
Response to RC1
(responses in blue)

Mutz et al. look to use paleoclimate GCMs to identify drivers of past geomorphic change. This is a topic
for which I hold great interest, and I feel that the authors have crafted a very useful set of model results
that they leave underutilized. As such, I feel inclined to accept the paper on the basis of the useful results,
but to request major revisions such that they do their own work justice.

My major concerns, which will become clear in the line-by-line comments (please feel free to respond to
similar comments en masse) are as follows: 1. The paper is motivated by denudation rates and landscape
evolution, but really includes this as a speculative wrapper that is not substantiated. I suggest that instead
you propose testable hypotheses surrounding your findings. 
2. Related to #1, much of the text is a litany of "temperature was X here ...". I find such statements of
results useful only insofar as they expand upon a figure (associated with a supplementary data set) that
presents the results. While these sections are written clearly, I would suggest that the authors focus on a set
of geomorphic questions (if this be their motivation) and how the model-data set informs those questions.
3. Many of the discussions of model results are of ice-covered regions, yet no consideration of direct
glacial  erosion  is  given.  Furthermore,  no  reference  to  the  changes  in  the  statistics  of  discharge  or
catchment area in ice-covered regions is given. This seems a disservice to this relatively high-resolution
paleoclimate  AGCM: the geologic  setting *must* be considered,  otherwise  it  seems that  the  authors’
pushing on the modeling end has not been matched by a simple geological history sanity check. I would
suggest that either significantly glaciated regions and the catchments that they feed be masked out, or that
glacial erosion and its associated processes be included in the discussion.
4. (Discussed only here): You have not compared your models against any data. I understand that this may
be  simply  a  modeling  exercise  that  you  do  compare  to  other  models.  However,  I  think  that  such  a
comparison could assuage skepticism about your results and lend support to your case, especially if you
include it as part of a local case study (see the third point below). The core of these three points is that,
with a bit more care, I think your results could say something really useful to the geomorphic community.
Currently, the paper seems to be more a statement of, "this is important to geomorphology", followed by a
long list  of  the  model  results.  I  challenge the authors  to  demonstrate  (rather  than simply stating)  the
importance of their work to geomorphology in a way that includes how it may impact the way scientists
view Quaternary landscape evolution. Ideas include:
• Changes in means (done)
• Changes in statistical distributions of temperature and precipitation – think extreme events, frost-cracking
window, etc.
• A focus on a few iconic regions while *explicitly* ignoring significantly ice-covered domains (I think
this would be easiest, though obviously would be thrilled if you decided to tackle glacial processes)
• Using this focus to build a template for how to use paleoclimate GCM outputs to advance the field of
geomorphology. Currently, I think that the work is acceptable following changes for internal consistency
and geological accuracy (see #1 and #3), but I think that you could be selling yourselves short if you don’t
dig just a tiny bit deeper to investigate your forcings and their impact on geomorphology. I hope that you
find these comments helpful in continuing to craft an insightful piece of work out of what seems to be a
strong modeling approach.

We thank Prof. Andrew Wickert for his highly valuable review of our manuscript. Many important points
were raised in the review and we hope that our appreciation for the input is sufficiently reflected in the
revisions we made in response to it. We also encourage him to see our response to the second reviewer,
where we provide additional geologic relevance of this study by now including a comparison of available
terrestrial proxy data to our model results. We also explain throughout our response to the 2 nd reviewer
why  an  application  of  the  predicted  climate  change  to  predict  denudation  rate  changes  is  a  large
undertaking that can not be meaningfully conducted in this paper, but warrants more detailed applications
of the models to individual areas (a topic of ongoing work/application for us). We refrain from using the
model  predicted  runoff  in  the  global  GCM  (even  though  it’s  conducted  at  relatively  high
resolution compared to previous work) to calculate changes in fluvial incision.  This would be
better  done  by  mapping  the  predicted  precipitation  changes  onto  higher  resolution  (<90  m)
DEMs and solving the kinematic wave equation for each fluvial erosion in each catchment, for



the changes in precipitation. However, as we repeatedly mention above, this is not possible to
include in this manuscript without first characterising how the precipitation has changed in each
region (the current manuscript goals). Work in progress we are conducting is trying to apply the
kinematic wave equation and palaeoprecipitation to selected areas, but it’s proving difficult to
implement meaningfully without temporally continuous (e.g. LGM to present)  simulations of
precipitation change. We hope this brings to the reviewers attention the complications associated
with doing full erosion history calculations based on these results. We have expanded the last
paragraph in the instruction to convey the above perspective better, and more clearly articulate
(and justify) the scope and limitations of the manuscript.

We appreciate the importance of addressing specific sets of geomorphic questions and hypotheses (1 & 2)
and we are  currently taking an in-depth look at  quantifying the potential  for  erosion by a  variety of
processes.  These  include  different  methods  of  quantifying  frost  cracking  intensity  and  extreme
precipitation  events  and  how  these  changed  over  time.  However,  in  order  to  include  those  in  this
manuscript, we fear that would have to seriously compromise the thoroughness with which we investigate
these questions at the moment. Instead, we hope that we can convey the usefulness of our consistently set
up palaeoclimate simulations as a framework for addressing any of these particular questions in detail, and
have modified sections of this manuscript accordingly. This includes, but is not restricted to, extensive
compilations of proxy-based precipitation reconstructions for our two larger study sites (South Asia and
western South America) and comparison of this data to our model output. With this, we hope that we were
also able to address the concerns raised in point 4. In order to address the important point raised about
glaciated areas (3), we added an ice cover layer on all of our difference plots, included global maps of ice
extent  (as  used  for  our  simulations)  in  the  supplementary  material,  and  discussed  where  the  large
differences in temperature and precipitation we highlight in the manuscript are accompanied by changes in
ice cover. Thus we hope to prevent that interpretations of the implications of our results are made without
consideration of changes in ice cover (and consequently shifts in the process domain).

Line-by-line:
23. US Pacific Northwest Pacific→drop second "Pacific"
This has been corrected. Thank you for catching that.

29.  future  observational  studies  interested  in  quantifying→future  observational  studies  that  quantify
(studies can’t be interested in things, strictly speaking)
That is right of course. It has been corrected as suggested.

53. orogen scale → orogen-scale
It has been corrected as suggested.

∼57. A couple of recent studies from the climate science community shed light on the impacts of the
Andes (first ref below) and continents in general (second ref below). In case these are interesting to you,
I’m pasting the bibliographic information here: 
Maroon, E. A., D. M. W. Frierson, and D. S. Battisti (2015), The tropical precipitation response to Andes
topography and ocean heat fluxes in an aquaplanet model, J. Clim., 28(1), 381–398, doi:10.1175/JCLI-D-
14-00188.1.
Maroon, E. A., D. M. W. Frierson, S. M. Kang, and J. Scheff (2016), The precip itation response to an
idealized subtropical continent, J. Clim., 29(12), 4543–4564, doi:10.1175/JCLI-D-15-0616.1.
Many thanks for the references. These are indeed of much interest to us and we included them in the
revised manuscript.

73-75.  "Furthermore,  recent  controversy exists  concerning the spatial  and temporal  scales  over  which
geologic and geochemical observations can record climate-driven changes in weathering and erosion [e.g.
Whipple, 2009; von Blanckenburg et al., 2015; Braun, 2016].": I see that you do not return to this point
later, so could you describe the controversy for those who are not familiar with it?
Thank you for pointing this out. We described the controversy briefly for those unfamiliar with it after the
sentence quoted above. 

81. I see that later you discuss a little about what an AOGCM may do, but I will be looking for justification



about how an AGCM may suffice. Is this in part because you prescribe the b.c.’s and you are running it for
17 years only? If so, could you discuss potential systematic variations between this and an AOGCM?
We prescribe sea surface temperature reconstructions (SSTs) boundary conditions,  which allows us to
bypass the computationally expensive coupled simulations. Because these are fixed climatologies (though
with seasonality preserved), the simulation of fewer years suffices. As a consequence, however, we do not
expect to see decadal scale variability as we would in case of coupled models or prescribed SSTs that vary
from year to year (such as present day simulations using AMIP SST’s). We discuss this in the revised
manuscript. 

89. "PLIO to the Last Glacial Maximum": as you include no time-slices between these, I suggest making
these part of the list and dropping the "to the".
This has been corrected as suggested.

147. "This section describes the clustering method used in this study." You could drop this sentence – the
section title should be enough for even an inattentive reader!
We followed this suggestion and dropped that sentence.

176-178. I was wondeirng how you picked the number of clusters: I am glad to see that you performed a
thorough search.
Thank you. We added some text explaining this. We systematically increased the number of clusters from
3 to 10 and assessed the distinctiveness or similarities of resulting climate clusters. Once the increase in the
number of cluster no longer resulted in the addition of another cluster that was distinctly different from the
others, we used this as a cut off point and used the cluster number of the previous iteration as the optimal
cluster number. 

Section 3: Much of this is information that I find better communicated through figures than with text. It is
clearly written, however, and I am reluctant to suggest a rewrite for brevity in a length-unconstrained
journal so long as the text can be co-located with the figure. 
190-192. I see you have another "This section describes..." sentence. If this is your preferred way to write,
you may keep it; here, the second sentence is not such a good topic-sentence replacement.
Thank you. We kept the sentence in this instance as it also immediately draws attention to the relevant
figures, which may also serve in addressing the previous point you raised.

197-198. i.e. over the ice sheets. (This applies to other regions as well, and should be important to point
out if you are going to then discuss fluvial processes in orogens)
Many thanks for pointing this out. We are more mindful of this in the revised discussion.

203-paragraph: Also because of local ice loss, presumably. So I think that the two prior paragraphs could
have a new summary that "The greatest changes in temperature is observed where the greatest change in
local ice extent occurs."
Thank you. We followed your suggestion.

214-215. Have you considered discussions of the African Humid Period?
We had not considered discussion of precipitation changes in North Africa, since it lies outside the regions
we focus on. However, we appreciate that Holocene precipitation changes in the region are important and
may be of interest to many readers. We therefore included a short discussion of Holocene precipitation
changes in Northern Africa in the revised manuscript.

373-374. If you are looking at the influence of temperature and precipitation on erosion, and you are not
including  subglacial  erosion,  then  your  preceding  text  must  indicate  where  your  changes  really  are
indicative of  ice  extent  – both as  a separate  process domain and as a  driver  of fluvial  processes and
potential changes in the statistics of river discharge.
Thank you. We are more mindful of this in our discussion.

Section 4.1. Your first paragraph (weathering) differs from the content (comparing your model results with
those published). These should be in different subsections, and the weathering paragraph may need to be
expanded. Your "weathering and erosion" paragraph also neglects direct effects of glaciers, ice caps, and
ice sheets, which were globallly significant.



Thank  you  for  this  suggestion.  We  re-structured  this  section  as  suggested  and  took  ice  extent  into
consideration in the erosion section.

Section 4.2. Once again, your discussion is often of formerly (or currently) ice-covered regions without
explicitly acknowledging that this is a different process domain. In addition, as with the previous section,
the body paragraphs are mostly about model comparison and regional changes with sparse link to the
landscape-evolution factors indicated in the topic paragraph.
As above, we restructured this section, took ice extent into account and chose a more fitting section title.

