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Abstract.

Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea

level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic

evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valu-

able landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring5

near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsu-

pervised method to reproducibly isolate salt marsh scarps and platforms from a DEM, referred to as Topographic Identification

of Platforms (TIP). Field observations and numerical models show that salt marshes mature into sub-horizontal platforms de-

lineated by sub-vertical scarps. Based on this premise we identify scarps as lines of local maxima on a slope raster, then fill

landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs10

from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually

isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94% for DEM resolutions of 1

m, with all but one site maintaining an accuracy superior to 90% for resolutions up to 3 m. For resolutions of 1 m, platforms

detected with the TIP method are comparable in surface area to digitised platforms, and have similar elevation distributions.

We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution.15

Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification

categorizes them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests

our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions,

associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although

pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be con-20

sidered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we

have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to

monitor and analyse topographic evolution.
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1 Introduction

Salt marshes are highly dynamic ecosystems, sequestering on average 210 g CO2 m-2 yr-1 through plant growth and decay

(Chmura et al., 2003) and capturing additional inorganic sediment when they are submerged (Nardin and Edmonds, 2014).

This productivity has allowed salt marshes to match historic sea level rise (Kirwan and Temmerman, 2009) and laterally

expand when sediment inputs were sufficient (Kirwan et al., 2011). It also places them among the most valuable ecosystems in5

the world (Costanza et al., 1997), and they provide diverse ecosystem services such as flood attenuation (Möller and Spencer,

2002; Shepard et al., 2011), blue carbon sequestration (Chmura et al., 2003; Coverdale et al., 2014), and contaminant capture

(Nelson and Zavaleta, 2012). Their economic value combined with their alarming retreat (Day et al., 2000; Duarte et al., 2008;

Kirwan and Megonigal, 2013) makes monitoring the evolution of salt marshes crucial for developing management strategies

that maintain the health of these ecosystems.10

The most closely monitored properties of salt marsh ecosystems are ecological assemblages and elevation, as they are

both essential to understand eco-geomorphic processes (Reed and Cahoon, 1992). For instance, elevation determines flooding

frequency and therefore influences pioneer vegetation encroachment (Hu et al., 2015), which in turn affects vertical accretion

through inorganic sediment capture (Pennings et al., 2005; Mudd et al., 2004, 2010). Individual plants also react to elevation

by modifying their root to shoot length ratios, generating feedbacks between organic material build-up and sediment capture15

(Mudd et al., 2009). The variable intensity of these eco-geomorphic feedbacks enables salt marshes to accrete in response to

variations in sea level, thus maintaining their place in the tidal frame (Kirwan and Temmerman, 2009; Crosby et al., 2016).

The objective detection and analysis of vegetation patterns is a mature field, with habitat mapping commonly undertaken

through the analysis of spectral properties such as the Normalized Difference of Vegetation Index (NDVI) (Jucke van Beijma,

2015). NDVI mapping is now developed to the extent that it requires only a minimum of ground-truthing to determine the20

presence and type of vegetation (Hladik and Alber, 2014). This index has been shown to consistently differentiate vegetated

areas from tidal flats (Tuxen et al., 2008) and flooded channels from dry land despite the sensitivity of classification algorithms

(Belluco et al., 2006; Wang et al., 2007).

However, spectral data sources do not provide the topographic information necessary to fully understand morphodynamic

processes: although Digital Elevation Models (DEMs) have been successfully generated from habitat maps in the Venice25

lagoon (Silvestri et al., 2003), additional influences on halophyte distribution such as groundwater circulation (Moffett et al.,

2010, 2012) can lead to mismatches between topography and habitats (Hladik et al., 2013). These additional influences on

habitat distribution prevent the reliable use of spectral data to infer topography. Furthermore, delineating salt marsh platforms

exclusively from spectral sources encourages morphological studies to define salt marshes dominantly from an ecological

perspective, whereas the physical setting, most notably the elevation within the tidal frame, plays a key role in maintaining30

ecosystem health (e.g., Morris et al., 2002).

The topographic data necessary to identify marsh platforms already exist: the proliferation of freely available high resolution

topographic datasets from lidar or structure from motion (SfM) techniques means that DEMs with a grid cell size below 1 m

are increasingly common on salt marshes, and offer vertical accuracies below 20 cm even without correcting for vegetation
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(Sadro et al., 2007; Wang et al., 2009; Chassereau et al., 2011). At these resolutions, most scarps and channels are detectable

on a DEM, and several automated topographic methods already allow the identification of tidal channel networks (Fagherazzi

et al., 1999; Liu et al., 2015). However, contrary to spectral datasets, tools designed to accurately delineate the extent of salt

marshes through means other than manual digitisation are lacking.

In this study, we propose an unsupervised method to topographically differentiate marsh platforms from tidal flats, which we5

refer to as Topographic Identification of Platforms (TIP). The TIP method aims to reproducibly and accurately delineate marsh

platforms using only a DEM as input, while also reducing identification costs and enabling systematic topographic analyses of

multiple salt marshes.

