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Abstract

We use the erosion-deposition model introduced by Charru et al. (2004) to simulate numerically the evolution of a plume of
bedload tracers entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange
of particles between the bed and the bedload layer. We find a transition between two asymptotic regimes. At early time, the
tracers, initially at rest, are gradually set into motion by the flow. During this entrainment regime, the plume, strongly skewed
in the direction of propagation, continuously accelerates while spreading non-linearly. With time, the skewness of the plume
eventually reaches a maximum value before decreasing. This marks the transition to an advection-diffusion regime in which
the plume becomes increasingly symmetrical, spreads linearly, and advances at constant velocity. We derive analytically the
expressions of the position, the variance and the skewness of the plume, and investigate their asymptotic regimes. Our model
assumes steady state. In the field, however, bedload transport is intermittent. We show that the asymptotic regimes become
insensitive to this intermittency when expressed in terms of the distance traveled by the plume. If this finding applies to the

field, it might provide an estimate for the average bedload transport rate.

1 Introduction

Alluvial rivers transport the sediment that makes up their bed. From a mechanical standpoint, the flow of water applies a shear
stress on the sediment particles, and entrains some of them downstream. When the shear stress is weak, the particles remain
close to the bed surface as they travel (Shields, 1936). They roll, slide and bounce over the rough bed, until they settle down
(Fernandez-Luque and Van Beek, 1976; Van Rijn, 1984; Nino and Garcia, 1994). This process is called bedload transport.
Bedload transport is inherently random (Einstein, 1937). A turbulent burst, or a collision with an entrained grain sometime
dislodges a resting particle. The likeliness of this event depends on the specific arrangement of the surrounding particles. On
average, however, the probability of entrainment is a function of macroscopic quantities such as shear stress and grain size

(Ancey et al., 2008). Once dislodged, the velocity of a particle fluctuates significantly around its average (Lajeunesse et al.,
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2010a; Furbish et al., 2012b, c, a; Roseberry et al., 2012). Finally, the particle’s return to rest is yet another random event.
Overall, a bedload particle spends only a small fraction of its time in motion.

Altogether, the combination of these stochastic processes results in a downstream flux of particles. Fluvial geomorphologists
measure this flux by collecting moving particles in traps or Helley-Smith samplers (Leopold and Emmett, 1976; Helley and
Smith, 1971). The instantaneous sediment discharge fluctuates due to the inherent randomness of bedload transport. However,
averaging measurements over time yields a consistent sediment flux (Liu et al., 2008).

An alternative approach to sediment-flux measurements is to follow the fate of tracer particles. In November 1960, Sayre
and Hubbell (1965) deposited 18 kg of radioactive sand in the North-Loup river, a sand-bed stream located in Nebraska (USA).
Using a scintillator detector, they observed that the plume of radioactive sand gradually spread as it was entrained downstream.
Tracking cobbles in gravel-bed rivers reveals a similar behavior: tracers disperse as they travel downstream (Bradley et al.,
2010; Bradley and Tucker, 2012; Hassan et al., 2013; Phillips et al., 2013).

The dispersion of the tracers, expressed as the variance of their location, results from the randomness of bedload transport.
Nikora et al. (2002) identify three regimes with distinct time scales. A particle entrained by the flow repeatedly collides with
the bed (Lajeunesse et al., 2017). At short time, between two collisions, particles move with the flow, and the variance increases
as the square of time (Martin et al., 2012; Fathel et al., 2016). This regime is analogous to the ballistic regime of Brownian
motion (Zhang et al., 2012; Fathel et al., 2016).

As the particle continues its course, collisions deviate its trajectory. In this intermediate regime, the variance increases non-
linearly with time (Martin et al., 2012). Nikora et al. (2002) attribute this behavior to anomalous super-diffusion; but Fathel
et al. (2016) contest their interpretation.