416-423. Please discuss the direct influence of glaciers on the erosion orogens in the context of changing
precipitation (and therefore mass balance). Is it significant or not?
Although it is challenging to sufficiently quantify changes in glacier-related erosion due to differences in
precipitation, we now include this point in our discussion.

433-434. "Coastal North America"? Doesn’t look like it: seems to be most of NA south of the ice margin.
That is correct. We revised our descriptions accordingly.

Section  4.3.  The  authors  describe  the  results  here,  but  I  find  the  connection  to  erosion  rates  to  be
insufficiently described compared to how they are highlighted in the topic sentence,  as well  as in the
abstract. I would like you to go one step beyond "ought to be considered" and actually posit how you
expect the erosion rates – and therefore, the balance between erosion and exhumation and perhaps the
equilibrium shapes of the mountains and their rivers – to vary. Otherwise, you are suggesting future work
rather than actually describing the possible geomorphic significance – and I  think underutilizing your
results in a paper that is clearly targeted towards geomorphologists.
As described in our response above, we believe that trying to address specific problems such as these or
quantifying how differences  would be expressed  as  erosion rates  would be beyond the scope  of  this
manuscript and come at the cost of not being able to address these as thoroughly as we are currently
attempting in other ongoing work.

498. "which may favour frost driven weathering during glacial climate states" – the St. Elias range was
covered by glaciers! Yes, there can be some frost-cracking around the ice, but don’t you think this is
important too? http://instaar.colorado.edu/groups/QGISL/ak_paleoglacier_atlas/gallery/index.html
Thank you for drawing our attention to this.  We consider this in our discussion now and revised the
manuscript accordingly.

508. "enhanced sediment production driven by frost processes" – same as above.  Glaciers were there.
Consider them.
As for the comment above, we also considered glaciers here in the revised manuscript.

Conclusions: Comparison to other models: is this match surprising or no? Did you (mostly) use the same
inputs and simply increase the grid resolution? If so, could you comment on how the improved grid and
possible variations in inputs and use of them ocean as a boundary condition may have affected (or not)
your results as compared to those of earlier studies? This would be more useful to include in the discussion
than a simple list of "Our temperature in place Y was T0 , and X et al. wrote that they found it was T1 ,
which is close to T0 . Think big-picture, in both process and numerics! 
Due to model-specific parameterisation, deviation is possible. In the revised manuscript, we comment on
this as well as on the model resolution and implications of using ocean as boundary conditions instead of
an ocean model.

533. Did your 8-10 degC changes occur significantly over areas that would be affected by hillslope or
fluvial processes? (i.e. unglaciated areas?)
Some  unglaciated  areas  experience  large  differences  in  temperature,  but  the  maxima  of  8-10  degC
geographically  coincide  with  ice  cover  changes.  We  acknowledge  and  discuss  this  in  the  revised
manuscript.
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Abstract 

The denudation history of active orogens is often interpreted in the context of modern climate and vegetation gradients. 

Here we address the validity of this approach and ask the question: what are the spatial and temporal variations in 

palaeo-climate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 x 80 

km at the equator) palaeo-climate simulations from the ECHAM5 global Atmospheric General Circulation Model and a 

statistical cluster analysis of climate over different orogens (Andes, Himalaya, SE Alaska, Pacific NW USA). Time 

periods and boundary conditions considered include the Pliocene (PLIO, ~3 Ma), the Last Glacial Maximum (LGM, 

~21 ka), Mid Holocene (MH, ~6 ka) and Pre-Industrial (PI, reference year 1850). The regional simulated climates of 

each orogen are described by means of cluster analyses based on the variability of precipitation, 2m air temperature, the 

intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest 

differences to the PI climate are observedexisted for the LGM and PLIO climates in the form of widespread cooling and

reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows 

the largest deviation in annual precipitation from the PI climate, and shows enhanced precipitation in the temperate 

Andes, and coastal regions for both SE Alaska and the US Pacific Northwest Pacific. Furthermore, LGM precipitation 

is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional 

climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes 

east of the Andes in the PLIO climate than in other time-slice experiments conducted here. Taken together, these results

highlight significant changes in Late Cenozoic regional climatology over the last ~3 Ma. Comparison of simulated 

climate with proxy-based reconstructions for the MH and LGM reveal satisfactory to good performance of the model in 
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reproducing precipitation changes, although in some cases discrepancies between neighbouring proxy observations 

highlight contradictions between proxy observations themselves. Finally, we document regions where the largest 

magnitudes of Late Cenozoic changes in precipitation and temperature occur and offer the highest potential for future 

observational studies interested in quantifyingthat quantify the impact of climate change on denudation and weathering 

rates.

Keywords:  Cenozoic climate, ECHAM5, Last Glacial Maximum, Mid-Holocene, Pliocene, cluster analysis, Himalaya,

Tibet, Andes, Alaska, Cascadia

1. Introduction

Interpretation of orogen denudation histories in the context of climate and tectonic interactions is often hampered

by a paucity of terrestrial palaeo-climate proxy data needed to reconstruct spatial variations in palaeo-climate. While it 

is self-evident that palaeoclimate changes could influence palaeodenudation rates, it is not always self-evident what the 

magnitude of climate change over different geologic time scales is, or what geographic locations offer the greatest 

potential to investigate palaeoclimate impacts on denudation. Palaeoclimate reconstructions are particularly beneficial 

when denudation rates are determined using geo- and thermo-chronology techniques that integrate over timescales of 

103-106+ years (e.g. cosmogenic radionuclides or low-temperature thermochronology) [e.g., Kirchner et al., 2001; 

Schaller et al., 2002; Bookhagen et al., 2005; Moon et al., 2011; Thiede and Ehlers, 2013; Lease and Ehlers, 2013]. 

However, few studies using denudation rate determination methods that integrate over longer timescales have access to 

information about past climate conditions that could influence these palaeo-denudation rates. Palaeo-climate modelling 

offers an alternative approach to sparsely available proxy data for understanding the spatial and temporal variations in 

precipitation and temperature in response to changes in orography [e.g. Takahashi and Battisti, 2007a, b; Insel et al., 

2010; Feng et al., 2013] and global climate change events [e.g. Salzmann, 2011; Jeffery et al., 2013]. In this study, we 

characterizse the climate at different times in the Late Cenozoic, and the magnitude of climate change for a range of 

active orogens.  Our emphasis is on identifying changes in climate parameters relevant to weathering and catchment 

denudation to illustrate the potential importance of various global climate change events on surface processes.

Previous studies of orogen -scale climate change provide insight into how different tectonic or global climate 

change events influence regional climate change.  For example, sensitivity experiments demonstrated significant 

changes in regional and global climate in response to landmass distribution and topography of the Andes, including 

changes in moisture transport, the north-south asymmetry of the Intertropical Convergence Zone and the north-south 

asymmetry of the Inter Tropical Convergence Zone [e.g. Takahashi and Battisti, 2007a, ; Insel et al., 2010] and 
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(tropical) precipitation [Maroon et al., 2015, ; Maroon et al. 2016]. Another example is the regional and global climate 

changes induced by the Tibetan Plateau surface uplift due to its role as a cold-temperature island and physical obstacle 

to circulation [Raymo and Ruddiman, 1992; Kutzbach et al., 1993; Thomas, 1997; Bohner, 2006; Molnar et al., 2010; 

Boos and Kuang, 2010]. The role of tectonic uplift in long term regional and global climate change remains a focus of 

research and continues to be assessed with geologic datasets [e.g. Zhisheng, 2001; Dettman et al., 2003; Caves   et   al., 

2017;    Kent-Corson   et   al.,   2006;    Lechler    et   al.,   2013; Lechler    and    Niemi,   2011;    Licht   et   al.,   2016;  

Methner    et   al.,   2016;    Mulch   et   al.,   2015, 2008;   Pingel   et   al.,   2016] and climate modelling [e.g. Kutzbach et 

al., 1989; Kutzbach et al., 1993; Zhisheng, 2001;, Bohner, 2006; Takahashi and Battisti, 2007a; Ehlers and Poulsen, 

2009; Insel et al., 2010; Boos and Kuang, 2010].  Conversely, climate influences tectonic processes through erosion 

[e.g. Molnar and England, 1990; Whipple et al., 1999; Montgomery et al., 2001; Willett et al., 2006; Whipple, 2009]. 

Quaternary climate change between glacial and interglacial conditions [e.g. Braconnot et al., 2007; Harrison et al., 

2013] resulted in not only the growth and decay of glaciers and glacial erosion [e.g. Yanites and Ehlers, 2012; Herman 

et al., 2013; Valla et al., 2011] but also global changes in precipitation and temperature [e.g. Otto-Bliesner et al., 2006; 

Li et al., 2017] that could influence catchment denudation in non-glaciated environments [e.g. Schaller and Ehlers, 

2006; Glotzbach et al., 2013; Marshall et al., 2015]. These dynamics highlight the importance of investigating how 

much climate has changed over orogens that are the focus of studies of climate-tectonic interactions and their impact on 

erosion. 

Despite recognition by previous studies that climate change events relevant to orogen denudation are prevalent 

throughout the Late Cenozoic, few studies have critically evaluated how different climate change events may, or may 

not, have affected the orogen climatology, weathering and erosion. Furthermore, recent controversy exists concerning 

the spatial and temporal scales over which geologic and geochemical observations can record climate-driven changes in

weathering and erosion [e.g. Whipple, 2009; von Blanckenburg et al., 2015; Braun, 2016]. For example, the previous 

studies highlight that although palaeoclimate impacts on denudation rates are evident in some regions and measurable 

with some approaches, they are not always present (or detectable) and the spatial and temporal scale of climate change 

influences our ability to record climate sensitive denudation histories.  This study contributes to our understanding of 

the interactions between climate, weathering, and erosion by bridging the gap between the palaeoclimatology and 

surface processes communities by documenting the magnitude and distribution of climate change over tectonically 

active orogens. Our focus is on documenting the magnitude of paleoclimateclimate and climate change in different 

locations with the intent of informing past and ongoing paleodenudation studies of these regions. The application of 

these results to predicted changes in denudation rates is beyond the scope of this study and the focus of future work. 

We In this study, we employ the ECHAM5 global Atmospheric General Circulation Model and document 

climate and climate change for time slices ranging between the Pliocene (PLIO, ~3 Ma) to pre-industrial (PI) times for 
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the St. Elias Range of South East Alaska, the US Pacific Northwest (Olympic and Cascade Range), western South 

America (Andes) and South Asia (incl. parts of Central- and East Asia). Our approach is two-fold and includes:

1. An empirical characterizsation of palaeo-climates in these regions based on the covariance and spatial 

clustering of monthly precipitation and temperature, the monthly change in precipitation and temperature magnitude, 

and wind speeds where appropriate.

2. Identification of changes in annual mean precipitation and temperature in selected regions over in the 

following time, specifically from the for four time periods: (PLIO,  to the Last Glacial Maximum (LGM), the Mid-

Holocene (MH) and PI). and subsequent validation of the simulated precipitation changes for MH and LGM.