We here define salt marsh platforms as sub-horizontal surfaces in the coastal landscape, separated from surrounding intertidal

flats by steep scarp features. The processes that form salt marsh platforms can be described by ecological alternate stable10

states theory (Schroder et al., 2005) and geomorphic bifurcation models (Fagherazzi et al., 2006; Defina et al., 2007). These

processes cause salt marshes to develop a distinctive, biologically-mediated topographic structure consisting of several sub-

horizontal platforms, separated from tidal flats and from each other by a subvertical scarp and dissected by incising channels

(Temmerman et al., 2007; Marani et al., 2007, 2013). The TIP method exploits this characteristic topography, which is clearly

visible on high-resolution DEMs and their associated slope rasters, to identify scarps and steep channel banks. As our method15

uses topographic signatures of marsh platforms, it will reflect the interplay between sedimentation, erosion, and biomass

(Fagherazzi et al., 2012) rather than the distribution of specific macrophyte species. It should therefore be complementary to,

rather than a replacement for, methods that detect plant zonation on marshes. We compare TIP-detected platforms with six

manually digitised platforms from English marshes at varying grid cell sizes, demonstrating the potential of this method for

quantitative topographic analyses and short to mid-term monitoring.20

2 Methodology

The TIP method automatically detects scarps and platforms of salt marsh systems from a DEM with no manual calibration

requirements. Its general process is described in Fig. 1, and includes the possibility of filtering (step 1) and degrading (step 2)

the DEM; the effects of both treatments are examined in the discussion. A slope raster is then generated by fitting a polynomial

surface to topographic data and taking the derivative of this surface (Hurst et al., 2012; Grieve et al., 2016) (step 3). Steps 4 and25

5 are novel algorithms developed in this study to isolate scarps and platforms. The results of the isolation process are compared

to manually generated platforms (step 6) to generate a comparison map (step 7).

2.1 Test sites

We test the TIP method on six sites in England, selected for the availability of airborne lidar data in the form of gridded

1 m resolution rasters, provided by the UK Environment Agency (http://environment.data.gov.uk/ds/survey/), and for the30

diversity of their morphologies and tidal ranges. Dataset metadata is available freely on the Environment agency website

(https://data.gov.uk/dataset/lidar-composite-dtm-1m1). For each site, marsh platforms were digitised on an unfiltered and non-
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degraded DEM at a scale of 1: 500, using the open-source software QGIS (step 6 in Fig. 1). Source data were flown in 2012

for all sites, unless noted otherwise. The locations of the selected sites are shown in Fig. 2.

Shell Bay, Dorset (S1) is a shallow bay with a spring tidal range of 2.4 m, located in Poole Harbour, a limited entrance bay

(sensu Allen (2000)) protected from strong waves. The marshes in Shell Bay display jagged outlines, indicative of low wave

and tidal current stress (Leonardi and Fagherazzi, 2014). The Stour Estuary marshes (S2) 6 km upstream of the meso-tidal5

Stour mouth are subject to a spring tidal range of 3.8 m and fluvio-tidal currents due to their estuarine fringing position (sensu

Allen (2000)), and therefore display more linear boundaries. The Stiffkey marshes (S3) are back-barrier marshes (Allen, 2000),

which experience a 4.7 m spring tidal range and display signs of erosion and accretion. These recent perturbations to the marsh

surface provide an interesting challenge for topographic detection of marsh extents. The macro-tidal Medway estuary marshes

(S4, spring tidal range of 6.4 m) were chosen due to the presence of numerous channels in the tidal flats. In order to test the10

ability of our method in regions with extreme tidal ranges, we also analysed two mega-tidal sites: Jenny Brown’s Point marshes

(S5, spring tidal range of 9.2 m) and the Parrett estuary (S6, spring tidal range of 11.8 m), where sand dunes, different elevations

inside the tidal flats, fallen blocks and sunken platforms will test the limits of the method’s ability to correctly delineate marshes

in these environments.

2.2 Preprocessing Topographic Data15

The TIP method isolates marsh platforms from a DEM up to their seaward limits by detecting the topographic signature

generated by the development of salt marshes. The definition of landward boundaries can vary significantly with context, and

may be defined by a vegetation zonation change (Mo et al., 2015), agricultural parcels, or infrastructure (Feagin et al., 2010).

Topographic input data is therefore clipped to the landward limit of the platform, at the discretion of the user. In the preparation

stage, local slope is calculated from the DEM by fitting a second order polynomial surface (Hurst et al., 2012) with a window20

radius of three times the horizontal resolution of the DEM, selected because it is the minimum radius needed to calculate slope

with this method. The DEM may be passed through a Wiener filter (Wiener, 1949; Robinson and Treitel, 1967) to reduce

noise from lidar datasets and/or degraded by averaged subsampling before the determination of slope to match complementary

datasets. The effect of enabling these optional treatments is further discussed in the results section. Although methods exist to

account for vegetation cover in the DEM (Hladik and Alber, 2012; Wang et al., 2009; Sadro et al., 2007; Chassereau et al.,25

2011; Montané and Torres, 2006), we chose not to apply these corrections as we wanted to ensure that the TIP method can be

applied without information on the vegetation assemblages at a given site.

2.3 Scarp routing

Tidal flats and salt marshes occur mostly on low energy coasts (Allen, 2000), characterised by low local relief and slopes.

They therefore display similar local slope values, and this parameter alone is insufficient to differentiate between tidal flats30

and marsh platforms. Likewise, although marsh platforms are locally higher than tidal flats and channels, this may not be the

case for complex depositional environments (e.g. marshes sheltered by a sand spit), where long-shore declivity may cause

portions of the tidal flats to be higher than distant emergent platforms. Therefore, elevation alone, though it may be used to
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visually identify salt marsh platforms, is insufficient for objective platform detection. We address this problem by investigating

transition features such as channel banks and erosion scarps, which are outliers in both slope and elevation rasters. These

features are commonly defined by steep local slopes, particularly in mature and eroding systems (Defina et al., 2007; Marani

et al., 2013). Furthermore, scarps connect marsh platforms to tidal flats, and therefore represent a distinct break in elevation

between the two. In this study, we focus on the identification of scarps and steep channel banks as a precursor to the detection5

of platforms, referred to as step 4 in Fig. 1.

