Reviewer 2:

The author describes an approach for a detection method for avalanches based on hidden Markov
models, applied on a seismic array. I' am wondering about the high computational and installation effort
(two arrays) needed for this detection method, which does not make sense for practical applications.
Also the false alarm ratio is relatively high, although a complicated detection method is used. However,
the method and the results are well presented and the work has a scientific relevance for seismic signal
processing , so | recommend to accept this article with minor revision:

Page 1, line 11: "small changes of source direction" - this depends on the location array - avalanche path
This is correct. However, since our array is located at the valley bottom, we expect only small changes for
the back-azimuth. We clarified it in the abstract.

Since snow avalanches recorded at our arrays typically generate signals with small changes in source
direction, events with large changes were dismissed as false detections.

Page 2, line 13-18: Might mention that infrasound detection methods for avalanches currently shows
better results than seismic detection. Of course this depends on the avalanche type, so powder
avalanches produce higher infrasound amplitudes, while wet snow avalanches generate higher seismic
signals. You can also notice, that a combination of both technologies might result in a better detection
performance.

We added a few sentences in the introduction to address this issue.

A recent comprehensive study on the performance of these systems has shown that in the absence of
major topographic barriers, infrasound avalanche detection systems relying on array processing
techniques are well suited to reliably monitor larger avalanches up to a distance of 3 to 4 kilometers
(Mayer et al. 2018).

Page 3, line 10: "natural frequency" instead of "eigenfrequency"
We changed the term.

Page 4, sec. 3.1: What does this threshold mean for the possible detectable avalanche size? Have you
thought about using the common STL/LTA method?

This threshold was only used to reduce the amount of data to process. It is similar to the STA/LTA
method, however, since we are not interested in the exact onset of seismic signals (which is a big
advantage of the STA/LTA method, especially for earthquake detection), a much simpler amplitude
threshold was sufficient.

Page 7, line 25: I'm wondering, that you can find one representative avalanche event for training, which
can be used for the whole winter season. Normally there a large differences at the signal pattern for
different avalanche types (powder to wet snow avalanches).

In previous studies, we investigated using different avalanche signals to represent different classes (i.e.
dry and wet-snow avalanches). However, this approach did not improve the classification results. Signals
from different types of avalanches have some distinct characteristics: wet-snow avalanches generally
generate longer signals (these avalanches flow more slowly) and higher amplitudes (larger mass often
flowing on the bare ground). Nevertheless, when using HMMs for the classification, the duration of the
signal and the maximum amplitude are not relevant and there is no need to implement specific
avalanche classes.



Page 8, line 8: Is not it theoretical possible that an avalanche occur right between this two arrays and is
than registered by both?

The maximum distance for an avalanche to be detected is around 3 km. Since both arrays are seperated
by about 14km, avalanches occurring right between those arrays are likely not detected at all.
Furthermore, it is possible that avalanches releases simultaneously at both array. However, we assume
this probability to be rather low.

Page 9, line 20-24: What does this minimum event duration mean for detectable avalanche sizes?

It is clear that imposing a duration threshold for the detections does not allow us to investigate small
avalanches. However, due to a lack of ground truth data, we did not investigated the influence of
avalanches size. Previous work has shown that signal duration relates to avalanche size. However, as
powder avalanches travel at higher velocities than wet snow avalanches, a long duration of the signal
might indicate a large and fast powder avalanche with a long runout, or a slow wet snow avalanche with
a shorter runout and size. Thus, we cannot comment specifically on what avalanche size is excluded due
to our minimum duration threshold.

Sec. 5: A graphic comparing the number of detected avalanches, false alarms (maybe separated for every
detection criterion) and also the number of missed events for the whole season would be useful.
Especially | missed a detailed description about the missed events.

We included an additional Table containing these numbers.

Page 20, line 10: Might you can also note literature about seismic detection of debris flow/debris flood -
this are sometimes similar to the detection methods for avalanches.

We have added more references in the Discussion section related to other types of gravitational mass
movements.

Page 21, line 12: Efficient for your situation, but the need of two different arrays is not a "efficient
approach".

We now address this point in the Discussion section:

Our suggested workflow requires two arrays to eliminate falsely classified events by finding co-
detections. This is clearly a limiting factor as it increases the cost for the instrumentation as well as
deployment and maintenance time.



Review of
Automatic detection of avalanches using a combined array classification and localization
by Heck et al.

1st Revision

The two reviewers of the original submission pointed out several specific issues within the
manuscript. The authors responded to all of these comments, yet sometimes it is hard for me to
check if or how those replies made it into the revised version of the manuscript. Additionally I think
the manuscript still needs work before it can be accepted for publication. Please find my detailed
comments below.

Best regards,
Florian Fuchs

Handling of reviewer comments:

The authors reply properly to all reviewer comments. However, especially when answering to
Reviewer #1 comments on pages 12 and later it’s not clear anymore if those replies were integrated
into the manuscript. | do support all of the reviewers comments and questions and | do see that the
authors know how to respond to those. But I strongly suggest to implement all of them — at least
briefly — into the manuscript. The same holds for almost all comments by Reviewer #2,

Please insert all of those replies to the text (at least briefly) and indicate all the changes in the
rebuttal letter. Otherwise, it’s hard to follow, not having done the 1 st round of reviews.

Additional comments:

Although all/many comments from the first round of reviews were already taken care of, | must
unfortunately admit that | still had a hard time reading the manuscript. | do believe that work itself
is interesting and the findings are worth reporting. Yet, the manuscript is not easily comprehensible
in the current shape. Mainly, I am missing a clear and concise structure and more precision in the
wording and figures. | also suggest to make use of the Copernicus English grammar and
spellchecking service.

We would like to thank the reviewer for the helpful comments. Based on these comments, we
substantially changed the manuscript to improve the structure and clarity of the text. We have also
(briefly) included many of our replies of the first round of reviews in the discussion.

General structure and ease of reading:

e Please be more precise throughout the entire manuscript. When you say “high”, “low”,
“good”, “poor”, “better”, “most”, “large” please try to give values, if possible. E.g., what
number of percentage can be considered a “good” classification result? When you speak of
“features” that “change” and are “common” please describe specifically which features you
mean and how they change.

We checked the manuscript and changed the wording in places where it was ambiguous.

e Your chain of processing kind of gets obscured throughout the manuscript. I'd suggest that
somewhere you briefly list your work flow. Figure 5 somewhat tries to summarize this, but |
think text would help here. Additionally, Figure 5 could use some instructive labels, e.g.
you could indicated the length of the data windows. The panels “pre-processing” and



especially “post-processing” could indicate what’s actually done. E.g. that post-processing is
the MUSIC beamforming.
We completely restructured the methods and results sections to more clearly convey how the
suggested signal processing workflow works.

e [ am missing a short subsection on “post-processing” in section 3, “methods”. You
repeatedly emphasize the need for “post-processing” but it’s not clear what this is.
We added a section to more clearly explain the different stages in the post-processing.

e Inprinciple it is a good idea to have dedicated sessions on methods and results (sections 3
and 4 in this manuscript). Yet, you mix methods, observations, interpretation and references
repeatedly. In the “Methods” section you should be as brief and precise and necessary. You
should not evaluate the results of other work here, but only briefly repeat the main points
you make use of. All the rest is better placed in the discussion section. Likewise, in the
results section (4) you repeatedly evaluate the quality of the results (this should be done in
the discussion section) or introduce new steps in the processing. Please double-check to
clarify.