With time, tracers settle back on the bed, where they can remain trapped for a long time. How the distribution of resting times
influences the long-term dispersion of tracers remains unknown. The data collected by Sayre and Hubbell (1965) are consistent
with the existence of a diffusive regime, in which the variance increases linearly (Zhang et al., 2012). Other investigators,
however, report either subdiffusion or super-diffusion (Nikora et al., 2002; Bradley, 2017). These anomalous diffusion regimes
are sometimes modeled with fractional advection-dispersion equations (Schumer et al., 2009; Ganti et al., 2010; Bradley et al.,
2010).

The variability of the stream discharge further complicates the interpretation of field data. Bedload transport occurs when
the shear stress exceeds a threshold set by the grain size. Most rivers fulfill this condition only a small fraction of the time,
making sediment transport highly intermittent (Phillips et al., 2013; Phillips and Jerolmack, 2014). The rate at which tracers
spread thus depends not only on the inherent randomness of bedload transport, but also on the probability distribution of the
river discharge (Ganti et al., 2010; Phillips et al., 2013; Bradley, 2017).

Laboratory experiments under well-controlled conditions isolate these two effects. For instance, Lajeunesse et al. (2017)
tracked a plume of dyed particles in an experimental channel. Although the flow was constant in this experiment, the tracers
still dispersed as they traveled downstream. In this case, dispersion resulted from the inherent randomness of bedload transport
only. We can decompose this randomness into two components. First, the velocity fluctuations disperse the particles (Furbish

et al., 2012a, c, 2016). Secondly, the random exchange of particles between the bedload layer, where particles travel, and the
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sediment bed, where particles are at rest, further disperses the particles (Lajeunesse et al., 2013, 2017). This effective diffusion
also occurs in chromatography experiments, where a bonded phase exchanges the analyte with the flow (Van Genuchten and
Wierenga, 1976).

In a recent paper, Lajeunesse et al. (2013) used the erosion-deposition model introduced by Charru et al. (2004) to derive the
equations governing the evolution of a plume of tracers. Neglecting velocity fluctuations, they found that the second dispersion
process, namely the exchange of particles between the bedload layer and the sediment bed, efficiently disperses the tracers.
They also observed the transition between an initial transient and classical advection-diffusion. In the present paper, we further
this investigation. Our objective is to derive formally the contribution of the advection-exchange of particles to the dispersion
of a plume of tracers. To do so, we briefly rederive the equations governing the evolution of a plume of tracers (Sect. 2). We
simulate numerically the propagation of a plume of tracers and discuss the nature of the two asymptotic regimes evidenced in
Lajeunesse et al. (2013) (Sect. 3). We analyse the long-time advection-diffusion behavior of the plume and provide an analytical
expression for the diffusion coefficient and the plume velocity (Sect. 4). We derive analytically the mean, the variance and the
skewness of the tracers distribution and describe their asymptotic behavior in each regime (Sect. 5). Finally, we discuss the

applicability of these results to the field (Sect. 6).

2 Entrainment of tracers

In most rivers, sediment are broadly distributed in size. This likely influences the dispersion of bedload tracers (Martin et al.,
2012; Houssais and Lajeunesse, 2012; Pelosi et al., 2014). For the sake of simplicity, however, we restrict our analysis to a
bed of uniform particles of size ds. The bed is sheared by a flow, which applies a shear stress strong enough to entrain some
particles. The latter remain confined in a thin bedload layer.

For moderate values of the shear stress, the concentration of moving sediments is small, and we can neglect the interactions
between particles. The erosion-deposition model introduced by Charru et al. (2004) provides an accurate description of this
dilute regime, in which bedload transport is controlled by the exchange of particles between the sediment bed and the bedload

layer. This exchange sets the surface concentration of moving particles, n.,, through mass balance:

ongy, ongy,

ot + ox

=E£-D, )

where we introduce the average particle velocity V. E is the erosion rate, defined as the number of bed particles set in motion
per unit of time and area. Similarly, the deposition rate D is defined as the number of bedload particles settling on the bed
per unit of time and area (Charru et al., 2004; Charru, 2006; Lajeunesse et al., 2010b; Seizilles et al., 2014; Lajeunesse et al.,
2017).