To reduce computational costs, we delineate an initial search space to initiate the detection of scarps by isolating steep areas

of the landscape, weighted by their elevation. We first calculate the relief of each pixel, Ri,

Ri = zi − zmin, (1)

where zi [dimensions L] is the elevation of the pixel and zmin [L] is the minimum elevation in the DEM. We then divide10

this relief by the maximum relief in the DEM to get a dimensionless relief at each pixel, R∗
i :

R∗
i =

Ri

zmax − zmin
(2)

A similar procedure is followed for slope, where Rs [dimensionless] is determined by the slope at a pixel, Si minus the

minimum slope Smin:

Rsi = Si −Smin, (3)15

and the dimensionless version is calculated as:

Rs∗i =
Rsi

Smax −Smin
(4)

We then multiply these two metrics at each pixel to create the dimensionless parameter P ∗
i at each pixel:

P ∗
i = R∗

iRs∗i (5)

This dimensionless product is useful for highlighting steep areas at high elevations (Fig. 3): the higher the value of P ∗
i , the20

steeper and higher the pixel is. P ∗
i could vary between 0 and 1, where a value of 0 would mean that a pixel was at both the

lowest elevation and gradient in the DEM, and vice-versa for a value of 1.

We use the properties of the probability distribution function (pdf) of P ∗ to define the first search space, which we call Ss1.

With the exception of macrotidal sites S5 and S6, the pdf of P ∗ decreases monotonically with increasing P ∗, and at sites S5

and S6 the pdf decreases monotonically after a peak value (Fig. 3a). When f(P*) < max(f(P*)) and P* > max(P*), the derivative25
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of the pdf is negative and increasing, i.e., the slope of the pdf curve becomes gentler with increasing P ∗. We therefore define

the threshold value P*
th where the slope of the pdf is equal to a threshold slope, Spthresh, on the declining limb of the pdf

curve (Fig. 3a). In this study we optimize the threshold value Spthresh to improve the classification of each site, as described

in the Results section. The first search space, Ss1, is defined as those pixels where P* > P*
th, as shown in Fig. 3b. The search

space Ss1 is also schematically represented as grey cells in Fig. 4a (step 4.1)5

We then define a square kernel K3 of 3 cells in width around each cell in Ss1. If more than one cell of K3 is included in Ss1,

the cell containing the local slope maximum in K3 is flagged as a first order scarp cell Sc1. If one given K3 already contains an

Sc1 cell that is not the central cell, the central cell will be flagged as an Sc1 if and only if it is the next local maximum in K3.

This results in a patchwork of first order scarp cells (step 4.2 in Fig. 4a).

For each first order scarp cell Sc1, we then flag two second order cells Sc2 as neighbouring cells with the next steepest slopes10

contained in the search space and not in contact with each other (red outlines in Fig. 4b). If two Sc1 cells are adjacent, only the

cell with the higher slope will be flagged as a Sc2 cell (step 4.3 in Fig. 4b). This generates a patchwork of first order cells (black

outlines Fig. 4b) flanked by one or two second order cells (red outlines in Fig. 4b). Starting from the second order cells Sc2, we

prolong the scarps by finding the cell with the steepest slope that is not adjacent to another identified scarp cell of two lesser

orders, within a K3 kernel centred on the previously identified cell. For example, on the third iteration Sc3 cells are identified15

in a K3 kernel centred on a Sc2 cell and must not be adjacent to an Sc1 cell. Generally, Scn cells are identified in a K3 kernel

centred on a Scn-1 cell and must not be adjacent to an Scn-2 cell. This routing procedure is applied in all kernels containing no

more than two scarp cells and repeated until no cells fit the conditions or the order n is equal to 100 (blue outlines, step 4.4 in

Fig. 4b).

This procedure produces a large number of potentially misidentified scarps, as small creeks within the platform and in higher20

portions of the tidal flat tend to be selected during this procedure. We use a further algorithm to thin these scarps and eliminate

creeks. The first procedure eliminates low elevation scarps. We first define a kernel of 9 cells in width K9 (i.e., a square kernel

of 81 pixels with the pixel being interrogated at its centre) and compare its maximum elevation max(ZK9) to the 75th percentile

q75 of the entire DEM. Cells that do not satisfy the condition max(ZK9) > ZKthresh × q75 are discarded from the finale

ensemble of scarps (step 4.5 in Fig. 4c), where ZKthresh is a parameter which we optimize below. Each K9 kernel containing25

less than 8 flagged cells is then discarded from the ensemble of scarps; after this procedure finishes we are left with the final

ensemble of scarps (step 4.6 in Fig. 4d).

2.4 Platform identification

We identify marsh platforms based on the final ensemble of scarps (step 5 in Fig. 1). The final ensemble of scarps becomes a

new search space Ss2. We then create a square kernel 3 cells in width (K3) around each cell in this new search space. Using30

this kernel we identify first order platform cells, Pc1, which are defined as all cells within K3 that have higher elevation values

than the central cell of the kernel (i.e., those that are higher in elevation than the cells in the final scarp ensemble). We do this

because platform cells are located at higher elevations than the scarp cells separating them from tidal flats. We use a kernel

rather than a simple blanket elevation threshold over the entire DEM because longitudinal elevation variations may cause some
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tidal flat cells to be higher than scarp cells. Each Pc1 cell that is not adjacent to at least 2 other Pc1 cells is considered a product

of isolated situations and eliminated from the ensemble of platform cells.

