
 
Reviewer 2: 
 
The author describes an approach for a detection method for avalanches based on hidden Markov 
models, applied on a seismic array. I' am wondering about the high computational and installation effort 
(two arrays) needed for this detection method, which does not make sense for practical applications. 
Also the false alarm ratio is relatively high, although a complicated detection method is used. However, 
the method and the results are well presented and the work has a scientific relevance for seismic signal 
processing , so I recommend to accept this article with minor revision: 
 
Page 1, line 11: "small changes of source direction" - this depends on the location array - avalanche path 
This is correct. However, since our array is located at the valley bottom, we expect only small changes for 
the back-azimuth. We clarified it in the abstract. 
Since snow avalanches recorded at our arrays typically generate signals with small changes in source 
direction, events with large changes were dismissed as false detections. 
 
 
Page 2, line 13-18: Might mention that infrasound detection methods for avalanches currently shows 
better results than seismic detection. Of course this depends on the avalanche type, so powder 
avalanches produce higher infrasound amplitudes, while wet snow avalanches generate higher seismic 
signals. You can also notice, that a combination of both technologies might result in a better detection 
performance.  
We added a few sentences in the introduction to address this issue. 
A recent comprehensive study on the performance of these systems has shown that in the absence of 
major topographic barriers, infrasound avalanche detection systems relying on array processing 
techniques are well suited to reliably monitor larger avalanches up to a distance of 3 to 4 kilometers 
(Mayer et al. 2018). 
 
Page 3, line 10: "natural frequency" instead of "eigenfrequency" 
We changed the term. 
 
Page 4, sec. 3.1: What does this threshold mean for the possible detectable avalanche size? Have you 
thought about using the common STL/LTA method? 
This threshold was only used to reduce the amount of data to process. It is similar to the STA/LTA 
method, however, since we are not interested in the exact onset of seismic signals (which is a big 
advantage of the STA/LTA method, especially for earthquake detection), a much simpler amplitude 
threshold was sufficient. 
 
Page 7, line 25: I'm wondering, that you can find one representative avalanche event for training, which 
can be used for the whole winter season. Normally there a large differences at the signal pattern for 
different avalanche types (powder to wet snow avalanches). 
In previous studies, we investigated using different avalanche signals to represent different classes (i.e. 
dry and wet-snow avalanches). However, this approach did not improve the classification results. Signals 
from different types of avalanches have some distinct characteristics: wet-snow avalanches generally 
generate longer signals (these avalanches flow more slowly) and higher amplitudes (larger mass often 
flowing on the bare ground). Nevertheless, when using HMMs for the classification, the duration of the 
signal and the maximum amplitude are not relevant  and there is no need to implement specific 
avalanche classes. 
 



Page 8, line 8: Is not it theoretical possible that an avalanche occur right between this two arrays and is 
than registered by both? 
The maximum distance for an avalanche to be detected is around 3 km. Since both arrays are seperated 
by about 14km, avalanches occurring right between those arrays are likely not detected at all. 
Furthermore, it is possible that avalanches releases simultaneously at both array. However, we assume 
this probability to be rather low.  
 
Page 9, line 20-24: What does this minimum event duration mean for detectable avalanche sizes? 
It is clear that imposing a duration threshold for the detections does not allow us to investigate small 
avalanches. However, due to a lack of ground truth data, we did not investigated the influence of 
avalanches size. Previous work has shown that signal duration relates to avalanche size. However, as 
powder avalanches travel at higher velocities than wet snow avalanches, a long duration of the signal 
might indicate a large and fast powder avalanche with a long runout, or a slow wet snow avalanche with 
a shorter runout and size. Thus, we cannot comment specifically on what avalanche size is excluded due 
to our minimum duration threshold. 
 
Sec. 5: A graphic comparing the number of detected avalanches, false alarms (maybe separated for every 
detection criterion) and also the number of missed events for the whole season would be useful. 
Especially I missed a detailed description about the missed events. 
We included an additional Table containing these numbers. 
 
Page 20, line 10: Might you can also note literature about seismic detection of debris flow/debris flood - 
this are sometimes similar to the detection methods for avalanches. 
We have added more references in the Discussion section related to other types of gravitational mass 
movements.  
 
 
Page 21, line 12: Efficient for your situation, but the need of two different arrays is not a "efficient 
approach". 
We now address this point in the Discussion section: 
Our suggested workflow requires two arrays to eliminate falsely classified events by finding co-
detections. This is clearly a limiting factor as it increases the cost for the instrumentation as well as 
deployment and maintenance time. 



Review of  

Automatic detection of avalanches using a combined array classification and localization 

by Heck et al. 

 

1st Revision 

 

 

The two reviewers of the original submission pointed out several specific issues within the 

manuscript. The authors responded to all of these comments, yet sometimes it is hard for me to 

check if or how those replies made it into the revised version of the manuscript. Additionally I think 

the manuscript still needs work before it can be accepted for publication. Please find my detailed 

comments below. 

 

Best regards, 

Florian Fuchs 

 

 

Handling of reviewer comments: 

 

The authors reply properly to all reviewer comments. However, especially when answering to 

Reviewer #1 comments on pages 12 and later it’s not clear anymore if those replies were integrated 

into the manuscript. I do support all of the reviewers comments and questions and I do see that the 

authors know how to respond to those. But I strongly suggest to implement all of them – at least 

briefly – into the manuscript. The same holds for almost all comments by Reviewer #2. 

Please insert all of those replies to the text (at least briefly) and indicate all the changes in the 

rebuttal letter. Otherwise, it’s hard to follow, not having done the 1 st round of reviews. 

 

Additional comments: 

Although all/many comments from the first round of reviews were already taken care of, I must 

unfortunately admit that I still had a hard time reading the manuscript. I do believe that work itself 

is interesting and the findings are worth reporting. Yet, the manuscript is not easily comprehensible 

in the current shape. Mainly, I am missing a clear and concise structure and more precision in the 

wording and figures. I also suggest to make use of the Copernicus English grammar and 

spellchecking service. 

 

We would like to thank the reviewer for the helpful comments. Based on these comments, we 

substantially changed the manuscript to improve the structure and clarity of the text. We have also 

(briefly) included many of our replies of the first round of reviews in the discussion.  

 

 

General structure and ease of reading: 

 Please be more precise throughout the entire manuscript. When you say “high”, “low”, 

“good”, “poor”, “better”, “most”, “large” please try to give values, if possible. E.g., what 

number of percentage can be considered a “good” classification result? When you speak of 

“features” that “change” and are “common” please describe specifically which features you 

mean and how they change. 

We checked the manuscript and changed the wording in places where it was ambiguous.  

 

 Your chain of processing kind of gets obscured throughout the manuscript. I’d suggest that 

somewhere you briefly list your work flow. Figure 5 somewhat tries to summarize this, but I 

think text would help here. Additionally, Figure 5 could use some instructive labels, e.g. 

you could indicated the length of the data windows. The panels “pre-processing” and 



especially “post-processing” could indicate what’s actually done. E.g. that post-processing is 

the MUSIC beamforming. 

We completely restructured the methods and results sections to more clearly convey how the 

suggested signal processing workflow works.  

 

 I am missing a short subsection on “post-processing” in section 3, “methods”. You 

repeatedly emphasize the need for “post-processing” but it’s not clear what this is. 

We added a section to more clearly explain the different stages in the post-processing. 

 

 In principle it is a good idea to have dedicated sessions on methods and results (sections 3 

and 4 in this manuscript). Yet, you mix methods, observations, interpretation and references 

repeatedly. In the “Methods” section you should be as brief and precise and necessary. You 

should not evaluate the results of other work here, but only briefly repeat the main points 

you make use of. All the rest is better placed in the discussion section. Likewise, in the 

results section (4) you repeatedly evaluate the quality of the results (this should be done in 

the discussion section) or introduce new steps in the processing. Please double-check to 

clarify. 

As mentioned before, we completely restructured the methods and results sections. Furthermore, we 

moved some sections of the text to either the introduction or the discussion.  

 

 It’s difficult to track how many events you remove during the different processing steps and 

how many events actually remain as final detections. Maybe a table listing the number of 

events and how many get discarded by each processing step would help. 

We added an additional table showing the number of detection and false classification for each 

processing step. 

 

Discussion section: 

 I agree with Reviewer #1 that the “Discussion” section in the current state is rather a 

repetition and summary of the previous chapters. This needs to be changed. Here I’d like to 

see you discuss the benefits and limitations of your methods. E.g. it is very interesting to 

read that the sensor installation itself already has a huge impact on the classification results. 

Why? What else can influence the classification that strongly? The airplane signal could also 

be discussed here (or in the supplemental, see below), as reviewer #2 points out the strong 

difference to other observed airplane signals. What about anthropogenic signals? Are there 

roads/cars nearby? 

We rewrote most of the Discussions section and now also explicitly address the airplane signals that 

were falsely classified as avalanches.  

 

 Most importantly, the choice of the training event should be discussed, as it surely has a 

huge impact. For example why did you only choose a part of the avalanche signal in Figure 

7 as the training event? Half of the signal seems to be missing ... You may not have the time 

and patience now to carefully double-check the performance of your routine based on 

different training events, but this would of course be desirable. Do you maybe at least have 

some experience from other datasets that you can report on? Why can’t you simply use more 

than one training event? 

As mentioned in the discussion section now, it was best to neglect the coda of the avalanche signal 

and only use the part of the signal where energy increases up to the first maximum of the signal. We 

also investigated using different sections of the avalanche signal without improving the 

classification results. In the past, we have investigated using different training events for dry- and 

wet-snow avalanches to improve our classification results. However, such an approach did not 

improve the results at all and typically resulted in more falsely classified events. While we did not 

conduct a comprehensive investigation on the influence of the training event, our ad-hoc testing has 



shown that the influence is rather limited. Furthermore, we also wanted to highlight that it is 

possible to use this classification approach with only one training event. 

 

 Could you think of other “features” that could help to distinguish avalanches from airplanes 

and earthquakes? After all, the ones you use don’t seem to do the job. I’d personally like to 

see you speculating here … 

We investigated using other and more features in our recent work (Heck et al. (2018)). In the end, 

the feature combination used for the classification in the current work was the best suitable for the 

classification task. 

 

 Obviously, broadband sensors will not necessarily improve your data quality, neither will 

they automatically detect more distant avalanches. This needs to be rephrased. Only in the 

rare case of huge, catastrophic events – which generate long period seismic radiation, in 

contrast to the small local ones – they might be an advantage over the short-period 

geophones. The fact that “common” avalanches can only be detected within few km distance 

is probably due to the weak seismic signal they generate, and the only chance to improve the 

data quality is to have more sensors (signal-to-noise ratio) closer to the events (less 

attenuation). Of course, this is not always possible. 

We agree with the reviewer that changing the instrumentation is not likely going to improve the data 

quality nor the detection range. We therefore removed this section. 

 

Efficiency of computations: 

 When discussing the “speed of processing” you refer to a “standard 8 core processor with 

16GB RAM”. It may seem picky now, but do you actually make use of all the 8 cores? Is 

there some kind of parallelization involved in your processing? If yes, please comment on 

this, if not I think the community usually refers to “a standard personal desktop/laptop 

computer” to indicate that no supercomputing powers or high-level workstations are 

required. Similarly, do you actually need the 16GB RAM? If yes, what for? Reviewer #2 

also pointed this out and it’s actually an interesting point. In fact, probably the computing 

power wouldn’t really matter and you would not have to comment on it, if data were only 

processed “off-field” in some data center. However, In your reply, you indicate that some of 

the processing is done on-site in the field – this of course strongly limits computational 

power and is a very interesting and crucial point that is not mentioned at all in the 

manuscript. Please include this in the Instrumentation/Methods section! This will also 

clarify why you perform some of the processing steps and why computation time is crucial. 

We did not perform an in-depth analysis of our computing time, nor did we try to optimize our 

algorithms for this. We only wanted to comment on this to show that the method could be used in 

near real-time and that the most costly analysis is the MUSIC method. We do not perform any 

processing on-site in the field, this must be a misunderstanding or some unclear comments in our 

earlier replies. Note that it is useful to have a multicore processor, since several tasks can be 

performed simultaneously (e.g. computing the features of all seven sensors at the same time). We 

now only very briefly comment on this at the end of the Discussion section.  

 

 

Figures: 

 There are a lot of Figures, which complicates the reading. I suggest to e.g. somehow merge 

Figures 6, 8, 12 and 14 as they all show the same information. If all the panels were shown 

below each other, a comparison of the observations would be easier. 

 Similarly, maybe Figures 2 and 3 could be merged. 

We merged and improved some of the figures 

 

 Please highlight the avalanches in Figure 4. 



We highlighted avalanches in this figure and also included the location of the cameras and the 

seismic array. 

 

 Figures 9 + 11 are not relevant for the understanding of the text and I suggest to move those 

to the supplemental material. Reviewer #2 raised doubts about the origin of the airplane 

signals, since they look different in other studies. The authors claim to be certain about their 

interpretation. This point might also be discussed in the supplemental material, as it’s not 

crucial for the understanding of the main text. 

We do not agree with the reviewer that these figures are not relevant. In our opinion these figures 

clearly show the two main types of signals that were falsely classified. Furthermore, one can clearly 

see that the signals recorded at both arrays are very similar. This is particularly important for our 

airplane signals, which do not contain any signs of Doppler effect or clear overtones and are 

therefore rather unusual. We therefore kept these figures in the main text, but we merged them into 

one figure. 
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Abstract.

We used continuous data from a seismic monitoring system to automatically determine the avalanche activity at a remote field

site above
:::
near

:
Davos, Switzerland. The approach is based on combining a machine learning algorithm with array processing

techniques to provide an operational method capable of near real-time classification. First, we used
::
By

:::::
using a recently devel-

oped method
:::::::
approach

:
based on hidden Markos

::::::
Markov

:
models (HMMs)

:
,
:
a
::::::::
machine

:::::::
learning

::::::::
algorithm,

:::
we

:::::
were

::::
able to au-5

tomatically identify events
::::::::
avalanches

:
in continuous seismic data by using only

:::::::
providing

:
a single training event.

:::::::::::
Furthermore,

::
we

:::::::::::
implemented

:::
an

:::::::::
operational

:::::::
method

::
to

:::::::
provide

:::
near

::::::::
real-time

:::::::::::
classification

::::::
results.

:
For the 2016-2017 winter period , this

resulted in 117 events . Second, to eliminate falsely
::::
were

::::
then

:::::::::::
automatically

:::::::::
identified.

::::
False

:
classified events such as airplanes

and local earthquakes
::::
were

:::::::
filtered

:::::
using

:
a
::::

new
::::::::

approach
::::::::::

containing
:::
two

:::::::::
additional

:::::::::::
classification

:::::
steps.

:::
In

:
a
::::

first
::::
step, we

implemented an additional
:
a
::::::
second

:
HMM based classifier at a second array 14km away

::
to

:::::::::::
automatically

:::::::
identify

::::::::
airplanes10

:::
and

::::::::::
earthquakes. By cross-checking the results of both arrays , we reduced the number of false classifications by about 50%.

In a third and final step
:::::
second

::::
step,

:
we used multiple signal classifications (MUSIC), an array processing technique, to deter-

mine the direction of the source. Since snow avalanches recorded at our arrays typically generate signals with small changes in

source direction , events with large changes were dismissed as false detections
:::::::
Although

:::::::::
avalanche

:::::
events

::::
have

::
a

::::::
moving

::::::
source

::::::::
character,

::::
only

:::::
small

:::::::
changes

::
of

:::
the

:::::
source

::::::::
direction

:::
are

:::::::
common

::::::::
whereas

::::
false

::::::::::::
classifications

::::::
showed

:::::
large

::::::
changes

::::
and

::::
thus15

::::
were

::::::::
dismissed. From the 117 initially detected events during the 4-month period , our classification workflow removed 96

events as false classifications . The majority of the remaining 21 events were on 9 and 10 March 2017,
::
we

::::
were

::::
able

::
to

:::::::
identify

::
90

::::
false

::::::::::::
classifications

:::::
based

::
on

:::::
these

:::
two

:::::::::
additional

:::::
steps.