Our focus is on documenting climate and climate change in different locations with the intent of informing past and 

ongoing palaeodenudation studies of these regions. The results presented here also provide a means for future work to 

formulate testable hypotheses and investigations into whether or not regions of large palaeoclimate change produced a 

measurable signal in denudation rates. In this study, we intentionally refrain from applying predicted palaeoclimate 

changes to predict denudation rate changes. Such a prediction is beyond the scope of this study because a convincing 

(and meaningful) calculation of climate-driven transients in fluvial erosion (e.g. via the kinematic wave equation), 

variations in frost cracking intensity, or changes in hillslope sediment production and transport at the large regional 

scales considered here is not tractable within a single manuscript, and instead is the focus of our ongoing work. Instead, 

our emphasis lies on addressing the first question we are confronted with in our own research into denudation rate 

studies around world, namely -  where is Late Cenozoic climate change most likely to impact denudation?

2. Methods: Climate modelling and cluster analyses for climate characteriszation

2.1 ECHAM5 simulations

The global Atmospheric General Circulation Model ECHAM5 [Roeckner et al., 2003] has been developed at the 

Max Planck Institute for Meteorology and is based on the spectral weather forecast model of the ECMWF [Simmons et 

al., 1989]. In the context of palaeoclimate applications, the model has been used mostly at lower resolution (T31, 

approximatelyca. 3.75°x3.75°; T63, ca. 1.9°x1.9° in case of Feng et al. [2016] and T106 in the case of  Li et al. [2016] 

and Feng and Poulsen [2016]) . The performed studies are not limited to the last millenium [e.g. Jungclaus et al., 2010] 

but also include research in the field of both warmer and colder climates, at orbital [e.g. Gong et al., 2013; Lohmann et 

al., 2013; Pfeiffer and Lohmann, 2016; Zhang et al., 2013a; Zhang et al., 2014; Wei and Lohmann, 2012] and tectonic 

time scales [e.g. Knorr et al., 2011; Stepanek and Lohmann, 2012], and under anthropogenic influence [Gierz et al., 

2015]. 

Here, the ECHAM5 simulations were conducted at a T159 spatial resolution (horizontal grid size ca. 80 km x 80 
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km at the equator) with 31 vertical levels (between the surface and 10hPa). This high model resolution is admittedly not

required for all of the climatological questions investigated in this study, and it should be noted that the skill of GCM’s  

in predicting orographic precipitation remains limited at this scale [e.g. Meehl et al. 2007].  However, simulations were 

conducted at this resolution so that future work can apply the results in combination with different dynamical and 

statistical downscaling methods to quantify changes at large catchment to orogen scales. The output frequency is 

relatively high (1 day) to enhance the usefulness of our simulations as input for landscape evolution and other models 

that may benefit from daily input. The simulations were conducted for five different time periods: present-day (PD), PI, 

MH, LGM and PLIO. 

A PD simulation (not shown here) was used to establish confidence in the model performance before conducting 

palaeo-simulations and has been compared with the following observation-based datasets: European Centre for 

Medium-Range Weather Forecasts (ECMWF) re-analyses [ERA40, Uppala et al., 2005], National Centers for 

Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) re-analyses [Kalnay et al., 

1996; Kistler et al., 2001], NCEP Regional Reanalysis (NARR) [Mesinger et al., 2006], the Climate Research Unit 

(CRU) TS3.21 dataset [Harris et al., 2013], High Asia Refined Analysis (HAR30) [Maussion et al., 2014] and the 

University of Delaware dataset (UDEL v3.01) [Legates et al., 1990]. (See Mutz et al. [2016] for a detailed comparison 

with a lower resolution model).

The PI climate simulation is an ECHAM5 experiment with PI (reference year 1850) boundary conditions. Sea 

Surface Temperatures (SST) and Sea Ice Concentration (SIC) are derived from transient coupled ocean-atmosphere 

simulations [Lorenz and Lohmann, 2004; Dietrich et al., 2013].  Following Dietrich et al. [2013], greenhouse gas 

(GHG) concentrations (CO2: 280 ppm) are taken from ice core based reconstructions of CO2 [Etheridge et al., 1996], 

CH4 [Etheridge et al., 1998] and N2O [Sowers et al., 2003]. Sea surface boundary conditions for MH originate from a 

transient, low-resolution, coupled atmosphere-ocean simulation of the mid (6 ka) Holocene [Wei and Lohmann, 2012; 

Lohmann et al, 2013], where the GHG concentrations (CO2: 280 ppm) are taken from ice core reconstructions of 

GHG’s by Etheridge et al. [1996], Etheridge et al. [1998] and Sowers et al. [2003]. GHG’s concentrations for the LGM 

(CO2: 185 ppm) have been prescribed following Otto-Bliesner et al. [2006]. Orbital parameters for MH and LGM are 

set according to Dietrich et al. [2013] and Otto-Bliesner et al. [2006], respectively. LGM land-sea distribution and ice 

sheet extent and thickness are set based on the PMIP III (Palaeoclimate Modelling Intercomparison Project, phase 3) 

guidelines (elaborated on by Abe-Ouchi et al [2015]). Following Schäfer-Neth and Paul [2003], SST and SIC for the 

LGM are based on GLAMAP [Sarnthein et al. 2003] and CLIMAP [CLIMAP project members, 1981] reconstructions 

for the for the Atlantic and Pacific/Indian Ocean, respectively. Global MH and LGM vegetation are based on maps of 

plant functional types by the BIOME 6000 / Palaeovegetation Mapping Project [Prentice et al., 2000; Harrison et al., 

2001; Bigelow et al., 2003; Pickett et al., 2004] and model predictions by Arnold et al. [2009]. Boundary conditions for 
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the PLIO simulation, including GHG concentrations (CO2: 405), orbital parameters and surface conditions (SST, SIC, 

sea land mask, topography and ice cover) are taken from the PRISM (Pliocene Research, Interpretation and Synoptic 

Mapping) project [Haywood et al., 2010; Sohl et al., 2009; Dowsett et al., 2010], specifically PRISM3D. The PLIO 

vegetation boundary condition was created by converting the PRISM vegetation reconstruction to the JSBACH plant 

functional types as described by Stepanek and Lohmann [2012], but the built-in land surface scheme was used.

SST reconstructions can be used as an interface between oceans and atmosphere [e.g. Li et al. 2016] instead of 

conducting the computationally more expensive fully coupled Atmosphere-Ocean GCM experiments. While the use of 

SST climatologies comes at the cost of capturing decadal-scale variability, and the results are ultimately biased towards 

the SST reconstructions the model is forced with, the simulated climate more quickly reaches an equilibrium state and 

the means of atmospheric variables used in this study do no change significantly after the relatively short spin-up 

period.  The palaeoclimate simulations (PI, MH, LGM, PLIO) using ECHAM5 are therefore carried out for 17 model 

years, of which the first two years are used for model spin up. The monthly long-term averages (multi-year means for 

individual months) for precipitation, temperature, as well as precipitation and temperature amplitude, i.e. the mean 

difference between the hottest and coldest months, have been calculated from the following 15 model years for the 

analysis presented below.

For further comparison between the simulations, the investigated regions were subdivided (Fig. 1). Western 

South America was subdivided into four regions: parts of tropical South America (80°-60° W, 23.5-5° S), temperate 

South America (80°-60° W, 50°-23.5° S), tropical Andes (80°-60° W, 23.5-5° S; high-pass filtered), i.e. most of the 

Peruvian Andes, Bolivian Andes and northernmost Chilean Andes, and temperate Andes (80°-60° W, 50°-23.5° S, 

high-pass filtered). South Asia was subdivided into three regions: tropical South Asia (40°-120°E, 0°-23.5°N), 

temperate South Asia (40°-120°E, 23.5°-60°N), and high altitude South Asia (40°-120°E, 0°-60°N; high-pass filtered).

Our approach of using a single GCM (ECHAM5) for our analysis is motivated by, and differs from, previous 

studies where inter-model variability exists from the use of different GCMs due to different parameterisations in each 

model. The variability in previous inter-model GCM comparisons exists despite the use of the same forcings [e.g. see 

results highlighted in IPCC AR5]. Similarities identified between these palaeoclimate simulations conducted with 

different GCMs using similar boundary conditions can establish confidence in the models when in agreement with 

proxy reconstructions.  However, differences identified in inter-model GCM comparisons highlight biases by all or 

specific GCMs, or reveal sensitivities to one changed parameter, such as model resolution. Given these limitations of 

GCM modelling, we present in this study a comparison of a suite of ECHAM5 simulations to proxy-based 

reconstructions (where possible) and, to a lesser degree, comment on general agreement or disagreement of our 

ECHAM5 results with other modelling studies. A detailed inter-model comparison of our results with other GCMs is 

beyond the scope of this study, and better suited for a different study in a journal with a different focus and audience. 
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Rather, by using the same GCM and identical resolution for the time slice experiments, we reduce the number of 

parameters (or model parameterisations) varying between simulations and thereby remove potential sources of error or 

uncertainty that would otherwise have to be considered when comparing output from different models with different 

parameterisations of processes, model resolution, and in some cases model forcings (boundary conditions). 

Nevertheless, the reader is advised to use these model results with the GCM’s shortcoming and uncertainties in 

boundary condition reconstructions in mind. For example, precipitation results may require dynamical or statistical 

downscaling to increase accuracy where higher resolution precipitation fields are required. Furthermore, readers are 

advised to familiarise themselves with the palaeogeography reconstruction initiatives and associated uncertainties. For 

example, while Pliocene ice sheet volume can be estimated, big uncertainties pertaining to their locations remain 

[Haywood et al. 2010].

2.2 Cluster analysis to document temporal and spatial changes in climatology 

 This section describes the clustering method used in this study. The aim of the clustering approach is to group 

climate model surface grid boxes together based on similarities in climate. Cluster analyses are statistical tools that 

allow elements (i) to be grouped by similarities in the elements’ attributes. In this study, those elements are spatial units,

the elements’ attributes are values from different climatic variables, and the measure of similarity is given by a 

statistical distance. The four basic variables used as climatic attributes of these spatial elements are: near-surface (2m) 

air temperature, seasonal 2m air temperature amplitude, precipitation rate, and seasonal precipitation rate amplitude. 

Since monsoonal winds are a dominant feature of the climate in the South Asia region, near surface (10m) speeds of u-

wind and v-wind (zonal and meridional wind components, respectively) during the monsoon season (July) and outside 

the monsoon season (January) are included as additional variables in our analysis of that region. Similarly, u-wind and 

v-wind speeds during (January) and outside (July) the monsoon season in South America are added to the list of 

considered variables to take into account the South American Monsoon System (SASM) in the cluster analysis for this 

region. The long-term monthly means of those variables are used in a hierarchical clustering method, followed by a 

non-hierarchical k-means correction with randomiszed re-groupment [Mutz et al., 2016; Wilks, 2011; Paeth, 2004; 

Bahrenberg et al., 1992]. 