Following this initial selection of platform cells, we proceed to iteratively fill the platforms. At this point, the initial ensemble

of platform cells, Pc1, is clustered around the final ensemble of scarps since we have only used a 3 pixel wide kernel centred

on scarp cells to create the ensemble of Pc1 cells. We then iterate using a filling algorithm. The first iteration uses the cells5

Pc1, the second Pc2, and so on. In each iteration of Pcn cells, new cells are identified using two kernels, one being larger than

the other. First, we define a local elevation condition using an 11 pixel wide kernel K11: we find the maximum elevation in

this kernel and then subtract 20 cm to define the minimum local elevation for a platform pixel. The 20 cm leeway is applied

to account for local elevation variations on the platforms. The algorithm will not identify as separate platforms separated by

scarps less than this elevation threshold, so on microtial marshes this threshold can be lowered. We address this limitation in10

the discussion and appendix. The threshold is necessary to prevent the algorithm from excluding pools and slight depressions

in the platform surface.

We then use a 3 pixel wide kernel K3 within K11 to identify any cells in the next iterations’ platform ensemble (Pcn+1). These

cell must meet two conditions: i) that they are higher than the local elevation threshold identified with the 11 pixel kernel, and

ii) that their distance to the nearest cell in the final scarp ensemble is greater than their distance to platform cells from previous15

iterations. The first condition is simply to ensure the platform is indeed a low relief surface, and the second is to ensure the

iterative process fills the platform away from the scarps. The second condition is also necessary to ensure the platform filling

process does not cross scarps. This iterative process is repeated until n reaches an arbitrary value of 100, found to be sufficient

to fill the entirety of the platform surface area for our sites.

This process results in platforms surfaces that are spatially continuous, but in some instances sections of the tidal flat with20

relatively high elevations may also have been identified as marsh platforms. These areas are lower than marsh platforms by

the height of the scarp separating them. We filter these cells by using the elevation properties of the entire DEM. A number

of authors have shown that there is a gap in the probability distribution of elevations in intertidal landscapes that separates the

majority of tidal flats from the majority of marsh platforms in micro-tidal environments (e.g., Fagherazzi et al., 2006; Defina

et al., 2007; Carniello et al., 2009). Such a separation, demonstrated by the decrease in probability between the grey and blue25

surfaces in Fig. 5, is also observed in our meso- and macro-tidal sites, including mega-tidal environments such as the Parrett

estuary (Fig. 9). We search for this separation using the probability distribution of elevation, pdf(z) of all cells Pcn, divided

in 100 elevations bins. We determine that the most frequent elevation bin zmax(pdf(z)) is the most likely to contain cells correctly

assigned to the platform ensemble, as the relief of marsh platforms is lower than that of tidal flats. Therefore, only elevations

lower than zmax(pdf(z)) may contain cells misidentified as marsh platforms.30

We then must identify which cells from the population of cells lower than zmax(pdf(z)) form part of the platform, and which

do not. To do this, we truncate low elevations that have a low probability (red curves in Fig. 5), to remove the long tail of low

elevations from our initial platform identification. We take the probability distribution of the elevation of the remaining platform

cells and calculate the mean probability ¯pdf (i.e., we average the probability from the 100 bins). We then search for rzthresh

consecutive elevation bins that lie below the elevation of the maximum probability elevation that have lower probabilities than35
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this average. The reason we use consecutive bins is that we do not want the minimum elevation to be determined by a single

low probability elevation that has spuriously arisen from the binning process. Once we find rzthresh consecutive elevation bins

meeting these criteria we remove all cells lower and including the highest cell that lies within the rzthresh consecutive bins.

We optimize the parameter rzthresh below.

Having eliminated these low elevation, low probability cells, we also mark all cells higher than zmax(f(z)) as platform cells.5

This may still out leave pools and pans and platform edges remain jagged. Our final procedure aims to eliminate these artifacts

using the following procedure: for a given value of the order n, we search in the ensemble of Pcn cells for cells that are

surrounded by more than 6 Pc cells of any order within a K3 kernel. The 2 or less empty cells in K3 are then attributed the order

n-1. By iterating through values of n, starting with the order 100 and finishing with the order 2, we progressively fill pools and

jagged borders of the platform (Fig. 6a). Choosing 6 as the minimal number of platforms cells in each K3 necessary to execute10

this "reverse filling" procedure, we ensure that no headlands are generated. We then integrate scarp cells that are connected to

platform cells into the platform ensemble with an order greater than 100. We then repeat the "reverse filling" process (Fig. 6b)

and execute low-elevation elimination procedure (See blue curves in Fig. 5) to obtain the final platform ensemble.

2.5 Performance metrics

In order to evaluate the performance of the TIP method, we compare its outputs to manually digitised platforms for all of our15

test sites (step 7 in Fig. 1). For each grid cell in the detected (automatically processed) and the reference (manually digitised)

outputs, we assign the boolean value True to the marsh platform and False to the tidal flat. The results are classified as follows:

true positives correspond to matching True cells in the tested and reference outputs, true negatives to matching False cells, false

positives to True cells in the tested output that are False in the reference output, and false negatives to False cells in the tested

output that are True in the reference output. The performance of the method is then evaluated using three metrics based on the20

numbers of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) cells respectively. The accuracy

Acc (Fawcett, 2006) describes the likelihood of cells in the tested raster corresponding to the reference raster:

Acc =
TP +TN

TP +TN +FP +FN
(6)

We also test the performance of the method by reporting two other metrics: the precision, Pre, and the sensitivity, Sen

(Fawcett, 2006). The precision represents the likelihood of the tested raster overestimating the positives compared to the25

reference:

Pre =
TP

TP +FP
(7)

Conversely, the sensitivity Sen, represents the likelihood of the tested raster missing positives compared to the reference:

Sen =
TP

TP +FN
(8)
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If the results of the TIP method perfectly matched that of the manual digitisation, all three metrics would have a value of 1.