To investigate the dispersion of bedload particles, we consider that some of them are marked (Fig. 1). We refer to these
marked particles as “tracers”, and assume that their physical properties are the same as those of unmarked particles. With these

assumptions, the mass balance for the tracers in the bedload layer reads
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Figure 1. Granular bed sheared by a steady and uniform flow. The bed is a mixture of marked (red) and unmarked (white) grains.

where we introduce the proportion of tracers in the moving layer, ¢. Similarly, 1 is the proportion of tracers on the bed surface.

When subjected to varying flow and sediment discharges, the bed of a stream accumulates or releases sediments (Gintz
et al., 1996; Blom and Parker, 2004). Some particles may then be temporary buried within the bed, inducing streamwise
dispersion (Crickmore and Lean, 1962; Pelosi et al., 2014). Here, we neglect this mechanism and restrict our analysis to steady
and uniform sediment transport. Accordingly, we assume that erosion and deposition affects the bed over a depth of about
one grain diameter only. This hypothesis holds if the departure from the entrainment threshold is small enough. With these

assumptions, the mass balance for the tracers on the bed surface reads

o
nsa—Dsb*Eﬂ) 3)

where n; is the surface concentration of particles at rest on the bed surface. Each of them occupies an area of about d2. The
surface concentration of particles at rest is therefore n, ~ 1/d>.
For steady and uniform transport, the surface concentration of moving particles, n, is constant. In addition, erosion and

deposition balance each other:
E=D. “)

Laboratory experiments suggest that the deposition rate is proportional to the concentration of moving particles:

Nm

D= )
T

where we introduce the average flight duration, 74 = ¢4 /V/, and the average flight length, ¢; (Charru et al., 2004; Lajeunesse

et al., 2010b). The flight length is the distance traveled by a mobile particle between its erosion and eventual deposition.
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Similarly, the flight duration is the time a particle spends in the bedload layer. In practice, measuring these quantities often
proves difficult, since they depend on how one defines the mobile and the static layer (Lajeunesse et al., 2017).

Combining equations (2), (3), (4) and (5) provides the set of equations that describe the propagation of the plume:

oo 0 1,
Vs = ;(lﬁ ). (6)
o «a
i _;W—@ 7

where we define o = 1y, /ng ~ nuyd?, the ratio of the concentration of moving particles to the concentration of static particles.
This ratio is smaller than one. It is proportional to the intensity g5 of bedload transport:
d2

~ =2 - 8
a~ 4 ®)

Complemented with initial and boundary conditions, equations (6) and (7) describe the evolution of the plume. In dimen-

sionless form, they read

99 99 _

A @
o
7 = -9 (10)

where =t/ 7 and & = x/{; are dimensionless variables. For ease of notation, we drop the hat symbol in what follows.

A single parameter controls equations (9) and (10): the ratio of surface densities «, which characterizes the average distance
between grains in the bedload layer. Since the erosion-deposition model assumes independent particles, we can only expect it
to be valid when moving particles are sufficiently far away from each other, that is when « is small or, equivalently, when the
Shields parameter is near threshold.

In the next section, we solve numerically equations (9) and (10).

3 Propagation of a plume of tracers

Laboratory measurements of bedload often use top-view images (Martin et al., 2012; Lajeunesse et al., 2017). Unless individual
particles can be tracked, the tracers at rest are usually indistinguishable from those entrained by the flow. Separating the
proportion of tracers in the moving layer, ¢, from that on the bed surface, v, is practically impossible. Instead, top-view
pictures show the total concentration of tracers:

_nm¢+ns"/]_ « 1
€= Ny, + Nis _a—|—1¢+o¢—|—1

. Y

Tracking sediment in rivers poses a similar problem. In general, one records the position of the tracers when the river stage
is below the threshold of grain entrainment (Phillips et al., 2013; Phillips and Jerolmack, 2014). At the time of measurement,
all tracers are therefore at rest. As a result, the proportion of mobile tracers vanishes (¢ = 0), and the total concentration of

tracers reads ¢ = ¢ /(o + 1).
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In summary, the proportions of mobile and static tracers, ¢ and 1), naturally derive from mass balance (2) and (3). However
their measurement proves difficult during active transport. On the other hand, experimental and field investigations provide the
total concentration of tracers, ¢ (Sayre and Hubbell, 1965; Lajeunesse et al., 2017). This quantity is conservative, as the total
amount of tracers, M = f cdz, is preserved. In the following, we therefore focus on the concentration of tracers, c.