As mentioned before, we completely restructured the methods and results sections. Furthermore, we
moved some sections of the text to either the introduction or the discussion.

e It’s difficult to track how many events you remove during the different processing steps and
how many events actually remain as final detections. Maybe a table listing the number of
events and how many get discarded by each processing step would help.

We added an additional table showing the number of detection and false classification for each
processing step.

Discussion section:

e I agree with Reviewer #1 that the “Discussion” section in the current state is rather a
repetition and summary of the previous chapters. This needs to be changed. Here I’d like to
see you discuss the benefits and limitations of your methods. E.g. it is very interesting to
read that the sensor installation itself already has a huge impact on the classification results.
Why? What else can influence the classification that strongly? The airplane signal could also
be discussed here (or in the supplemental, see below), as reviewer #2 points out the strong
difference to other observed airplane signals. What about anthropogenic signals? Are there
roads/cars nearby?

We rewrote most of the Discussions section and now also explicitly address the airplane signals that
were falsely classified as avalanches.

e Most importantly, the choice of the training event should be discussed, as it surely has a
huge impact. For example why did you only choose a part of the avalanche signal in Figure
7 as the training event? Half of the signal seems to be missing ... You may not have the time
and patience now to carefully double-check the performance of your routine based on
different training events, but this would of course be desirable. Do you maybe at least have
some experience from other datasets that you can report on? Why can’t you simply use more
than one training event?
As mentioned in the discussion section now, it was best to neglect the coda of the avalanche signal
and only use the part of the signal where energy increases up to the first maximum of the signal. We
also investigated using different sections of the avalanche signal without improving the
classification results. In the past, we have investigated using different training events for dry- and
wet-snow avalanches to improve our classification results. However, such an approach did not
improve the results at all and typically resulted in more falsely classified events. While we did not
conduct a comprehensive investigation on the influence of the training event, our ad-hoc testing has



shown that the influence is rather limited. Furthermore, we also wanted to highlight that it is
possible to use this classification approach with only one training event.

e (Could you think of other “features” that could help to distinguish avalanches from airplanes
and earthquakes? After all, the ones you use don’t seem to do the job. I’d personally like to
see you speculating here ...

We investigated using other and more features in our recent work (Heck et al. (2018)). In the end,
the feature combination used for the classification in the current work was the best suitable for the
classification task.

e Obviously, broadband sensors will not necessarily improve your data quality, neither will
they automatically detect more distant avalanches. This needs to be rephrased. Only in the
rare case of huge, catastrophic events — which generate long period seismic radiation, in
contrast to the small local ones — they might be an advantage over the short-period
geophones. The fact that “common” avalanches can only be detected within few km distance
is probably due to the weak seismic signal they generate, and the only chance to improve the
data quality is to have more sensors (signal-to-noise ratio) closer to the events (less
attenuation). Of course, this is not always possible.

We agree with the reviewer that changing the instrumentation is not likely going to improve the data
quality nor the detection range. We therefore removed this section.

Efficiency of computations:

e When discussing the “speed of processing” you refer to a “standard 8 core processor with
16GB RAM”. It may seem picky now, but do you actually make use of all the 8 cores? Is
there some kind of parallelization involved in your processing? If yes, please comment on
this, if not I think the community usually refers to “a standard personal desktop/laptop
computer” to indicate that no supercomputing powers or high-level workstations are
required. Similarly, do you actually need the 16GB RAM? If yes, what for? Reviewer #2
also pointed this out and it’s actually an interesting point. In fact, probably the computing
power wouldn’t really matter and you would not have to comment on it, if data were only
processed “off-field” in some data center. However, In your reply, you indicate that some of
the processing is done on-site in the field — this of course strongly limits computational
power and is a very interesting and crucial point that is not mentioned at all in the
manuscript. Please include this in the Instrumentation/Methods section! This will also
clarify why you perform some of the processing steps and why computation time is crucial.

We did not perform an in-depth analysis of our computing time, nor did we try to optimize our
algorithms for this. We only wanted to comment on this to show that the method could be used in
near real-time and that the most costly analysis is the MUSIC method. We do not perform any
processing on-site in the field, this must be a misunderstanding or some unclear comments in our
earlier replies. Note that it is useful to have a multicore processor, since several tasks can be
performed simultaneously (e.g. computing the features of all seven sensors at the same time). We
now only very briefly comment on this at the end of the Discussion section.

Figures:

e There are a lot of Figures, which complicates the reading. | suggest to e.g. somehow merge
Figures 6, 8, 12 and 14 as they all show the same information. If all the panels were shown
below each other, a comparison of the observations would be easier.

e Similarly, maybe Figures 2 and 3 could be merged.

We merged and improved some of the figures

e Please highlight the avalanches in Figure 4.



We highlighted avalanches in this figure and also included the location of the cameras and the
seismic array.

e Figures 9 + 11 are not relevant for the understanding of the text and | suggest to move those
to the supplemental material. Reviewer #2 raised doubts about the origin of the airplane
signals, since they look different in other studies. The authors claim to be certain about their
interpretation. This point might also be discussed in the supplemental material, as it’s not
crucial for the understanding of the main text.

We do not agree with the reviewer that these figures are not relevant. In our opinion these figures
clearly show the two main types of signals that were falsely classified. Furthermore, one can clearly
see that the signals recorded at both arrays are very similar. This is particularly important for our
airplane signals, which do not contain any signs of Doppler effect or clear overtones and are
therefore rather unusual. We therefore kept these figures in the main text, but we merged them into
one figure.
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Abstract.
We used eontinueus-datafronta seismic monitoring system to automatically determine the avalanche activity at a remote field

site abeve-near Davos, Switzerland.

used-By using a recently devel-

oped method-approach based on hidden Markes-Markov models (HMMs), a machine learning algorithm, we were able to au-
tomatically identify events-avalanches in continuous seismic data by using-enty-providing a single training event. Furthermore,

we implemented an operational method to provide near real-time classification results. For the 2016-2017 winter period ;-this
restlted-in-117 events —Second;to-eliminatefalsely-were then automatically identified. False classified events such as airplanes

and local earthquakes were filtered using a new approach containing two additional classification steps. In a first step, we
implemented an-additional-a second HMM based classifier at a second array 14km away to automatically identify airplanes

and earthquakes. By cross-checking the results of both arrays --we reduced the number of false classifications by about 50 %.
In a third-and-final-stepsecond step, we used multiple signal classifications (MUSIC), an array processing technique, to deter-

mine the direction of the source. Stace-snow-avalanchesrecorded-at-our-arrays-typically-generate-stenals-with-small-chanee

ionsAlthough avalanche events have a moving source
character, only small changes of the source direction are common whereas false classifications showed large changes and thus
were dismissed. From the 117 initially detected events during the 4-month period ;-eur-—elassification—workflow removed-96
events-asfatse elassifieations—Fhe majority-of the remaining 21-events-were on-9-and-10-Mareh-2647;-we were able to identify.
90 false classifications based on these two additional steps. The avalanche activity based on the remaining 27 avalanche events
was in line with visual avalanche-observations-observations performed in the region of Davos. Ourresulissuggest-that-the
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1 Introduction