The hierarchical part of the clustering procedure starts with as many clusters as there are elements (ni), then 

iteratively combines the most similar clusters to form a new cluster using centroids for the linkage procedure for 

clusters containing multiple elements. The procedure is continued until the desired number of clusters (k) is reached. 

One disadvantage of a pure hierarchical approach is that elements cannot be re-categoriszed once they are assigned to a 

cluster, even though the addition of new elements to existing clusters changes the clusters’ defining attributes and could 

warrant a re-categorizsation of elements. We address this problem by implementation of a (non-hierarchical) k-means 
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clustering correction [e.g. Paeth, 2004]. Elements are re-categorizsed based on the multivariate centroids determined by 

the hierarchical cluster analysis in order to minimisze the sum of deviations from the cluster centroids. The 

Mahalanobis distance [e.g. Wilks, 2011] is used as a measure of similarity or distance between the cluster centroids, 

since it is a statistical distance and thus not sensitive to different variable units. The Mahalanobis distance also accounts 

for possible multi-collinearity between variables. 

The end results of the cluster analyses are subdivisions of the climate in the investigated regions into k 

subdomains or clusters based on multiple climate variables. The region-specific k has to be prescribed before the 

analyses. A large k may result in redundant additional clusters describing very similar climates, thereby defeating the 

purpose of the analysis to identify and describe the dominant, distinctly different climates in the region and their 

geographical coverage. Since it is not possible to know a priori the ideal number of clusters, k was varied between 3 and

10 for each region and the results presented below identify the optimal number of visibly distinctly different clusters 

from the analysis. Optimal k was determined by assessing the distinctiveness and similarities between the climate 

clusters in the systematic process of increasing k from 3 to 10. Once an increase in k no longer resulted in the addition 

of another cluster that was climatologically distinctly different from the others, and instead resulted in at least two 

similar clusters, k of the previous iteration was chosen as the optimal k for the region.

The cluster analysis ultimately results in a description of the geographical extent of a climate (cluster) 

characterised by a certain combination of mean values for each of the variables associated with the climate. For 

example, climate cluster 1 may be the most tropical climate in a region and thus be characterised by a high precipitation

values, high temperature values and low seasonal temperature amplitude. Each of the results (consisting of the 

geographical extent of climates and mean vectors describing the climate) can be viewed as an optimal classification for 

the specific region and time. It serves primarily as a means for providing an overview of the climate in each of the 

regions at different times, reduces dimensionality of the raw simulation output, and identify regions of climatic 

homogeneity that is difficult to notice by viewing simple maps of each climate variable. Its synoptic purpose is similar 

to that of the widely known Köppen-Geiger classification scheme [Peel et al., 2007], but we allow for optimal 

classification rather than prescribe classes, and our selection of variables is more restricted and made in accordance with

the focus of this study.

3. Results

Results from our analysis are first presented for general changes in global temperature and precipitation for the 

different time slices (Fig. 2, 3), which is then followed by an analysis of changes in the climatology of selected orogens.

A more detailed description of temperature and precipitation changes in our selected orogens is presented in subsequent 

subsections (Fig. 4 and following). All differences in climatology are expressed relative to the PI control run. Changes 
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relative to the PI rather than PD conditions are presented to avoid interpreting an anthropogenic bias in the results and 

focusing instead on pre-anthropogenic variations in climate. For brevity, near-surface (2m) air temperature and total 

precipitation rate are referred to as temperature and precipitation.

3.1 Global differences in mean annual temperature 

This section describes the differences between simulated MH, LGM, and PLIO annual mean temperature anom-

alies with respect to PI shown in Fig. 2b, and PI temperature absolute values shown in Fig. 2a. Most temperature differ-

ences between the PI and MH climate are within -1°C to 1°C. Exceptions to this are the Hudson Bay, Weddell Sea and 

Ross Sea regions which experience warming of 1-3°C, 1-5°C and 1-9°C respectively. Continental warming is mostly 

restricted to low-altitude South America, Finland, western Russia, the Arabian Peninsula (1-3°C) and subtropical north 

Africa (1-5°C). Simulation results show that LGM and PLIO annual mean temperature deviate from the PI means the 

most. The global PLIO warming and LGM cooling trends are mostly uniform in direction, but the magnitude varies re-

gionally. The strongest LGM cooling is concentrated in regions where the greatest change in ice extent occurs (as indic-

ated on Fig. 2), i.e. Canada, Greenland, the North Atlantic, Northern Europe and Antarctica. Central Alaska shows no 

temperature changes, whereas coastal South Alaska experiences cooling of ≤ 9°C. Cooling in the US Pacific northwest 

is uniform and between 11 and 13°C. Most of high-altitude South America experiences mild cooling of 1-3°C, 3-5°C in 

the central Andes and ≤ 9°C in the south. Along the Himalayan orogen, LGM temperature values are 5-7°C below PI 

values. Much of central Asia and the Tibetan plateau cools by 3-5°C, and most of India, low-altitude China and south-

east Asia by 1-3°C. 

In the PLIO climate, parts of Antarctica, Greenland and the Greenland Sea experience the greatest temperature 

increase (≤ 19°C). Most of southern Alaska warms by 1-5°C and ≤ 9°C near McCarthy, Alaska. The US Pacific northw-

est warms by 1-5°C. The strongest warming in South America is concentrated at the Pacific west coast and the Andes 

(1-9°C), specifically between Lima and Chiclayo, and along the Chilean-Argentinian Andes south of Bolivia (≤ 9°C). 

Parts of low-altitude South America to the immediate east of the Andes experience cooling of 1-5°C. The Himalayan 

orogen warms by 3-9°C, whereas Myanmar, Bangladesh, Nepal, northern India and northeast Pakistan cool by 1-9°C.

3.2 Global differences in mean annual precipitation

Notable differences occur between simulated MH, LGM, PLIO annual mean precipitation anomalies with re-

spect to PI shown in Fig. 3b, and the PI precipitation absolute values shown in Fig. 3a. Of these, MH precipitation devi-

ates the least from PI values. The differences between MH and PI precipitation on land appear to be largest in northern 

tropical Africa (increase ≤1200 mm/a) and along the Himalayan orogen (increase ≤2000 mm/a) and in central Indian 

states (decrease) ≤500mm. The biggest differences in western South America are precipitation increases in central Chile
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between Santiago and Puerto Montt. The LGM climate shows the largest deviation in annual precipitation from the PI 

climate, and precipitation on land mostly decreases. Exceptions are increases in precipitation rates in North American 

coastal regions, especially in coastal South Alaska (≤2300 mm/a) and the US Pacific Northwest (≤1700 mm/a). Further 

exceptions are precipitation increases in low-altitude regions immediately east of the Peruvian Andes (≤1800 mm/a), 

central Bolivia (≤1000 mm/a), most of Chile (≤1000 mm/a) and northeast India (≤1900 mm/a). Regions of notable pre-

cipitation decrease are northern Brazil (≤1700 mm/a), southernmost Chile and Argentina (≤1900 mm/a), coastal south 

Peru (≤700 mm/a), central India (≤2300 mm/a) and Nepal (≤1600 mm/a). 

Most of the precipitation on land in the PLIO climate is higher than those in the PI climate. Precipitation is en-

hanced by ca. 100-200 mm/a in most of the Atacama desert, by ≤1700 mm/a south of the Himalayan orogen and by 

≤1400 mm/a in tropical South America. Precipitation significantly decreases in central Peru (≤2600mm), southernmost 

Chile (≤2600mm) and from eastern Nepal to northernmost northeast India (≤2500mm).

3.3 Palaeoclimate characterizsation from the cluster analysis and changes in regional climatology

In addition to the above described global changes, the PLIO to PI regional climatology changes substantially in 

the four investigated regions of: South Asia (section 3.3.1), the Andes (section 3.3.2), South Alaska (section 3.3.3) and 

the Cascade Range (section 3.3.4). Each climate cluster defines separate distinct climate that is characterized by the 

mean values of the different climate variables used in the analysis. The clusters are calculated by taking the arithmetic 

means of all the values (climatic means) calculated for the grid boxes within each region. The regional climates are 

referred to by their cluster number C1, C2, …, Ck, where k is the number of clusters specified for the region. The clusters

for specific palaeo-climates are mentioned in the text as Ci(t), where i corresponds to the cluster number (i=1, …, k) and 

t to the simulation time period (t=PI, MH, LGM, PLIO). The descriptions first highlight the similarities and then the 

differences in regional climate. The cluster means of seasonal near-surface temperature amplitude and seasonal 

precipitation amplitude are referred to as temperature and precipitation amplitude. The median, 25th percentile, 75th 

percentile, minimum and maximum values for annual mean precipitation are referred to as Pmd, P25, P75, Pmin and Pmax 

respectively. Likewise, the same statistics for temperature are referred to as Tmd, T25, T75, Tmin and Tmax. These are 

presented as boxplots of climate variables in different time periods. When the character of a climate cluster is described 

as “high”, “moderate” and “low”, the climatic attribute’s values are described relative to the value range of the specific 

region in time, thus high PLIO precipitation rates may be higher than high LGM precipitation rates. The character is 

presented a raster plots, to allow compact visual representation of it. The actual mean values for each variable in every 

time-slice and region-specific cluster are included in tables in the supplementary material. 

3.3.1 Climate change and palaeoclimate characterizsation in South Asia, Central- and East Asia
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This section describes the regional climatology of the four investigated Cenozoic time slices and how 

precipitation and temperature changes from PLIO to PI times in tropical, temperate and high altitude regions. LGM and 

PLIO simulations show the largest simulated temperature and precipitation deviations (Fig. 4b) from PI temperature and

precipitation (Fig. 4a) in the South Asia region. LGM temperatures are 1-7°C below PI temperatures and the direction 

of deviation is uniform across the study region. PLIO temperature is mostly above PI temperatures by 1-7°C. The 

cooling of 3-5°C in the region immediately south of the Himalayan orogen represents one of the few exceptions. 

Deviations of MH precipitation from PI precipitation in the region are greatest along the eastern Himalayan orogeny, 

which experiences an increase in precipitation (≤2000 mm/a). The same region experiences a notable decrease in 

precipitation in the LGM simulation, which is consistent in direction with the prevailing precipitation trend on land 

during the LGM. PLIO precipitation on land is typically higher than PI precipitation.

Annual means of precipitation and temperature spatially averaged for the regional subdivisions and the different 

time slice simulations have been compared. The value range P25 to P75 of precipitation is higher for tropical South Asia 

than for temperate and high altitude South Asia (Fig. 5 a-c). The LGM values for P25, Pmd and P75 are lower than for the 

other time slice simulations, most visibly for tropical South Asia (ca. 100 mm/a). The temperature range (both T75-T25 

and Tmax- Tmin) is smallest in the hot (ca. 21°C) tropical South Asia, wider in the high altitude (ca. -8°C) South Asia, and 

widest in the temperate (ca. 2°C) South Asia region (Fig. 5 d-f). Tmd, T25 and T75 values for the LGM are ca. 1°C, 1-2°C 

and 2°C below PI and MH temperatures in tropical, temperate and high altitude South Asia respectively, whereas the 

same temperature statistics for the PLIO simulation are ca. 1°C above PI and MH values in all regional subdivisions 

(Fig. 5 d-f). With respect to PI and MH values, precipitation and temperature are generally lower in the LGM and 

higher in the PLIO in tropical, temperate and high altitude South Asia. 