To study the evolution of the tracer concentration, we solve equations (9) and (10) numerically, using a finite volume scheme.
We then compute the tracer concentration using equation (11) (Fig. 2).

The early evolution of the plume depends on initial conditions. In most field experiments, tracers are deposited at the
surface of the river bed when the flow stage is low and sediment are motionless (Phillips et al., 2013). During floods, the river
discharge increases and the shear stress eventually exceeds the entrainment threshold, setting in motion some of the grains. The
entrainment of particles strongly depends on the arrangement of the bed: grains highly exposed to the flow move first (Charru
et al., 2004; Turowski et al., 2011; Agudo and Wierschem, 2012). Several authors find that the tracers they disposed on the
bed are more mobile during the first flood than during later ones (Bradley and Tucker, 2012). During the later floods, tracers
gradually get trapped in the bed, and their average mobility decreases. On the other hand, Phillips and Jerolmack (2014) find
no special mobility during the first flood. In the absence of a clear scenario, we choose the simplest possible initial conditions:
we assume that, initially, all tracers belong to the static layer: ¢(x,t = 0) = 0.

With these initial conditions, the evolution of the plume follows two distinct regimes. At early times, the flow gradually
dislodges tracers from the bed and entrains them in the bedload layer. During this entrainment regime, only a small proportion
of the tracers move. Consequently, the plume develops a thin tail in the downstream direction (Fig. 2a). The corresponding
distribution of travel distances is strongly skewed towards the direction of propagation, a feature commonly observed in field
experiments (Liébault et al., 2012; Phillips and Jerolmack, 2014).

With time, the plume moves downstream and spreads both upstream and downstream. As a result, the concentration rapidly
decreases to small levels. The plume becomes gradually symmetrical and tends asymptotically towards a Gaussian distribution
(Fig. 2b). This regime is reminiscent of classical diffusion.

To better illustrate this evolution, we introduce the mean position of the plume of tracers:
oo
(z) ! / d (12)
Ty = — cxdx.
M
— 00
We also characterize its size with the variance:
o0
1
2 2
0= — cle—(x))"dz 13
i [ etz 03
—0o0
and its symmetry with the skewness:

©0 3
7:% /c<xg<x>) dz. (14)

The evolution of these three moments is consistent with the existence of two asymptotic regimes (Fig. 3). At short time, the

plume grows a thin tail downstream. This deformation causes the plume’s skewness to increase as t*. During this regime, the
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Figure 2. Evolution of the tracer concentration (o« = 0.1) obtained by solving numerically equations (9) and (10). (a) Early entrainment
regime. (b) Relaxation towards the diffusive regime. Tracers are initially at rest, forming a symmetric plume of length L = 0.5 and mass

M = 1. The concentration profile asymptotically tends towards a Gaussian distribution (dotted red line).

average location of the plume increases as ¢? and its variance grows as ¢3. Although the variance increases non-linearly with

time, the exponent, 3, is too large for super-diffusion (Weeks and Swinney, 1998).
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After a characteristic time of the order of 7 ~ 7, the skewness of the plume reaches a maximum (Fig. 3c). This corresponds
to a drastic change of dynamics: the skewness starts decreasing as the plume becomes gradually more symmetrical. At long
time, the plume of tracers advances at constant velocity and diffuses linearly with time (Fig. 3a and b). This regime, regardless
of the value of «, corresponds to classical advection-diffusion.

Next, we establish the equivalence between diffusion and the long-time behavior of the tracers.