During the winter seasons, snow avalanches are a common threat in meuntainrous-mountain regions. Avalanche warning ser-

vices therefore inform the public of the current avalanche danger. To assess the danger, warning services rely on information

about the snowpack, amount of new snow, weather conditions and avalanche activity {e-e-MeClang-and-Sehaerer;-2006)(McClung and Sch

Whereas the first three parameters can be measured or modeled, avalanche activity data are often hard to obtain, especially

during snow storms or at night. Monitoring systems

mmmmmﬁwwmwmmmmmmm“wwmmww

Snow avalanches, like any other mass movement, generate seismic and infrasound waves (e.g. van Herwijnen and Schweizer,
2011b; Surifiach et al., 2005; Marchetti et al., 2015). Seismic signals of avalanches show some common characteristics, in-
cluding a spindle shaped envelope of the time series (Nishimura and Izumi, 1997) and a typical frequency content between 2
and 30 Hz (Schaerer and Salway, 1980; Surifiach et al., 2001). Several classification approaches were therefore developed to
automatically detect avalanches in seismic data. Leprettre et al. (1996) used a fuzzy logic approach to distinguish between dif-
ferent types of signals. Bessason et al. (2007) applied-used a nearest neighbor approach and-deteeted-to classify new recorded

events, Using this approach, they were able to detect 65 % of all confirmed avalanches. Rubin et al. (2012) compared 12 ma-

chine learning algorithms, 10 of which were able to detect at least 90 % of all manually identified avalanches—While-these

ts—fypteaﬂy—fequedﬂﬂek however, at the cost of very high false alarm ratesafe«geﬂera}}y—faﬂwﬁhtg%k&ubﬁe%al—%@l%}

hey-. Hammer et al. (2017) recentl

used hidden Markov models (HMMs), an advanced machine learning algorithm, to automatically detect large avalanches re-
leased inFebruary1999-during the winter of 1998-1999 in seismic data recorded by a s1ngle broadband station maintained

by the Swiss Selsmolog1cal Service (SED) HVEM

and-one-event-model-foreach-implemented-eventelass—Using this approach, Hamme%e%ﬂ—@@{%wxwere able to identify

43 destruetive-avalanches-during-an-exeeptional-avalanches during a 5-day avalanche-period-inFebruary1999-period within
a radius of 30km of the broadband-seismie-station. Heck et al. (2018a) recently-adapted-this-also used the HMM approach to
automatically detect smalleravalanchesavalanches, however, in data recorded during the winter season 2009-2010 by a seismic

array consisting of seven less sensitive vertical geophonesdﬂfmgﬂ%%meﬁeaseﬁ%@@)-%@%espﬁe—melafgeﬂtﬁefeﬂees
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They obtained the best results for the automatic detection by combining the classification results of all sensors and requiring a
minimal event duration for the detections.

studies focused on the use of infrasound signals. Localization parameters determined using cross-correlation techniques were

used to automatically identify avalanches in continuous data sets (Scott et al., 2007; Marchetti et al., 2015; Thiiring et al.,
2015). By comparing the back-azimuth with the directions of known avalanche paths, possible avalanche events were identified

(Marchetti et al., 2015). Thiiring et al. (2015) used a similar approach for the automatic detection, but relied on support vector

machines (SVM), a machine learning algorithm.

In addition to the automatic detection of avalanches, Lacroix et al. (2012) and Heck et al. 2018b) used seismic array pro-

cessing techniques a

Affa’fpfeeesmg%eehmqﬂeﬁxaveﬂ}se%eefrﬁseérto locate the source of avalanches-in-seismic-datathe avalanche. Lacroix

et al. (2012) implemented a beam-forming approach and were able to assign recorded avalanches to three known avalanche

paths. Heck et al. (2018b) compared a beam-forming method with a multlple signal classification (MUSIC) approach (Schmidt,
1986) and obtained better results with the latter -

they subsequently applied this method to manuallyidentified-avalanches-avalanches monitored during a two-day period in
March ey-2017. Based on these results

they concluded that their seismic array mostly recorded infrasound signats-due to the limited distance between the sensors.

While-beth-Nevertheless, they were able to reconstruct the avalanche path of several recorded events. Lacroix et al. (2012) and
Heck et al. (2018b) both used less sensitive vertical component

eophones for the seismic monitoring resulting in an avalanche detection distance of approximately 3kmeof-their—seismie

Our aim is to design-a-werkflow—to-automatically identify avalanches in continuous seismic-data—Our-method-consists-of

using-the-data recorded during the winter period 2016-2017 using the same machine learmng techmques based on hidden
Markov models

recorded-as used by Heck et al. (2018a). To reduce the false alarm rate we first use an additional classification performed at a
second array 14km away to dismiss events recorded almost simultaneously at both arrays such as earthquakes and airplanes.
In a second step, we analyze the median back-azimuth path of the detections using the MUSIC method as performed b
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during the winter season 2016-2017 at-two-field sites-above Davos;-Switzerland(yellow square in Figure 1). These results were
(red square in Figure 1).

2 Field site and instrumentation

During-Prior to the 2016-2017 winter season, we installed two seismic arrays above Davos, Switzerland(Figure2)—The-arrays
were-, similar to the system-systems described by van Herwijnen and Schweizer (2011a). The first array was deployed at the
Dischma field site (yellow square in Figure 21), 14km away from Davos at the end of a tributary valley (Heck et al., 2018b).
The field site is a flat meadow at an elevation of 2000m a.s.l. surrounded by mountain peaks which rise up to 3000m. The
second array was deployed at the Wannengrat field site above Davos at 24661m-2500m a.s.l. (red square in Figure 21). This
field site is surrounded by several avalanche starting zones (van Herwijnen and Schweizer, 2011a).

Both arrays consisted of a 300 m long string with 7 vertical component geophones with an ratuaral-frequeney-eigenfrequency
of 4.5Hz. The sensors of the Dischma array were buried abeut-50 cm deep into the ground whereas the sensors at the Wannen-
grat field site were attached to rocks using an anchor. For each array ;-the sensors were circularly arranged (Figure 2 a) and b).
The maximum distance between two sensors at the Dischma and Wannengrat field site was 64m and 74 m, respectively, and
the average distance was 36 m at the Dischma array and 45 m s+espeetivelyat the Wannengrat array.

The instrumentation and data logging systems were identical for both arrays. Data were continuously reeorded-at-asampling
sampled at a rate of 500 Hz. Bue-However, due to technical problems s-only two sensors of the Wannengrat array recorded data

throughout the entire winter (4 and 5 in Figure 2 b)and-ne-data-were-colected-betweent2-and-20-January2017—, Both field

sites were alse-equipped with several automatic weather stations (3 at Dischma, 4 at Wannengrat) as well as automatic cameras
(8 at Dischma, 6-5 at Wannengrat)to-menitor-, The automatic cameras visually monitored the surrounding slopes —Jtmages

and images were recorded every 10 minutes throughout the winter (Figure 3). In-additionAs already shown for avalanche

eriods in the winter season 2009-2010 by van Herwijnen and Schweizer (2011b), those images can help to identif

and confirm seismic events produced by avalanches. In addition to the automatic cameras, we also performed a-field-survey-at
the-Dischma-site-on—15-Mareh-2017-field surveys shortly after a period of high avalanche activity to identify avalanches and

map their outlines (Figure 4) (Heck et al., 2018b).