In all time periods, the wettest climate cluster C1 covers an area along the southeastern Himalayan orogen (Fig. 6

a-d) and is defined by the highest precipitation amplitude (dark blue, Fig. 6 e-h). C5(PI), C3(MH), C4(LGM) and C5(PLIO) are 

characterized by (dark blue, Fig. 6e-h) the highest temperatures, u-wind and v-wind speeds during the summer monsoon

in their respective time periods, whereas C4(PI), C5(MH), and C6(LGM) are defined by low temperatures and highest 

temperature amplitude, u-wind and v-wind speeds outside the monsoon season (in January) in their respective time 

periods (Fig. 6 e-h). The latter 3 climate classes cover much of the more continental, northern landmass in their 

respective time periods and represents a cooler climate affected more by seasonal temperature fluctuations (Fig. 6 a-d). 

The two wettest climate clusters C1 and C2 are more restricted to the eastern end of the Himalayan orogen in the LGM 

than during other times, indicating that the LGM precipitation distribution over the South Asia landmass is more 

concentrated in this region than in other time slice experiments.

 

3.3.2 Climate change and palaeoclimate characterizsation in the Andes, Western South America
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This section describes the cluster analysis based regional climatology of the four investigated Late Cenozoic 

time slices and illustrates how precipitation and temperature changes from PLIO to PI in tropical and temperate low- 

and high altitude (i.e. Andes) regions in western South America (Fig. 7-9).

LGM and PLIO simulations show the largest simulated deviations (Fig. 7b) from PI temperature and 

precipitation (Fig. 7a) in western South America. The direction of LGM temperature deviations from PI temperatures is 

negative and uniform across the region. LGM temperatures are typically 1-3°C below PI temperatures across the region,

and 1-7°C below PI values in the Peruvian Andes, which also experience the strongest and most widespread increase in 

precipitation during the LGM (≤1800 mm/a). Other regions, such as much of the northern Andes and tropical South 

America, experience a decrease of precipitation in the same experiment. PLIO temperature is mostly elevated above PI 

temperatures by 1-5°C. The Peruvian Andes experience a decrease in precipitation (≤2600mm), while the northern 

Andes are wetter in the PLIO simulation compared to the PI control simulation.

PI, MH, LGM and PLIO precipitation and temperature means for regional subdivisions have been compared. 

The P25 to P75 range is smallest for the relatively dry temperate Andes and largest for tropical South America and the 

tropical Andes (Fig. 8 a-d). Pmax is lowest in the PLIO in all four regional subdivisions even though Pmd, P25 and P75 in 

the PLIO simulation are similar to the same statistics calculated for PI and MH time slices. Pmd, P25 and P75 for the LGM

are ca. 50 mm/a lower in tropical South America and ca. 50 mm/a higher in the temperate Andes. Average PLIO 

temperatures are slightly warmer and LGM temperatures are slightly colder than PI and MH temperatures in tropical 

and temperate South America (Fig. 8 e and f). These differences are more pronounced in the Andes, however. Tmd, T25 

and T75 are ca. 5°C higher in the PLIO climate than in PI and MH climates in both temperate and tropical Andes, 

whereas the same temperatures for the LGM are ca. 2-4°C below PI and MH values (Fig. 8 g and h). 

For the LGM, the model computes drier-than-PI conditions in tropical South America and tropical Andes, 

enhanced precipitation in the temperate Andes, and a decrease in temperature that is most pronounced in the Andes. For

the PLIO, the model predicts precipitation similar to PI, but with lower precipitation maxima. PLIO temperatures 

generally increase from PI temperatures, and this increase is most pronounced in the Andes.

The climate variability in the region is described by six different clusters (Fig. 9 a-d), which have similar 

attributes in all time periods. The wettest climate C1 is also defined by moderate to high precipitation amplitudes, low 

temperatures and moderate to high u-wind speeds in summer and winter in all time periods (dark blue, Fig. 9 e-h). C2(PI),

C2(MH), C3(LGM) and C2(PLIO) are characterized by high temperatures and low seasonal temperature amplitude (dark blue, 

Fig. 9 e-h), geographically cover the north of the investigated region, and represent a more tropical climate. C5(PI), 

C5(MH), C6(LGM) and C6(PLIO) are defined by low precipitation and precipitation amplitude, high temperature amplitude and

high u-wind speeds in winter (Fig. 9 e-h), cover the low-altitude south of the investigated region (Fig. 9 a-d) and 

represent dry, extra-tropical climates with more pronounced seasonality. In the PLIO simulation, the lower-altitude east 
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of the region has four distinct climates, whereas the analysis for the other time slice experiments only yield three 

distinct climates for the same region. 

3.3.3 Climate change and palaeoclimate characteriszation in the St. Elias Range, Southeast Alaska

This section describes the changes in climate and the results from the cluster analysis for South Alaska (Fig. 10-12). As 

is the case for the other study areas, LGM and PLIO simulations show the largest simulated deviations (Fig. 10b) from 

PI temperature and precipitation (Fig. 10a). The sign of LGM temperature deviations from PI temperatures is negative 

and uniform across the region. LGM temperatures are typically 1-9°C below PI temperatures, with the east of the study 

area experiencing largest cooling. PLIO temperatures are typically 1-5°C above PI temperatures and the warming is 

uniform for the region. In comparison to the PI simulation, LGM precipitation is lower on land, but higher (≤2300mm) 

in much of the coastal regions of South Alaska. Annual PLIO precipitation is mostly higher (≤800mm) than for PI. 

Pmd, P25, P75, Pmin and Pmax for South Alaskan mean annual precipitation do not differ much between PI, MH and 

PLIO climates, while Pmd, P25, P75 and Pmin decrease by ca. 20-40 mm/a and Pmax increases during the LGM (Fig. 11a). 

The Alaskan PLIO climate is distinguished from the PI and MH climates by its higher (ca. 2°C) regional temperature 

means, T25, T75 and Tmd (Fig. 11b). Mean annual temperatures, T25, T75, Tmin and Tmax are lower in the LGM than in any 

other considered time period (Fig. 11b), and about 3-5°C lower than during the PI and MH. 

Distinct climates are present in the PLIO to PI simulations for Southeast Alaska. Climate cluster C1 is always 

geographically restricted to coastal southeast Alaska (Fig. 12 a-d) and characterized by the highest precipitation, 

precipitation amplitude, temperature, and by relatively low temperature amplitude (dark blue, Fig. 12 e-h). Climate C2 is

characterized by moderate to low precipitation, precipitation amplitude, temperature, and by low temperature amplitude.

C2 is either restricted to coastal southeast Alaska (in MH and LGM climates) or coastal southern Alaska (in PI and 

PLIO climates). Climate C3 is described by low precipitation, precipitation amplitude, temperature, and moderate 

temperature amplitude in all simulations. It covers coastal western Alaska and separates climate C1 and C2 from the 

northern C4 climate. Climate C4 is distinguished by the highest mean temperature amplitude, by low temperature and 

precipitation amplitude, and by lowest precipitation. 

The geographical ranges of PI climates C1- C4 and PLIO climates C1- C4 are similar. C1(PI/PLIO) and C2(PI/PLIO) spread

over a larger area than C1(MH/LGM) and C2(MH/LGM). C2(PI/PLIO) are not restricted to coastal southeast Alaska, but also cover the

coastal southwest of Alaska. The main difference in characterization between PI and PLIO climates C1- C4 lies in the 

greater difference (towards lower values) in precipitation, precipitation amplitude and temperature from C1(PLIO) to 

C2(PLIO) compared to the relatively moderate decrease in those means from C1(PI) to C2(PI). 

3.3.4 Climate change and palaeoclimate characterizsation in the Cascade Range, US Pacific Northwest

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412



This section describes the character of regional climatology in the US Pacific Northwest and its change over time

(Fig. 13-15). The region experiences cooling of typically 9-11°C on land during the LGM, and warming of 1-5°C 

during the PLIO (Fig. 13b) when compared to PI temperatures (Fig. 13a). LGM precipitation increases over water, 

decreases on land by ≤800 mm/a in the North and in the vicinity of Seattle and increases on land by ≤1400 mm/a on 

Vancouver Island, around Portland and the Olympic Mountains, whereas PLIO precipitation does not deviate much 

from PI values over water and varies in the direction of deviation on land. MH temperature and precipitation deviation 

from PI values are negligible. 

Pmd, P25, P75, Pmin and Pmax for the Cascade Range do not notably differ between the four time periods (Fig. 14a). 

The LGM range of precipitation values is slightly larger than that of the PI and MH with slightly increased Pmd, while 

the respective range is smaller for simulation PLIO. The Tmd, T25, T75 and Tmax values for the PLIO climate are ca. 2°C 

higher than those values for PI and MH (Fig. 14b). All temperature statistics for the LGM are notably (ca. 13°C) below 

their analogues in the other time periods (Fig. 14b). 

PI, LGM and PLIO clusters are similar in both their geographical patterns (Fig. 15 a, c, d) and their 

characterization by mean values (Fig. 15 e, g, h). C1 is the wettest cluster and shows the highest amplitude in 

precipitation. The common characteristics of the C2 cluster are moderate to high precipitation and precipitation 

amplitude. C4 is characterized by the lowest precipitation and precipitation amplitudes, and the highest temperature 

amplitudes. Regions assigned to clusters C1 and C2 are in proximity to the coast, whereas C4 is geographically restricted 

to more continental settings.  

In the PI and LGM climates, the wettest cluster C1 is also characterized by high temperatures (Fig 10 e, g). 

However, virtually no grid boxes were assigned to C1(LGM). C1(MH) differs from other climate state’s C1 clusters in that it is

also described by moderate to high near surface temperature and temperature amplitude (Fig 10 f), and in that it is 

geographically less restricted and, covering much of Vancouver Island and the continental coastline north of it (Fig 10 

b). Near surface temperatures are highest for C2 in PI, LGM and PLIO climates (Fig 10 e, g, h) and low for C2(MH) (Fig 

10 f). C2(MH) is also geographically more restricted than C2 clusters in PI, LGM and PLIO climates (Fig 10 a-d). C2(PI), 

C2(MH) and C2(LGM) have a low temperature amplitude (Fig 10 e-g), whereas C2(PLIO) is characterized by a moderate 

temperature amplitude (Fig 10 h).  

4. Discussion

In the following, we synthesisze our results and compare to previous studies that investigate the effects of 

temperature and precipitation change on erosion. Since our results do not warrant merited discussion of subglacial 

processes without additional work that is beyond the scope of this study, we instead advise caution in interpreting the 

presented precipitation and temperature results in an erosional context where the regions are covered with ice. For 
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convenience, ice cover is indicated on figures 2,3,47,10 and 13, and a summary of ice cover used as boundary 

conditions for the different time slice experiments is included in the supplemental material. Wheren possible, we relate 

the magnitude of climate change predicted in each geographical study area with terrestrial proxy data.