4 Advection-diffusion at long time

The diffusion at work in equations (9) and (10) results from the continuous exchange of particles between the bedload layer,
where particles travel at the constant velocity V, and the sediment bed, where particles are at rest. The velocity difference
between the two layers gradually smears out the plume and spreads it in the flow direction. This process occurs in a variety
of physical systems in which layers moving at different velocities exchange a passive tracer. A typical example is Taylor
dispersion, where a passive tracer diffuses across a Poiseuille flow in a circular pipe (Taylor, 1953). The combination of shear
rate and transverse molecular diffusion generates an effective diffusion in the flow direction. Other exemples of effective
diffusion include solute transport in porous media and chromatography (Van Genuchten and Wierenga, 1976).

To establish formally the equivalence between diffusion and the long-time behavior of the plume, we follow a reasoning

similar to the one developed for chromatography (James et al., 2000). Equations (9) and (10) are equivalent to:

Qoo o o X (1)
o a+10xr  (a+1)2 02’

06 1 096 Oc

54_7044—1%—’_(0[—’_1)5 = %, (16)

where we introduce d = 1 — ¢, the difference between the proportion of tracers on the sediment bed and that in the bedload
layer. Eventually, these proportions equilibrate each other. At long time, we therefore expect the solution of equations (15) and

(16) to relax towards steady state, for which 9 is of order ¢ < 1. Accordingly, we rewrite these two equations as

Jdc n a Jdc « o) (17
e i SN
ot a+1 dz (a+1)2 9z’
a6 1 99 1 Oc
— 4 — = 1 = - —. 1
8t+a+18x+(a+ )0 € Ox (18)
Introducing T'= e t and X = € x, and developing ¢ and § with respect to € yields
Jco a Oc B
or Tariox Y (19)
800
)d = — 20
(a+1) do X (20)
at zeroth order, and
dcy a Ocp B « 00 2

9T Tat10X  (atl2 ox

at first order.
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Figure 3. (a) Position, (b) variance and (c) skewness of a plume of tracers as a function of time for &« = 0.1 and o = 0.001. We compute the
evolution of these three quantities using equations (28), (33) and (38). The results agree exactly with numerical simulations. The asymptotic
regimes of the skewness are represented with grey lines. Their intersection provides an estimate of the duration of the entrainment regime

(see equation (45)).
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Multiplying equation (21) by € and summing the result with equation (19), we finally get

Oc a Oc « 9%c
o avior (atl)p 022 @2)

At long time, the transport of the tracers follows the advection-diffusion equation (22). We identify the advection velocity, U,

which reads:

Y4 J4
S 7 A l’ (23)
a+1 Tf Tf
Likewise, the diffusion coefficient reads:

a G 4G
C’d:m;fva;. 24)
This asymptotic equivalence explains the advection-diffusion regime (Figures 2 and 3).

We interpret this formal derivation as follows. In the reference frame of the plume, a tracer at rest on the bed moves backward,
while a tracer entrained in the bedload layer moves forward. At long time, the proportions of tracers in each layer equilibrate.
Consequently, the probability that a tracer be entrained and move forward, equals that of deposition. In the reference frame
of the plume, the exchange of particles between the bed and the bedload layer is thus a Brownian motion, hence the linear
diffusion of the plume.

In the next section, we investigate the evolution of the location, the size and the symmetry of the plume as it propagates

downstream.

5 Location, size and symmetry of the plume

Concentration, defined as the number of tracers per unit of area, depends on the area over which it is measured. Its value is
meaningful when the measurement area is much larger than the distance between particles, and much smaller than the plume.
During the entrainment regime, the plume develops a thin tail containing only a small proportion of tracers. Measuring the
concentration profile during this regime is thus challenging. To our knowledge, only Sayre and Hubbell (1965) were able to
measure consistent concentration profiles, using radioactive sand. In practice, most field campaigns involve a limited number
of tracers (900 at most) (Liébault et al., 2012; Bradley and Tucker, 2012; Phillips and Jerolmack, 2014; Bradley, 2017). It is

thus more practical to consider integral quantities, such as the mean position of the plume (x), its variance o2, and its skewness