::::
The

::::::::
avalanche

::::::
activity

:::::
based

:::
on

:::
the

::::::::
remaining

:::
27

::::::::
avalanche

::::::
events

:::
was

:
in line with visual avalanche observations

::::::::::
observations

:::::::::
performed

:
in the region of Davos. Our results suggest that the

presented classification workflow could be used to identify major avalanche periods and highlight the importance of array20

processing techniques for the automatic classification of avalanches in seismic data.
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1 Introduction

During the winter seasons, snow avalanches are a common threat in mountainous
:::::::
mountain

:
regions. Avalanche warning ser-

vices therefore inform the public of the
::::::
current

:
avalanche danger. To assess the danger, warning services rely on information

about the snowpack, amount of new snow, weather conditions and avalanche activity (e.g. McClung and Schaerer, 2006)
:::::::::::::::::::::::::
(McClung and Schaerer, 2006).

Whereas the first three parameters can be measured or modeled, avalanche activity data are often hard to obtain, especially5

during snow storms or at night. Monitoring systems can possibly fill this gap by providing information on avalanche activity

independent of the time of day or visibility
::::
have

:::::::
therefore

::::
been

:::::::::
developed

::
to

:::::::
estimate

:::
the

::::::::
avalanche

:::::::
activity

::
for

::
a
::::::
certain

:::::
region.

Snow avalanches, like any other mass movement, generate seismic and infrasound waves (e.g. van Herwijnen and Schweizer,

2011b; Suriñach et al., 2005; Marchetti et al., 2015). Seismic signals of avalanches show some common characteristics, in-

cluding a spindle shaped envelope of the time series (Nishimura and Izumi, 1997) and a typical frequency content between 210

and 30 Hz (Schaerer and Salway, 1980; Suriñach et al., 2001). Several classification approaches were therefore developed to

automatically detect avalanches in seismic data. Leprettre et al. (1996) used a fuzzy logic approach to distinguish between dif-

ferent types of signals. Bessason et al. (2007) applied
::::
used

:
a nearest neighbor approach and detected

::
to

::::::
classify

::::
new

::::::::
recorded

::::::
events.

:::::
Using

:::
this

:::::::::
approach,

::::
they

::::
were

::::
able

::
to

::::::
detect 65% of all confirmed avalanches. Rubin et al. (2012) compared 12 ma-

chine learning algorithms, 10 of which were able to detect at least 90% of all manually identified avalanches. While these15

machine learning methods perform reasonably well in terms of detecting confirmed avalanche events, a large training data set

is typically required and ,
::::::::
however,

::
at

:::
the

::::
cost

::
of

::::
very

::::
high false alarm ratesare generally rather high (Rubin et al., 2012).

An alternative machine learning approach was recently presented by Hammer et al. (2017) . They
:
.
::::::::::::::::::::::::
Hammer et al. (2017) recently

used hidden Markov models (HMMs),
:::
an

::::::::
advanced

:::::::
machine

:::::::
learning

:::::::::
algorithm,

:
to automatically detect large avalanches re-

leased in February 1999
::::::
during

:::
the

:::::
winter

:::
of

:::::::::
1998-1999

:
in seismic data recorded by a single broadband station maintained20

by the Swiss Seismological Service (SED). HMMs use a sequence of multivariate Gaussian probability distributions to model

observations (e.g. seismic time series). To determine the characteristics of the distributions (i.e. mean and covariance), classical

HMMs also require a large number of training sets for each event class (e.g. avalanche, airplane or earthquake). This classical

approach was successfully used to automatic identify seismic events in continuous seismic data (Ohrnberger, 2001; Beyreuther et al., 2012).

Avalanches, however, are relatively rare events and obtaining a large set of training events is time consuming. To circumvent25

this, Hammer et al. (2012) developed an approach exploiting the abundance of data containing mainly background signals to

obtain general wave-field properties. From these properties, a widespread background model was learned and only one training

event was required. In contrast to the classical HMM approach, the classification system thus consists of a background model

and one event model for each implemented event class. Using this approach, Hammer et al. (2017)
:::
they

:
were able to identify

43 destructive avalanches during an exceptional
:::::::::
avalanches

::::::
during

:
a
:
5-day avalanche period in February 1999

:::::
period

:
within30

a radius of 30km of the broadband seismic station. Heck et al. (2018a) recently adapted this
:::
also

::::
used

:::
the

:
HMM approach to

automatically detect smaller avalanches
:::::::::
avalanches,

:::::::
however,

:
in data recorded

:::::
during

:::
the

::::::
winter

:::::
season

::::::::::
2009-2010 by a seismic

array consisting of seven less sensitive vertical geophonesduring the winter season 2009-2010. Despite the large differences

in model performance for the individual sensors, their model performed best when pooling the data from the entire array
:
.
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::::
They

:::::::
obtained

:::
the

::::
best

::::::
results

:::
for

:::
the

::::::::
automatic

::::::::
detection

::
by

:::::::::
combining

:::
the

:::::::::::
classification

::::::
results

::
of

:::
all

::::::
sensors

:
and requiring a

minimal event duration for the detections. These results highlighted that array based processing is likely to improve

:::::
Apart

::::
from

:::::
using

::::::
seismic

::::::
signals

:::
for

:
the automatic detection of avalanchesin continuous seismic data.

Array processing techniques have been used to exploit infrasound signals for the automatic detection of avalanches
:
,
::::::
several5

::::::
studies

::::::
focused

:::
on

:::
the

:::
use

::
of

:::::::::
infrasound

:::::::
signals.

::::::::::
Localization

::::::::::
parameters

:::::::::
determined

:::::
using

::::::::::::::
cross-correlation

:::::::::
techniques

:::::
were

::::
used

::
to

::::::::::::
automatically

::::::
identify

::::::::::
avalanches

::
in

::::::::::
continuous

::::
data

:::
sets

:
(Scott et al., 2007; Marchetti et al., 2015; Thüring et al.,

2015). By comparing the back-azimuth with the directions of known avalanche paths, possible avalanche events were identified

(Marchetti et al., 2015). Thüring et al. (2015) used a similar approach for the automatic detection, but relied on support vector

machines (SVM), a machine learning algorithm. The success of array processing techniques on infrasound signals led to10

the development of operational avalanche detection systems to automatically identify avalanches (Steinkogler et al., 2016). A

recent comprehensive study on the performance of these systems has shown that in the absence of major topographic barriers,

infrasound avalanche detection systems relying on

::
In

:::::::
addition

::
to

:::
the

:::::::::
automatic

::::::::
detection

::
of

::::::::::
avalanches,

::::::::::::::::::::
Lacroix et al. (2012) and

::::::::::::::::::::
Heck et al. (2018b) used

:::::::
seismic

:
array pro-

cessing techniques are well suited to reliably monitor larger avalanches up to a distance of 3 to 4 kilometers (?).15

Array processing techniques have also been used to locate the source of avalanches in seismic data
:::
the

::::::::
avalanche. Lacroix

et al. (2012) implemented a beam-forming approach and were able to assign recorded avalanches to three known avalanche

paths. Heck et al. (2018b) compared a beam-forming method with a multiple signal classification (MUSIC) approach (Schmidt,

1986) and obtained better results with the latter . The MUSIC method is based on the covariance matrix of all sensors, whereas

beam-forming methods rely on pair-wise cross-correlation (Schmidt, 1986; Rost and Thomas, 2002). Heck et al. (2018b)
:::
and20

:::
they

:
subsequently applied this method to manually identified avalanches

:::::::::
avalanches

:::::::::
monitored

:
during a two-day period in

March 2017 and were able to reconstruct the avalanche path of several recorded events. They
:::::
2017.

:::::
Based

:::
on

:::::
these

::::::
results

:::
they

:
concluded that their seismic array mostly recorded infrasound signals due to the limited distance between the sensors.

While both
:::::::::::
Nevertheless,

::::
they

::::
were

::::
able

::
to

::::::::::
reconstruct

:::
the

::::::::
avalanche

::::
path

::
of

::::::
several

::::::::
recorded

::::::
events. Lacroix et al. (2012) and

Heck et al. (2018b) showed that avalanches within a distance of approximately
::::
both

::::
used

::::
less

::::::::
sensitive

::::::
vertical

::::::::::
component25

:::::::::
geophones

:::
for

:::
the

:::::::
seismic

:::::::::
monitoring

::::::::
resulting

::
in
:::

an
:::::::::
avalanche

::::::::
detection

:::::::
distance

:::
of

::::::::::::
approximately

:
3kmof their seismic

monitoring systems were detected, seismic array processing techniques have not yet been used for the automatic detection of

avalanches in seismic data.

Our aim is to design a workflow to automatically identify avalanches in continuous seismic data . Our method consists of

using the
::::
data

:::::::
recorded

::::::
during

:::
the

::::::
winter

::::::
period

:::::::::
2016-2017

::::::
using

:::
the

:::::
same machine learning techniques based on hidden30

Markov models presented by Heck et al. (2018a)in combination with seismic array processing techniques to locate the source

of avalanches presented by Heck et al. (2018b) . The goal is to assess the performance of a fully automatic classifier in view

of possible future operational use. To develop and test the automatic classification method, we used continuous seismic data

recorded
:
as

::::
used

:::
by

::::::::::::::::
Heck et al. (2018a).

:::
To

::::::
reduce

:::
the

::::
false

:::::
alarm

::::
rate

:::
we

:::
first

:::
use

:::
an

::::::::
additional

:::::::::::
classification

:::::::::
performed

::
at
::
a

::::::
second

::::
array

::::::
14km

::::
away

:::
to

::::::
dismiss

::::::
events

:::::::
recorded

::::::
almost

:::::::::::::
simultaneously

::
at

::::
both

:::::
arrays

:::::
such

::
as

::::::::::
earthquakes

:::
and

:::::::::
airplanes.35

::
In

:
a
:::::::

second
::::
step,

:::
we

:::::::
analyze

:::
the

:::::::
median

::::::::::::
back-azimuth

::::
path

::
of

:::
the

:::::::::
detections

:::::
using

::::
the

:::::::
MUSIC

::::::
method

:::
as

:::::::::
performed

:::
by

3



:::::::::::::::::::
Heck et al. (2018b) and

:::::::
dismiss

::
all

::::::
events

:::::
with

:
a
:::::::::
randomly

:::::::::
distributed

::::::::::::
back-azimuth.

::::
We

:::::::::
performed

:::
the

:::::::::::
classification

::::
and

:::::::::
localization

:::
of

:::
the

:::::
events

::::
with

:::
the

::::
data

::::::::
recorded

::
at

:::
the

::::::
seismic

:::::
array

::::::
located

::
in

:::
the

::::::::
Dischma

:::::
Valley

::::::
above

::::::
Davos,

::::::::::
Switzerland

during the winter season 2016-2017 at two field sites above Davos, Switzerland
::::::
(yellow

::::::
square

::
in

::::::
Figure

::
1).

::::::
These

:::::
results

:::::
were

:::
then

:::::::::
combined

::::
with

::::
data

:::::::
obtained

::
at
:::
the

:::::::::::
Wannengrat

:::::
array,

:::::
which

::
is

::::::
located

::::::
14km

::
to

:::
the

::::::::
northwest

:::
of

:::
the

:::::::
Dischma

::::
field

::::
site5

:::
(red

::::::
square

::
in

::::::
Figure

::
1).

2 Field site and instrumentation

During
::::
Prior

::
to

:
the 2016-2017 winter season, we installed two seismic arrays above Davos, Switzerland(Figure 2). The arrays

were
:
,
:
similar to the system

::::::
systems

:
described by van Herwijnen and Schweizer (2011a). The first array was deployed at the

Dischma field site (yellow square in Figure 2
:
1), 14km away from Davos at the end of a tributary valley (Heck et al., 2018b).10

The field site is a flat meadow at an elevation of 2000m a.s.l. surrounded by mountain peaks which rise up to 3000m. The

second array was deployed at the Wannengrat field site above Davos at 2400m
::::::
2500m a.s.l. (red square in Figure 2

:
1). This

field site is surrounded by several avalanche starting zones (van Herwijnen and Schweizer, 2011a).

Both arrays consisted of a 300m long string with 7 vertical component geophones with an natural frequency
:::::::::::::
eigenfrequency

of 4.5Hz. The sensors of the Dischma array were buried about 50cm
:::
deep

:
into the ground whereas the sensors at the Wannen-15

grat field site were attached to rocks using an anchor. For each array , the sensors were circularly arranged (Figure 2
::
a)

:::
and

::
b).

The maximum distance between two sensors at the Dischma and Wannengrat field site was 64m and 74m, respectively, and

the average distance was 36m
:
at

:::
the

::::::::
Dischma

::::
array

:
and 45m , respectively

::
at

::
the

:::::::::::
Wannengrat

::::
array.

The instrumentation and data logging systems were identical for both arrays. Data were continuously recorded at a sampling

:::::::
sampled

::
at

:
a rate of 500Hz. Due

::::::::
However,

:::
due

:
to technical problems , only two sensors of the Wannengrat array recorded data20

throughout the entire winter (4 and 5 in Figure 2 b)and no data were collected between 12 and 20 January 2017. .
:
Both field

sites were also equipped with several automatic
:::::::
weather

::::::
stations

::
(3

::
at

::::::::
Dischma,

::
4

::
at

::::::::::
Wannengrat)

::
as

::::
well

::
as

:::::::::
automatic cameras

(8 at Dischma, 6
:
5
:

at Wannengrat)to monitor .
::::

The
:::::::::
automatic

:::::::
cameras

:::::::
visually

:::::::::
monitored

:
the surrounding slopes . Images

:::
and

::::::
images

:
were recorded every 10 minutes throughout the winter (Figure 3). In addition

::
As

:::::::
already

::::::
shown

:::
for

:::::::::
avalanche

::::::
activity

::::::
periods

:::
in

:::
the

:::::
winter

::::::
season

::::::::::
2009-2010

::
by

::::::::::::::::::::::::::::::::
van Herwijnen and Schweizer (2011b),

:::::
those

::::::
images

::::
can

::::
help

::
to

:::::::
identify25

:::
and

:::::::
confirm

::::::
seismic

::::::
events

::::::::
produced

::
by

::::::::::
avalanches.

::
In

:::::::
addition

::
to

:::
the

:::::::::
automatic

:::::::
cameras, we also performed a field survey at

the Dischma site on 15 March 2017
:::
field

:::::::
surveys

:
shortly after a period of high avalanche activity to identify avalanches and

map their outlines (Figure 4) (Heck et al., 2018b).

3 Methods

The overall goal was to develop a processing workflow to automatically identify avalanches in seismic data from the Dischma30

field site by combining HMMs with seismic array processing techniques. The developed workflow consists of five steps
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Figure 1.
:::

Map
::
of

:::
the

:::
area

::
of

::::::
Davos,

:::::::::
Switzerland.

::::
The

:::
two

:::::
arrays

:::
are

:::::::
indicated

::
by

::
a
::::
black

::::::
triangle

:::
on

::::::
colored

::::::
ground.

:::
Red

::::::::
represents

:::
the

:::::::::
Wannengrat

::::
array,

:::::
yellow

:::
the

:::::::
Dischma

::::
array.