4.1 Synthesis of temperature changes and implications for weathering and erosion

4.1.1 Temperature changes and implications for weathering and erosion

Changes in temperature can affect physical weathering due to temperature-induced changes in periglacial 

processes and promote frost cracking and frost creep [e.g., Matsuoka, 2001; Schaller et al., 2002; Matsuoka and 

Murton, 2008; Delunel et al., 2010; Andersen et al., 2015; Marshall et al., 2015], and also biotic weathering and erosion

[e.g. Moulton et al., 1998; Banfield et al., 1999; Dietrich and Perron, 2006]. Quantifying and understanding past 

changes in temperature is thus vital for our understanding of denudation histories. In the following, we highlight regions

in the world where future observational studies might be able to document significant warming or cooling that would 

influence temperature related changes in physical and chemical weathering over the last ~3 Ma. 

Simulated MH temperatures show little deviation (typically < 1°C) from PI temperatures in the investigated 

regions (Fig. 2b), suggesting little difference in MH temperature-related weathering. The LGM experiences widespread 

cooling, which is accentuated at the poles. LGM cooling is accentuated at the poles, in general agreement with studies 

such as Otto-Bliesner et al. [2006] and Braconnot et al. [2007], and , increasesin the equator-to-pole pressure gradient 

and consequently strengthens global atmospheric circulation. Despite this global trend, cooling in coastal South Alaska 

is higher (≤ 9°C) than in central Alaska (0±1°C). The larger temperature difference in South Alaska geographically 

coincides with ice cover (Fig. 10b), and should thus be interpreted in context of a different erosional regime. Cooling in 

most of the lower-latitude regions in South America and central to southeast Asia is relatively mild. The greatest 

temperature differences in South America are observed for western Patagonia, which was mostly covered by glaciers. 

The Tibetan plateau experiences more cooling (3-5°C) than adjacent low-altitude regions (1-3°C) during the LGM. 

The PLIO simulation is generally warmer, and temperature differences are shows little to no warming in the 

tropics and accentuated warming at the poles., as do findings of Salzmann et al. [2011] and Robinson [2009] and 

Ballantyne [2010] respectively. This would reduce the equator-to-pole sea and land surface temperature gradient, as 

also reported by Dowsett et al. [2010], and also weaken global atmospheric circulation. Agreement with proxy-based 

reconstructions, as is the case of the relatively little warming in lower latitudes, is not surprising given that sea surface 

temperature reconstructions are prescribed in this uncoupled atmosphere simulation. It should be noted that coupled 

ocean-atmosphere simulations do predict more low-latitude warming [e.g. Stepanek and Lohmann 2012; Zhang et al. 

2013b].  Warming in simulation PLIO is presentgreatest in parts of Canada, and Greenland and Antarctitca (up to 

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476



19°C), which geographically coincides with the presence of ice in the PI reference simulation and thus may be 

attributed to differences in ice cover. It should therefore also be regarded as areas in which process domain shifted from 

glacial to non-glacial. and consistent with values based on multi-proxy studies [Ballantyne et al., 2010]. Due to a 

scarcity of paleo-botanical proxies in Antarctica, reconstruction-based temperature and ice-sheet extent estimates for a 

PLIO climate have high uncertainties [Salzmann et al., 2011], making model validation difficult. Furthermore, 

controversy about relatively little warming in the south polar regions compared to the north polar regions remains [e.g. 

Hillenbrand and Fütterer, 2002; Wilson et al., 2002]. Mid-latitude PLIO warming is mostly in the 1-3°C range with 

notable exceptions of cooling in the northern tropics of Africa and on the Indian subcontinent, especially south of the 

Himalayan orogen. The warming in simulation PLIO in South Alaska and the US Pacific northwest is mostly uniform 

and in the range of 1-5°C. As before, changes in ice cover reveal that the greatest warming may be associated with the 

absence of glaciers relative to the PI simulation. whereas wWarming in South America is concentrated at the Pacific 

west coast and the Andes between Lima and Chiclayo, and along the Chilean-Argentinian Andes south of Bolivia (≤ 

9°C).  

Overall, annual mean temperatures in the MH simulation show little deviation from PI values.  The more 

significant temperature deviations of the colder LGM and of the warmer PLIO simulations are accentuated at the poles 

leading to higher and lower equator-to-pole temperature gradients respectively. The largest temperature-related changes

(relative to PI conditions) in weathering and subsequent erosion, in many cases through a shift in the process domain 

from glacial to non-glacial or vice versa, are therefore to be expected in the LGM and PLIO climates.

4.1.2 Temperature comparison to other studies

LGM cooling is accentuated at the poles, thus increases the equator-to-pole pressure gradient and consequently 

strengthens global atmospheric circulation, and is in general agreement with studies such as Otto-Bliesner et al. [2006] 

and Braconnot et al. [2007]. The PLIO simulation shows little to no warming in the tropics and accentuated warming at 

the poles, as do findings of Salzmann et al. [2011] and Robinson [2009] and Ballantyne [2010] respectively. This would

reduce the equator-to-pole sea and land surface temperature gradient, as also reported by Dowsett et al. [2010], and also

weaken global atmospheric circulation. Agreement with proxy-based reconstructions, as is the case of the relatively 

little warming in lower latitudes, is not surprising given that sea surface temperature reconstructions (derived from 

previous coarse resolution coupled ocean-atmosphere models) are prescribed in this uncoupled atmosphere simulation. 

It should be noted that coupled ocean-atmosphere simulations do predict more low-latitude warming [e.g. Stepanek and 

Lohmann 2012; Zhang et al. 2013b]. The PLIO warming in parts of Canada and Greenland (up to 19°C) and consistent 

with values based on multi-proxy studies [Ballantyne et al., 2010]. Due to a scarcity of palaeobotanical proxies in 

Antarctica, reconstruction-based temperature and ice-sheet extent estimates for a PLIO climate have high uncertainties 
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[Salzmann et al., 2011], making model validation difficult. Furthermore, controversy about relatively little warming in 

the south polar regions compared to the north polar regions remains [e.g. Hillenbrand and Fütterer, 2002; Wilson et al., 

2002]. Mid-latitude PLIO warming is mostly in the 1-3°C range with notable exceptions of cooling in the northern 

tropics of Africa and on the Indian subcontinent, especially south of the Himalayan orogen.

4.2 Synthesis of precipitation changes and implications for orogen denudation

 4.2.1 Precipitation and implications for weathering and erosion

Changes in precipitation affects erosion through river incision, sediment transport, and erosion due to extreme 

precipitation events and storms [e.g. Whipple and Tucker, 1999; Hobley et al., 2010]. Furthermore, vegetation type and 

cover also co-evolve with variations in precipitation and with changes in geomorphology [e.g. Marston 2010; Roering 

et al., 2010]. These vegetation changes in turn modify hillslope erosion by increasing root mass and canopy cover, and 

decreasing water-induced erosion via surface runoff [e.g. Gyssels et al., 2005]. Therefore, understanding and 

quantifying changes in precipitation in different palaeo-climates is necessary for a more complete reconstruction of 

orogen denudation histories. A synthesis of predicted precipitation changes is provided below, and highlights regions 

where changes in river discharge and hillslope processes might be impacted by climate change over the last ~3 Ma.

Most of North Africa is notably wetter during the MH, which is characteristic of the African Humid Period 

[Sarnthein 1978]. This pluvial regional expression of the Holocene Climatic Optimum is attributed to sudden changes in

the strength of the African monsoon caused by orbital-induced changes in summer insolation [e.g. deMenocal et al. 

2000]. Southern Africa is characterised by a wetter climate to the east and drier climate to the west of the approximate 

location of the Congo Air Boundary (CAB), the migration of which has previously been cited as a cause for 

precipitation changes in East Africa [e.g. Juninger et al. 2014]. In contrast, simulated MH precipitation rates show little 

deviation from the PI in most of the investigated regions, suggesting little difference in MH precipitation-related 

erosion. The Himalayan orogen is an exception and shows a precipitation increase of ≤ up to 2000 mm/a. The climate’s 

enhanced erosion potential, that could result from such a climatic change, should be taken into consideration when 

palaeo-erosion rates estimated from the geological record in this area are interpreted [e.g. Bookhagen et al., 2005]. 

Specifically, higher precipitation rates (along with differences in other rainfall-event parameters) could increase the 

probability of mass movement events on hillslopes, especially where hillslopes are close to the angle of failure [e.g. 

Montgomery, 2001], and modify fluxes to increase shear stresses exerted on river beds and increase stream capacity to 

enhance erosion on river beds (e.g. by abrasion).

Most precipitation on land is decreased during the LGM due to large-scale cooling and decreased evaporation 

over the tropics, resulting in an overall decrease in inland moisture transport [e.g., Braconnot et al. 2007]. Coastal North
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America, south of the continental ice sheets, is an exception and experiences increases in precipitation. , tFor example, 

the investigated US Pacific Northwest and the southeastern coast of Alaska are exceptions in that there isexperience 

experience strongly enhanced precipitation of ≤1700 mm/a and ≤2300 mm/a, respectively. These changes 

geographically coincide with differences in ice extent. An increase in precipitation in these regions may have had direct 

consequences on the glaciers’ mass balance and equilibrium line altitudes, where the glaciers’ effectiveness in erosion is

highest [e.g. Egholm et al., 2009; Yanites and Ehlers, 2012]. The differences in the direction of precipitation changes, 

and accompanying changes in ice cover Reduced precipitation in other parts of southern Alaska result in a stronger 

south-to-north drying gradient than in the PI simulation. This could would likely result in more regionally differentiated

variations in precipitation-specific erosional processes in the St. Elias Range rather than causing systematic offsets for 

the LGM. Although precipitation is significantly reduced along much of the Himalayan orogen (≤1600 mm/a), which is 

consistent with findings by, e.g., Braconnot et al. [2007], northeast India experiences strongly enhanced precipitation 

(≤1900 mm/a). This could have large implications for studies of uplift and erosion at orogen syntaxes, where highly 

localized and extreme denudation has been documented [e.g.  Koons et al., 2013; Bendick and Ehlers, 2014].

Overall, the PLIO climate is wetter than the PI climate, in particular in the (northern) mid-latitudes, and possibly 

related to a northward shift of the northern Hadley cell boundary that is ultimately the result of a reduced equator-to-

pole temperature gradient [e.g. Haywood et al. 2000, 2013; Dowsett et al. 2010]. A reduction of this gradient by ca. 5°C

is indeed present in the PLIO simulation of this study (Fig. 2b). Most of the PLIO precipitation over land increases 

during the PLIO. This finding agrees well with simulations performed at a lower spatial model resolution [cf. Stepanek 

and Lohmann, 2012]. PLIO precipitation significantly increases, esp. at the Himalayan orogen by ≤1400 mm/a, and 

decreases from eastern Nepal to Namcha Barwa (≤2500 mm/a). Most of the Atacama Desert experiences an increase in 

precipitation by 100-200 mm/a, which may have to be considered in erosion and uplift history reconstructions for the 

Andes. A significant increase (~2000 mm/a) in precipitation from simulation PLIO to modern conditions is simulated 

for the eastern margin of the Andean Plateau in Peru and for northern Bolivia. This is consistent with recent findings of 

a pulse of canyon incision in these locations in the last ~3 Ma [Lease and Ehlers, 2013].