5.
Multiplying equation (15) by x and integrating over space provides the evolution equation for the mean position:
o{x) ! !
= — ) 25
ot a+1 (a+1)2<> (25)
where
(6) = L [sa (26)

10
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is the average difference between the proportion of tracers on the sediment bed and in the bedload layer. To solve equation
(25), we need an equation for (§). The latter is obtained by integrating (16) over space:

% =—(a+1) (0) 27)

Equations (25) and (27) describe the downstream motion (x) of the plume. To solve them, we need to specify initial condi-
tions. As discussed in section 3, we consider that all tracers initially belong to the static layeri.e. ¢(z,t = 0) = 0. This condition
and the conservation of mass, (c¢) = 1, provide initial conditions for (J): (§)(t = 0) = o+ 1. With this condition, equations (25)
and (27) integrate into

__“ o —(a+1)t
() =(edo= o 1+ e (6 @+t 71) (28)

where ( x)¢ is the initial position of the plume.
We now focus on the variance of the plume. Multiplying (15) by 2% and integrating over space yields the evolution equation

for the second moment of the tracer distribution:

o)y 2a 2w

" arD) T e 29)
where
<x5>:% /xéd:}:. (30)

is the first moment of §. To solve equation (29), we need an equation for this intermediate quantity. We obtain it by multiplying

(16) by x and integrating over space:

o(xd) (8)
P =—1—(a+1){zd)+ —— (31)

a+1
At time t =0, (x0)(t =0) = (v + 1)(x)o. Equations (29) and (31) with this initial condition provide the expression of the

second moment of the tracer distribution:

2 2— 2
<w2>=<x2hr+af(t—%a> e-(arty @2

(a+1)3 a+1 (a+1)2
20 (1 — ) 2 (v — 2)
@t T arDs 2

where (2:2)g is the initial value of the second moment of the tracer distribution. We then deduce the variance of the plume from:

o? = (2?) — (2)2. (33)

We follow a similar procedure to derive the skewness of the plume. Multiplying (15) by 2 and integrating over space yields
the evolution equation for the third moment of the tracer distribution:

A(x®) 3a 3a

o " arD ) arp®? (34)
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(z%6) = % / z2 6 du. (35)

is the second moment of §. Multiplying (16) by x2 and integrating over space provides the evolution equation for this interme-

diate quantity:

HT*0) _ (o 1)(a26) +

8t a+1<x5) —2<$> (36)

Attime t =0, (228) = (a+1){x?)o and (z3) = 0. With these initial conditions, equations (34) and (36) provide the expression
of (x3):

2 _
(%) 3 (US+204 8a+2>t

Tatl (a+ 1)
v (B ) (T )
*@4%)4 (t4;:1>t6—(a+1)t
e ()

from which we deduce the skewness of the plume:

(38)

Equations (28), (32), (33), (37), and (38) represent the evolution of the mean, the variance and the skewness of the tracers
distribution, that is, its migration, spreading and symmetry. They do not require any assumption, other than the ones of the
model itself, and agree exactly with numerical simulations (Fig. 3).

As discussed in section 3, numerical simulations reveal a transient during which the tracers, initially at rest, are gradually
set into motion by the flow (Fig. 3). During this entrainment regime, the plume continuously accelerates, spreads non-linearly
and becomes increasingly asymmetrical. To characterize this regime, we expand equations (28), (32), (33), (37), and (38) to

leading order in time:

(@) =z ~ St (39)

02— 02 ~ %ts (40)
!

v To3 (41)

These three equations are consistent with our numerical simulations (Fig. 3).
Anomalous diffusion arises from heavy-tailed distributions, of either the step length or the waiting time (Weeks and Swinney,
1998). The erosion-deposition model contains no such ingredient. Here the fast increase of the variance results from the

exchange of particles between the sediment bed and the bedload layer, at the beginning of the experiment. Over a time shorter

12
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than the flight duration 7, the tracers entrained by the flow do not settle back on the bed. They form a thin tail, which leaves
the main body of the plume, and moves downstream at the average particle velocity V' (Fig. 2a). The plume therefore consists
of a main body of virtually constant concentration, followed by a thin tail of length oc V'¢. Accordingly, we can split the integral
that defines its mean position, equation (12), into two terms. The first one, obtained by integrating cx over the main body of the
plume, yields the initial position of the plume (x)o. The second one, obtained by integrating cx over a tail of length V¢, scales
as t2. Summing these contributions yields equation (39). Similar reasonings yield equations (40) and (41) for the variance and
the skewness.