::::::::::
Reproduced

::
by

::::::::
permission

::
of

::::::::
swisstopo

:::::::::
(JA100118).
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(a)

(ba)

(c
:
b)

Figure 2. a) Map of the area
::::
Setup

:
of Davos, Switzerland. The two seismic

:::::
sensor arrays are indicated by ablack triangle on colored

background. Red represents the Wannengrat array, yellow the Dischma array. The wind wheel indicates the location of the Weissfluhjoch

weather station. (b) Deployment geometry of the Dischmaarray. (c
:
,
:
b) Deployment geometry of the Wannengratarray. The open red circles

indicate positions of malfunctioning
:::
not

::::::
working

:
sensors during the winter 2017.Reproduced by permission of swisstopo (JA100118).
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(a) (b)

Figure 3. (a) Detailed map of the Dischma field site showing
:::
sites

::
a)

::::::::
Dischma,

::
b)

:::::::::
Wannengrat.

:::
On

:
the position

:::
map

:::
the

:::::::
positions of the

seismic array and
::::::
sensors,

:
automatic cameras

::
and

:::::::
weather

::::::
stations

::
are

::::::::
indicated. (b) Same for

:::
Due

::
to
::::::

scaling
:::
not

::::
every

:::::::
weather

:::::
station

::
is

:::::
shown

::
on the Wannengrat field site

:::
map.

which are described in more detail below (Figure 5): (1) pre-processing, (2) feature calculation, (3) HMM construction, (4)

classification and (5) post-processing.

Flow chart of the classification process. Green lines show the construction of the event model. Blue lines show the construction

of the background model. The orange lines show, how the data to be classified are processed.5

3.1 Data pre-processing

The continuous seismic data mostly consisted of noise, which
:::::
consist

::
of

:::::
noise.

:::::
Since

:
for the current application was

::::
noise

::
is of

little interest. We therefore ,
:::
we

:
applied a simple threshold based event detector to reduce the total amount of data (Heck et al.,

2018a). For a window i with a length of 1024 samples , we determined the
:
a
:
mean absolute amplitude Ai::::

was
:::::::::
determined.

When Ai ≥ 5A, with A the daily mean amplitude, the data within the window were kept
::
cut. If the amplitude threshold for10

the following window was also reached, data were concatenated. Furthermore, a section of t= 60s
:::
was

:::
cut

:
before and after

the threshold passing were kept
::::::
window

:
to ensure that the onset and coda of events were

::::
each

::::
event

::::
was

:
incorporated. Doing

so, data were reduced by 80% to
::::::
several

:
data windows of various lengths. In addition, we filtered the data using a 4th order

Butterworth bandpass filter with corner frequencies of 1 and 50Hz.

3.2 Feature calculation
:::::::::::
Classification

:::
of

:::::
events15

Raw
::
To

:::::::::::
automatically

:::::::
identify

:::::::::
avalanches

::
in

:::
the

:::::::::
continuous

::::::
seismic

::::
data

:::
we

::::
used

::::::
hidden

::::::
Markov

::::::
models

::::::::
(HMMs)

:::::::::::::
(Rabiner, 1989).

:::::
These

::::::::
statistical

::::::::
classifiers

::::
use

:
a
::::::::
sequence

::
of

::::::::::
multivariate

::::::::
Gaussian

::::::::::
probability

::::::::::
distributions

::
to

::::::
model

::::::::::
observations

::::
(e.g.

:
seis-

mic time seriesare not suited for the HMM classification, as information which characterizes seismic signals generated by

7



Figure 4. Picture of the field site of Dischma facing to the south. It was taken on 15 March 2017 shortly after a period of high avalanche

activity and several recent avalanches were observed(red areas). The triangle indicates the location of the seismic array and the camera icon

the location of the automatic camera.

avalanches in the time and frequency domain cannot be exploited. We therefore used specific features of
:
).
:::
To

:::::::::
determine

::
the

:::::::::::::
characteristics

::
of

:::
the

:::::::::::
distributions

:::
(i.e.

:::::
mean

::::
and

::::::::::
covariance)

:
a
:::::
large

:::::::
number

::
of

:::::::
training

:::
sets

:::
of

::::::
known

::::::
events,

::
so

::::::
called

:::::::::
pre-labeled

:::::::
training

::::
sets,

:::
are

::::::::
required.

::::
For

::::
each

:::::::
different

:::::
type

::
of

::::::::::
observation

::::
(e.g.

:::::::::
avalanche,

:::::::
airplane

:::
or

:::::::::
earthquake

:::
in

:::
the

::::::
seismic

:::::
data)

:
a
::::::::

separate
:::::
HMM

::
is
:::::::

trained.
:::
By

:::::::::
combining

:::
all

:::::::
HMMs

:::
the

:::::
whole

::::::::::::
classification

::::::
system

::::
with

::::::
several

:::::::
classes

::
is5

::::::::::
constructed.

::::
This

:::::::
classical

::::::::
approach,

::::::
which

:::::
relies

::
on

:
a
:::::
large

:::::::
number

::
of

::::::::::
well-known

:::::::::
pre-labeled

:::::::
training

::::
sets,

:::
was

:::::::::::
successfully

::::
used

::
to

::::::::
automatic

:::::::
identify

::::::
seismic

::::::
events

::
in

:::::::::
continuous

:::::::
seismic

::::
data

::::::::::::::::::::::::::::::::::::
(Ohrnberger, 2001; Beyreuther et al., 2012).

::::::::::
Avalanches,

:::::::
however,

:::
are

::::
rare

:::::
events

::::
and

:
it
::

is
::::::
nearly

:::::::::
impossible

::::
and

:::
too

::::
time

:::::::::
consuming

::
to

::::::
obtain

:
a
:::::
large

::::::
training

::::
set.

::
To

::::::::::
circumvent

::::
this,

::
we

:::::::::
performed

:::
the

::::::::::::
classification

:::::
based

::
on

:::
an

::::::::
approach

:::::::::
developed

:::
by

::::::::::::::::::::::::::
Hammer et al. (2012) exploiting

:::
the

:::::::::
abundance

:::
of

::::
data

::::::::
containing

::::::
mainly

::::::::::
background

::::::
signals

::
to
::::::
obtain

::::::
general

:::::::::
wave-field

:::::::::
properties.

:::::
From

::::
these

:::::::::
properties

:
a
::::::::::
widespread

::::::::::
background10

:::::
model

:::
can

:::
be

:::::::
learned.

:
A
::::
new

:::::
event

:::::
model

:::::
(e.g.

::::::::::
representing

::::::::::
avalanches)

::
is

::::
then

:::::::
obtained

::
by

:::::
using

:::
the

::::::::::
widespread

::::::::::
background

:::::
model

::
to

:::::
adjust

:::
the

:::::
event

::::::
model

:::::::::
description

:::
by

:::::
using

::::
only

:::
one

:::::::
training

:::::
event.

::
In
:::::::

contrast
::
to
:::

the
::::::::

classical
:::::
HMM

:::::::::
approach,

:::
the
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::::::::::
classification

:::::::
system

::
of

:::
this

::::::::
approach

:::::::
consists

::
of

:
a
::::::::::
background

::::::
model

:::
and

::::
one

:::::
event

:::::
model

:::
for

::::
each

:::::::::::
implemented

:::::
event

:::::
class.

:::
The

:::::::::::
classification

:::::::
process

::::
itself

:::::::::
calculates

:::
the

::::::::
likelihood

::::
that

::
an

::::::::
unknown

::::
data

::::::
stream

::::
was

::::::::
generated

::
by

::
a
::::::
specific

:::::
event

:::::
class

::
for

::::
each

:::::::::
individual

::::::
HMM

::::
class

::::::::::::::::::::::::
(Hammer et al., 2012, 2013).

::::
This

::::
new

::::::::
approach

::::
was

::::::::::
successfully

:::::
used

::
on

::::::::::
continuous

:::::::
seismic

::::
data

::::::::
collected

::
at

:::
the

:::::::::::
Wannengrat

::::
field

::::
site

::::::
during

:::
the5

:::::::::
2009-2010

:::::
winter

::::::
season

:::
by

::::::::::::::::
Heck et al. (2018a).

:::::
Their

:::::::::::
classification,

::::::::
however,

::::::::
consisted

::
of

:::::::
creating

:
a
::::
new

::::::::::
background

::::::
model

::
for

::::
each

::::
day

:::
and

:::
the

:::::::
resulting

:::::::::::
classification

::::::
system

::::
was

::::
used

::
to

::::::
classify

:::
the

::::
data

::
of

:::
the

::::
same

::::
day.

::
A

::::
near

:::::::
real-time

::::::::::::
classification,

::
as

:::::
would

:::
be

::::::::
required

:::
for

::::::::::
operational

::::::::
purposes,

::
is
:::::

then
:::
not

::::::::
possible.

:::
To

:::::::::
overcome

:::
this

::::::::
problem,

:::::
here

:::
we

:::::::::::
implemented

::
a

::::::::::
classification

:::::::
process

:::
by

:::::::
learning

:::
the

::::::::::
background

::::::
model

:::::
using

::::
data

:::::
from

:
a
::::::::
different

::::
time

:::::::
window

::::
than

:::
the

::::
data

:::
we

:::::::
wanted

::
to

:::::::
classify.

:::
To

::::
train

:::
the

::::::::::
background

::::::
model

:::
we

:::::
used the seismic time series as

::::::::::::
pre-processed

::::
data

:::::
taken

::::
from

::::
the

:::::::
window10

::::::
tmodel, :::::::

whereas
:::
the

:::::::::::
pre-processed

::::
data

:::
we

::::
want

::
to

:::::::
classify

:::
are

::
in

:::
the

::::
time

:::::::
window

::::
tclass:::::::

(Figure
::
5).

::::
This

::::::::
so-called

::::::::::
operational

::::::::::
classification

::::
was

:::::::::
performed

::
by

:::::
using

:
a
:::::::
window

:::::
length

::
of

:::::::::::
tmodel = 24h

::::
and

:::::::::
tclass = 1h

::::
with

:::
the

:::
start

::::
time

::
of

:::::
tclass::::::::::::

corresponding

::
the

::::
end

::
of

::::::
tmodel.::::

This
::::::
means,

:::
that

:::
our

::::::::::
background

::::::
model

:
is
::::::
always

::::::::::
determined

::
by

:::
the

::::::::::::
pre-processed

:::
data

::
of

::
a
:::::::
24-hour

:::::::
window.

::
By

::::::::
choosing

::
a

:::::
length

::
of

:::
1h

:::
for

:::
the

:::::::
window

:::::
tclass,:::

we
:::::
were

::::
able

::
to

::::::
classify

:::
the

::::::::::::
pre-processed

::::::::::
continuous

::::::
seismic

::::
data

::
of

::::
one

::::
hour

:::::
during

::::
one

::::
step

::
of

:::
the

::::::::::
operational

:::::::::::
classification.

:::::
Once

::::
one

:::::::::::
classification

::::
step,

:::::
which

::
is
:::
the

:::::::::::
classification

:::
of

:::
the

:::::::
window15

::::
tclass::

is
::::::::
finished,

::::
both

::::::::
windows

:::
are

::::::
shifted

:::
by

::::
one

::::
hour

::::
and

:::
the

:::::::::::
classification

::::
was

::::::::
executed

:::
for

:::
the

::::::
shifted

:::::::::
windows.

::::
The

::
so

:::::::::
performed

:::::::::::
classification

:::::
takes

:::::::
∼ 6min

:::
for

:::
the

::::::::::::
classification

::
of

::::
one

:::
day

:::::::
without

:::
the

:::::::
feature

::::::::::
calculation.

::
In

::::::::
contrast,

:::
the

::::::::::
classification

:::::::::
performed

:::
by

::::::::::::::::::::
Heck et al. (2018a) only

::::
took

::::::
∼ 30s

:::
for

:::
one

::::
day.

:::
All

::::::::::
calculations

:::::
were

:::::::::
performed

::
on

::
a

::::::::
computer

::::
with

:
a
::::::::
regularly

:::::::
available

::::::
8-core

::::::::
processor

:::
and

::::::
12GB

::::
ram

::::::
running

::
a
:::::::
standard

:::::::
Ubuntu

:::::
Linux

::::::::::
Distribution.

:

::
As

:
input for the HMMs

:
a
::::::::::
compressed

:::::
form

::
of

:::
the

::::
data

::::
was

:::::
used,

::::::::
so-called

:::::::
features. Features represent different aspects20

of the time series such as spectral, temporal or polarization characteristics. These are calculated using a sliding window and

therefore the time series is represented in a compressed form. Since we used data from single component geophones, we only

used the
::::::::
following spectral and temporal features suggested by Heck et al. (2018a):

::::::
similar

::
to

::::
those

::::
used

:::
by

::::::::::::::::
Heck et al. (2018a).

:

– Central frequency (Barnes, 1993)25

– Dominant frequency (Kramer, 1996)

– Instantaneous bandwidth (Barnes, 1993)

– Instantaneous frequency (Taner et al., 1979)

– Cepstral coefficients (Kanasewich, 1981)

– Half-octave bands (Joswig, 1994)30

To calculate the features from the pre-processed data
:::
For

:::
the

::::::
feature

:::::::::
calculation, we used a sliding window of width w = 512

samples and a step size of
:::::
0.05s

::
or 25 samples , resulting in an overlap of 97%. In total, we used

:::
We

::::
used

::
in

::::
total 6 half-octave

bands for the classification and the first half-octave band had a central frequency of 3.9Hz.
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3.3 HMM construction

The hidden Markov models we used to automatically identify avalanches in the continuous seismic consisted of a background

model and an event model for each event class (Hammer et al., 2017; Heck et al., 2018a). In our application we used only one5

event class, either avalanches at the Dischma field site or airplanes at the Wannengrat field site.

The background model was learned by using features extracted from the
:::::::::
Calculating

:::
the

:::::::
features

::::
from

:::
the pre-processed data.

Previous work has shown that a background model which is regularly updated provides better classification results throughout

a season (e.g. Heck et al., 2018a). In our case, we therefore used the pre-processed data from a 24h window to train
:::
data

:::::
takes

::::::::
∼ 15min

::
for

::
a
::::::::
complete

:::
day

:::
for

::
all

:::::::
sensors.

:::::
Since

:::
we

::::
shift

:::
the

:::::::
windows

:::
for

:::
1h

::::
after

::::
each

::::
step

::
of

:::
the

:::::::::
operational

::::::::::::
classification,10

the background model and recalculated it every hour, i.e. we used a sliding window of length tmodel = 24h and then shifted it

forward by one hour (background data in Figure 5).

In contrast to the background model, the event model was only calculated once for the entire season (training event in Figure

5). For the Dischma field site, our training event consisted of a signal generated by an avalanche that had released on 9 March

2017 at 06:47 (Figure 7a ), an unambiguous event that was analyzed in detail by Heck et al. (2018b). For the Wannengrat field15

site, our training event consisted of a signal generated by an airplane on 31 January 2017 at 21:46 (Figure 7b).
:::::::::
calculation

::
of

:::
the

:::::::
features

:::
for

:
a
::::::::
complete

::::
day

:::::
needs

::
to

:::
be

:::::::::
performed

::::
only

:::
for

:::
the

::::
very

::::
first

::::
step.

::::
For

:::
the

::::::::
following

:::::
steps

::
it

::
is

::::::::
sufficient

::
to

:::::::
calculate

::::
only

:::
the

:::::::
features

:::
for

:::
the

:::::::
window

:::::
tclass::::

with
:
a
::::::

length
::
of

::::
1h,

:::::
which

::::::::::::
approximately

:::::
takes

::::
less

::::
than

:::::::
∼ 2min

:::
for

:::
the

:::::::::
calculation.

