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Abstract.

We used a seismic monitoring system to automatically determine the avalanche activity at a remote field site near Davos,
Switzerland. By using a recently developed approach based on hidden Markov models (HMMs), a machine learning algorithm,
we were able to automatically identify avalanches in continuous seismic data by providing a single training event. Furthermore,
we implemented an operational method to provide near real-time classification results. For the 2016-2017 winter period 117
events were then automatically identified. False classified events such as airplanes and local earthquakes were filtered using a
new approach containing two additional classification steps. In a first step, we implemented a second HMM based classifier
at a second array 14km away to automatically identify airplanes and earthquakes. By cross-checking the results of both
arrays we reduced the number of false classifications by about 50 %. In a second step, we used multiple signal classifications
(MUSIC), an array processing technique, to determine the direction of the source. Although avalanche events have a moving
source character, only small changes of the source direction are common whereas false classifications showed large changes
and thus were dismissed. From the 117 initially detected events during the 4-month period we were able to identify 90 false
classifications based on these two additional steps. The avalanche activity based on the remaining 27 avalanche events was in

line with visual observations performed in the region of Davos.

1 Introduction

During the winter seasons, snow avalanches are a common threat in mountain regions. Avalanche warning services therefore
inform the public of the current avalanche danger. To assess the danger, warning services rely on information about the snow-
pack, amount of new snow, weather conditions and avalanche activity (McClung and Schaerer, 2006). Whereas the first three
parameters can be measured or modeled, avalanche activity data are often hard to obtain, especially during snow storms or at
night. Monitoring systems have therefore been developed to estimate the avalanche activity for a certain region.

Snow avalanches, like any other mass movement, generate seismic and infrasound waves (e.g. van Herwijnen and Schweizer,
2011b; Surifiach et al., 2005; Marchetti et al., 2015). Seismic signals of avalanches show some common characteristics, includ-

ing a spindle shaped envelope of the time series (Nishimura and Izumi, 1997) and a typical frequency content between 2 and
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30 Hz (Schaerer and Salway, 1980; Surifiach et al., 2001). Several classification approaches were therefore developed to auto-
matically detect avalanches in seismic data. Leprettre et al. (1996) used a fuzzy logic approach to distinguish between different
types of signals. Bessason et al. (2007) used a nearest neighbor approach to classify new recorded events. Using this approach,
they were able to detect 65% of all confirmed avalanches. Rubin et al. (2012) compared 12 machine learning algorithms, 10
of which were able to detect at least 90 % of all manually identified avalanches, however, at the cost of very high false alarm
rates. Hammer et al. (2017) recently used hidden Markov models (HMMs), an advanced machine learning algorithm, to au-
tomatically detect large avalanches released during the winter of 1998-1999 in seismic data recorded by a single broadband
station maintained by the Swiss Seismological Service (SED). Using this approach, they were able to identify 43 avalanches
during a 5-day period within a radius of 30km of the station. Heck et al. (2018a) also used the HMM approach to automatically
detect avalanches, however, in data recorded during the winter season 2009-2010 by a seismic array consisting of seven less
sensitive vertical geophones. They obtained the best results for the automatic detection by combining the classification results
of all sensors and requiring a minimal event duration for the detections.

Apart from using seismic signals for the automatic detection of avalanches, several studies focused on the use of infrasound
signals. Localization parameters determined using cross-correlation techniques were used to automatically identify avalanches
in continuous data sets (Scott et al., 2007; Marchetti et al., 2015; Thiiring et al., 2015). By comparing the back-azimuth with
the directions of known avalanche paths, possible avalanche events were identified (Marchetti et al., 2015). Thiiring et al.
(2015) used a similar approach for the automatic detection, but relied on support vector machines (SVM), a machine learning
algorithm.

In addition to the automatic detection of avalanches, Lacroix et al. (2012) and Heck et al. (2018b) used seismic array
processing techniques to locate the source of the avalanche. Lacroix et al. (2012) implemented a beam-forming approach and
were able to assign recorded avalanches to three known avalanche paths. Heck et al. (2018b) compared a beam-forming method
with a multiple signal classification (MUSIC) approach (Schmidt, 1986) and obtained better results with the latter and they
subsequently applied this method to avalanches monitored during a two-day period in March 2017. Based on these results they
concluded that their seismic array mostly recorded infrasound due to the limited distance between the sensors. Nevertheless,
they were able to reconstruct the avalanche path of several recorded events. Lacroix et al. (2012) and Heck et al. (2018b) both
used less sensitive vertical component geophones for the seismic monitoring resulting in an avalanche detection distance of
approximately 3km.