3 Results

3.1 Parameter optimisation

The TIP method contains three user-defined, non-dimensional parameters occurring in sequence during the detection process.

The first parameter, Spthresh, determines the threshold value P*
th for the high-pass filter leading to the selection of the initial5

search space, shown in Fig. 3a. The parameter Spthresh influences the solution of the equation df

dP * = Spthresh. The sec-

ond parameter, ZKthresh determines the condition on the refinement of existing scarps in the high-pass filter max(ZK9) >

ZKthresh × q75, schematically represented in Fig. 4. The third parameter, rzthresh is used in the platform dispersion pro-

cess to determine which percentage of the elevation range below ¯pdf is maintained in the platform ensemble. In this study,

these parameters were set to maximize the average accuracy Ācc across test sites (Fig. 7): the optimized values (Spthresh=-10

2.0, ZKthresh=0.85, rzthresh=8) were used for the subsequent performance analysis. Users may modify these parameters as

directed in the code documentation to better fit their study sites.

3.2 Validation and applicability

Figure 8 shows the performance of the TIP method for all six sites, discriminating between the use or absence of a Wiener

filter and evaluating how the resolution of the topographic data influences the results. We also provide the full performance15

metrics in Appendix A (Tables A1 to A6). We find the method’s accuracy to be on average 94.8% at the data’s native resolution

of 1 m, whether we apply a Wiener filter (Fig. 8a2) or not (Fig. 8a1). Degrading the DEM resolution still results in accuracy

of above 90%, although it decreases to around 60% for microtidal site S1 at a resolution of 3 m. Applying a Wiener filter to

the data causes a slight decrease in accuracy and precision (Fig. 8b2), but an increase in sensitivity (compare Fig. 8c2 to Fig.

8c1). Examining the results of all of the metrics shows that resolution degradation up to 3 m, well as the use of a Wiener filter,20

primarily causes an increase in false positives and therefore an overestimation in the extent of the marsh platform. For sites S2

to S6, we observe little change in performance metrics with resolution degradation up to 3 m.

We suggest that all three performance metrics should be used when optimising the TIP method for a study site, as no

combination of two metrics provides comprehensive insight into TIP uncertainties. Furthermore, although average accuracies

remain above 85% for resolutions of 4 to 5 m, we recommend caution when using the method at these resolutions, particularly25

in micro- to meso-tidal settings where features may be smoothed beyond the method’s recognition capacities. Use of the TIP

method is not recommended for resolutions coarser than 5 m due to the very low accuracies observed for our test sites, making

this method adapted to high-resolution data sources such as airborne lidar or photogrammetry.
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4 Discussion

4.1 Influence of site morphology on the TIP method

In order to examine the performance of the method in sites with varying morphological characteristics, we compare the proba-

bility distribution functions (pdf) of elevation from the digitised platforms to the platforms detected using the TIP method (Fig.

9). Figures 9a to f show that a left-hand tail is present for the digitised platforms, whereas platforms detected by TIP show5

a sharp decrease in the pdf at these elevations: this indicates the presence of more false negatives than false positives at the

lowest elevations of the marsh platform. This suggests that the TIP method excludes more features with a low elevation than

manual digitisation, which correspond to tidal creeks and sunken terraces at the edge of the platform. However, this does not

imply that the TIP method cannot identify multiple terraces within a platform, as shown by the multiple local maxima in the

detected pdf in Fig. 9d and f.10

We also show maps of the TIP method’s performance for each test site in order to explore this spatial variability in feature

detection (Fig. 10). For instance, the dominance of false positives over false negatives in Fig. 10a (site S1) suggests that the

method tends to overestimate the extent of jagged, low-relief marsh platforms, which are common in the sheltered microtidal

bays characterising this site. This is the product of two factors: (i) identified scarps are not always complete in micro-tidal

environments, as scarps tend to be small and therefore liable to elimination by our elevation threshold (see Fig. 4, step 4.5);15

and (ii) the reverse dispersion process (see Fig. 6) is then likely to encroach on the tidal flat. This phenomenon is exacerbated

by coarse grids or de-noised datasets (e.g. Fig. 8a1 and a2) where high slope values are smoothed and filtered out in the scarp

detection process. In our meso- to macro-tidal sites S2 to S4 (Fig. 10b-d), the method results in false negatives corresponding

to the location of tidal creeks. These creeks were purposefully included in the marsh platform during the digitisation process,

but were identified as part of the tidal flat by the TIP method. This result indicates that our method often characterises creek20

banks as platform scarps due to their morphological similarity.

Other coastal landforms may generate false positives, as seen in Fig. 10 c-f. In these cases, the position of the scarp line

differs between the digitised and the TIP-detected platforms due to elevated portions of the tidal flat being adjacent to the marsh

platform. This suggests that some areas of the tidal flat are topographically closer to the platform than to the rest of the tidal flat

and may represent areas likely to be colonised by pioneer vegetation, even though they might not be vegetated at the time of25

data acquisition. Conversely, sunken platforms or fallen blocks that are not delineated by scarps may generate false negatives,

as seen in the central area of Fig. 10e.