:

3.3 Classification20

To classify unknown data, we used a window of length tclass = 1h immediately following the 24h long training window

(Unclassified data in Figure 5). These data were
:::
The

::::::::::::
classification

:::::::
process

:::::::
consists

::
of

::::
five

:::::
steps:

:::::::::::::
pre-processing,

:::::::
feature

:::::::::
calculation,

::::::
HMM

:::::::::::
construction,

:::::::::::
classification

::::
and

:::::::::::::
post-processing

:::::::
(Figure

:::
5).

::::
First

::::
the

::::
data

::::
used

::
to
:::::

build
::::

the
::::::::::
background

:::::
model

:::
are

:::::::
selected

:::::
from

:::
the

:::::
time

:::::::
window

::::::
tmodel:::

and
::::

the
::::
data

::
to

:::
be

::::::::
classified

:::
are

::::::::::
determined

:::
by

:::
the

:::::::
window

::::::
tclass.::::

The

:::
data

:::::
from

:::
the

:::::::
selected

:::::
time

::::::::
windows

:::
are

:
pre-processed and features were calculated. Based on these features, the HMM25

classification processthen calculated the likelihood that an unknown data stream was generated by a specific event class

(Hammer et al., 2012, 2013). The classification was performed for each individual sensor.

3.3 Post-processing

Since the classification algorithm is not perfect, several
::
to

::::::
reduce

:::
the

::::::
amount

:::
of

:::::
noise

:::
and

::::
then

:::
the

:::::::
features

:::
are

::::::::::
calculated.

::
In

:::
the

:::::
HMM

:::::::::::
construction

::::
part,

:::
the

:::::::
features

::::::::
calculated

:::::
from

:::
the

::::
data

:::::
within

::::::
tmodel::::

and
::::
from

:::
the

::::
data

::
of

:::
the

:::::::
training

:::::
event

:::
are30

::::
used

::
to

::::::::
construct

:
a
::::::::::
background

::::::
model

:::::::::
HMMBack:::

and
:::

an
:::::
event

:::::
model

:::::::::::
HMMEvent. :::

The
:::::
event

::::::
model

::::::::::
HMMEvent :::

was
:::::::
learned

::::
using

::::
only

::::
one

:::::::
training

::::
event

::::
that

::
is

:::::::::::
representative

::
of
::::::::::

avalanches
::
at

:
a
:::::::
specific

::::
field

:::
site

:::::::::::::::::
(Heck et al., 2018a).

::
It

:::
was

::::::::::
determined

::::
once

:::
and

::::
then

::::::
applied

:::
for

:::
the

:::::
entire

::::::
winter

::::::
season.

::
In

:::::::
contrast,

:::
the

::::::::::
background

::::::
model

:::::::::
HMMBack :::

was
:::::::::::
reconstructed

:::::
every

:::::
hour.

:::::
Using

::::
both

:::::::
models,

:::
the

:::::::::::
pre-processed

::::
data

::::::
within

:::
the

:::::::
window

:::::
tclass ::::

were
::::::::
classified

::
in

:::
the

:::::::::::
classification

:::::::
process.

::::
The

:::::::
features

10



Avalanche released on 9 March 2017 at 06:47 used as training event for the classifier at the Dischma field site. a) time series for the 7

sensors. The red area indicates the part of the time series used as training event. b) corresponding spectrogram of the seismic time series.
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Figure 5.
::::
Flow

::::
chart

::
of

:::
the

:::::::::
classification

:::::::
process.

:::::
Green

:::
lines

:::::
show

::
the

::::::::::
construction

::
of

::
the

::::
event

::::::
model.

::::
Blue

::::
lines

::::
show

::
the

::::::::::
construction

::
of

::
the

:::::::::
background

::::::
model.

:::
The

:::::
orange

::::
lines

:::::
show,

:::
how

:::
the

:::
data

::
to

::
be

:::::::
classified

:::
are

::::::::
processed.

::::::::
calculated

:::
for

::::
this

:::::::
window

:::
are

:::::::
therefore

::::::
passed

:::
to

:::
the

:::::::::
classifiers.

::::
Once

::::
the

:::::::::::
classification

::
is

:::::::::
performed,

:
post-processing steps

were applied to reduce the number of false detections. Detections with a duration ≤ 12s were dismissed(Heck et al., 2018a),

and we only considered an event as an avalanche when it was detected by at least five sensors of the array, as proposed5

by Heck et al. (2018a). Two additional steps were also implemented in the classification workflow and are described in the

following
::
are

:::::::
applied

::
as

:::::::::
proposed

::
by

:::::::::::::::::
Heck et al. (2018a).

::::
The

::::
first

::::
step

::::::::
consisted

:::
of

::::::::
applying

:
a
::::::::

duration
::::::::
threshold

::
to
::::

the

:::::::
classified

::::::
events.

:::::
Each

::::::::
classified

:::::
event

::::::
shorter

:::
than

::::
12s

::
in

:::::::
duration

::::
was

:::::::::
dismissed.

:::
The

::::::
second

::::
step,

:::
the

::::::::
so-called

:::::::::::
voting-based

:::::::::::
classification,

::::::::
combines

::::
the

::::::
results

::
of

:::
all

:::::::
sensors.

:::::
Only

:::::
events

::::
that

:::::
were

::::::::
classified

:::
by

::
at

::::
least

::
5
:::::::
sensors

:::
are

:::::::::
considered

:::
as

:::::::
possible

:::::::::
avalanches.

11



3.2.1 Combined array detection

3.3
::::::::

Combined
::::::
array

::::::::
detection

Avalanche signals are typically only detected within a radius of 3 km of our seismic arrays (van Herwijnen and Schweizer, 2011b; Heck et al., 2018b).

Since the distance between the Dischma and the Wannengrat array was 14km, it is therefore very unlikely that an avalanche was5

recorded at both arrays simultaneously. Signals that were recorded simultaneously
:::::
Initial

:::::::::::
classification

::::::
results

:::::::::
performed

:::
on

::
the

::::
data

:::
set

::
of

:::
the

::::::
winter

::::::
season

:::::::::
2016-2017

:::::::
revealed

:::
that

::::::::
although

:::
the

::::
total

::::::
number

:::
of

:::::::
detected

:::::
events

::::
was

::::
low,

:::::
many

:::::::
detected

:::::
events

:::::
were

::::
very

:::::
likely

::::::::
generated

:::
by

::::::::
airplanes

::
or

:::::::
regional

:::::::::::
earthquakes

:::::
(local

:::::::::
magnitude

:::::::
between

:::
1.5

::::
and

::
4

:::
for

::::::::::
earthquakes

:
at
:::::

local
:::
and

::::::::
regional

:::::::
distance

::::::::
triggered

::
by

::
at

::::
least

::
6
:::::::
stations

::::::::
according

::
to
:::

the
::::::::::

earthquake
::::::
catalog

::
of
::::

the
:::::
Swiss

::::::::::::
Seismological

:::::::
Service).

::
In

:::::::
contrast

::
to

::::::::::
avalanches,

:::::
which

:::
are

:::::::
recorded

::::
only

::
at

:::
one

:::::
array,

:::::
these

:::::
events

:::
are

::::::::
recorded at both arrayswere thus most10

likely false detections. To remove such signals from the events automatically classified at the Dischma array , we implemented

:
.
:::
We

::::::::
therefore

::::
used

::
a
:::::::::
combined

::::
array

::::::::
detection

:::
to

::::::
remove

:::::::::::
earthquakes

:::
and

::::::::
airplanes

:::::
from

:::
the

::::::::::
detections.

::
To

::::::::
perform

:::
the

::::::::
combined

:::::
array

::::::::
detection,

:
a second HMM trained with the airplane event from 31 January at 21:46 (Figure 7b) to classify

:::
was

:::::::::::
implemented

::
to
:::::::

identify
:::::::::::

earthquakes
:::
and

::::::::
airplanes

::
in
:

the data recorded at the Wannengrat and subsequently using the

same post-processing steps mentioned earlier. However, since only two sensors recorded data at the Wannengrat array, we only15

considered events detected by these two sensors
::::
array

::
at
::::::
14km

:::::::
distance

:::::
from

:::
the

::::::::
Dischma

::::
array. Classification results from

the Dischma and Wannengrat arrays were then combined to remove all events recorded simultaneously at both arrays, which

means that the time difference between the detections at both field sites was less than 1min.

3.3.1 Source localization

3.4
::::::::::

Localization
::::::
results

::
to

::::::::
confirm

:::::::::
avalanches20

Array processing methods provide information on the signal source and can provide additional parameters to classify events as

avalanches, as is commonly done when exploiting infrasound signals (Scott et al., 2007; Marchetti et al., 2015; Thüring et al., 2015).

To locate the source of events, we used the MUSIC algorithm, as suggested by Heck et al. (2018b)
:::::::::::::::::::::::::
Heck et al. (2018b) determined

::
the

::::::::
direction

:::
of

::::::
several

:::::::::
avalanches

::::::
using

:
a
::::::::
multiple

:::::
signal

:::::::::::
classification

:::::::::
algorithm

:::::
called

::::::::
MUSIC

:::
and

:::::
were

::::
able

::
to

::::::
locate

::
the

:::::::::
avalanche

::::
path

:::
of

::::::
several

:::::::::
avalanche

::::::
events

:::::
based

:::
on

:::
the

:::::
data

::
of

::
a
:::::
single

:::::
array. The MUSIC method was applied to25

non-overlapping data windows for four frequency bands between 6 and 7.5Hz to determine
::::::::
algorithm

::::::::::
determines the back-

azimuth angle and the apparent velocity of the incoming wave-field with time . The length of the windows was set to five

cycles of the lower corner of the analysed frequency band, meaning that the data were divided into more windows for

higher frequencies. By combining the
:::
for

:
a
:::::

small
:::::

time
:::::::
window.

:::::
This

::::
time

:::::::
window

::
is
:::::::

shifted
::
to

:::::::
provide

::
a

::::
time

:::::
series

:::
of

back-azimuth values for all four frequency bands , we then applied
:::
and

:::::::
apparent

::::::::
velocity

::::::
values.

::::
The

:::::::
MUSIC

:::::::
method

::
is30

:::::
based

::
on

:::
the

::::::::::
covariance

:::::
matrix

::::::
taking

:::
the

::::
data

:::
of

::
all

:::::::
sensors

::::
into

::::::
account

:::
at

:::::
once,

:::::::
whereas

::::::::::::
beam-forming

:::::::
methods

::::
rely

:::
on

:::::::
pair-wise

:::::::::::::::
cross-correlation

::::::::::::::::::::::::::::::::::
(Schmidt, 1986; Rost and Thomas, 2002).

:::::::
MUSIC

:::
can

:::::::
resolve

:::::::
multiple

:::::::
sources

::::
more

::::::
easily

::::
than

:::::::::::
beam-forming

::::::::
methods.

:::::::::::
Furthermore,

:::
the

:::::::
MUSIC

::::::
method

::::
can

::
be

::::::
applied

::
to

:::::
small

:::::::::
frequency

:::::
bands

:::
and

:::
the

:::::::
different

:::::::::
frequency

12



:::::::
contents

::
of

:::
the

:::::::::
wave-field

:::
can

:::
be

::::::::
analyzed.

:::
For

:::::::
further

::::::::::
information

::
on

::::::::
multiple

:::::
signal

:::::::::::
classification

:::
the

::::::
reader

::
is

:::::::
referred

::
to

::::::::::::::::
Schmidt (1986) and

::::::::::::::::::
Hobiger et al. (2016).

:::::::::::::::::::::
Heck et al. (2018b) found,

::::
that

::::
due

::
to

:::
the

:::::
small

::::::::
distance

:::::::
between

::::
the

:::::::
sensors,

:::
the

:::::::
seismic

:::::
array

::::::
mostly

::::::::
resolved

:::::
sonic

:::::::::
wave-fields

:::::
rather

::::
than

:::::::
seismic

:::::::::
wave-fields

::
to

:::::::
estimate

:::
the

::::::::::::
back-azimuth.

:::::
Using a median smoothing filter on a moving window5

of 8s to determine a
::::
they

::::
then

::::::::
calculated

::
a
::::::::
so-called median back-azimuth path with time, as in Heck et al. (2018b) (Figure

13a).

(a)

(b)Localization results for an avalanche event recorded on 9 March 2017 at 6:47. a) polar plot representation of the

back-azimuth calculated using the MUSIC method. Red dots are the back-azimuth values for a single time window. The10

black line represents the median back-azimuth path. The solid part of the line has variations below the threshold value for

the derivative, whereas the dotted line refers to strong variations. b) derivative of median back-azimuth path. The dotted lines

represents the threshold value of 10◦. The part between 52s and 113s corresponds to the solid line in a).

To .
::
In

::::
this

:::::
study,

:::
we

::::
used

:::::
these

::::::
median

:::::::::::
back-azimuth

:::::
paths

::::::::
obtained

::
by

:::
the

:::::
event

::::::::::
localization

::
to decide whether a classifi-

cation was associated with an avalancheor not, we applied
:
.
::::::::::
Specifically,

:::
we

::::
used

:
a threshold value to

::
for

:
the derivative of the15

median back-azimuth path. The assumption was
::
is that avalanche events have a relatively smooth median back-azimuth path

with little variations, whereas false detections show larger variations in back-azimuth, which is also the case for earthquakes

and airplanes for our specific array geometry. Indeed, the training event at the Dischma array had a duration of around 50s and

a median back-azimuth path with slight changes in the angle (black line in Figure 13 a ) whereas before and after the event ,

the
::::
have

::::::::
randomly

:::::::::
distributed

:
back-azimuths were more erratic, as expected for noise. For the training event , the derivative20

of
::::
with

::::
large

:::::::::
variations

::
in

::::
time.

:::
By

::::::::
analyzing

::::::
several

:::::::::
avalanche

::::::
events,

::::::::
especially

:::
the

::::::
events

::::::::
identified

::
by

:::::::::::::::::
Heck et al. (2018b),

::
we

::::::::
observed

:::::
small

:::::::
changes

:::::
below

::::
10◦

::
for

:
the median back-azimuth path stayed below

:::
path.

:::::::
Hence,

::
we

:::::
used

:
a
::::::::
threshold

:::::
value

::
of 10◦ for 50s, while before and after the event it was much larger (Figure 13b). Other avalanche events had very similar

results(not shown). Events with derivatives of the
:::::::
between

::::
two

:::::::
adjacent

:::::
points

::
of

:::
the

:
median back-azimuth path smaller than

10◦ for a minimum duration of 20s were then classified as avalanches. Since we used 8s windows for the calculation of the
::::
path25

::
for

:::
the

:::::
event

::::::::
detection.

:::::
Even

:::
for

:::::
events

:::::::
passing

::::
close

::
to

:::
the

:::::
array,

:::
we

:::::::
observed

:::::::
changes

::::::
below

:::
10◦

::
in

:::
the median back-azimuth

path, we had to increase the minimal event duration to
::::
path.

::::::::::::::::::::::::
Heck et al. (2018a) suggested

::::
that

:
a
:::::::
detected

:::::
event

::::::
should

::::
have

::
a

::::::::
minimum

:::::::
duration

::
of

:::
12s

:::
to

::
be

:::::::::
considered

::
as

::
an

:::::::::
avalanche.

::::
For

::
the

::::::::::
localization

::::
step,

::::::::
however,

::
it

:::
was

::::::::
necessary

::
to
:::::::
increase

::::
this

:::::::
duration

:::::::
because

:::
the

:::::::
window

:::::
length

::::
used

:::
for

:::
the

:::::::
median

:::::::::
smoothing

::::
filter

::::
was

::::::
already

:::
8s

::::
long

:::::::::::::::::
(Heck et al., 2018b).

