transect taken mid-way 

up East Cliff. The black points are taken from Cloud 1 and the grey from Cloud 2, with a 1.75 m high rockfall clearly shown. Points 

within the cylinder radius, which intersects the two clouds, are shown as red and blue. The cylinder axis, which travels through the 

query point, is also shown, (b) Area of intersect selected from (a) the centroids of each point cloud are determined and their 

orthogonal projection onto the normal vector (cylinder axis) is estimated (dashed lines). The distance measured in this study is 5 
between these projections, along the normal. 

 

Figure 8: Inputs used for distance estimation with varying cylinder lengths. No appreciable change occurred between these two 

scans. As the cylinder length increases (from 0.25 m to 0.50 m to 10 m), the number of surfaces that the cylinder intersects increases 

(direction equal to the normal vector). All points within a 0.25 m radius would be included as cylinder points (circles), and the 10 
distance between their mean positions (squares) calculated. From top to bottom, this distance is 0.0011 m to -0.1460 m to 0.0938 m. 

Longer cylinders intersect multiple surfaces and therefore measure the distance between projected centroids that do not accurately 

represent the surface to which the query point belongs.  
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Figure 9: Sensitivity analysis for Edge-Hole filter. (a) A change detection is undertaken between two point clouds where no 

observable movement occurred. The standard deviation for a single point cloud therefore indicates the level of noise between the 5 
two. When high EH values are retained, the standard deviation of change increases. (b) Cumulative proportion of EH values within 

an entire point cloud. Each line represents a different neighbourhood radius search, with a 1 m radius selected to ensure a minimum 

of four points, the minimum needed to estimate the CoG, would be found. An inflection in the number of points retained is used to 

define the threshold at 95%, ensuring that artefacts such as holes are not introduced into the point cloud by over removal of points. 

While the EH values change with the neighbourhood search radius, their distribution across the point cloud remains the same due 10 
to the normalisation by point density.  

Figure 4: (a) A change detection is undertaken between two point clouds where no observable movement occurred. The standard 

deviation for a single point cloud therefore indicates the level of noise between the two. This value is estimated by first including 

only points with the lowest edge/hole values (EH 10-4), and then including points with increasingly large edge/hole values (up to EH 

10-2).  When high EH values are retained, the total error, defined by the standard deviation of change, increases. Edge and hole 15 
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values for the point cloud are retained below the position of the threshold (red dashed line). (b) The cumulative proportion of EH 

values within an entire point cloud. Each line represents a different neighbourhood radius search. For the same points, EH values 

are lower using a larger search radius because more neighbouring points (k in Eq. 1) are found. An inflection in the number of points 

retained is used to define the threshold at 95%. This ensures that artefacts, such as holes, are not introduced into the point cloud by 

removing too many points. While the EH values change, their distribution across the point cloud remains the same due to the 5 
normalisation by point density. A 1 m radius was selected to ensure that a minimum of four points, the minimum needed to estimate 

the CoG in addition to the query point, would always be found. 

 

 10 

Figure 10: Sensitivity analysis for waveform deviation filter. (a) Mean absolute distance between two point clouds, attributed to 

points of each waveform deviation, from 1 – 50. Similar to Fig. 9, this indicates the comparison uncertainty between both scans. 

Error increases from ~0.03 – 0.06 m at values > 25. The variability in error also increases such that the selection of an appropriate 

threshold > 25 is not possible. (b) Cumulative distribution of waveform deviation values. A threshold of 25 removes 2% of points.  
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Figure 5: (a) Mean absolute distance between two point clouds with no observable change. Similar to Fig. 4, this indicates the 

comparison uncertainty between both scans. The mean distance is calculated for change estimates attributed to points with each 

deviation, from 1 – 50. Error increases from ca. 0.03 – 0.06 m at values > 25. The variability in error also increases such that the 

selection of an appropriate threshold > 25 is not possible. (b) The number of points removed (blue) alongside the cumulative 

distribution of deviation values. A threshold of 25 ensures that only 2% of points are removed.  5 

 

 

 