Although the TIP method was tested using salt marshes located in England, the scarp and platform association is a common

feature to many salt marshes around the world, making the TIP method applicable over a wide range of geographic areas.

Furthermore, the TIP method does not require the precise topography of the platform to function, making it relatively insensitive30

to unequal removal of vegetation between different DEM sources. The presence of vegetation induces positive errors in the

DEM, which counter-intuitively may be useful when applying the TIP method, as this artificially increases the platform height

and therefore the scarp slope. Examples of sites outside the United Kingdom are included in Fig. B2, and were selected to

demonstrate the versatility but also the limits of the TIP method.
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4.2 Future developments

As discussed in Section 4.1, the TIP method currently excludes tidal creeks from the marsh platform, leading to discrepancies

when compared to manual digitisation. Therefore, we would expect the TIP method to underperform on highly dissected marsh

platforms. As a proxy for the dissection of the platform by tidal creeks, we digitise tidal creek centrelines from the DEM. We

then calculate the total length of tidal creeks included in the digitised platform divided by the platform surface area. We refer5

to this quantity as the Dissection Index (DI). In Fig.11, we examine the capacity of the TIP-method to determine the area

and perimeter of marsh platforms according to their dissection index. We find that for all test sites, TIP-detected area remains

within 10% of the digitised area, whereas TIP-detected perimeter increases steadily with Dissection Index, confirming that

the exclusion of tidal creeks by the TIP method is consistently stricter than by digitisation. However, neither the TIP method

nor manual digitisation offer an objective solution to detect tidal creeks. For a comprehensive analysis of marsh platforms,10

we recommend that objective platform detection be used in conjunction with objective creek detection methods such as those

developed by Fagherazzi et al. (1999) and Liu et al. (2015). Furthermore, future developments of the TIP method will include

an objective creek detection method adapted from these publications, as well as channel network extraction methods developed

for fluvial channels by Clubb et al. (2014), to ensure that tidal creeks are detected as separate objects.

The morphological characteristics of prograding marshes are different from those of established platforms: consequently,15

vegetation patches and pioneer zones are not the object of the TIP method. Specifically, prograding margins and vegetation

patches tend to have a relief and slope that are close to those of the tidal flat, making their outlines invisible to the scarp routing

process. The combined absence of scarps and low relief of prograding marshes then interfere with the 20 cm leeway included in

the platform filling process and cause an excess of false positives. Users may reduce this leeway to improve accuracy (see Fig.

B2b1), but we discourage the use of the TIP method to identify vegetation patches and prograding margins. However, these20

dynamic features are the centrepiece of salt marsh development and would benefit from reproducible monitoring methods.

Future research may build on the works of Balke et al. (2012) to determine characteristic morphologies of prograding marshes,

thus providing the necessary groundwork to enable reproducible monitoring.

4.3 Potential for monitoring

As well as providing us with the ability to automate the delineation and analysis of marsh platforms across multiple sites, our25

method also allows the objective detection of change in marsh extent through time, with important implications for habitat

monitoring or carbon storage evaluation. We test the capacity of the TIP method to monitor temporal change through the

example of site S6, which was affected by heavy rainfall in the summer of 2007, resulting in high discharge in rivers such

as the Parrett. 1 m lidar data distributed by the Environment Agency shows that between March and October 2007 the North-

Eastern corner of site S6 underwent significant erosion. Blue pixels indicating loss of elevation (between March and October) in30

Fig. 12a bear the characteristic shape of slope failures and intersect the both the automatically- and manually-detected platform

outline of March 2007, showing that the October platform outline is further inland.
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This retreat of the marsh platform is observed both by the objectively classified (Fig. 12b) and the manually digitised

platforms (Fig. 12c). However, whereas the digitisation effort focuses on the large bank failures, the TIP method also detects

small changes in the DEM at the platform margin (visible in Fig. 12a and b), and may detect them as changes in marsh

platform extent. Consequently, despite a close correspondence between TIP-determined marsh outlines and digitised outlines

(Fig. 12a) near the bank failures, the digitised volume loss is only 81% of the objectively detected volume loss. Pioneer zones,5

characterized by shallow slopes and rapid, uneven elevation changes, are also likely to generate small topographic differences

between the DEMs.

5 Conclusions

In this study we have presented a novel method which uses the topographic signature of salt marsh platforms to determine

their seaward extent on high resolution DEMs. By combining non-dimensional search parameters and empirical calibration,10

it separates marsh platforms from tidal flats with over 90% accuracy for source data of up to 3 m in grid resolution, a result

sufficient to allow quantitative morphology analyses and monitoring, particularly for eroding marshes where scarps are clearly

defined. Independence from environmental variables means that our method can be used to complement spectral data for

identifying plant types, to better understand feedbacks between sedimentation, deposition and biomass. We tested our method

on six sites with a wide range of spring tidal ranges and found that tidal range has no significant impact on the detection15

accuracy. Furthermore, the presence of algae, kelp or duckweed as well as varying vegetation reflectance properties, which may

induce specific calibrations with spectral methods (Morris et al., 2005), do not affect our results (barring mounds of stranded

algae large enough to affect topography). Although we did not test the performance of the TIP method on DEM resolutions

finer than 1 m, the option of applying a Wiener filter to reduce DEM noise is available to accommodate DEMs generated from

unclassified point clouds, which have higher surface roughness. When combined with creek detection methods, we expect the20

performance of the TIP method to improve with fewer false negatives. This would also allow the discrimination of channel

evolution within the marsh platform and on the tidal flat, allowing us to simultaneously explore the development of marsh

platforms and tidal creeks (D’Alpaos et al., 2007, 2010) in sites with strong tidal forcing.