:::
To

:::::
cover

::::::
enough

::::
data

:::::
points

:::
to

:::
use

:::
the

:::::::
minimal

:::::
event

:::::::
duration

:::
as

:
a
:::::::
reliable

:::::::::::
classification

::::::::
criterion,

:::
we

::::::::
therefore

:::::::
required

:
a
:::::::::
minimum30

:::::
length

::
of

:
20s

::
for

:::
the

::::::::::::
back-azimuth

::::
path.

::::::::::::::::::::
Heck et al. (2018b) also

::::::
showed

::::
that

::::
only

:::
the

::::::::
frequency

::::::
content

::
of

:::
the

::::::
signal

:::::::
between

:::
4.5

:::
and

:::::::
12.5Hz

::::::::
contained

:::::::::::
information

:::::::
valuable

:::
for

:::
the

::::::::::
localization

:::::::::
performed

::
at
:::
the

:::::
used

:::::
array.

:::
By

::::::
further

:::::::
analysis

:::
of

:::
the

::::::
already

::::::::
localized

:::::
events

:::
by

::::::::::::::::
Heck et al. (2018b),

:::
we

:::::::::
observed,

:::
that

::
a

::::::
reduced

:::::::::
frequency

:::::
range

::::::::
provided

::::::
similar

::::::
results.

::::::
Hence

::
we

:::::::
reduced

::::
the

:::::::
number

::
of

::::::::
analyzed

:::::::::
frequency

:::::
bands

::
to

::::
four

::::::
bands

:::::::
between

::
6
::::
and

::::::
7.5Hz

:::
and

:::::
were

::::
able

::
to
::::::

speed
:::
up

:::
the

:::::::::
calculation

::::
time.

::::::::::::
Nevertheless,

:::
the

:::::::::
processing

::::
time

:::
for

:::
the

::::::::::
localization

::
is
::::::

about
::::
three

:::::
times

::::
real

::::
time

:::
on

:::
the

:::::
same

::::::::
computer

::::
used

::
for

:::
the

:::::::::::
classification

:::
as

::::::::
mentioned

::::::
earlier.
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4 Results
::::::::::::
Classification

::::::
results5

We applied our automatic avalanche detection workflow on
:::::::::
performed

:::
the

:::::::::
avalanche

::::::::
detection

:::
for

:::
the data recorded at the

Dischma field site from 1 January to 30 April 2017. We then
::::
array

:::::
during

:::
the

::::::
winter

::::::
season

:::::::::
2016-2017

:::
and compared the results

with an avalanche catalogue obtained by visual observations from local observers
:::
the

::::::::
avalanche

:::::::
activity

:::::::
visually

:::::::
obtained

:::
by

::::
local

::::::::
observers

::::
and compiled by the avalanche warning service at the SLF. The visual observations in the area of Davos can

be incomplete and cover
:
It

:::
has

::
to

:::
be

:::::
noted

:::
that

::::
this

::::::::::
compilation

::
is

::::::::::
incomplete

:::
and

::::::
covers an area much larger than the area10

monitored with our seismic system at the Dischma site
:::
that

:::::::::
monitored

::::
with

:::
the

::::::::
Dischma

::::
array. Therefore, comparison with this

avalanche catalogue
:::::::::
compilation

:
remains indicative.

4.1 Overview of the winter season

The winter period of 2016-2017 was relatively short and characterized by a below-average snow depth. First snowfalls were

quite late in the season, in the middle of December, followed by four weeks without substantial precipitation and low temper-

atures. As the thin snowpack was subjected to large temperature gradients for an extended period of time
:::
Due

::
to
:::

the
::::::::

constant

::::
high

::::::::::
temperature

:::::::
gradient

:::::
within

:::
the

:::::::::
snowpack, a poorly bonded layer of depth hoar

:::
was formed at the base of the snow cover.5

During the winter season, four pronounced
::::
three

:::::::::
significant snowfall periods occurred: between 1 and 15 January, around 1

February, from 1 to 10 March and around 15 April ;
::::
one

::
in

::::
each

::::::
month

::::
from

:::::::
January

::
to

::::::
March (increase of blue line in Figure

6). Each snowfall was associated with increased
:
of
:::::
these

::::::::
snowfalls

:::::
were

::::::::
associated

::::
with

:::::::::::
considerable avalanche activity in the

region of Davos , except the snowfall in April (red bars in Figure 6b).

In addition to these visual avalanche observationsby local observers, we inspected
::::::::
avalanche

:::::::::::
observations,

:::
we

::::::::
analyzed

:::
the10

pictures taken by the automatic cameras installed at the Dischma field site
:::
our

::::
field

::::
sites. Surprisingly, avalanche activity was

very low
:::
low

::
at
:::
the

::::::::
Dischma

::::
field

:::
site

:
in January and February, and only a few avalanches were identified on 1 February 2017.

:
. During the early March snow storm ,

::
the visibility was poor and

::::
only very few avalanches were identified on the images of the

automatic cameras
::::::
camera. However, once the storm had passed

:::
was

::::
over, the intensity of the avalanche cycle became clear as

many avalanche deposits were visible on the images. Five days after the storm we mapped 24 avalanches within a 4km radius15

of the Dischma field site (for more details see Heck et al., 2018b). Later in the season, we did not observe any more avalanches

on the images. Thus, the avalanche cycle between 9 and 10 March was the most prominent avalanche period at the Dischma

field site.
::::::::::::::::
(Heck et al., 2018b).

:

4.2 Classification performed at single array

Using the classifier trained with the avalanche event from
:::
The

::::
main

:::::::::::
classification

:::
was

:::::::::
performed

::
at

:::
the

:::::::
Dischma

::::
field

::::
site

::
for

:::
all5

::::
seven

:::::::
sensors.

::::::
Based

::
on

::::
the

:::::
visual

:::::::::
inspection

::
of

:::
the

:::::::
seismic

:::
data

:::::::::
performed

:::
by

::::::::::::::::
Heck et al. (2018b),

:::::::
several

::::::::
avalanche

::::::
events

::::::
suitable

:::
as

:::::::
training

:::::
events

:::
for

:::
the

::::::
HMM

:::::
were

::::::::
identified.

:::::::::
However,

::::
they

:::
had

:::::::
mainly

::::::::
analyzed

:::
the

:::::
period

:::
of

::::
high

:::::::::
avalanche

::::::
activity

:::
on

:
9
::::
and

::
10

::::::
March

::::::
2017.

:::::::
Visually

:::::::::
inspecting

:::
the

:::::
entire

::::::
winter

::::::
season

:::
we

::::::::
identified

:::
44

::::::::
avalanche

::::::
events.

:::::::::
However,

::
as

::::::
already

::::::
shown

::
by

:::::::::::::::::
Heck et al. (2018a),

:::::::
visually

::::::::
inspecting

:::::::
seismic

::::
data

:::::::
contains

:::::
many

:::::::::::
uncertainties.

:::
An

:::::::::
avalanche

:::::::
released
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Figure 6. a) Snow height measured at the automatic weather station at Weissfluhjoch 12km to the northwest of the Dischma array at 2540m

:::::::
∼ 2600m

:
a.s.l. for the winter season 2016-2017. Orange

::
Red

:
bars are the height of new snow measured each day at 8:00 am. b) Number of

avalanches observed per day in the region of Davos (∼ 175km2).

::
on

:
9 March 2017 at 06:47

:::
was

:::::::
already

:::::::
analyzed

:::
in

:::::
detail

::
by

::::::::::::::::::::
Heck et al. (2018b) and

:::
can

:::::::::::::
unambiguously

:::
be

::::::::
classified

::
as

:::
an10

::::::::
avalanche.

::::
We

:::::::
therefore

:::::::
decided

::
to

:::
use

::::
this

::::
event

::
as
::::
our

::::::
training

:::::
event

:
(Figure 7a), we classified the data from

:
).

:::::
Using

:::
the

:::::::
classifier

:::::::
trained

::::
with

:::
this

:::::
event,

:::
we

:::::::::
performed

:::
the

:::::::::::
classification

:::
for

:
each single sensor of the Dischma arrayand

post-processed the results to remove events
:::::
array.

::
In

::
a

::::
next

::::
step,

:::
the

::::::
results

::
of

:::
the

:::::::::::
classification

::::
were

:::::::::::::
post-processed;

::::
first

:::
all

:::::
results

::
of

:::::
each

:::::
sensor

:
with a duration ≤ 12s and

::::
were

::::::::
dismissed

:::::::::::::::::
(Heck et al., 2018a).

::::::
Finally

:::
we

::::::::
dismissed

:
all classifications

that were classified by less than 5 sensors. This resulted in15

:::
The

:::::::::::
classification

::::
and

:::
the

::::::::
following

:::::::::::::
post-processing

::::
was

::::::
applied

::
to
:::
the

::::::::::
continuous

::::
data

:::
set

:::::::
recorded

:::::
from

:
1
:::::::
January

::
to

:::
30

::::
April

:::::
2017.

:::
For

::::
this

::::::
period, a total of 117 automatically detected events between 1 January and 30 April 2017 (Figure 8)

:::::
events

::::
were

::::::::
classified

::
as

:::::::::
avalanches. A quarter of the events were detected by 5 sensors, a quarter by 6 and about half by 7 sensors.

Classification results after post-processing (including voting-based classification) at the Dischma array. The colored bars

indicate the number of classified events per day depending on the number of sensors: Violet bar indicates detections by 7

sensor, turquoise bars by 6 sensors and yellow bars by 5 sensors.

15



Figure 7.
::::::::
Avalanche

::::::
released

::
on

::
9
:::::
March

::::
2017

::
at

::::
06:47

::::
used

::
as

::::::
training

::::
event

:::
for

::
the

::::::::
classifier.

:
a)
::::
time

:::::
series

::
for

:::
the

:
7
::::::
sensors.

::::
The

::
red

::::
area

::::::
indicates

:::
the

:::
part

::
of

:::
the

::::
time

::::
series

::::
used

::
as

::::::
training

:::::
event.

::
b)

::::::::::
corresponding

::::::::::
spectrogram

::
of

::
the

::::::
seismic

::::
time

:::::
series.

Figure 8.
::::::::::
Classification

:::::
results

::::
after

::::::::::::
post-processing

::::::::
(including

::::::::::
voting-based

::::::::::
classification)

::
at

:::
the

::::::
Dischma

:::::
array.

:::
The

::::::
colored

::::
bars

::::::
indicate

::
the

::::::
number

::
of

:::::::
classified

:::::
events

:::
per

:::
day

::::::::
depending

::
on

:::
the

::::::
number

::
of

::::::
sensors:

:::::
Violet

:::
bar

:::::::
indicates

:::::::
detections

:::
by

:
7
:::::
sensor,

::::::::
turquoise

:::
bars

::
by

::
6

:::::
sensors

:::
and

::::::
yellow

:::
bars

::
by

::
5
::::::
sensors.
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Most events occurred
::
7.

::::
Most

::::::
events

::::
were

::::::::
classified

:::::
during

:::
the

:::::
early

:::::
March

:::::
snow

:::::
storm on 9 and 10 March 2017. In addition ,5

peaks
::::
2017

::::::
(Figure

:::
8).

::
In

:::::::
addition

:
a
::::
peak

:
in the middle of January and early April were

::::::::
beginning

::
of

:::::
April

:::
and

::
a

:::::
cluster

::
of

::::::
events

::::::
around

:::
the

::::::::
beginning

::
of

::::::::
February

::::
was visible. The peak in January corresponded

::
as

::::
well

::
as

:::
the

::::::
cluster

::::::
around

:::
the

:::::::::
beginning

::
of

:::::::
February

::::::::::
correspond with the avalanche activity period visually recorded in the region of Davos (Figure 6). For the peak in

April, however, no avalanches were observed in the area
:::::::::::
surroundings of Davos. Furthermore, several single detections were

distributed over the season showing no clear link to the avalanche observations in the region of Davos. We therefore
:::::::::
accordance10

::::
with

:::
the

:::::
visual

:::::::::
avalanche

:::::::::::
observations.

::::::::
Therefore

:::
we

:
visually inspected the time series and

::
the

::::::::::::
corresponding

:
spectrograms

of each of the 117 classifications and found that the HMM also classified ∼ 50
::::::
various

:
airplanes (Figure 9 a)) and regional

earthquakes (Figure 9 b) as avalanches.

Although these misclassified events can be distinguished from avalanches through visual inspection (e.g. the sharp onset

visible for earthquakes), the classifier identified these events as belonging to the avalanche class. We attribute these false15

classifications to the fact that these ,
::::
even

:::::
when

:::
we

::::
used

:::::::
different

:::::::
training

:::::
events

::
or

::::::
varied

::
the

:::::
setup

:::
for

:::
the

::::::::::
classification

:::::::
(results

:::
not

::::::
shown).

:::::
This

:::
was

:::::
most

:::::
likely

:::::::
because

:
earthquake and airplane signals were more similar to the avalanche training event

:::::::::
avalanches than to the background model. Indeed, the temporal trends in the features exhibited many similarities (Figure 10).

Using different training events did not substantially change these results (not shown).
:
,
:::
and

:::::::::::
consequently

::::::
tagged

::
as

::::::::::
avalanches.

5

::::::::
Analyzing

:::
the

:::::::
features

::::
also

:::::::
showed

:::
the

:::::::::
similarities

::
of

:::
the

:::::::
different

:::::
types

::
of

::::::
events,

:::::::::
especially

:::
the

::::
time

:::::::::
dependent

::::::::
behavior.

::
In

:::
the

:::::::::
beginning

::
of

::::
the

:::::
event,

:::
the

:::::::
feature

::::::::
behavior

::
of

:::
the

::::::
events

::
is
::::::::

different,
:::::::::

however,
::
at

:::
the

::::
end

::
of

::::
the

:::::
event

:
a
:::::::

similar

::::
time

::::::::
dependent

::::::::
behavior

::
is
::::::
visible

:::::::
(Figure

::::
10).

::::
Due

::
to

::::::
theses

::::::::::
similarities,

:::::::
airplane

:::
and

::::::::::
earthquake

::::::
events

:::
are

::::
more

:::::::
similar

::
to

:::::::::
avalanches

::::
than

::
to

::::
noise

::::::::
resulting

::
in

::::
false

::::::::::::
classifications

::
of

:::::
these

::::::
events.

4.3 Classification performed at both arrays10

The vast majority of the misclassifications were produced by two types of events:
:
,
:::
i.e. airplanes and earthquakes.

:
A

::::::::::
comparison

::
of

::::::
several

:::::::
detected

:::::::::
earthquake

::::::
events

::::
with

:::
the

:::::::::
earthquake

:::::::
catalog

::
of

:::
the

:::::
Swiss

::::::::::::
Seismological

:::::::
Service

:::::
(SED)

::::::::
showed,

:::
that

:::
all

::::::::
compared

:::::::::
earthquake

::::::
events

:::::::
occurred

::::::
within

:
a
:::::
range

:::
of

:::::::
120km.

::
As

:::
the

::::::::::
Wannengrat

:::::
array

::::
was

::::::::
deployed

::::
only

:::::
14km

:::::
away,

:::
all

:::::::
observed

::::::::::
earthquakes

:::::
were

:::::
likely

::
to

:::
be

:::::::
detected

:::::::::::::
simultaneously

::
at

::::
both

::::::
arrays.