3 Methods
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Figure 1. Map of the area of Davos, Switzerland. The two arrays are indicated by a black triangle on colored ground. Red represents the
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Wannengrat array, yellow the Dischma array. Reproduced by permission of swisstopo (JA100118).
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Figure 2. aj-Map-of-the-area-Setup of Daves—Switzerland—The-two—seismie-sensor arrays are-indicated-by-ablack—triangle-on-—colored

weatherstation—(b) Deployment-geometry-of-the-Dischmaarray—e, b) Peployment-geometry-of-the-Wannengratarray. The open red circles
indicate positions of matfunetioning-not working sensors during the winter 2017 Reproduced-by-permission-of-swisstope-GA+00+H8)-
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3.1 Data pre-processing

The continuous seismic data mostly eonsisted-of-noise;-which-consist of noise. Since for the current application was-noise is of
little interest—We-therefore-, we applied a simple threshold based event detector to reduce the total-amount of data (Heck et al.,
2018a). For a window ¢ with a length of 1024 samples -we-determined-the-a mean absolute amplitude A; was determined.
When A; > 5A, with A the daily mean amplitude, the data within the window were keptcut. If the amplitude threshold for

the following window was also reached, data were concatenated. Furthermore, a section of ¢ = 60s was cut before and after

the threshetd-passing-werekept-window to ensure that the onset and coda of events-were-each event was incorporated. Doing
so, data were reduced by 80% to several data windows of various lengths. In addition, we filtered the data using a 4th order

Butterworth bandpass filter with corner frequencies of 1 and 50 Hz.

3.2 FeatureealeulationClassification of events

Raw-To automatically identify avalanches in the continuous seismic data we used hidden Markov models (HMMs) (Rabiner, 1989).

These statistical classifiers use a sequence of multivariate Gaussian probability distributions to model observations (e.g. seis-

mic time seriesa



10

). To determine
the characteristics of the distributions (i.e. mean and covariance) a large number of training sets of known events, so called
pre-labeled training sets, are required. For each different type of observation (e.g. avalanche, airplane or earthquake in the
seismic data) a separate HMM is trained. By combining all HMMs the whole classification system with several classes is

constructed. This classical approach, which relies on a large number of well-known pre-labeled training sets, was successfull

used to automatic identify seismic events in continuous seismic data (Ohrnberger, 2001; Beyreuther et al., 2012). Avalanches

2

however, are rare events and it is nearly impossible and too time consuming to obtain a large training set. To circumvent this
we performed the classification based on an approach developed by Hammer et al. (2012) exploiting the abundance of data
containing mainly background signals to obtain general wave-field properties. From these properties a widespread background

model can be learned. A new event model (e.g. representing avalanches) is then obtained by using the widespread background

model to adjust the event model description by using only one training event. In contrast to the classical HMM approach, the
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classification system of this approach consists of a background model and one event model for each implemented event class.
The classification process itself calculates the likelihood that an unknown data stream was generated by a specific event class
for each individual HMM class (Hammer et al., 2012, 2013).

This new_approach was successfully used on continuous seismic data collected at the Wannengrat field site during the
2009-2010 winter season by Heck et al. (2018a). Their classification, however, consisted of creating a new background model
for each day and the resulting classification system was used to classify the data of the same day. A near real-time classification,
as would be required for operational purposes, is then not possible. To overcome this problem, here we implemented a
classification process by learning the background model using data from a different time window than the data we wanted
to_classify. To train the background model we used the seismie-time-series—as pre-processed data taken from the window.

1. Whereas the pre-processed data we want to classify are in the time window t.1.. (Figure 5). This so-called operational

classification was performed by using a window length of tinodel = 24h and Zeiass = 1h with the start time of fc1us cOrresponding.
the end of #5041 This means, that our background model is always determined by the pre-processed data of a 24-hour window.

By choosing a length of 1h for the window fciass, We were able to classify the pre-processed continuous seismic data of one

hour during one step of the operational classification. Once one classification step, which is the classification of the window.

Lelass 18 finished, both windows are shifted by one hour and the classification was executed for the shifted windows. The

so performed classification takes ~ 6min for the classification of one day without the feature calculation. In contrast, the

classification performed by Heck et al. (2018a) only took ~ 30s for one day. All calculations were performed on a computer

with a regularly available 8-core processor and 12 GB ram running a standard Ubuntu Linux Distribution._

As input for the HMMs a compressed form of the data was used, so-called features. Features represent different aspects
of the time series such as spectral temporal or polarization characteristics. These-are-calenlatedusing-a-shding-windew-and
—Since we used data-frem-single component geophones, we only
used the MOVHVQ,‘ELQ& spectral and temporal features suggested-by-Heek-et-al-2048a)-

Central frequency (Barnes, 1993)

Dominant frequency (Kramer, 1996)

Instantaneous bandwidth (Barnes, 1993)

Instantaneous frequency (Taner et al., 1979)

Cepstral coefficients (Kanasewich, 1981)

Half-octave bands (Joswig, 1994)

To-caleulate-thefeaturesfrom-the pre-proeessed-dataFor the feature calculation, we used a sliding window of width w = 512
samples and a step size of 0.05s or 25 samples rresulting in an overlap of 97 %. In-tetalwe-used-We used in total 6 half-octave

bands for the classification and the first half-octave band had a central frequency of 3.9 Hz.
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of the features for a complete day needs to be performed only for the very first step. For the following steps it is sufficient
to calculate only the features for the window ¢ with a length of 1h, which approximately takes less than ~ 2min for the

calculation,

3.3 Classifieation

{Unelassified-data—in—Figure5)—These-data—were—The classification process consists of five steps: pre-processing, feature
calculation, HMM construction, classification and post-processing (Figure 5). First the data used to build the background

model are selected from the time window ¢ and the data to be classified are determined by the window ¢ . The
data from the selected time windows are pre-processed and-features—were—caleulated—Based-on-thesefeatures;the HMM

Sinee-the-classifieation-algorithm-is not-perfeet; severat-to reduce the amount of noise and then the features are calculated.
In the HMM construction part, the features calculated from the data within o4 and from the data of the training event are
used to construct a background model HMMpy and an event model HMMygyene. The event model HMMpyen: Was learned
using only one training event that is representative of avalanches at a specific field site (Heck et al., 2018a). It was determined
once and then applied for the entire winter season. In contrast, the background model HMMp, i was reconstructed every hour.
Using both models, the pre-processed data within the window Zejass Were classified in the classification process. The features

10
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Figure 5. Flow chart of the classification process. Green lines show the construction of the event model. Blue lines show the construction of
the background model. The orange lines show, how the data to be classified are processed.

calculated for this window are therefore passed to the classifiers. Once the classification is performed, post-processing steps
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UTO0d)—1TwWOd OrdI—StCPS—w arSO , . dSS attoi—wo OWwW—aht—a GeS OCa

foltowingare applied as proposed by Heck et al. (2018a). The first step consisted of applying a duration threshold to_the
classified events. Each classified event shorter than 12s in duration was dismissed. The second step, the so-called voting-based
classification, combines the results of all sensors. Only events that were classified by at least 5 sensors are considered as
possible avalanches.