With time, the plume enters the diffusive regime. Its velocity and its spreading rate relax towards constants while its skewness

decreases (Fig. 3). We derive the corresponding asymptotic behavior by expanding equations (28), (32), (33), (37), and (38) at

long time:
(z) — (z)o ~ a%ltwat (42)
02— 02 ~ zﬁtwat (43)
vy ~2 L (44)

The asymptotic regimes (42) and (43) are consistent with the expressions derived in section 4.
The transition between the entrainment and the diffusive regime occurs when the skewness reaches its maximum value.

Equating the skewness estimated from (41) and (44) provides the approximate duration of the entrainment regime, 7. We find

o2\ /3
e = (72)"/? (0) T (45)
[0
which compares well with our numerical simulations (Fig. 3). The duration of the entrainment regime increases with the initial
size of the plume and decreases with the intensity of sediment transport.
The asymptotic regimes (39), (40), (41), (42), (43) and (44) assume that sediment transport is in steady state. In the next

section, we discuss the intermittency of bedload transport in natural streams.

6 Intermittency of bedload transport

Our description of the plume of tracers is based on the assumption that sediment transport is in steady state. This hypothesis is
often satisfied in laboratory flumes (Lajeunesse et al., 2017). In a river, it may be met for up to a few days (Sayre and Hubbell,
1965). At longer time scales, however, most rivers alternate between low-flow stages during which sediment is immobile,
and floods, during which bed particles are entrained downstream (Phillips and Jerolmack, 2016). Bedload transport is thus
intermittent.

The intermittency of bedload transport influences the propagation of tracers in several ways. First of all, sediment transport
during a flood modifies the structure of the bed (Lenzi et al., 2004; Turowski et al., 2009, 2011). As a result, the proportion
of tracers in the bedload layer and in the bed, ¢ and 1), likely change from one flood to the next. In a effort to address this

13
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Figure 4. (a) Variance and (b) skewness of a plume of tracers as a function of traveled distance (o« = 0.1). These three quantities are calculated
from equations (28), (33) and (38). Inset: concentration profiles (blue) illustrating the shape of the plume during the entrainment regime, at

the transition between the entrainment and the diffusive regime and in the diffusive regime.

question, P. Allemand and collaborators recently implemented the survey of a river located in Basse-Terre Island (Guadeloupe
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archipelago). Their preliminary observations reveal that the cobbles deposited at the end of a flood are the first entrained at the
beginning of the next (P. Allemand, personal communication, June 30, 2017). Based on this observation, we speculate that a
tracer belonging to the bedload layer at the end of a flood will still be part of the bedload layer at the beginning of the next one.
Similarly, a tracer locked in the bed at the end of a flood will belong to the static layer at the beginning of the next one. In other
words, we assume that tracers freeze between two floods.

If this assumption holds, the simplest way to account for bedload intermittency is to assume that the river alternates be-
tween two representative stages: 1) a low-flow stage during which tracers are immobile; 2) a flood stage, characterized by a
representative sediment flux ¢, ~ a'V//d?, during which tracers propagate downstream (Paola et al., 1992; Phillips et al., 2013).
Following this model, we may extrapolate our results to the field, provided we rescale time with respect to an intermittency
factor I =T, /T, where T is the total duration of elapsed time, while T is the time during which sediments are effectively in
motion (Paola et al., 1992; Parker et al., 1998; Phillips et al., 2013).