:::::::::
Moreover,

:
Davos lies within an approaching

corridor of the international airport Zürich and numerous
::::::
several

:
commercial airplanes pass by every hour

:
at

:::
an

::::::
altitude

:::
of15

:
at
:::::

least
::::
5km. Similar to avalanches, airplanes also have a moving source character . However,

:::
and

:
due to the high altitude

(typically > 5 km) and fast movement of the source, airplanes are likely recorded
:::
fast

:::::::::
movement

::::
they

:::
are

:::
also

::::::::
observed

::::::
almost

::::::::::::
simultaneously

:
at both arrays. Furthermore, based on the earthquake catalog of the Swiss Seismological Service (SED), we

concluded that regional earthquakes within a range of 120km were recorded by both arrays. Airplanes and earthquakes were

therefore recorded almost simultaneously at both arrays (Figure 9). To eliminate these false classifications, we thus used data20

from
::::::
Indeed,

::
a

:::::::::
comparison

:::
of

::::
both

::::
time

:::::
series

:::::::
revealed

:::
that

::::::::::
earthquakes

:::::
were

:::::::
recorded

::
at

::::
both

:::::
arrays

::
at

:::
the

:::::
same

::::
time

:::::::
whereas

:::::::
airplanes

:::::
were

:::::::
recorded

::::
with

::
a

::::
small

:::::
delay

:::
of

::
20

::
to

::::
30s

:::
due

::
to

:::
the

:::::::::
movement

::
of

:::
the

::::::
source.

::::
The

::::
time

:::::
series

::::
and

:::::::::::
spectrograms

:
at
::::::::
Dischma

:::
and

:::::::::::
Wannengrat

::::
were

::::
very

::::::
similar

::::::
(Figure

::::
11).

:
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Figure 9. Time series and corresponding spectrograms for two false classifications, airplane detected at a) Dischma and
:::::::
airplane, b) at

Wannengrat and an earthquakedetected at c) Dischma and d) Wannengrat.
::::
The

:::
gray

:::::::::
rectangular

:::
area

:::::::
indicates

:::
the

:::
part

:::::::
classified

::
as

::::
event

:::
by

::
the

::::::
HMMs.

18



Instantaneous frequency

with normalized time (normalized with event duration) for signals generated by an airplane (yellow), an earthquake (green) and an

avalanche (blue). The black lines are the moving mean. The black vertical dashed lines at 0 and 1 indicate the start and the end of the events.

Figure 10.
::::::
Feature

::::::::::
instantaneous

:::::::
frequency

:::
for

::::
three

:::::::
different

::::
event

:::::
types,

:::::
yellow

::::::::
represents

::
the

:::::
signal

:::::::
produced

::
by

:::
an

::::::
airplane,

:::::
green

::
of

::
an

::::::::
earthquake

:::
and

::::
blue

::
of

::
an

::::::::
avalanche.

:::
The

:::::
black

:::
lines

:::
are

:::
the

::::
mean

::
of

:::
the

:::::::
features.

:::
The

:::::
dashed

::::
line

:
at
::
0
:::::::
indicates

::
the

::::
start

::
of

:::
the

:::::
events

:::
and

::
the

::::::
dashed

:::
line

::
at

:
1
:::
the

:::
end

::
of

::
the

:::::
event.

::::::::
Avalanche

:::::::
signals,

::::::::
however,

::::
were

::::
only

:::::::
detected

::::::
within

::
a

:::::
radius

::
of

::
3
::
to

::::
4km

:::
of

:::
the

::::
array

::::
and

::::
were

::::::::
therefore

::::
only

::::::::
recorded

:
at
::::

one
:::::
array

:::::::::::::::::
(Heck et al., 2018b).

:::
In

:::::
order

::
to

:::::::::
eliminate

::::::::
classified

::::::
events

:::::::
recorded

:::
at

::::
both

::::::
arrays,

:::
we

::::::::::
performed

:
a
:::::::

second25

::::::::::
classification

:::
at the Wannengrat arrayclassified with the

:
.
::::
Due

::
to

:::::::::
similarities

:::
of

:::
the

:::::::
transient

:::::::
signals

::
as

:::::::::
mentioned

::::::
earlier,

::
a

HMM trained with the airplane event of 31 January at 21:46 (Figure 7b). As the transient signals of airplanes and earthquakes

were very similar (Figure 10), this HMM also detected earthquakes.

::
an

:::::::
airplane

:::::
signal

::::
was

::::::
capable

::
to

::::
also

:::::
detect

:::::::::::
earthquakes.

::
A

:::::
closer

::::
look

::
at

:::
the

:::::::::::
classification

:::::
results

:::
for

:::
the

::::::::::
Wannengrat

:::::
array

:::::::
revealed,

::::
that

:
it
::::
was

::::::::
sufficient

::
to

::::
only

:::
use

:::
the

::::::
HMM

::::::
trained

::::
with

::
an

:::::::
airplane

::::::
signal

:::
(not

::::::
shown

:::::
here).

:
The number of detected30

events at the Wannengrat array varied
:::
this

::::
array

::::::
varies strongly per day (blue bars in Figure 12). 53 of these events coincided

with events classified at

:::
The

::::
start

:::::
times

::::::::
obtained

:::
by

:::
the

:::::::::
secondary

:::::::::::
classification

:::::::::
performed

::::
with

::::
the

::::::::::
Wannengrat

::::
data

:::::
were

::::
then

::::::::
compared

:::::
with

::
the

::::::::::::
classification

:::::
results

:::
for

:
the Dischma arrayand were dismissed as false detections .

:::::::
Overall,

:::
53

::
of

:::
the

::::
117

::::::::::::
classifications

::::
were

:::::::
detected

::::::
almost

:::::::::::::
simultaneously

::
at

::::
both

:::::
arrays

::::
and

:::
we

:::::::::
considered

:::::
theses

::::::
events

::
as

::::::::
airplanes

::
or

::::::::::
earthquakes

:
(yellow bars35

in Figure 12and Table ??). The remaining
:
).

:::::
After

:::
the

::::::::::
comparison

::
of

::::
the

:::::::::::
classification

::::::
results

:::::::
obtained

:::
by

::::
both

::::::
arrays

:
64

potential avalanches were again mostly concentrated in January, around 9 and 10 March and early April
::::::::
avalanche

::::::
events

:::::::
remained

:::::::::
(turquoise

::::
bars

::
in

:::::
Figure

:::
12). The distribution of these events was somewhat

:
is
:
similar to visually observed avalanches

(compare to red bars in Figure 6), except for the detections in April and the absence of
::::::::
detections

::
at

:::
the

:::::::::
beginning

::
of

:::::
April
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Figure 11.
::::
Time

::::
series

:::
and

:::::::::::
corresponding

::::::::::
spectrograms

::
of

::
an

::::::
airplane

:::::::
detected

:
at
::::
both

:::::
arrays

::
on

::
28

::::::
January

::::
2017

::
at

::::
9:17.

::
a)

::::
shows

:::
the

:::::
signal

::::::
recorded

::
at

:::
the

:::::::
Dischma

::::
array

:::
and

::
b)

:
at
:::
the

:::::::::
Wannengrat

:::::
array.
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Figure 12.
:::::
Yellow

::::
bars

::::::
indicate

:::
the

::::::
number

::
of

:::::
events

::::::
detected

::
at

::::
both

:::::
arrays

:::
and

:::::::
turquoise

:::
bars

::::
only

:::::
events

:::::::
recorded

::
at

::
the

:::::::
Dischma

:::::
array.

:::
Blue

::::
bars

::
are

:::
the

::::::
number

::
of

:::::::
airplanes

:::
and

:::::::::
earthquakes

::::::
detected

::
at
:::
the

:::::::::
Wannengrat

::::
array.

:::::::
Between

:
5
:::
and

:::
20

::::::
January

::
no

:::
data

::::
were

:::::::
recorded

::
at

::
the

:::::::::
Wannengrat

::::
array

:::
due

::
to
:::::::
technical

:::::
issues.

:::
and

::
no

:
detections at the beginning of February.

::::
These

::::::
events

:::::
were

::::
only

:::::::
detected

:::::
using

:::
the

::::::::
automatic

:::::::::::
classification

:::::::::
approach.5

::::::::::
Furthermore,

::::
due

::
to
::::

the
:::::::::
previously

:::::::::
mentioned

:::::::::
acquisition

::::::::
problem

::
of

:::
the

:::::::::::
Wannengrat

:::::
array,

:::
all

:::::
events

::::::::
between

::
12

::::
and

:::
20

::::::
January

:::::
2017

::::
were

::::::::::
considered

::
as

::::::::::
avalanches

::
as

:::
we

::::
had

::
no

::::::
further

::::::::::
information

:::::
from

:::
the

::::::
second

::::::
array. Hence, we expected

some misclassifications among the remaining 64 avalanche events.

Number of events during the season. Yellow bars indicate the events detected at both arrays, the turquoise bars show the

events only recorded at the Dischma array. Blue bars show the events automatically detected at the Wannengrat array. Between10

5 and 20 January no data were recorded at the Wannengrat array.

single array combined detection location based detection total analyzed 117 64classified as avalanche 117 64 21dismissed

53 43

Number of analyzed events, events classified as an avalanche and dismissed events for the different steps in the classification

workflow. For the single array classification, the total number of analyzed and dismissed events cannot be provided as the entire

time series was classified.
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4.4 Localization post-processing5

We
::
In

:
a
::::

last
:::::::::
processing

::::
step,

:::
we

:
applied the MUSIC method to the remaining 64 classified events to determine the

:::::::
estimate

::
the

::::::::::::
back-azimuth

:::
and

:::
to

:::
find

::
a
:::::::
possible

:
median back-azimuth paths. Events with derivatives in the

::::
path.

::::
The

:::::
event

:::::
used

::
to

::::
train

:::
the

::::::
HMMs

:::
had

::
a
:::::::
duration

::
of

::::::
around

::::
50s

:::::::
showing

::
a

::::::
median

:::::::::::
back-azimuth

::::
path

:::::
with

:::::
slight

:::::::
changes

::
in

:::
the

:::::
angle

:::::::
(straight

::::
black

::::
line

::
in

::::::
Figure

:::
13

:::
a).

::::::
Before

:::
and

:::::
after

:::
the

:::::
event,

::::::::
however,

:::
the

:::::::::::::
back-azimuths

::::
were

:::::::::
randomly

:::::::::
distributed

::
as

::::::
would

:::
be

:::::::
expected

:::
for

::::::
noise.

:::
For

:::
the

:::::::
training

::::::
event,

:::
the

:::::::::
derivative

::
of

:::
the

::::::::::::
back-azimuth

::::
path

:::
has

::::
low

::::::
values

:::
for

:::
the

::::
50s

::::
part

::::
with

::
a10

median back-azimuth path larger than
::::
with

:::::
small

:::::::
changes

::::::
(Figure

:::
13

:::
b).

:::
For

:::
this

::::
50s

::::
long

:::::::
interval,

:::::::
changes

::::::
below 10◦ were

dismissed.
:::::::
observed

:::
for

:::
the

::::::
median

::::::::::::
back-azimuth

::::
path.

::::::
Before

::::
and

::::
after

:::
the

:::::
event,

::::::::
however,

:::
the

:::::::
changes

:::
are

::::
very

::::
high

::::
due

::
to

::
the

:::::::::
randomly

:::::::::
distributed

:::::::::::::
back-azimuths.

::::::
Further

::::::::
analyzed

::::::::
avalanche

::::::
events

::::
also

:::
had

:::::::
changes

::
of

:::
the

::::::::::::
back-azimuth

:::::
below

::::
10◦

:::
and

:::
we

:::::::
therefore

:::
set

:::
the

:::
10◦

::
as

::
a
::::::::
maximum

::::::::
threshold

:::::
value.

:
Doing so, another 43

::
37

:
events were dismissed and only 21 events

remained(Figure 14; Table ??). The majority of these events (i.e. 13 of 21) were observed on
::
27

:::::::::
avalanche

:::::
events

:::::::::
remained.15

::
15

::
of

:::
the

:::::::::
remaining

::::::::
avalanche

::::::
events

::::
were

::::::::
observed

:::::
during

:
9 and 10 March 2017 , while the other events showed no clear link

to the visual observations (red bars in Figure 14).

Turquoise bars are the number of events per day which are locatable and are considered as avalanches. Yellow bars are the

number of events per day which could not be located and were therefore dismissed. Red bars are the number of avalanches

visually observed in the area of Davos.

:::
and

::::
some

::::::
events

::::
were

:::::::
detected

::::::
during

:::
the

::::
other

::::::
periods

::
of

:::::::::::
considerable

::::::::
avalanche

:::::::
activity

:
in
::::::::
February

::::::
(Figure

:::
6).

:::::::::::
Furthermore,5

::::::
another

:::
10

:::::
single

:::::
events

:::::
were

::::
also

:::::::::
confirmed. For each of the 21

::
27

:
events we determined a mean back-azimuth, which is the

mean direction the signals came
::::
were

::::::
coming

:
from. The mean back-azimuths were all pointing towards the surrounding slopes

where we expected avalanches to release (Figure 15). Events with a duration longer than 100s were detected coming either

from the north-west or south-east.

:::::
Apart

::::
from

::::::::
analyzing

::::
only

:::
the

::::::
events

:::::::::
remaining

::::
after

:::
the

::::::::
combined

:::::
array

:::::::::::
classification,

:::
we

::::
also

:::::::::
performed

:::
the

::::::::::
localization10

:::::::::::::
post-processing

:::
for

::::
those

:::
53

::::::
events

:::
we

:::
had

:::::::::
dismissed.

::::::
Based

::
on

:::
the

:::::::::::
localization,

::
48

::::::
events

:::::
were

::::
again

:::::::::
dismissed,

::::
but

:
5
::::
had

:
a
::::::
median

::::::::::::
back-azimuth

::::
path

:::::
within

:::
the

::::::::
threshold

::::::
value.

::::::
Hence,

::
by

:::::::
directly

::::::::
applying

:::
the

:::::::::
localization

::::
step

:::
32

::::::::
avalanche

::::::
events

::::::::
remained,

:::
but

::::::::
including

::
at

::::
least

::
5

::::
false

::::::::
detections

:::::::
(15%).

5 Discussion

Machine learning algorithms are increasingly used for automatic signal detection in seismic data, in particular when investigating

gravitational mass movements such as landslides, avalanches, rockfalls and debris flows. They include neural networks (Perol et al., 2018; Esposito et al., 2006),

deep learning (Ross et al., 2018), random forest classifiers (Li et al., 2018; Provost et al., 2016), nearest neighbors (Bessason et al., 2007) or5

kurtosis-based picking (Hibert et al., 2014). While with appropriate calibration these methods generally perform rather well,

the main drawback is that a large pre-labelled training database is required. The same is true for signals generated by snow

avalanches (e.g. Rubin et al., 2012). The classification workflow we presented
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::
(a)

::
(b)

Figure 13.
:::::::::
Localization

:::::
results

:::
for

::
an

::::::::
avalanche

::::
event

:::::::
recorded

::
9
:::::
March

::::
2017

::
at
:::::

6:47.
::
a)

::::
polar

:::
plot

:::::::::::
representation

::
of
:::

the
:::::::::::

back-azimuth

:::::::
calculated

:::::
using

::
the

:::::::
MUSIC

::::::
method.

:::
Red

::::
dots

:::
are

::
the

:::::::::::
back-azimuth

:::::
values

::
for

:
a
:::::

single
::::
time

:::::::
window.

:::
The

::::
black

:::
line

::::::::
represents

:::
the

::::::
median

::::::::::
back-azimuth

::::
path.

:::
The

::::
solid

::::
part

::
of

:::
the

:::
line

:::
has

::::::::
variations

::::
below

:::
the

::::::::
threshold

::::
value

:::
for

::
the

::::::::
derivative,

:::::::
whereas

:::
the

:::::
dotted

:::
line

:::::
refers

::
to

:::::
strong

:::::::::
variations.