11
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3.2.1 Combined-array-detection

3.3 Combined array detection

the data set of the winter season 2016-2017 revealed that although the total number of detected events was low, many detected
events were very likely generated by airplanes or regional earthquakes (local magnitude between 1.5 and 4 for earthquakes
at local and regional distance triggered by at least 6 stations according to the earthquake catalog of the Swiss Seismological
mmm both arrayswefﬁh&mesf

. We therefore used a combined array detection to remove earthquakes and airplanes from the detections. To perform the
combined array detection, a second HMM #rai i i i :

was implemented to identify earthquakes and airplanes in the data recorded at the Wannengrat and-subsequentlyusing-the

considered-events-detected-by-these-two-sensorsarray at 14km distance from the Dischma array. Classification results from
the Dischma-and-Wannengrat-arrays-were then combined to remove all events recorded simultaneously at both arrays;—whieh

3.3.1 Sourcelocalization

b)yHeck et al. (2018b) determined
the direction of several avalanches using a multiple signal classification algorithm called MUSIC and were able to locate
the avalanche path of several avalanche events based on the data of a single array. The MUSIC method-was-applied-to
i i -algorithm determines the back-

azimuth angle and the apparent velocity of the incoming wave-field w&&r&me*flihe—}eﬂg&reﬁfh&wmdew&waﬁeﬁeﬁe

wmﬁmm%@w%%vmmwnwwwwm
back-azimuth values—for-al-fourfrequeney-bands——we-then—applied-and apparent velocity values. The MUSIC method is
based on the covariance matrix taking the data of all sensors into account at once, whereas beam-forming methods rely on
pair-wise cross-correlation (Schmidt, 1986; Rost and Thomas, 2002). MUSIC can resolve multiple sources more easily than
beam-forming methods. Furthermore, the MUSIC method can be applied to small frequency bands and the different frequency.

12
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Schmidt (1986) and Hobiger et al. (2016).

Heck et al. (2018b) found, that due to the small distance between the sensors, the seismic array mostly resolved sonic
wave-fields rather than seismic wave-fields to estimate the back-azimuth, Using a median smoothing filter on-a-moving window
of-&s-to-determine-a-they then calculated a so-called median back-azimuth path with time;-as-in-Heeket-al(2018b)-(Figure

Fo-. In this study, we used these median back-azimuth paths obtained by the event localization to decide whether a classifi-
cation was associated with an avalancheer-notwe-apphed-, Specifically, we used a threshold value te-for the derivative of the

median back-azimuth path. The assumption was-is that avalanche events have a relatively-smooth median back-azimuth path

with little variations, whereas false detections

the-have randomly distributed back-azimuths w
ef-with large variations in time. By analyzing several avalanche events, especially the events identified by Heck et al. (2018b)
we observed small changes below 10° for the median-back-azimuth path-stayed-belew-path. Hence, we used a threshold value

of 10° for-50s;—while-before-and-aftertheeven was-much-lareer(Fieure13b)—Other-avalanche-events-had-very-—simila
results(not-shewn)—Events-with-derivatives-of the-between two adjacent points of the median back-azimuth path-smaler-than

for the event detection. Even for events passing close to the array, we observed changes below 10 in the median back-azimuth
path;-we had-to-inerease the-minimal-event duration-to-path. Heck et al. (2018a) suggested that a detected event should have a
minimum duration of 125 to be considered as an avalanche. For the localization step, however, it was necessary to increase this
duration because the window length used for the median smoothing filter was already 8s long (Heck et al., 2018b). To cover
enough data points to use the minimal event duration as a reliable classification criterion, we therefore required a minimum
length of 20s for the back-azimuth path. Heck et al. (2018b) also showed that only the frequency content of the signal between
4.5 and 12.5Hz contained information valuable for the localization performed at the used array. By further analysis of the
already localized events by Heck et al. (2018b), we observed, that a reduced frequency range provided similar results, Hence
we reduced the number of analyzed frequency bands to four bands between 6 and 7.5Hz and were able to speed up the
calculation time. Nevertheless, the processing time for the localization is about three times real time on the same computer

used for the classification as mentioned earlier.

13
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4 ResultsClassification results

We applied-our-automatic-avalanche-detection—workflow—on—performed the avalanche detection for the data recorded at the
Dischma M%ﬁ%%ﬂ%ﬁu%ﬁ%@ﬁpﬂ%@%&ﬁwxgmmemwm& compared the results
with -the avalanche activity visually obtained by
local observers and compiled by the avalanche warning service at the SLF. Fhe-vistal-observationsin-the-area-of Davosean

be«rﬂeefnp}eteﬂﬂéreeveﬁl t has to be noted that this compilation is incomplete and covers an area much larger than the-area
itethat monitored with the Dischma array. Therefore, comparison with this

avalanehe-eatalogae-compilation remains indicative.

4.1 Overview of the winter season

The winter period of 2016-2017 was relatively short and characterized by a below-average snow depth. First snowfalls were
quite late in the season, in the middle of December, followed by four weeks without substantial precipitation and low temper-

atures.

Due to the constant

high temperature gradient within the snowpack, a poorly bonded layer of depth hoar was formed at the base of the snow cover.

During the winter season, four-pronounced-three significant snowfall periods occurred:=-between-t-and-+5-January;-around-+
Februaryfrom-1-to-10-Mareh-and-areund-15-April; one in each month from January to March (increase of blue line in Figure
6). Each snowfall-was-asseciated-with-inereased-of these snowfalls were associated with considerable avalanche activity in the
region of Davos -exeept-the-snowfallin-April-(red bars in Figure 6b).

In addition to these visunal-avalanche-observationsby-local-observers;-we-inspeeted-avalanche observations, we analyzed the
pictures taken by the automatic cameras installed at the-Dischma-field-siteour field sites. Surprisingly, avalanche activity was
very-tow-low at the Dischma field site in January and February;-and-enly-afew-avalanches-were-identified-on-1-February2017-
. During the early March snow storm +-the visibility was poor and only very few avalanches were identified on the images of the
automatic eamerascamera. However, once the storm had-passedwas over, the intensity of the avalanche cycle became clear as
many avalanche deposits were visible on the images. Five days after the storm we mapped 24 avalanches within a 4km radius

of the Dischma field site

field-site—(Heck et al., 2018D).