Furthermore, the unsupervised detection of marsh platforms from their topography alone reduces the computational cost

of topographic analysis compared to spectral studies. This promotes the consideration of salt marshes as topographic objects25

as well as ecological systems, facilitating holistic, data-driven studies on salt marsh eco-geomorphic responses, and testing

existing models of eco-geomorphic feedback (e.g. Fagherazzi et al., 2012). It also encourages us to think of the topographic

object separately from the ecological system: mismatches in their respective boundaries may therefore be used to investigate

accretion processes and pioneer zone growth in continuation with the works of Balke et al. (2014) and Hu et al. (2015).

The examination of such processes at smaller scales, such as those obtained with terrestrial lidar stations, may also reveal30

characteristic accretion patterns (Balke et al., 2012) which topographic methods may objectively detect. Other developments

of this method may, in time, enable the detection of the spatial extent of other ecosystems, such as riparian wetlands and

mangrove limits.
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Figure 1. Flow chart showing the overall structure of the TIP method and its validation. Each object (rectangle) is obtained by implementing

a routine (square), numbered as follows: 1. Implementation of a Wiener filter (optional); 2. Subsampling by average value (optional); 3.

Calculation of slope by fitting a second order polynomial surface; 4. Scarp identification by routing; 5. Platform identification by dispersion;

6. Manual digitisation of a marsh platform; 7. Comparison of the objectively detected platform to the manually digitised platform.
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Figure 2. This map shows the six sites selected from the lidar collection of the UK environment agency, coloured by spring tidal range. The

sites are numbered as follows: S1: Shell Bay, Dorset; S2: Stour Estuary, Suffolk; S3: Stiffkey, Norfolk; S4: Medway Estuary,Kent; S5: Jenny

Brown’s Point, Lancashire; S6: Parrett Estuary, Somerset.
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Figure 3. a1-6. Frequency distribution of P* for sites S1-6. The greyed portion of the plot represents pixels that are not included in the initial

search space Ss1; b. raster representation of P* for site S1: Shell Bay. Values of P* under P*
th use the topographic colour scheme, while values

above P*
th use the copper colour scheme and are included in Ss1.
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Figure 4. Schematic example of the scarp detection process through maximum slope routing. Panel a. shows two steps. Step 4.1: determi-

nation of the search space Ss1 (greyed cells, darker with arbitrary slope). Step 4.2: Determination of local maxima Sc1 (black outlines with

a plus sign); b. Step 4.3: Determination of Sc2 cells (red outlines). Step 4.4: Determination of Scn cells, n>2 (blue outlines); c. Step 4.5:

Elimination of cells where max(Zk9)< 0.85× q75 (dashed outlines with a minus sign); d. Step 4.6: Elimination of isolated cells (dashed

outlines with a minus sign). The arrows represent the progressive selection of scarp cells.
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Figure 5. Diagram describing the elimination of the tail of the elevation probability distribution function for site S1. The grey filled surface

is the pdf of elevation for the original DEM. The dark red line is the pdf of elevation of the platform after the dispersion process. The orange

line is the pdf of elevation of the platform after truncation of the tail of the distribution. The blue line is the pdf of elevation of the platform

after filling pools and jagged outlines and after the addition of scarps in the platform ensemble. The dark blue line, associated to the blue

filled surface, is the pdf of elevation for the final platform, after the tail of its distribution is truncated a second time. All distributions in this

plot are forced to display the same maximum for clarity.
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Figure 6. Schematic example of the reverse platform filling process. a. Step 5.1: Filling of empty cells adjacent to Pcn cells (grey, dark blue

and blue cells) with and order n-1 (dark blue, blue and light blue cells); b. Step 5.2: Filling of empty cells adjacent to Pcn cells (grey cells)

with and order n-1 (green cells) when scarp cells (black outlines) are included in the platform ensemble. The arrows indicate the dispersion

pattern.
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Figure 7. Accuracy charts used to optimize the three user-defined parameters for the six test sites, each site being coloured by spring tidal

range, with no filter. Each group of bars represents the accuracy for one parameter value when applied to all the test sites. The mean accuracy

appears above each group; a. Accuracy for the parameter Opt1. The retained value for Opt1 is -2.0; b. Accuracy for the parameter Opt2. The

retained value for Opt2 is 0.85; c. Accuracy for the parameter Opt3. The retained value for Opt3 is 8.
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Figure 8. Performance of the platform detection method for all sites, coloured according to their spring tidal range; a1. Accuracy of the

method when no filter is used; a2. Accuracy of the method when using a Wiener filter; b1. Precision of the method when no filter is used; b2.

Precision of the method when using a Wiener filter; c1. Sensitivity of the method when no filter is used; c2. Sensitivity of the method when

using a Wiener filter.
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Figure 9. Elevation distribution functions for sites S1 to S6 (plots a. to f. respectively). The red line corresponds to the elevation distribution

for the reference rasters. The filled area corresponds to the elevation distribution of the automatically processed rasters, coloured according

to their spring tidal range. The grey line represents the elevation distribution of the original DEM, with frequency maxima set to match those

of the automatically processed rasters so as to nullify the effect of empty cells.
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Figure 10. Rasters comparing digitised versus extracted marsh platforms superimposed on hillshade data for all six sites after detection with

no Wiener filtering. Black areas are outside of the detection domain and contain no data. Yellow areas correspond to True Positives (TP)

and transparent areas to True Negatives (TN). Red areas correspond to False Positives (FP) and blue areas to False Negatives (FN). Ticks

are placed 50m apart. The sites are numbered as follows: a: Shell Bay, Dorset; b: Stour Estuary, Suffolk; c: Stiffkey, Norfolk; d: Medway

Estuary,Kent; e: Jenny Brown’s Point, Lancashire; f: Parrett Estuary, Somerset.
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Figure 11. Ratio of TIP over digitised area (circles, red outlines) and perimeter (diamonds, black outlines) for sites S1 to S6 at the native

resolution of 1 m, with no Wiener filtering, as a function of dissection index. Here, dissection index is defined as the ratio of the total length

of tidal channels within the digitised marsh platform over the area of the digitised marsh platform, and is not bounded by drainage basins.