Figure 6: Conceptual illustration of the significance of removing partial scans. While parts of these scans provide accurate estimates 

of surface change, if a rockfall occurs in an area of no data, the failure will be missed using pairwise change. These scans should 10 
therefore be removed prior to change detection of the scan database. 
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Figure 7: (a) The radius for each point on the cliff at which the point clouds is most planar, with a mean value of 1.1 m, used to 

estimate the normal vector prior to change detection. This point cloud was used as a reference model, such that the normal radius 

of points in subsequent scans was assigned based on the radius of closest point in this scan, (b) Surface planarity at a radius of 1 m, 

where higher values indicate a more 3D neighbourhood. These occur at inflections in slope profile and in areas of high local relief, 5 
such as the sandstone beds near the cliff-top. Gaps in point cloud are zones of occlusion illustrated in Fig. 2b.  
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Figure 8: Conceptual variation in the distance along the normal for a rockfall. (a) Change detection along a surface normal direction 

estimated from the pre-failure surface (Cloud 1). (b) The normal direction estimated using a planar, post-failure surface more 

accurately represents the direction of change than the post-failure surface vector, due to the complexity of the pre-failure surface. 

With both change detections originating in the same approximate positions on the cliff face, the difference in vector lengths illustrates 5 
the sensitivity of the 3D change measurements to the normal estimation.  
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Figure 9: (a) A 2 m wide transect taken mid-way up East Cliff. The black points are taken from Cloud 1 and the grey from Cloud 2, 

with a 1.75 m high rockfall clearly shown. Points within the cylinder radius, which intersects the two clouds, are shown as red and 

blue. The cylinder axis, which travels through the query point, is also shown, (b) Area of intersect selected from (a) the centroids of 

each point cloud are determined and their orthogonal projection onto the normal vector (cylinder axis) is estimated (dashed lines). 5 
The distance measured in this study is between these projections, along the normal 
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Figure 10: Inputs used for distance estimation with varying cylinder lengths. No appreciable change occurred between these two 

scans. As the cylinder length increases (from 0.25 m to 0.50 m to 10 m), the number of surfaces that the cylinder intersects increases 

(direction equal to the normal vector). All points within a 0.25 m radius would be included as cylinder points (circles), and the 

distance between their mean positions (squares) calculated. From top to bottom, this distance is 0.0011 m to -0.1460 m to 0.0938 m. 5 
Longer cylinders intersect multiple surfaces and therefore measure the distance between projected centroids that do not accurately 

represent the surface to which the query point belongs.  
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Figure 11: Distribution of rockfall across East Cliff monitored at sub-hourly intervals between 5th March 2015 and 30th December 

2015. Rockfall are distributed across the entire cliff face, in particular in areas of exposed bedrock. Although the high water mark 

is below the portion of cliff shown in this figure, the largest and most frequent rockfall occur at the base of the cliff. Accumulation 5 
and loss of material in the areas of non-exposed bedrock on the cliff buttresses, which runs across the cliff face at ca.~ 17 m elevation, 

were removed. Colours represent the age since 31st December, where red represents the oldest rockfall.  
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Figure 12: (a) Magnitude-frequency distribution for rockfall inventories acquired at varying TiInt showing that a higher proportion 

of small events is established by monitoring at high frequencies. Rockfall used range from 5th March 2015 – 30th November 2015 to 

enable direct comparison between TiInt < 1 h and nine TiInt = 30 d change detections. (b) Rockfall volumes from < 1 h rockfall 5 
inventory. Percentage volume error is estimated using the LoD, number of internal pixels and number of edge pixels. Frequency 

densities (kernel density estimates) are appended to each axis, showing that rockfall volumes < 0.01 m3 account for the greatest 

proportion of measured rockfall (modal volume = 0.0081 m3). As a result, errors range from ca~. 60% to ca. ~140% for most rockfall 

(modal error percentage = 109%). Cumulative volume estimations using rockfall of this size may vary by at least the actual volume. 
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Figure 13: Cumulative rockfall volumes measured though the monitoring period, using data from all 11 monitoring intervals. The 

results show that far higher volumes of material, up to twice those recorded by 30 d monitoring, are measured at sub-daily intervals. 

The times of pairwise change detections are recorded as the date of the first scan, rather than the second. As a result, although all 5 
scan intervals record a significantly increased rate of rockfall activity during November; this appears earlier on the plot for longer 

scan intervals. The total estimated volumes are not included for comparison as change detections cannot be recorded up to the final 

day of monitoring for longer time intervals (30th December).  
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