4.2 Classification performed at single array

Using the classifier trained with the avalanche eventfrom-The main classification was performed at the Dischma field site for all
seven sensors. Based on the visual inspection of the seismic data performed by Heck et al. (2018b), several avalanche events
suitable as training events for the HMM were identified. However, they had mainly analyzed the period of high avalanche
activity on 9 and 10 March 2017, Visually inspecting the entire winter season we identified 44 avalanche events. However,
as already shown by Heck et al. (2018a), visually inspecting seismic data contains many uncertainties. An avalanche released

14
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Figure 6. a) Snow height measured at the automatic weather station at Weissfluhjoch 12km to the northwest of the Dischma array at 2546+
~ 2600m a.s.l. for the winter season 2016-2017. Orange-Red bars are the height of new snow measured each day at 8:00 am. b) Number of

avalanches observed per day in the region of Davos (~ 175km?).

on 9 March 2017 at 06:47 was already analyzed in detail by Heck et al. (2018b) and can unambiguously be classified as an
avalanche. We therefore decided to use this event as our training event (Figure 7a);we-etassified-the data-from-).

Using the classifier trained with this event, we performed the classification for each single sensor of the Disehma-arrayand
post-processed-the resultstoremove-eventsarray. In a next step, the results of the classification were post-processed; first all
results of each sensor with a duration < 12s and-were dismissed (Heck et al., 2018a). Finally we dismissed all classifications
that were classified by less than 5 sensors. Thisresulted-in-

The classification and the following post-processing was applied to the continuous data set recorded from 1 January to 30

April 2017. For this period, a total of 117 au
were classified as avalanches. A quarter of the events were detected by 5 sensors, a quarter by 6 and about half by 7sensers—
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Figure 7. Avalanche released on 9 March 2017 at 06:47 used as training event for the classifier. a) time series for the 7 sensors. The red area

indicates the part of the time series used as training event. b) corresponding spectrogram of the seismic time series.
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Figure 8. Classification results after post-processing (including voting-based classification) at the Dischma array. The colored bars indicate
the number of classified events per day depending on the number of sensors: Violet bar indicates detections by 7 sensor, turquoise bars by 6
sensors and yellow bars by 5 sensors.
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Meostevents-oceurred-7. Most events were classified during the early March snow storm on 9 and 10 March 2047 tn-addition—
peaks2017 (Figure 8). In addition a peak in the middle of January and early-April-were-beginning of April and a cluster of events

around the beginning of February was visible. The peak in January eorrespoended-as well as the cluster around the beginnin
of February correspond with the avalanche activity period visually recorded in the region of Davos (Figure 6). For the peak in

April, however, no avalanches were observed in the area-surroundings of Davos. Furthermore, several single detections were

distributed over the season showing no

e-accordance
with the visual avalanche observations. Therefore we visually inspected the time series and the corresponding spectrograms
of each of the 117 classifications and found that the HMM also classified ~-56-various airplanes (Figure 9 a)) and regional
earthquakes (Figure 9 b) as avalanches.

Although these miselassified-events can be distinguished from avalanches through visual inspection (e.g. the sharp onset
visible for earthquakes), the classifier identified these events as belonging to the avalanche class—We-attribute-these—false

elassifieations-to-thefact-that these-, even when we used different training events or varied the setup for the classification (results
not shown). This was most likely because earthquake and airplane 51gna1s were more similar to fheﬂvalr&ﬁeheMﬂﬁgeveﬁf

avalanches than to the background model-

Analyzing the features also showed the similarities of the different types of events, especially the time dependent behavior.
In the beginning of the event, the feature behavior of the events is different, however, at the end of the event a similar

time dependent behavior is visible (Figure 10). Due to theses similarities, airplane and earthquake events are more similar

to avalanches than to noise resulting in false classifications of these events.

4.3 Classification performed at both arrays

The vastmajority of the misclassifications were produced by two types of events:, i.e. airplanes and earthquakes. A comparison

of several detected earthquake events with the earthquake catalog of the Swiss Seismological Service (SED) showed, that all
compared earthquake events occurred within a range of 120km. As the Wannengrat array was deployed only 14 km away, all

observed earthquakes were likely to be detected simultaneously at both arrays. Moreover, Davos lies within an approaching
corridor of the international airport Ziirich and ntmerets-several commercial airplanes pass by every hour at an altitude of

at least 5km. Similar to avalanches, airplanes also have a moving source character —Hewever,-and due to the htghﬂ}ﬂfude

from-Indeed, a comparison of both time series revealed that earthquakes were recorded at both arrays at the same time whereas
airplanes were recorded with a small delay of 20 to 30s due to the movement of the source. The time series and spectrograms
at Dischma and Wannengrat were very similar (Figure 11).
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the dashed line at 1 the end of the event.

Avalanche signals, however, were only detected within a radius of 3 to 4km of the array and were therefore only recorded
at one array (Heck et al., 2018b). In order to eliminate classified events recorded at both arrays, we performed a second

classification at the Wannengrat arrayetassified-with-the-, Due to similarities of the transient signals as mentioned earlier, a
HMM trained with i

an airplane signal was capable to also detect earthquakes. A closer look at the classification results for the Wannengrat arra

revealed, that it was sufficient to only use the HMM trained with an airplane signal (not shown here). The number of detected
events at the-Wannengrat-array-varied-this array varies strongly per day (blue bars in Figure 12). 53-ef-these-events-coineided

The start times obtained by the secondary classification performed with the Wannengrat data were then compared with
the classification results for the Dischma arrayand-were dismissed-as-fatse-deteetions-, Overall, 33 of the 117 classifications
were detected almost simultaneously at both arrays and we considered theses events as airplanes or earthquakes (yellow bars

in Figure 12&&&%&19%%%%%) After the comparison of the classification results obtained by both arrays 64
potential avala

remained (turquoise bars in Figure 12). The distribution of these events was-somewhatis similar to visually observed avalanches
(compare-tored-bars-in-Figure 6), except for the-deteections-in-April-and-the-absenee-of-detections at the beginning of April

tavalanche events
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Figure 11. Time series and corresponding spectrograms of an airplane detected at both arrays on 28 January 2017 at 9:17. a) shows the signal

recorded at the Dischma array and b) at the Wannengrat array.
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Figure 12. Yellow bars indicate the number of events detected at both arrays and turquoise bars only events recorded at the Dischma array.
Blue bars are the number of airplanes and earthquakes detected at the Wannengrat array. Between 5 and 20 January no data were recorded at
the Wannengrat array due to technical issues.

and no detections at the beginning of February. These events were only detected using the automatic classification approach.
Furthermore, due to the previously mentioned acquisition problem of the Wannengrat array, all events between 12 and 20
January 2017 were considered as avalanches as we had no further information from the second array. Hence, we expected

some misclassifications among the remaining 64 avalanche events.
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4.4 Localization post-processing

We-In a last processing step, we applied the MUSIC method to the remaining 64 classified events to determine-the-estimate

the back-azimuth and to find a possible median back-azimuth paths—Events-with-derivatives—+in-the-path. The event used to
expected for noise. For the training event, the derivative of the back-azimuth path has low values for the 50s part with a
median back-azimuth path larger-than-with small changes (Figure 13 b). For this 50s long interval, changes below 10° were
dismissed—observed for the median back-azimuth path. Before and after the event, however, the changes are very high due to

and we therefore set the 10° as a maximum threshold value. Doing so, another 43-37 events were dismissed and only 21+-events

ained(Figure—14: Table22): ajority-of these-events-(i-e—+3-of 2h)-were-observed-on-27 avalanche events remained.