::
b)

:::::::
derivative

::
of

::::::
median

::::::::::
back-azimuth

::::
path.

::::
The

:::::
dotted

::::
lines

:::::::
represents

:::
the

:::::::
threshold

:::::
value

::
of

:::
10◦.

::::
The

:::
part

::::::
between

::::
52s

:::
and

::::
113s

:::::::::
corresponds

::
to

::
the

::::
solid

::::
line

:
in
:::
a).
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Figure 14.
:::::::
Turquoise

::::
bars

::
are

:::
the

::::::
number

::
of

:::::
events

::
per

:::
day

:::::
which

:::
are

:::::::
locatable

::
and

:::
are

::::::::
considered

::
as

:::::::::
avalanches.

:::::
Yellow

::::
bars

::
are

:::
the

::::::
number

:
of
::::::

events
::
per

:::
day

:::::
which

::::
were

:::
not

:::::::
locatable

:::
and

:::::::
therefore

::::::::
dismissed.

:::
Red

::::
bars

:::
are

::
the

::::::
number

::
of

:::::::::
avalanches

::::::
visually

:::::::
observed

::
in

::
the

::::
area

::
of

:::::
Davos.

:::
We used hidden Markov models (HMMs)

:
,
:
a
::::::::
machine

:::::::
learning

:::::::::
algorithm, to automatically detect avalanches in data from

seismic systems deployed above Davos, Switzerland. The approach builds on the work of Heck et al. (2018a), who adapted10

the HMM method developed by Hammer et al. (2017) to detect avalanches in continuous seismic data from a small aperture

geophone array. A major benefit of this approach is that only one training event is required. This has substantial advantages,

as the workflow could be implemented at a newly instrumented site without the need to first establish an extensive training

data set. Still, a pre-operational training phase, typically one winter season, is needed to acquire at least one training event

and to identify any site-specific peculiarities. Using training events recorded at different arrays might be unreliable due to15

possible differences in the instrumentation or heterogeneities in the local geology
:::::
Using

::::
their

::::::::
approach

:::
on

:::
our

::::
data

:::::::
resulted

::
in

::::::::
automatic

::::::::
detections

::::
that

:::
still

:::::::::
contained

:
a
::::
large

:::::::
number

::
of

::::::
falsely

::::::::
classified

:::::
events

:::::::
because

::::
only

:::
one

:::::
event

::::
type

:::::::::
(avalanche)

::::
and

::
the

::::::::::
background

:::::
noise

::::
was

::::
used

:::
for

:::
the

::::::::::
classification

::::
with

::::::
HMM.

::::::::::
Earthquake

:::
and

:::::::
airplane

::::::
signals

:::::
have

:::::::::::
characteristics

::::::
closer

::
to

:::::::::
avalanches

::::
than

:::
the

::::::::::
background

:::::
noise,

:::
and

:::::
were

:::::::
therefore

::::::::
included

::
in

:::
the

::::::::
detections.

For the training event, we only used the first section of the avalanche signal, up to the maximum amplitude (Figure 7). Using20

the entire length of the avalanche signal resulted in poorer classification results (not shown) as there were very little variations

in the transient feature behavior after the maximum in the signal. Including larger parts of the training event therefore did not

provide any useful additional information for the classification
::
By

::::::::::
combining

:::
the

:::::::::::
classification

::::::
results

::::
with

::
a

:::::::::::
classification

::::::::
performed

::
at

::
a

::::::
second

::::
array

::::::
located

::::::
14km

:::::
away,

::::::::::::
simultaneously

::::::::
recorded

:::::
events

::::
such

::
as
:::::
local

::::::::::
earthquakes

:::
and

::::::::
airplanes

:::::
could
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Figure 15. Polar plot representation overlaid on a map section of the field site. The angle represents the direction of the origin of the event,

thin lines represent events with a duration < 60s, thick lines events with duration ≥ 60s. The different colors of the lines represent the time

of the year. Reproduced by permission of swisstopo (JA100118).

::
be

:::::::::
dismissed.

::
In

::::::::
addition,

:::
we

::::::
applied

:::
the

:::::::
multiple

::::::
signal

:::::::::::
classification

::::::::
(MUSIC)

:::::::
method

::
to

:::::::
estimate

:::
the

:::::::::::
back-azimuth

:::
of

:::
the25

:::::::
detected

:::::
events

::
to

::::::::
eliminate

::::
false

:::::::
alarms.

:::::::
Overall,

:::
this

:::::
work

::::
flow

::::::
allowed

:::
us

::
to

:::::::::::
automatically

:::::::
identify

::
27

::::::
events

:::
that

:::::
were

::::
very

:::::
likely

::::::::
generated

:::
by

:::::::::
avalanches,

:::
as

:::
the

:::::::
temporal

:::::
trend

::::::::::::
corresponded

::::
well

::::
with

:::
the

::::::::
avalanche

:::::::
activity

:::
for

:::
the

::::::
region

::
of

::::::
Davos

:::::::
obtained

:::::::
through

::::::::::
conventional

::::::
visual

::::
field

::::::::::
observations

:::::::
(Figure

:
6
:::
and

::::
14).

::
It

:::
was

:::
not

::::::::
possible

::
to

::::::
confirm

::::
any

::::
event

::::
with

::::::
visual

::::::::::
observations

:::::
since

::::
most

:::::::::
avalanches

:::::::
released

::::::
during

::::::
periods

::
of

::::
bad

::::::::
visibility.

::::::::
However,

::::::::::::::::::::::::
Heck et al. (2018b) manually

::::::::
identified

::
13

:::::::::
avalanches

::::::
during

:
9
::::
and

::
10

::::::
March

:::::
2017,

:::
12

::
of

:::::
which

::::
were

::::::::::::
automatically

::::::::
identified

::::
with

:::
the

::::::::
approach

::::::::
presented

::::
here.

:
30

:::::
Apart

::::
from

:::::::
HMMs,

::::::
several

:::::
other

:::::::
machine

:::::::
learning

:::::::::
techniques

:::
are

:::::
suited

::
to

:::::::
classify

::::::
signals

::
in

:::::::
seismic

::::
data.

::
It

::
is

:::::::
possible

::
to

:::
use

:
a
::::::::::::
convolutional

:::::
neural

:::::::
network

:::
for

::::::::::
earthquake

::::::::
detection

:::
and

:::::::
location

::::::::::::::::::
(Perol et al., 2018) or

::
to

::::
pick

:::
the

:::::::
P-wave

:::::
arrival

:::
of

::::::
seismic

:::::
wave

:::::
fields

:::::::::::::::
(Ross et al., 2018).

:::::::::::
Comparable

::
to

:::
the

::::::::
classical

:::::
HMM

:::::::::
approach,

::::
these

:::::::
studies

:::
rely

:::
on

:::::
large

::::::::::
pre-labelled

::::::
training

::::
data

::::
sets.

:::::::
Another

::::::::
approach

:
is
:::
the

::::::::
so-called

:::::::
Random

::::::
Forest

::::::::
classifier,

:::::
which

:::
can

:::
be

::::
used

::
to

::::::::::
discriminate

::::::
seismic

::::::
waves

:::::::::::::
(Li et al., 2018).

:::::::::
Automatic

:::::::::::
classification

::::::::::
approaches

:::
are

::::
also

::::::
suitable

:::
to

::::::::::
differentiate

:::::::
between

::::::::::
earthquakes

::::
and

::::::
quarry

:::::
blasts

::::::::::::::::::::
(Hammer et al., 2013) or

::
to

::::::::::
characterize

:::::
larger

::::::::
rockfalls

::::::::::::::::::::
(Dammeier et al., 2016).

::::::
Further

::::
mass

:::::::::::
movements,

::::
such

::
as

:::::::::
landslides,
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:::
can

:::
also

:::
be

::::::::
identified

::
in

::
the

:::::::
seismic

:::
data

:::::
based

:::
on

::::::::
automatic

:::::::::::
classification

:::::::::
approaches

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Esposito et al., 2006; Hibert et al., 2014; Provost et al., 2016).

:::
The

:::::::::
automatic

:::::::::::
classification

::
of

::::::::::
avalanches

:::
yet

:::::::
remains

:
a
:::::::

difficult
:::::

task.
::::::::::::::::::::
Rubin et al. (2012) used

::::::
several

:::::::
machine

::::::::
learning5

:::::::::
algorithms

::
to

:::::::
identify

:::::::::
avalanches

:::
in

:::::::
seismic

::::
data

::::
and

::::::::
compared

::::
the

::::::
results

:::::::
obtained

:::::
with

:::
the

::::::::
different

::::::::::
approaches.

:::::
With

::
all

::::::::
methods

:
a
:::::

high
:::::::::
probability

:::
of

::::::::
detection

::::
was

::::::::
achieved,

::::
but

:::
the

:::::::
number

:::
of

::::
false

::::::
alarms

::::
was

::::
too

:::::
high.

::
A

::::::
recent

:::::
study

::
by

:::::::::::::::::::::::
Heck et al. (2018a) showed

:::
that

:::::::
HMMs

:::
are

::
a
:::::::
suitable

::::
tool

::
to

::::::
detect

::::::::::
avalanches,

:::
but

:::::
there

::
is

::::
still

:
a
:::::

need
:::
for

:::::::::
additional

:::::::::::::
post-processing

::::
steps.

::::
The

:::::
work

::::::::
presented

:::
here

::::::::
confirms

:::
that

:::::::
HMMs

::
in

::::::::::
combination

::::
with

::::::
further

:::::::::::::
post-processing

::::
steps

:::::::
provide

::::::
reliable

:::::::::::
classification

::::::
results.10

Heck et al. (2018a) highlighted difficulties
:
In

::::::::
addition,

:::::::::::::::::::::::::
Heck et al. (2018a) highlighted

:::
the

::::::::
difficulty

:
in obtaining a reliable

classifier with the HMM approach applied to
::::::
trained

::
on

::::
data

:::::
from a geophone array . They obtained

::::
very

::::::
similar

::
to

:::
the

::::
one

::::
used

::
in

::::
this

:::::
work.

:::::
Their

::::::
results

:::::::
showed

:::
that

:::::
there

:::::
were large differences in model performance

::::::
between

:::
the

:::::::
sensors,

:
with

the number of detections per sensor ranging from about 150 to over 2000. This was attributed to local heterogeneities as the

sensors were packed in a styrofoam
:::::::::
Styrofoam housing and inserted within the snow

::::::::
snowpack.

::::::::::::::::::::::::
Heck et al. (2018a) therefore15

::::::::
suggested

::
to

::::::
deploy

:::
the

:::::::
sensors

:::::
below

:::
the

:::::
snow

:::::
cover

:::
and

:::::
either

:::
on

::
or

::::::
below

:::
the

::::::
ground. In our deployment, the geophones

were buried about half a meter below the ground on a flat meadow. This approach
::::
was

::::::::
successful

::
as

::
it resulted in a much more

consistent number of detections per sensor, ranging from 125 to 169, showing that
::::
169.

::::::
Clearly,

:
the deployment strategy can

have
:
a
:
substantial influence on the performance of the classifier.

Applying the post-processing steps suggested by Heck et al. (2018a) to remove events with a duration ≤ 12s and all classifications20

that were classified by less than
::
In

:::::::
contrast

::
to

:::
the

:::::::::::
classification

::::::::
approach

:::::
used

::
by

:::::::::::::::::::
Hammer et al. (2017),

::::
who

::::
used

::
a
:::::
fixed

:::::::::
background

::::::
model

::
as

::::
they

::::::::
analyzed

:
a
::::::::
relatively

::::
short

::::::
period

:
(5 sensors resulted in

:::::
days),

:::
we

::::
used

::
an

::::::::
approach

:::::
more

:::::
suited

:::
for

:::::::::
operational

::::::::
purposes.

:::::::
Indeed,

:::
for

:::
the

::::::::::
operational

:::::
set-up

:::
the

::::::::::
background

::::::
model

::::
was

:::::::::
determined

:::::
using

:::
24

:::::
hours

::
of

::::
data

:::::
prior

::
to

:::
the

:::::
hourly

::::
data

::::
that

::::
were

:::::::::
classified.

::
In

::::::::::
combination

::::
with

:::
the

:::::::::::::
post-processing

:::::
steps

::::::
related

::
to

:::::
signal

:::::::
duration

::::
and

:::::::
number

::
of

::::::
sensors

:::
the

:::::
events

:::::
were

:::::::
detected

::
as

::::::::
suggested

:::
by

::::::::::::::::
Heck et al. (2018a),

:::
the

::::::
HMMs

::::::::
identified 117 possible avalanche events (Fig-25

ure 8). Even though this approach identified the main avalanche cycle in March 2017 (compare Figure 6 and Figure 8), visual

inspection of the classified events indicated that at least 50% of the events were false alarms produced by
::::::
distant airplanes or

regional earthquakes (Figure 9). Although we did not perform an exhaustive sensitivity study, some ad-hoc testing showed that

these classification results did not substantially change when
::::
Even

:::
by training a classifier with different feature combinations,

changing the training event and/or the length of the training event
:
,
:::
the

:::::::::::
classification

::::::
results

:::
did

:::
not

:::::::::::
substantially

::::::
change

::::
and30

:::::::
airplanes

::::
and

::::::::::
earthquakes

::::
were

:::
still

::::::::
classified

::
as

:::::::::
avalanches. This highlights the difficulty in training an accurate HMM for low

energy signals generated by avalanches. Based on our results, we
::
We

:
concluded that using HMMs to automatically identify

avalanches in seismic data from our geophone array will inherently contain false detections, as the transient
::::::
overall feature

behavior from
:::::
distant

:
airplanes or regional earthquakes was very similar to signals generated by avalanches (Figure 10).

To circumvent the problem of developing an optimal event classifier for one specific array, we made use of a second array

at the Wannengrat. There we performed a second classification to automatically identify airplanes and earthquakes using an

event model trained with
::
by an airplane event. Since transient signals produced by earthquakes, airplanes or avalanches have
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similarities(Figure 10), the results obtained for the second classification based on the airplane event model likely also include

:::
also

::::::
falsely

::::::::
identified avalanches and earthquakes. However, this was not a drawback since we assume that it was very unlikely5

that two avalanches released simultaneously at both field sites. Typically, signals generated by airplanes either have clear

overtones or at least a clear Doppler effect in the signal (van Herwijnen and Schweizer, 2011a). The airplane signals that were

falsely classified as avalanches with our method did not have such obvious features (Figure 9). While we do not know why

and when airplanes generate such signals, and we have not identified a clear pattern explaining their presence, we have seen

multiple signals like these
::::::
Hence,

:
a
:::::::::::
classification

:::::::::
performed

::::
with

::::
only

::::
one

::::
event

::::::
model

:::
was

:::::::::
sufficient.

:::
The

::::::::::
assumption

:::
for

:::
the10

::::::
second

::::::::::
classification

::::
was

:::
that

:::::
most

::::::
falsely

::::::::
classified

:::::
events

::::
were

:
recorded at both arraysand we are confident that these signals

are generated by airplanes. Comparing the time series of detected events at both arrays allowed us to dismiss about 50% of the

classified events (Figure 12). In our case, identifying
:::::::::
Identifying co-detections across arrays is therefore an efficient approach

to reduce the number of false alarms, as the weak signals generated by .
::::::::
Although

::
it

:::
was

::::::::
possible,

:::
that

:::
the

:::::::::::
classification

::::::
results

::
of

:::
the

::::::
second

::::
array

:::::::::
contained

::::::::
avalanche

::::::
events,

::
it

:::
was

:::::::
unlikely

::::
that

:::
two

:::::::::
avalanches

:::::::
released

:::::::::::::
simultaneously

::
at

::::
both

::::
field

:::::
sites.15

::::::::::
Furthermore,

:
avalanches were only recorded at one array since the distance between both arrays was about 14km.