Our aim is to automatically identify avalanches in continuous data recorded during the winter period 2016-2017 using
the same machine learning techniques based on hidden Markov models as used by Heck et al. (2018a). To reduce the false
alarm rate we first use an additional classification performed at a second array 14km away to dismiss events recorded almost
simultaneously at both arrays such as earthquakes and airplanes. In a second step, we analyze the median back-azimuth path of
the detections using the MUSIC method as performed by Heck et al. (2018b) and dismiss all events with a randomly distributed
back-azimuth. We performed the classification and localization of the events with the data recorded at the seismic array located

in the Dischma Valley above Davos, Switzerland during the winter season 2016-2017 (yellow square in Figure 1). These results
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were then combined with data obtained at the Wannengrat array, which is located 14 km to the northwest of the Dischma field

site (red square in Figure 1).

2 Field site and instrumentation

Prior to the 2016-2017 winter season, we installed two seismic arrays above Davos, Switzerland, similar to the systems de-
scribed by van Herwijnen and Schweizer (2011a). The first array was deployed at the Dischma field site (yellow square in
Figure 1), 14km away from Davos at the end of a tributary valley (Heck et al., 2018b). The field site is a flat meadow at
an elevation of 2000m a.s.l. surrounded by mountain peaks which rise up to 3000m. The second array was deployed at the
Wannengrat field site above Davos at 2500m a.s.l. (red square in Figure 1). This field site is surrounded by several avalanche

starting zones (van Herwijnen and Schweizer, 2011a).
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Figure 1. Map of the area of Davos, Switzerland. The two arrays are indicated by a black triangle on colored ground. Red represents the

Wannengrat array, yellow the Dischma array. Reproduced by permission of swisstopo (JA100118).

Both arrays consisted of a 300m long string with 7 vertical component geophones with an eigenfrequency of 4.5 Hz. The
sensors of the Dischma array were buried 50cm deep into the ground whereas the sensors at the Wannengrat field site were
attached to rocks using an anchor. For each array the sensors were circularly arranged (Figure 2 a) and b). The maximum
distance between two sensors at the Dischma and Wannengrat field site was 64m and 74 m, respectively, and the average

distance was 36 m at the Dischma array and 45m at the Wannengrat array.
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Figure 2. Setup of sensor arrays a) Dischma, b) Wannengrat. The open red circles indicate positions of not working sensors during the winter

2017.

The instrumentation and data logging systems were identical for both arrays. Data were continuously sampled at a rate of
500Hz. However, due to technical problems only two sensors of the Wannengrat array recorded data throughout the entire
winter (4 and 5 in Figure 2 b). Both field sites were equipped with several automatic weather stations (3 at Dischma, 4
at Wannengrat) as well as automatic cameras (8 at Dischma, 5 at Wannengrat). The automatic cameras visually monitored
the surrounding slopes and images were recorded every 10 minutes throughout the winter (Figure 3). As already shown for
avalanche activity periods in the winter season 2009-2010 by van Herwijnen and Schweizer (2011b), those images can help
to identify and confirm seismic events produced by avalanches. In addition to the automatic cameras, we also performed field
surveys shortly after a period of high avalanche activity to identify avalanches and map their outlines (Figure 4) (Heck et al.,

2018b).

3 Methods
3.1 Data pre-processing

The continuous seismic data mostly consist of noise. Since for the current application noise is of little interest, we applied a
simple threshold based event detector to reduce the amount of data (Heck et al., 2018a). For a window ¢ with a length of 1024
samples a mean absolute amplitude A; was determined. When A; > 5A, with A the daily mean amplitude, the data within the
window were cut. If the amplitude threshold for the following window was also reached, data were concatenated. Furthermore,

a section of ¢ = 60s was cut before and after the window to ensure that the onset and coda of each event was incorporated.
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Figure 3. Detailed map of the field sites a) Dischma, b) Wannengrat. On the map the positions of the seismic sensors, automatic cameras and

weather stations are indicated. Due to scaling not every weather station is shown on the map.

Doing so, data were reduced by 80 % to several data windows of various lengths. In addition, we filtered the data using a 4th

order Butterworth bandpass filter with corner frequencies of 1 and 50 Hz.
3.2 Classification of events

To automatically identify avalanches in the continuous seismic data we used hidden Markov models (HMMs) (Rabiner, 1989).
These statistical classifiers use a sequence of multivariate Gaussian probability distributions to model observations (e.g. seismic
time series). To determine the characteristics of the distributions (i.e. mean and covariance) a large number of training sets of
known events, so called pre-labeled training sets, are required. For each different type of observation (e.g. avalanche, airplane
or earthquake in the seismic data) a separate HMM is trained. By combining all HMMs the whole classification system with
several classes is constructed. This classical approach, which relies on a large number of well-known pre-labeled training sets,
was successfully used to automatic identify seismic events in continuous seismic data (Ohrnberger, 2001; Beyreuther et al.,
2012). Avalanches, however, are rare events and it is nearly impossible and too time consuming to obtain a large training
set. To circumvent this, we performed the classification based on an approach developed by Hammer et al. (2012) exploiting
the abundance of data containing mainly background signals to obtain general wave-field properties. From these properties a
widespread background model can be learned. A new event model (e.g. representing avalanches) is then obtained by using
the widespread background model to adjust the event model description by using only one training event. In contrast to the
classical HMM approach, the classification system of this approach consists of a background model and one event model
for each implemented event class. The classification process itself calculates the likelihood that an unknown data stream was

generated by a specific event class for each individual HMM class (Hammer et al., 2012, 2013).