15 of the remaining avalanche events were observed during 9 and 10 March 2017 —while-the-otherevents-showedno-elearlink

and some events were detected during the other periods of considerable avalanche activity in February (Figure 6). Furthermore
another 10 single events were also confirmed. For each of the 2427 events we determined a mean back-azimuth, which is the

mean direction the signals eame-were coming from. The mean back-azimuths were all pointing towards the surrounding slopes
where we expected avalanches to release (Figure 15). Events with a duration longer than 100s were detected coming either

from the north-west or south-east.

Apart from analyzing only the events remaining after the combined array classification, we also performed the localization
post-processing for those 53 events we had dismissed. Based on the localization, 48 events were again dismissed, but 5 had
a median back-azimuth path within the threshold value. Hence, by directly applying the localization step 32 avalanche events
remained, but including at least 5 false detections (15%).

5 Discussion
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Figure 13. Localization results for an avalanche event recorded 9 March 2017 at 6:47. a) polar plot representation of the back-azimuth
calculated using the MUSIC method. Red dots are the back-azimuth values for a single time window. The black line represents the median
back-azimuth path. The solid part of the line has variations below the threshold value for the derivative, whereas the dotted line refers to

strong variations. b) derivative of median back-azimuth path. The dotted lines represents the threshold value of 10°, The part between 525
and 113 corresponds to the solid line in a).
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Figure 14. Turquoise bars are the number of events per day which are locatable and are considered as avalanches. Yellow bars are the number
of events per day which were not locatable and therefore dismissed. Red bars are the number of avalanches visually observed in the area of

Davos.

We used hidden Markov models (HMMs), a machine learning algorithm, to automatically detect avalanches in data from
seismic systems deployed above Davos, Switzerland. The approach builds on the work of Heck et al. (2018a), who adapted

the HMM method developed by Hammer et al. (2017) to detect avalanches in continuous seismic data from a small aperture

zyUsing their approach on our data resulted in
automatic detections that still contained a large number of falsely classified events because only one event type (avalanche) and
the background noise was used for the classification with HMM. Earthquake and airplane signals have characteristics closer to
avalanches than the background noise. and were therefore included in the detections.

provide-any-useful-additional-infermationfor-the-elassifieation-By combining the classification results with a classification
erformed at a second array located 14 km away, simultaneously recorded events such as local earthquakes and airplanes could
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be dismissed. In addition, we applied the multiple signal classification (MUSIC) method to estimate the back-azimuth of the

detected events to eliminate false alarms. Overall, this work flow allowed us to automatically identify 27 events that were ve
likely generated by avalanches, as the temporal trend corresponded well with the avalanche activity for the region of Davos
obtained through conventional visual field observations (Figure 6 and 14). It was not possible to confirm any event with visual

eriods of bad visibility. However, Heck et al. (2018b) manually identified

observations since most avalanches released durin

13 avalanches during 9 and 10 March 2017, 12 of which were automatically identified with the approach presented here._
Apart from HMMs, several other machine learning technigues are suited to classify signals in seismic data. It is possible to
use a convolutional neural network for earthquake detection and location (Perol et al., 2018) or to pick the P-wave arrival of
seismic wave fields (Ross et al., 2018). Comparable to the classical HMM approach, these studies rely on large pre-labelled
training data sets. Another approach is the so-called Random Forest classifier, which can be used to discriminate seismic waves
(Li et al,, 2018). Automatic classification approaches are also suitable to differentiate between earthquakes and guarry blasts
(Hammer et al., 2013) or to characterize larger rockfalls (Dammeier et al., 2016). Further mass movements, such as landslides,
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can also be identified in the seismic data based on automatic classification a

The automatic classification of avalanches yet remains a difficult task. Rubin et al. (2012) used several machine learnin,

algorithms to identify avalanches in seismic data and compared the results obtained with the different approaches. With
all methods a high probability of detection was achieved, but the number of false alarms was too high. A recent stud
by Heck et al. (2018a) showed that HMMSs are a suitable tool to detect avalanches, but there is still a need for additional

ost-processing steps. The work presented here confirms that HMMs in combination with further post-processing steps provide

reliable classification results.

Heek-et-al-(2018a)-highlighted-diffienlties-In addition, Heck et al. (2018a) highlighted the difficulty in obtaining a reliable
classifier with-the-HMM-approach-applied-to-trained on data from a geophone array —They-obtained-very similar to the one

used in this work. Their results showed that there were large differences in model performance between the sensors, with

the number of detections per sensor ranging from about 150 to over 2000. This was attributed to local heterogeneities as the

sensors were packed in a styrefeam-Styrofoam housing and inserted within the snowsnowpack. Heck et al. (2018a) therefore
suggested to deploy the sensors below the snow cover and either on or below the ground. In our deployment, the geophones

were buried about half a meter below the ground on a flat meadow. This approach was successful as it resulted in a much more
consistent number of detections per sensor, ranging from 125 to +69;shewing-that-169. Clearly, the deployment strategy can

have a substantial influence on the performance of the classifier.

that-were-classified-byJess-than-In contrast to the classification approach used by Hammer et al. (2017), who used a fixed
background model as they analyzed a relatively short period (5 sensorsresulted-in-days), we used an approach more suited for
operational purposes. Indeed, for the operational set-up the background model was determined using 24 hours of data prior
to the hourly data that were classified. In combination with the post-processing steps related to signal duration and number of
sensors the events were detected as suggested by Heck et al. (2018a), the HMMs identified 117 possible avalanche events (Fig-

ure 8). Even though this approach identified the main avalanche cycle in March 2017 (compare Figure 6 and Figure 8), visual

inspection of the classified events indicated that at least 50 % of the events were false alarms produced by distant airplanes or

regional earthquakes (Figure 9).

meseflﬂsﬁeaﬂeﬁfeﬂﬂf&did—ﬁekﬂ}bsmmm%ﬂge%heﬁmuammg a classifier with different feature combinations,
changing the training event and/or the length of the training event, the classification results did not substantially change and
airplanes and earthquakes were still classified as avalanches. This highlights the difficulty in training an accurate HMM for low
energy signals generated by avalanches. Based-en-ourrestlts;we-We concluded that using HMMs to automatically identify
avalanches in seismic data from our geophone array will inherently contain false detections, as the transient-overall feature

behavior from distant airplanes or regional earthquakes was very similar to signals generated by avalanches (Figure 10).

To circumvent the problem of developing an optimal event classifier for one specific array, we made use of a second array
at the Wannengrat. There we performed a second classification to automatically identify airplanes and earthquakes using an

event model trained with-by an airplane event. Since transient signals produced by earthquakes, airplanes or avalanches have
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similarities(Figure10), the results obtained for the second classification based on the alrplane event model hke%yﬂ}seﬂﬂe}ude

also falsely identified avalanches and earthquakes. H

multiple-signals-tike-these-Hence, a classification performed with only one event model was sufficient. The assumption for the

second classification was that most falsely classified events were recorded at both arraysand-we-are-confident-that-thesesignals
are-generated-by-airplanes. Comparing the time series of detected events at both arrays allowed us to dismiss about 50 % of the

classified events (Figure 12). In-eur-case-identifying-Identifying co-detections across arrays is therefore an efficient approach

to reduce the number of false alarms;-as-the-weak-signals-generated-by-. Although it was possible, that the classification results

of the second array contained avalanche events, it was unlikely that two avalanches released simultaneously at both field sites.