::
In

:::
the

::::::
future,

:
a
::::::::
promising

::::::::
approach

:::::
could

:::
be

::
to

::::::
reduce

::
the

::::::::
distance

::
to

:::::
about

:
2
::
or

::
3

:::
km,

:::
as

:::
this

:::::
could

::::
also

::::
help

:::::::
improve

:::
the

::::::::::
localization.

Combining the classification results from two separate arrays
:::::::
Although

:::
the

:::::::::::
combination

::
of

:::
two

::::::
arrays

:::
for

:::
the

:::::::::::
classification

allowed us to reduce the number of false classifications. Nevertheless
::::::::::
classification, some uncertainty remained about the origin

of the identified events. In a final step, we therefore used the MUSIC method to estimate the median back-azimuth path, as20

suggested by Heck et al. (2018b), to further dismiss false detections. Similar approaches were suggested for the automatic

detection of avalanches in infrasonic data by Marchetti et al. (2015) and Thüring et al. (2015). In those studies, the back-azimuth

of continuous infrasound data was calculated
::
on

:::
the

:::
fly using cross-correlation techniques, and only events with slight changes

in back-azimuth over a predefined minimal duration were assumed as avalanche events. In contrast, we
::::
here

::
we

::::
only

:
determined

the back-azimuth with the MUSIC method only for those events that were already
:::
for

:::::
events

::::::::::::
automatically

:
identified by the25

HMM , since
::::
with

:::
the

:::::::
MUSIC

:::::::
method,

::
as

::::::::::::::::::::::
Heck et al. (2018b) showed

::::
that

:::
for

:::
our

:::::::::::::
instrumentation pair-wise cross-correlation

technique (beam forming) did not result in robust back-azimuth estimatesfor our instrumentation (Heck et al., 2018b). This

last processing step further reduced the number of classified events to 21
::
27

:
(Figure 14).

:::
We

:::
also

::::::
found

:::
out,

::::
that

:::
the

:::::::
MUSIC

::::::
method

::::::
would

::::
have

:::::
been

::::::::
sufficient

::
to
:::::::::

determine
:::
the

:::::::::
reliability

::
of

::
a
::::::::
detection

:::
as

::
it

:::
was

::::
not

:::::::
possible

::
to
::::::

locate
:::::::
airplane

:::
or

:::::::::
earthquake

::::::
events

::::
with

:::
our

:::::
array.

:::::
After

::::::::
applying

:::
the

::::::::::
localization

::::::
based

::::
step

::
to

:::
all

:::::::::
detections,

:::
32

:::::
events

:::::
were

::::::::
identified

:::
as30

:::::::::
avalanches,

::
5

::::
more

::::::
events

::::::::
compared

::
to

:::
the

:::::::::
combined

::::
array

::::
and

:::
the

:::::::::
localization

:::::
based

::::::::::::
classification.

The majority of the remaining 21 automatic
::::
After

::::::::
applying

:::
the

::::::::
combined

:::::
array

:::::::::::
classification

::::
and

:::
the

:::::::
MUSIC

::::::
method

:::
to

::
the

:::::
data,

:::
27

:::::::::::
classification

::::::::
remained

:::
for

:::
the

::::::
winter

::::::
season

:::::
2017.

::::::
Nearly

:::
all

::
of

:::::
these

:
classifications occurred during a period

which coincided with the
::::::
periods

:::
of observed high avalanche activity in March (Figure 14). However, very few avalanches

were automatically detected during
::
for

:
the first two avalanche periods observed in the surroundings of Davos

:::::
periods

:::
of

::::
high35

::::::::
avalanche

::::::
activity

:
in January and February

:::
only

::::
few

:::::
events

:::::
were

:::::::
detected,

::::::::
whereas

::
in

:::
the

:::::::::::
surroundings

::
of

:::::
Davos

:::::
many

::::::
events

::::
were

::::::::
observed. This may be due to fact that the Dischma site is located about 12km km to the southeast of Davos where

avalanches are regularly observed and weather and snow conditions are sometimes different since major storms arrive from
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the northwest. Indeed, based on the images from the automatic cameras, very little avalanche activity was observed in the area

in January and February, suggesting that there was only one main avalanche period at our site in March. With our automatic5

classification
:
.
:::::::::::
Nevertheless, it was thus possible to reconstruct the main avalanche activity period in March

:::::
based

::
on

::::
the

::::::::
automatic

:::::::::::
classification. Results from the localization showed that during the season avalanches released from many different

slopes at the field site , in particular for the avalanche period in March (Figure 15).
:::
This

:::::
could

:::
be

:::::::
observed

:::::::::
especially

::::::
during

::
the

:::::
snow

:::::
storm

::
in

::::::
March.

:
A seismic monitoring system is therefore a suitable tool to monitor an area with many slopes

:
a
:::::
wide

:::
area

:
and not just one single slope. Although the detection range is with 2 - 3km rather limited (Heck et al., 2018b) , the seismic10

monitoring
:::::
small

:::::::::::::::::::
(Heck et al., 2018b) the

:::::::
seismic system in combination with an automatic classifier provides great potential

to identify at least the major avalanche periods. These results suggest that the detection capabilities of seismic monitoring

systems are very similar to those of infrasound monitoring systems (?).

Although we were able to identify one major avalanche activity period in the winter season 2016-2017
::::
2016

:
-
:::::

2017, the

method presented here has its limitations. Our suggested workflow requires two arrays to eliminate falsely classified events15

by finding co-detections. This is clearly a limiting factor as it increases the cost for the instrumentation as well as deployment

and maintenance time. However, we could have directly applied the MUSIC method to all detections from the Dischma array

to reduce the number of falsely classified events. Indeed, after applying the localization based step to all detections, 32 events

were identified as avalanches , 11 more than with the combined array and the localization based classification. Although we

decided to implement a combined array classification step to save computational time, directly localizing every automatically20

detected event is thus also possible.

The main limitation is that we could not quantify the reliability of the classifier as no independent verification data were

available. Our results suggest that the HMMs trained at the Dischma array had a false alarm rate of ∼ 80%, which was reduced

by applying the suggested
:::::
Based

:::
on

:::
the

::::::
sensors

::::
used

:::
for

:::
the

:::::::::
automatic

:::::::::
monitoring,

:::
we

::::::::
identified

::::::::::
avalanches

:::::
within

::
a

:::::
range

::
of

:
2
:
-
:::::
3km.

::::::::
However,

:::
by

:::::
using

:::::
more

:::::::
sensitive

:::::::
sensors,

::::
e.g.

:::::::::::
seismological

:::::::::
broadband

:::::::
stations,

:::
the

::::::::
detection

:::::
range

::
of
::::::::::

avalanches25

:::
can

::
be

:::::::::
increased,

::::
even

:::
up

::
to

::::::
30km

::
for

:::::
very

::::
large

:::::::::
avalanches

::::::::
(run-out

:::::::
distance

:
>
:::::
2km

:::::::::::::::::::
(Hammer et al., 2017).

::::::::
However,

::
it

::
is

::::::
difficult

::
to
::::::
deploy

::::
such

:::::::
sensors

::
in

::::::::
mountain

::::::
terrain,

:::::
since

:::::
these

::::::
stations

::::::
require

:::::::
existing

:::::::::::
infrastructure

:::::
(e.g.

::::::::
electricity,

:::::::
storage

::::
room

::
in
::

a
::::
hut),

::::::
which

::
is

:::::::
typically

:::
not

::::::::
available

::
at
::::::
remote

:::::::::
locations.

::
In

::::::::
addition,

:::
the

:::
last

:
post-processing steps. However, the

probability of detection or the exact false alarm rate are difficult to estimate, since ground truth data are missing.As avalanches

generally release during periods of poor visibility, this is a common problem when assessing the detection performance of30

automatic avalanche detection systems (?Heck et al., 2018a; Thüring et al., 2015). Alternatively, one could visually inspect

the waveforms and spectrograms over the entire season (e.g. van Herwijnen et al., 2016). However, events identified in this

manner often contain many uncertainties (Heck et al., 2018a). For example, two of the authors independently identified possible

avalanches, resulting in 44 and 23 events, respectively. Thus, the only events we could use to assess the performance of

our classifier were the 13 manually identified avalanches by Heck et al. (2018b) on 9 and 10 March. Twelve of these were35

automatically identified with our approach, suggesting good performance in terms of probability of detection and the number

of missed events
:::
step

:::::::
requires

:
a
:::::::

second
:::::
array.

:::::
Hence

::::::::::
low-power

:::::::
systems

::::
with

:::
less

:::::::::
sensitivity

::::::
proved

:::
to

::
be

:::
the

::::
best

::::::::
solution.

::::::::::
Furthermore,

:::
the

:::::::
limited

:::::
power

::::::
supply

::
at

:::
the

::::
field

::::
sites

:::
also

::::::::
prevents

:::::::::
performing

::::
first

:::::::::
processing

::::
steps

:::::::
directly

::
at

:::
the

::::
field

::::
sites
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:::
and

:::::
hence

:::::
limits

:::
the

:::::::::
possibility

:::
of

::::
near

:::::::
real-time

:::::::
analysis. However, we cannot make any statements on the false alarm rate,

which from an operational point of view is also very important
:
it

::
is

:::::::
possible

::
to

:::::::::
overcome

:::
this

:::::::
problem

:::
by

:::::::::
designing

::::::
special5

:::::::
hardware

:::
for

::::
this

::::::::
particular

::::
task.

Based on the approach presented here, a near real-time classification of the seismic data and hence a near real-time detection

of avalanches seems possible. The computational times on a standard personal computer (
::::::::
computer

::::
with

:
a
::::::::
regularly

::::::::
available

8-core processor with 12GB ram ) are reasonably short as feature calculation can be performed in
:::
and

::::::
almost

:
near real-

time for all sensors simultaneously as well as the HMM construction and the classification. The MUSIC method, on the10

other hand,
::::::
whereas

:::
the

::::::::::
localization

:::::
based

:::
on

:::
the

:::::::
MUSIC is very costly (three times real time). However, since

::::::::
Although

:::
we

::::::
decided

::
to

:::::::::
implement

:
a
:::::::::
combined

::::
array

:::::::::::
classification

::::
step

::
to

::::
save

::::::::::::
computational

::::
time,

:::::::
directly

::::::::
localizing

:::::
every

:::::::
detection

::
is

::::
also

:::::::
possible.

:::::
Since the amount of detections for the entire

:::::
whole

:
season was very low, a near real-time detection could be provided

with or without the combined array classification. In future systems, the pre-processing steps can be integrated in the data

logging unit to substantially reduce the data transmission
::::::
reduce

:::
the

::::::
amount

::
of

::::
data

:::::
while

:::::::::
recording.

:::::
Using

:
a
:::::::
standard

::::::::
personal15

::::::::
computer,

::::::
feature

:::::::::
calculation

::
is
:::::::::
performed

::::
near

::::::::
real-time

:::
for

::
all

::::::
sensors

:::::::::::::
simultaneously

::
as

::::
well

::
as

:::
the

::::::
HMM

::::::::::
construction

::::
and

::
the

::::::::::::
classification.

::::::::
However,

:
a
:::::
major

:::::::
obstacle

::
of

:::
our

:::::::
method

:
is
:::
the

::::::::
necessity

::
of

::
an

::::::::
adequate

:::::::
training

::::
event

::::::::
recorded

:
at
:::
the

:::::::
seismic

::::
array.

::::::
Using

:::::::
training

:::::
events

::::::::
recorded

::
at

:::::::
different

:::::
arrays

::::::
might

::
be

:::::::::
unreliable

:::
due

::
to

:::::::
possible

::::::::::
differences

::
in

:::
the

:::::::::::::
instrumentation

:::
and

:::::::
changes

::
in

:::
the

::::::
overall

::::::::::
background

:::::
noise

:::
or

::::
local

:::::::::::::
heterogeneities

::
in

:::
the

:::::
local

:::::::
geology

:::
and

::
in

:::::
snow

::::::::::
conditions.

::
To

:::
set

:::
up

::
the

::::::::::::
classification

::::::
experts

::::
will

:::
still

:::
be

::::::
needed

::
to

::::::
define

::::::
correct

:::
and

:::::::::
confirmed

:::::::
training

::::::
events.

::::::
Future

:::::::
research

::::
will

::::::
assess

:::
the20

::::::::
possibility

::
to
::::
use

:::
one

:::::::
training

::::
event

:::
for

::::::
several

:::::::
seasons

:::::::
recorded

::
at
:::
the

:::::
same

:::::
array.

6 Conclusions

6 Conclusions

During the winter season 2016-2017 we used a seismic array to continuously monitor avalanche activity in a remote area

above Davos, Switzerland. By training a machine learning algorithm
:::::::::::
implementing

:::
an

:::::::::
operational

:::::::::::
classification

:::::::
method based25

on hidden Markov models (HMMs), we detected 117 events in the seismic data from January to April,
::::::
which

::::
were

::::::
likely

:::::::
produced

:::
by

::::::::::
avalanches. Subsequent visual inspection revealed a false alarm rate of at least 50%and most .

:::::
Most

:
of the

false detections were associated with airplanes or earthquakes. We therefore trained a second HMM with data from a seismic

array at a distance of 14km to remove any co-detections. Finally, we applied a multiple signal classification
::
By

::::::::::::
implementing

::::::::
additional

::::
steps

::::
such

:::
as

:
a
::::::::
combined

:::::
array

::::::::::
classification

::::
and

:::
the

:::::::::
localization

::
of

:::
the

::::::
events

::::
based

:::
on

:::::::
multiple

:::::
signal

::::::::::::
classifications

(MUSIC)approach to define threshold criteria for automatic avalanche identification by considering avalanches as a moving5

source. Overall, this workflow resulted in 21 automatic classifications. The majority of these events occurred on 9 and 10

March 2017, in accordance with a period of high avalanche activity observed in the surroundings of Davos.

Our results show that seismic monitoring systems in combination with an automatic classifier provides great potential to

identify at least the major avalanche periods. In our workflow, using an array processing method to determine the source of the

seismic events was of crucial importance to reduce falsely classified events,
:::
we

::::::::
improved

:::
the

:::::::::::
classification

::::::
results

::
by

::::::::
reducing10
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::
the

:::::::
number

::
of

:::::::::
identified

:::::
events

::
to

:::
27.

:::::
Only

:::::
using

:::
the

::::::::::
localization

::
to

::::::
remove

:::::
false

::::::::
detections

:::::::
resulted

::
in
::

at
:::::

least
::::
15%

::
of

:::::
false

::::::::
detections

:::
yet

::
at

::
a

:::::
higher

::::::::::::
computational

:::::
cost.

:::
Our

::::::
results

::::::::
therefore

:::::
show

:::
that

:::::::::
dismissing

:::::
false

::::::::
detections

::::
with

::
a
::::::
second

:::::
array

:::::::
improves

:::
the

:::::::
overall

:::::::::::
classification

::::::::
accuracy.

::
If

:
a
::::::
second

:::::::::
avalanche

:::::::::
monitoring

:::::
array

::
is

::
in

:::
the

:::::::
vicinity,

::::::::
combing

:::
the

:::::
results

:::
of

::::
both

:::::
arrays

::::
will

:::::::
improve

:::
the

::::::::::::
classification

:::::
results. In future experiments we want to introduce an additional array within a

shorter distance
::::::
reduce

:::
the

:::::::
distance

:::::::
between

:::
the

::::::
arrays

::
to

::::
some

:::::::::
kilometers

:
to improve the localization and no longer require15

the combined array classification approach
::
of

:::::::::
avalanches.
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