In practice, evaluating the intermittency factor requires continuous monitoring of the river discharge, and a correct estimate
of the entrainment threshold. Liébault et al. (2012), for instance, monitored the location of tracer cobbles deposited in the
Bouinenc stream (France) during 2 years. Over this period, the motion of the tracers resulted from 55 floods, for a total
duration of 42 days. Sediments were thus in motion less than I = 12% of the time.

Here, we suggest another way to circumvent the intermittency of sediment transport. Plotting the plume variance, (o2 —03),
and its skewness, v, as a function of traveled distance, (x) — (2)o, eliminates time from the equations (Fig. 4). In this plot, the
position of the plume acts as a proxy for the effective duration of sediment transport, T. The resulting curves are thus filtered
from transport intermittency (Fig. 4).

The entrainment regime corresponds to small traveled distances. In this regime, both the size of the plume and its asymmetry
increase with traveled distance (Fig. 4). Equations (39), (40) and (41) describe the early evolution of the plume. Eliminating

time by combining them, we find the behavior of the plume for short traveled distances:

84 :
o —of =1\ 5L (@) = (2)0)”, (46)
14
7= o7 (@ = (2o, @47

As discussed in section 5, these scalings result from the gradual entrainment of the tracers that are initially trapped in the bed.
After the plume has traveled over a distance roughly equal to the flight length, its skewness reaches a maximum value and
starts decreasing. This change of dynamics indicates the transition towards the diffusive regime. Equations (42), (43) and (44)

provide the long-term behavior of the plume :

o? —og ~2L; ({x) — (x)0), (48)

(49)
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The linear increase of the variance with the distance traveled by the plume is the signature of standard diffusion (see section
5).
Equating the skewness estimated from (47) and (49) provides the position (2),,4. at which the skewness reaches its maxi-

mum:

(s — (o ~ (3;)/ (%) " (50)

The entrainment regime lasts until the plume has traveled over a distance comparable to its initial size, that is until (x) — (x)¢ ~
0p.

When expressed in terms of the distance traveled by the plume, the asymptotic regimes are insensitive to the intermittency
of bedload transport. They are thus a robust test of our model, and can help us interpret field data. Let us assume that a dataset
records the evolution of a plume of tracers released in a river, over a distance long enough to explore both the entrainment
and the diffusive regime. During the diffusive regime, the skewness decreases with the traveled distance. A fit of the data with
equation (49) yields the flight length, ¢¢. Knowing the latter, we could use equation (47) to estimate the intensity of sediment
transport, «, from the evolution of the skewness during the entrainment regime.

According to section 5, the skewness reaches a maximum after a time 7. (equation (45)). Taking into account the intermit-
tency of bedload transport in natural streams, we expect that this maximum is reached when

0'2 /3 Tf
t=(72)'/° (5) - (51)

where I is the intermittency factor. Identifying this maximum in a field experiment thus yields the ratio 7;/I. Combining the
latter with our estimates of the flight length, ¢, and the intensity of sediment transport, c, should provide us with the average
sediment transport rate in the river:

G=1ad l—f. (52)
Tf

7 Conclusion

We used the erosion-deposition model introduced by Charru et al. (2004) to describe the evolution of a plume of bedload tracers
entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange of particles between
the bed and the bedload layer. This mechanism is reminiscent of the propagation of tracers in a porous medium (Berkowitz and
Scher, 1998). The evolution of the plume depends on two control parameters: its initial size, o , and the intensity of sediment
transport, «.

Our model captures in a single theoretical framework the transition between two asymptotic regimes : 1) an early entrainment
regime during which the plume spreads non-linearly, 2) a late-time relaxation towards classical advection-diffusion. The latter

regime is consistent with previous observations (Nikora et al., 2002; Zhang et al., 2012).
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When expressed in terms of the distance traveled by the plume, the asymptotic regimes are insensitive to the intermittency
of bedload transport in natural streams. According to this model, it should be possible to estimate the particle flight length and

the average bedload transport rate from the evolution of the variance and the skewness of a plume of tracers in a river.
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