Furthermore, avalanches were only recorded at one array since the distance between both arrays was about 14 km. In the future,

a promising approach could be to reduce the distance to about 2 or 3 km, as this could also help improve the localization.

Combining-the-elassificationresultsfrom-two-separate-arrays-Although the combination of two arrays for the classification
allowed us to reduce the number of false elassifieations—Neverthelessclassification, some uncertainty remained about the origin

of the identified events. In a final step, we therefore used the MUSIC method to estimate the median back-azimuth path, as
suggested by Heck et al. (2018b), to further dismiss false detections. Similar approaches were suggested for the automatic
detection of avalanches in infrasonic data by Marchetti et al. (2015) and Thiiring et al. (2015). In those studies, the back-azimuth
of continuous infrasound data was calculated on the fly using cross-correlation techniques, and only events with slight changes

in back-azimuth over a predefined minimal duration were assumed as avalanche events. In contrast, we-here we only determined
the back-azimuth with-the MUSIC-method-only—for-these-events-that-were-already-for events automatically identified by the

HMM ;sinee-with the MUSIC method, as Heck et al. (2018b) showed that for our instrumentation pair-wise cross-correlation
technique (beam forming) did not result in robust back-azimuth estimatesfer-eur-instramentation(Heek-et-al52018b). This
last processing step further reduced the number of classified events to 24-27 (Figure 14). We also found out, that the MUSIC

method would have been sufficient to determine the reliability of a detection as it was not possible to locate airplane or
earthquake events with our array. After applying the localization based step to all detections, 32 events were identified as
avalanches, 5 more events compared to the combined array and the localization based classification.

The-majority-of the remaining 21-automatie-After applying the combined array classification and the MUSIC method to

the data, 27 classification remained for the winter season 2017. Nearly all of these classifications occurred during a-period
which-eoineided-with-the-periods of observed high avalanche activity in-Mareh-(Figure 14). However, very—few-avalanches

were-attomatically-detected-during-for the first two avalancheperiods-observed-in-the-surroundings-of- Daves-periods of high

avalanche activity in January and February only few events were detected, whereas in the surroundings of Davos many events
were observed. This may be due to fact that the Dischma site is located about 12km km-to the southeast of Davos where

avalanches—areregularly-observed-and weather and snow conditions are sometimes different since major storms arrive from
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the northwest. Indeed, based on the images from the automatic cameras, very little avalanche activity was observed in the area

in January and February;

classification. Nevertheless, it was thus—possible to reconstruct the main-avalanche activity period in March based on the
automatic classification. Results from the localization showed that during the season avalanches released from many different
slopes at the field site -in-partieularfor-the-avalancheperiod-in-Mareh-(Figure 15). This could be observed especially during
the snow storm in March. A seismic monitoring system is therefore a suitable tool to monitor an-area-with-many-slopes-a wide
area and not just one single slope. Although the detection range is with 2 - 3km rather limited-(Heek-et-al5-2018b)the seismie
monitoring-small (Heck et al., 2018b) the seismic system in combination with an automatic classifier prov1des great potentlal
to identify atJeast-the major avalanche periods.

Although we were able to identify one major avalanche activity period in the winter season 26+6-26472016 - 2017, the

method presented here has its limitations.

by-applyingthe-suggested-Based on the sensors used for the automatic monitoring, we identified avalanches within a range of
2 - 3km. However, by using more sensitive sensors, e.g. seismological broadband stations, the detection range of avalanches
can be increased, even up to 30km for very large avalanches (run-out distance > 2km (Hammer et al., 2017). Howeyver, it is

difficult to deploy such sensors in mountain terrain, since these stations require existin

room in a hut), which is typically not available at remote locations. In addition, the last post-processing sfeps—Hewever—%he

infrastructure (e.g. electricit

of-missed-eventsstep requires a second array. Hence low-power systems with less sensitivity proved to be the best solution.
Furthermore, the limited power supply at the field sites also prevents performing first processing steps directly at the field sites
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and hence limits the possibility of near real-time analysis. However, we-cannot-make-any-statements-on-the-false-alarm—rate;
which-from-an-operational-point-of-view-is-also-very-impertantit is possible to overcome this problem by designing special
hardware for this particular task.

Based on the approach presented here, a near real-time classification of the seismic data and hence a near real-time detection

of avalanches seems possible. The computational times on a stands SORE omputer with a regularly available

8-core processor with 12GB ram j-are reasonably short in-and almost near real-

time for-all-sensers—simultaneousty—as—wel-as—the HMM struetion—and he-classification: HISIC—methed

other-hand;-whereas the localization based on the MUSIC is very costly (three times real time). However;-sinee-Although we
decided to implement a combined array classification step to save computational time, directly localizing every detection is also
possible. Since the amount of detections for the entire-whole season was very low, a near real-time detection could be provided
with or without the combined array classification. In future systems, the-pre-processing steps can be integrated in the data
logging unit to substantiatly reduee-the data-transmissionreduce the amount of data while recording. Using a standard personal
computer, feature calculation is performed near real-time for all sensors simultaneously as well as the HMM construction and
the classification. However, a major obstacle of our method is the necessity of an adequate training event recorded at the seismic
array. Using training events recorded at different arrays might be unreliable due to possible differences in the instrumentation
and changes in the overall background noise or local heterogeneities in the local geology and in snow conditions. To set up
the classification experts will still be needed to define correct and confirmed training events. Future research will assess the
possibility to use one training event for several seasons recorded at the same array.

6 Coneclusiens
6 Conclusions

During the winter season 2016-2017 we used a seismic array to continuously monitor avalanche activity in a remote area
above Davos, Switzerland. By training-a-machine-learning-algorithm-implementing an operational classification method based
on hidden Markov models (HMMs), we detected 117 events in the seismic data from January to April, which were likely
produced by avalanches. Subsequent visual inspection revealed a false alarm rate of at least 50 %and-most-, Most of the
false detections were associated with airplanes or earthquakes. We-therefore-trained-a—second- HMM-with-datafrom-a-seismic

ay-at-a-distance-of Tdkm-to-remove-any-co-detections—Finally;-we-applied-a-multiple signal-elassification-By implementing
additional steps such as a combined array classification and the localization of the events based on multiple signal classifications

5, we improved the classification results by reducin
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the number of identified events to 27. Only using the localization to remove false detections resulted in at least 15 % of false
detections yet at a higher computational cost. Our results therefore show that dismissing false detections with a second arra

improves the overall classification accuracy. If a second avalanche monitoring array is in the vicinity, combing the results of
both arrays will improve the classification results. In future experiments we want to introduee-an-additional-array-within—a

sherter-distanee-reduce the distance between the arrays to some kilometers to improve the localization and-ne-lengerrequire
the-combined-array-classifieation-approachof avalanches.
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