Overall, the simulated MH precipitation varies least from PI precipitation. The LGM is generally drier than the 

PI simulation, even though pockets of a wetter-than-PI climate do exist, such as much of coastal North America. Extra-

tropical increased precipitation of the PLIO simulation and decreased precipitation of the LGM climate may be the 

result of decreased and increased equator-to-pole temperature gradients, respectively. 

4.2.2 Precipitation comparison to other studies

The large scale LGM precipitation decrease on land, related to cooling and decreased evaporation over the 

tropics, and greatly reduced precipitation along much of the Himalayan orogeny, is consistent with previous studies by, 
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(for example) Braconnot et al. [2007]. The large scale PLIO precipitation increase due to a reduced equator-to-pole 

temperature gradient, has previously been pointed out by e.g. Haywood et al. [2000, 2013] and Dowsett et al. [2010]. A 

reduction of this gradient by ca. 5°C is indeed present in the PLIO simulation of this study (Fig. 2b). This precipitation 

increase over land agrees well with simulations performed at a lower spatial model resolution [cf. Stepanek and 

Lohmann, 2012]. Section 4.4 includes a more in-depth discussion of how simulated MH and LGM precipitation 

differences compare with proxy-based reconstructions in South Asia and South America.

4.3 Trends in Late Cenozoic changes in regional climatology

This section describes the major changes in regional climatology and highlights their possible implications on 

erosion rates.

Himalaya-Tibet, South Asia

In South Asia, cluster-analysis based categorization and description of climates (Fig. 6) remains similar 

throughout time. However, the two wettest climates (C1 and C2) are geographically more restricted to the eastern 

Himalayan orogen in the LGM simulation. Even though precipitation over the South Asia region is generally lower, this

shift indicates that rainfall on land is more concentrated in this region and that the westward drying gradient along the 

orogen is more accentuated than during other time periods investigated here. While there is limited confidence in the 

global Atmospheric General Circulation Model’s abilities to accurately represent meso-scale precipitation patterns [e.g. 

Cohen 1990], the simulation warrants careful consideration of possible, geographically non-uniform offsets in 

precipitation in investigations of denudation and uplift histories.

MH precipitation and temperature in tropical, temperate and high-altitude South Asia is similar to PI 

precipitation and temperature, whereas LGM precipitation and temperatures are generally lower (by ca. 100 mm/a and 

1-2°C respectively), possibly reducing precipitation-driven erosion and enhancing frost-driven erosion in areas pushed 

into a near-zero temperature range during the LGM. 

Andes, South America

Clusters in South America (Fig. 9), which are somewhat reminiscent of the Köppen and Geiger classification 

[Kraus, 2001], remain mostly the same over the last 3 Ma. In the PLIO simulation, the lower-altitude east of the region 

is characterized by four distinct climates, which suggests enhanced latitudinal variability in the PLIO climate compared 

to PI with respect temperature and precipitation.

The largest temperature deviations from PI values are derived for the PLIO simulation in the (tropical and 

temperate) Andes, where temperatures exceed PI values by 5°C. On the other hand, LGM temperatures in the Andes are
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ca. 2-4°C below PI values in the same region (Fig 7 g and h). In the LGM simulation, tropical South America 

experiences ca. 50 mm/a less precipitation, the temperate Andes receive ca. 50 mm/a more precipitation than in PI and 

MH simulations. These latitude-specific differences in precipitation changes ought to be considered in attempts to 

reconstruct precipitation-specific palaeo-erosion rates in the Andes on top of longitudinal climate gradients highlighted 

by, e.g., Montgomery et al. [2001].

St. Elias Range, South Alaska

South Alaska is subdivided into two wetter and warmer clusters in the south, and two drier, colder clusters in the 

north. The latter are characteriszed by increased seasonal temperature variability due to being located at higher latitudes

(Fig. 12). The different equator-to-pole temperature gradients for LGM and PLIO may affect the intensity of the Pacific 

North American Teleconnection (PNA) [Barnston and Livzey, 1987], which has significant influence on temperatures 

and precipitation, especially in southeast Alaska, and may in turn result in changes in regional precipitation and 

temperature patterns and thus on glacier mass balance. Changes in the Pacific Decadal Oscillation, which is related to 

the PNA pattern, has previously been connected to differences in Late Holocene precipitation [Barron and Anderson, 

2011]. While this climate cluster pattern appears to be a robust feature for the considered climate states, and hence over 

the recent geologic history, the LGM sets itself apart from PI and MH climates by generally lower precipitation (20-40 

mm) and lower temperatures (3-5°C, Fig. 10, 11), which may favour frost driven weathering during glacial climate 

states [e.g. Andersen et al., 2015; Marshall et al. 2015] in unglaciated areas, whereas glacial processes would have 

dominated most of this region as it was covered by ice. Simulation PLIO is distinguished by temperatures that exceed 

PI and MH conditions by ca. 2°C, and by larger temperature and precipitation value ranges, possibly modifying 

temperature- and precipitation-dependent erosional processes in the region of South Alaska. 

Cascade Range, US Pacific Northwest

In all time slices, the geographic climate patterns, based on the cluster analysis (Fig. 15), represents an increase 

in the degree of continentality from the wetter coastal climates to the further inland located climates with greater 

seasonal temperature amplitude and lower precipitation and precipitation amplitude (Fig 15 e-h). The most notable 

difference between the time slices is the strong cooling during the LGM, when temperatures are ca. 13°C (Fig. 13, 14) 

below those of other time periods,. Given that the entire investigated region was covered by ice (Fig 13), we can assume

a shift to glacially dominated processes. possibly leading to enhanced sediment production driven by frost processes, as 

proposed for parts of the Pacific Northwest by Marshall et al. [2015].

4.4  Comparison of simulated and observed precipitation differences
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The predicted precipitation differences reported in this study were compared with observed (proxy record) 

palaeoprecipitation change.  Proxy based precipitation reconstructions for the MH and LGM  are presented for South 

Asia and South America for the purpose of assessing ECHAM5 model performance, and for identifying inconsistencies 

between neighbouring proxy data. Due to the repeated glaciations, detailed terrestrial proxy records for the time slices 

investigated here are not available, to the best of our knowledge, for the Alaskan and Pacific NW USA studies. 

Although marine records and records of glacier extent are available in these regions, the results from them do not 

explicitly provide estimates of wetter/drier, or colder/warmer conditions that can be spatially compared to the 

simulation estimates.  For these two areas with no available records, the ECHAM5 predicted results therefore provide 

predictions from which future studies can formulate testable hypotheses to evaluate.

The palaeoclimate changes in terrestrial proxy records compiled here are reported as “wetter than today”, “drier 

than today” or “the same as today” for each of the study locations, and plotted on top of the simulation-based difference

maps as upward facing blue triangles, downward facing red triangles and grey circles respectively (Fig. 16, 17). The 

numbers listed next to those indicators are the ID numbers assigned to the studies compiled for this comparison and are 

associated with a citation provided in the figure captions. 

In South Asia, 14/26 results from local studies agree with the model predicted precipitation changes for the MH. 

The model seems able to reproduce the predominantly wetter conditions on much of the Tibetan plateau, but predicts 

slightly drier conditions north of Chengdu, which is not reflected in local reconstructions. The modest mismatch 

between ECHAM5 predicted and proxy-based MH climate change in south Asia was also documented by Li et al., 

[2017], whose simulations were conducted at a coarser (T106) resolution. Despite these model-proxy differences, we 

note that there are significant discrepancies between the proxy data themselves in neighbouring locations in the MH, 

highlighting caution in relying solely upon these data for regional palaeoclimate reconstructions. These differences 

could result from either poor age-constraints in the reported values, or systematic errors in the transfer functions used to

convert proxy measurements to palaeoclimate conditions.  The widespread drier conditions on the Tibetan Plateau and 

immediately north of Laos are confirmed by 7/7 of the palaeoprecipitation reconstructions. 23/39 of the reconstructed 

precipitation changes agree with model predictions for South America during the MH. The model predicted wetter 

conditions in the central Atacama desert, as well as the drier conditions northwest of Santiago are confirmed by most of 

the reconstructions. The wetter conditions in southernmost Peru and the border to Bolivia and Chile cannot be 

confirmed by local studies. 11/17 of the precipitation reconstructions for the LGM are in agreement with model 

predictions. These include wetter conditions in most of Chile. The most notable disagreement can be seen in northeast 

Chile at the border to Argentina and Bolivia, where model predicted wetter conditions are not confirmed by reported 

reconstructions from local sites.

Model performance is, in general, higher for the LGM than for the MH and overall satisfactory given that it 
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cannot be expected to resolve sub-grid scale differences in reported palaeoprecipitation reconstructions. However, as 

mentioned above, it should be noted that some locations (MH of south Asia, and MH of norther Chile) discrepancies 

exist between neighbouring proxy samples and highlight the need for caution in how these data are interpreted. Other 

potential sources of error resulting in disagreement of simulated and proxy-based precipitation estimates are the model’s

shortcomings in simulating orographic precipitation at higher resolutions, and uncertainties in palaeoclimate 

reconstructions at the local sites. In summary, although some differences are evident in both the model-proxy data 

comparison and between neighbouring proxy data themselves, the above comparison highlights an overall good 

agreement between the model and data for the south Asia and South American study areas. Thus, although future 

advances in GCM model parameterisations and new or improved palaeoclimate proxy techniques are likely, the 

palaeoclimate changes documented here are found to be in general robust and provide a useful framework for future 

studies investigating how these predicted changes in palaeoclimate impact denudation. 

4.45 Conclusions

We present a statistical cluster-analysis-based description of the geographic coverage of possible distinct 

regional expressions of climates from four different time slices (Fig. 6, 9, 12, 15). These are determined with respect to 

a selection of variables that characterize the climate of the region and may be relevant to weathering and erosional 

processes. While the geographic distribution of climate patterns remains similar throughout time (as indicated by results

of four different climate states representative for the climate of the last 3 Ma), results for the PLIO simulation suggests 

more climatic variability east of the Andes (with respect to near-surface temperature, seasonal temperature amplitude, 

precipitation, seasonal precipitation amplitude and seasonal u-wind and v-wind speeds). Furthermore, the wetter 

climates in the South Asia region retreat eastward along the Himalayan orogen for the LGM simulation, this is due to 

decreased precipitation along the western part of the orogen and enhanced precipitation on the eastern end, possibly 

signifying more localised high erosion rates. 