The greyed area corresponds to a 10% buffer around the line of equation y=1.
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Figure 12. a. Comparison of marsh areas for a portion of S6 between March (green lines) and October (orange lines) 2007, surperimposed

on hillshade data of October 2007. Bright lines correspond to the automatically detected marsh boundary, whereas faded lines correspond

to digitised marsh boundaries. Green faded lines are mostly covered by bright green lines. Coloured surfaces indicate elevation gain or loss

between March and October 2007; b. Map of elevation loss and gain associated to marsh platform evolution, according to the TIP method.

Total volume loss is 1188 m3; c. Map of elevation loss and gain associated to marsh platform evolution, according to manual digitisation.

Total volume loss is 966 m3.
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Appendix A: TIP performance tables
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Table A1. Table of Accuracy for sites S1 to S6 (columns) with no Wiener filter, for resolutions varying between 1 and 10 m (rows).
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Table A2. Table of Precision for sites S1 to S6 (columns) with no Wiener filter, for resolutions varying between 1 and 10 m (rows).
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Table A3. Table of Sensitivity for sites S1 to S6 (columns) with no Wiener filter, for resolutions varying between 1 and 10 m (rows).
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Table A4. Table of Accuracy for sites S1 to S6 (columns) with a Wiener filter, for resolutions varying between 1 and 10 m (rows).
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Table A5. Table of Precision for sites S1 to S6 (columns) with a Wiener filter, for resolutions varying between 1 and 10 m (rows).
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Table A6. Table of Sensitivity for sites S1 to S6 (columns) with a Wiener filter, for resolutions varying between 1 and 10 m (rows).
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Appendix B: Additional test sites and limitations of the TIP method

Here we present three additional sites that demonstrate the capabilities and limits of the TIP method. Sites were selected based

on the availability of gridded 1 m DEMs on OpenTopography (http://www.opentopography.org) and on the variety of tidal

ranges and climates present: we analyse Morro Bay, CA (A1), Wax Lake Delta, LA (A2) and Plum Island, MA (A3, see Fig.

B1). As is common of marshes in the United States, these additional sites have a lower relief than many European marshes,5

with site A2 displaying a relief of 0.8 m. The performances of the TIP method are recorded in Fig. B2. Optimisation parameters

were maintained within the ranges described in Fig. 7.

Site A1, located in the North-East of Morro Bay, shows an extremely close correspondence between the digitised and TIP-

detected platforms, with an accuracy of 97%. It also demonstrates the ability of the TIP method to detect marsh platforms in

DEMs where tidal flats exist at higher elevations, as shown by the similar and non-null probability of the TIP-detected and10

digitised platforms at elevations between 0.3 and 0.9 m (Fig. B2b1). To confirm the observations drawn in the body of the

article, site A1 displays an abundance of false negatives within tidal creeks (Fig. B2a1), adding weight to the argument that

these features require independent treatment.

Site A2 is located on the inside of a marsh island in the rapidly growing Wax Lake Delta. In order to detect the marsh

platform with the performance reported in Fig. B2b2, the minimum elevation buffer of 20 cm used in step 5 of Fig. 1 to fill15

marsh platforms was reduced to 5 cm. This allows the TIP method to function in a site with very low relief and poorly defined

scarps. However, we note in Fig. B2b1 that the marginal patches of the marsh are not well identified by the method, as indicated

by the relatively large number of false positives on the outline of the marsh. This example therefore demonstrates the difficulties

experienced when attempting to detect a prograding marsh by the TIP method. We therefore recommend caution when using

the TIP method to monitor prograding marshes, as additional work is needed to fully characterise the topographic signatures20

of fallen blocks and pioneer zones.

Site A3 is a portion of the well-studied Plum Island, MA. The TIP method yields similar results to site A1, with the notable

exception of the bottom right corner of Fig. B2c1. In this area, the marsh platform is heavily dissected by wide, shallow pools

and channels, which are commonly excluded from the platform ensemble by the TIP method. Furthermore, the excluded area

(containing most false negatives) forms a low, shallow concave surface within the marsh, typically associated with seasonally25

vegetated areas. These features are morphologically similar to a high tidal flat within the platform, and are therefore difficult

to identify using the TIP method.
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Figure B1. This map shows the three additional sites selected from the lidar collection of OpenTopography (http://www.opentopography.org),

coloured by spring tidal range. The sites are numbered as follows: A1: Morro Bay, California; A2: Wax Lake Delta, Louisiana; A3: Plum

Island, Massachusetts.

38

http://www.opentopography.org


Figure B2. This figure combines the map found in Fig. 10 (a1, b1 and c1) and the probability distribution functions in Fig. 9 as well as the

values of Accuracy, Precision and Sensitivity for sites A1 to A3 (a2, b2, c2). Each DEM was processed at its native resolution of 1 m.
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