Most global trends of the high-resolution LGM and PLIO simulations conducted here are in general agreement 

with previous studies [Otto-Bliesner et al., 2006; Braconnot et al., 2007; Wei and Lohmann, 2012; Lohmann et al., 

2013; Zhang et al., 2013b, 2014; Stepanek and Lohmann, 2012]. The MH does not deviate notably from the PI, the 

LGM is relatively dry and cool, while the PLIO is comparably wet and warm. While the simulated regional changes in 

temperature and precipitation usually agree with the sign (or direction) of the simulated global changes, there are 

region-specific differences in the magnitude and direction. For example, the LGM precipitation of the Tropical Andes 

does not deviate significantly from PI precipitation, whereas LGM precipitation in the Temperate Andes is enhanced. 

Comparisons to local, proxy-based reconstructions of MH and LGM precipitation in South Asia and South 

America reveal satisfactory performance of the model in simulating the reported differences. The model performs better
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for the LGM than the MH. We note however that compilations of proxy data such as we present here, also identify 

inconsistences between neighbouring proxy data themselves, warranting caution in the extent to which both proxy data 

and palaeoclimate models are interpreted for MH climate change in south Asia, and western South America.

The changes in regional climatology presented here are manifested, in part, by small to large magnitude changes 

in fluvial and hillslope relevant parameters such as precipitation and temperature. For the regions investigated here we 

find that precipitation differences between the PI, MH, LGM, and PLIO are in many areas around +/-  200-600 mm/yr, 

and locally can reach maximums of  +/- 1000-2000 mm/yr (Figs. 4, 7, 10, 13). In areas where significant precipitation 

increases are accompanied by changes in ice extent, such as parts of southern Alaska during the LGM, we would expect

a shift in the erosional regime to glacier dominated processes. Temperature differences between these same time periods

are around 1-4 °C in many places, but reach maximum values of 8-10 °C. Many of these maxima in the temperature 

differences geographically coincide with changes in ice sheet extent and must therefore be interpreted as part of a 

different erosional process domains. However, we also observe large temperature differences (~5°C) in unglaciated 

areas that would be affected by hillslope, frost cracking, and fluvial processes. The magnitude of these differences are 

not trival, and will likely impact fluvial and hillslope erosion and sediment transport, as well as biotic and abiotic 

weathering. The regions of large magnitude changes in precipitation and temperature documented here (Figs. 4, 7, 10, 

13) offer the highest potential for future observational studies interested in quantifying the impact of climate change on 

denudation and weathering rates.
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Figure Captions

Figure 1 Topography for regions (a) tropical South Asia, (b) temperate South Asia, (c) high altitude South Asia, (d) 

temperate South America, (e) tropical South America, (f) temperate Andes, (g) tropical Andes., SE Alaska and Cas-

cadia.

Figure 2 Global PI annual mean near-surface temperatures (a), and deviations of MH, LGM and PLIO annual mean 

near-surface temperatures from PI values (b). Units are °C and insignificant (p < 99%) differences (as determined by

a t-test) are greyed out.

Figure 3 Global PI annual mean precipitation (a), and deviations of MH, LGM and PLIO annual mean near-surface 

temperatures from PI values (b). Units are mm/yr.

Figure 4 PI annual mean near-surface temperatures (a), and deviations of MH, LGM and PLIO annual mean near-sur-

face temperatures from PI values (b) for the South Asia region. Insignificant (p < 99%) differences (as determined 

by a t-test) are greyed out.

Figure 5 PI, MH, LGM and PLIO annual mean precipitation in (a) tropical South Asia, (b) temperate South Asia, and 

(c) high-altitude South Asia; PI, MH, LGM and PLIO annual mean temperatures in (d) tropical South Asia, (e) tem-

perate South Asia, and (f) high-altitude South Asia. For each time slice, the minimum, lower 25th percentile, median,

upper 75th percentile and maximum are plotted.

Figure 6 Geographical coverage and characterization of climate classes C1- C6 based on cluster-analysis of 8 variables 

(near surface temperature, seasonal near surface temperature amplitude, total precipitation, seasonal precipitation 

amplitude, u-wind in January and July, v-wind in January and July) in the South Asia region. The geographical cov-

erage of the climates C1- C6 is shown on the left for PI (a), MH (b), LGM (c) and PLIO (d); the complementary, 

time-slice specific characterization of C1- C6 for PI (e), MH (f), LGM (g) and PLIO (h) is shown on the right.

Figure 7 PI annual mean near-surface temperatures (a), and deviations of MH, LGM and PLIO annual mean near-sur-

face temperatures from PI values (b) for western South America. Insignificant (p < 99%) differences (as determined 

by a t-test) are greyed out.

Figure 8 PI, MH, LGM and PLIO annual mean precipitation in (a) tropical South America, (b) temperate South Amer-

ica, (c) tropical Andes, and (d) temperate Andes; PI, MH, LGM and PLIO annual mean temperatures in (e) tropical 
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South America, (f) temperate South America, (g) tropical Andes, and (h) temperate Andes. For each time slice, the 

minimum, lower 25th percentile, median, upper 75th percentile and maximum are plotted.

Figure 9 Geographical coverage and characterization of climate classes C1- C6 based on cluster-analysis of 8 variables 

(near surface temperature, seasonal near surface temperature amplitude, precipitation, seasonal precipitation amp-

litude, u-wind in January and July, v-wind in January and July) in western South America. The geographical cover-

age of the climates C1- C6 is shown on the left for PI (a), MH (b), LGM (c) and PLIO (d); the complementary, time-

slice specific characterization of C1- C6 for PI (e), MH (f), LGM (g) and PLIO (h) is shown on the right.

Figure 10 PI annual mean near-surface temperatures (a), and deviations of MH, LGM and PLIO annual mean near-sur-

face temperatures from PI values (b) for the South Alaska region. Insignificant (p < 99%) differences (as determined

by a t-test) are greyed out.

Figure 11 PI, MH, LGM and PLIO annual mean precipitation (a), and mean annual temperatures (b) in South Alaska. 

For each time slice, the minimum, lower 25th percentile, median, upper 75th percentile and maximum are plotted.

Figure 12 Geographical coverage of climate classes C1- C4 based on cluster-analysis of 4 variables (near surface tem-

perature, seasonal near surface temperature amplitude, total precipitation, seasonal total precipitation amplitude) in 

southern Alaska. The geographical coverage of the climates C1- C4 is shown on the left for PI (a,), MH (b), LGM (c)

and PLIO (d); the complementary, time-slice specific characterization of C1- C6 for PI (e), MH (f), LGM (g) and 

PLIO (h) is shown on the right.

Figure 13 PI annual mean near-surface temperatures (a), and deviations of MH, LGM and PLIO annual mean near-sur-

face temperatures from PI values (b) for the US Pacific Northwest. Insignificant (p < 99%) differences (as determ-

ined by a t-test) are greyed out.

Figure 14 PI, MH, LGM and PLIO annual mean precipitation (a), and annual mean temperatures (b) in the Cascades, 

US Pacific Northwest. For each time slice, the minimum, lower 25th percentile, median, upper 75th percentile and 

maximum are plotted.

Figure 15 Geographical coverage and characterization of climate classes C1- C4 based on cluster-analysis of 4 variables 

(near surface temperature, seasonal near surface temperature amplitude, total precipitation, seasonal total precipita-

tion amplitude) in the Cascades, US Pacific Northwest. The geographical coverage of the climates C1- C4 is shown 

on the left for PI (a), MH (b), LGM (c) and PLIO (d); the complementary, time-slice specific characterization of C1- 
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C6 for PI (e), MH (f), LGM (g) and PLIO (h) is shown on the right.

Figure 16 Simulated annual mean precipitation deviations of MH (left) and LGM (right) from PI values in South Asia, 

and temporally corresponding proxy-based reconstructions, indicating wetter (upward facing blue triangles), drier 

(downward facing red triangles) or similar (grey circles) conditions in comparison with modern climate. MH proxy-

based precipitation differences are taken from Mügler et al. (2010) (66), Wischnewski et al. (2011) (67), Mischke et 

al. (2008), Wischnewski et al. (2011), Herzschuh et al. (2009) (68), Yanhong et al. (2006) (69), Morrill et al. (2006) 

(70), Wang et al. (2002) (71), Wuennemann et al. (2006) (72), Zhang et al. (2011), Morinaga et al. (1993), 

Kashiwaya et al. (1995) (73), Shen et al. (2005) (74), Liu et al. (2014) (75), Herzschuh et al. (2006) (76), Zhang and 

Mischke (2009)  (77), Nishimura et al. (2014) (78), Yu and Lai (2014) (79), Gasse et al. (1991) (80), Van Campo et 

al. (1996) (81), Demske et al. (2009) (82), Kramer et al. (2010) (83), Herzschuh et al. (2006) (84), Hodell et al. 

(1999)(85), Hodell et al. (1999) (86), Shen et al. (2006) (87), Tang et al. (2000) (88), Tang et al. (2000) (89), Zhou 

et al. (2002) (90), Liu et al. (1998) (91), Asashi (2010)(92), Kotila et al. (2009) (93), Kotila et al. (2000) (94), Wang 

et al. (2002) (95), Hu et al. (2014) (96), Hodell et al. (1999) (97), Hodell et al. (1999) (98).

Figure 17 Simulated annual mean precipitation deviations of MH (left) and LGM (right) from PI values in South Amer-

ica, and temporally corresponding proxy-based reconstructions, indicating wetter (upward facing blue triangles), 

drier (downward facing red triangles) or similar (grey circles) conditions in comparison with modern climate. MH 

proxy-based precipitation differences are taken from Bird et al. (2011) (1), Hansen et al (1994) (2), Hansen et al 

(1994) (3), Hansen et al (1994) (4), Hansen et al (1994) (5), Hansen et al (1994) (6), Hillyer et al. (2009) (7), 

D’Agostino et al. (2002) (8), Baker et al. (2001) (9), Schwalb et al (1999) (10), Schwalb et al (1999) (11), Schwalb 

et al (1999) (12), Schwalb et al (1999) (13), Moreno et al (2009) (14), Pueyo et al (2011) (15), Mujica et al (2015) 

(16), Fritz et al. (2004) (17), Gayo et al. (2012) (18), Latorre et al. (2006) (19), Latorre et al. (2003) (20), Quade et al

(2008) (21), Bobst et al. (2001) (22), Grosjean et al. (2001) (23), Betancourt et al. (2000) (24), Latorre et al. (2002) 

(25), Rech et al. (2003) (26), Diaz et al. (2012) (27), Maldonado et al (2005) (28), Diaz et al. (2012) (29), Lamy et 

al. (2000) (30), Kaiser et al. (2008) (31), Maldonado et al. (2010) (32), Villagrán et al. (1990) (33), Méndez et al. 

(2015) (34), Maldonado et al. (2006) (35), Lamy et al. (1999) (36), Jenny et al. (2002) (37), Jenny et al. (2002b) 

(38), Villa-Martínez et al. (2003) (39), Bertrand et al. (2008) (40), De Basti et al. (2008) (41), Lamy et al. (2009) 

(42), Lamy et al. (2002) (43), Szeicz et al. (2003) (44), de Porras et al. (2012) (45), de Porras et al. (2014) (46), 

Markgraf et al. (2007) (47), Siani et al. (2010) (48), Gilli et al. (2001) (49), Markgraf et al. (2003) (50), Stine et al. 

(1990) (51).
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