10

Figure 4. Picture of the field site of Dischma facing to the south. It was taken on 15 March 2017 shortly after a period of high avalanche

activity and several recent avalanches were observed.

This new approach was successfully used on continuous seismic data collected at the Wannengrat field site during the 2009-
2010 winter season by Heck et al. (2018a). Their classification, however, consisted of creating a new background model for each
day and the resulting classification system was used to classify the data of the same day. A near real-time classification, as would
be required for operational purposes, is then not possible. To overcome this problem, here we implemented a classification
process by learning the background model using data from a different time window than the data we wanted to classify. To
train the background model we used the pre-processed data taken from the window ¢y,,401, Whereas the pre-processed data we
want to classify are in the time window #.1ass (Figure 5). This so-called operational classification was performed by using a
window length of ¢,,04c1 = 24 h and ¢.j,5s = 1 h with the start time of ¢.j,¢s corresponding the end of ¢,,04c1. This means, that
our background model is always determined by the pre-processed data of a 24-hour window. By choosing a length of 1h for the
window t 1,55, We were able to classify the pre-processed continuous seismic data of one hour during one step of the operational
classification. Once one classification step, which is the classification of the window ¢, is finished, both windows are shifted

by one hour and the classification was executed for the shifted windows. The so performed classification takes ~ 6 min for the
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classification of one day without the feature calculation. In contrast, the classification performed by Heck et al. (2018a) only
took ~ 30s for one day. All calculations were performed on a computer with a regularly available 8-core processor and 12 GB
ram running a standard Ubuntu Linux Distribution.

As input for the HMMs a compressed form of the data was used, so-called features. Features represent different aspects of
the time series such as spectral, temporal or polarization characteristics. Since we used single component geophones, we only

used the following spectral and temporal features similar to those used by Heck et al. (2018a).

Central frequency (Barnes, 1993)

Dominant frequency (Kramer, 1996)

Instantaneous bandwidth (Barnes, 1993)

Instantaneous frequency (Taner et al., 1979)

Cepstral coefficients (Kanasewich, 1981)

Half-octave bands (Joswig, 1994)

For the feature calculation, we used a sliding window of width w = 512 samples and a step size of 0.05s or 25 samples resulting
in an overlap of 97%. We used in total 6 half-octave bands for the classification and the first half-octave band had a central
frequency of 3.9 Hz. Calculating the features from the pre-processed data takes ~ 15min for a complete day for all sensors.
Since we shift the windows for 1h after each step of the operational classification, the calculation of the features for a complete
day needs to be performed only for the very first step. For the following steps it is sufficient to calculate only the features for
the window t.,ss With a length of 1h, which approximately takes less than ~ 2min for the calculation.

The classification process consists of five steps: pre-processing, feature calculation, HMM construction, classification and
post-processing (Figure 5). First the data used to build the background model are selected from the time window #.,04e1 and
the data to be classified are determined by the window t.1,ss. The data from the selected time windows are pre-processed to
reduce the amount of noise and then the features are calculated. In the HMM construction part, the features calculated from
the data within ?,,04e1 and from the data of the training event are used to construct a background model HMMgp, and an
event model HMMEgyent. The event model HMMEg, .t Was learned using only one training event that is representative of
avalanches at a specific field site (Heck et al., 2018a). It was determined once and then applied for the entire winter season.
In contrast, the background model HMMp, .k was reconstructed every hour. Using both models, the pre-processed data within
the window t.1,ss Were classified in the classification process. The features calculated for this window are therefore passed to
the classifiers. Once the classification is performed, post-processing steps are applied as proposed by Heck et al. (2018a). The
first step consisted of applying a duration threshold to the classified events. Each classified event shorter than 12s in duration
was dismissed. The second step, the so-called voting-based classification, combines the results of all sensors. Only events that

were classified by at least 5 sensors are considered as possible avalanches.
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3.3 Combined array detection

Initial classification results performed on the data set of the winter season 2016-2017 revealed that although the total number of
detected events was low, many detected events were very likely generated by airplanes or regional earthquakes (local magnitude
between 1.5 and 4 for earthquakes at local and regional distance triggered by at least 6 stations according to the earthquake
catalog of the Swiss Seismological Service). In contrast to avalanches, which are recorded only at one array, these events are
recorded at both arrays. We therefore used a combined array detection to remove earthquakes and airplanes from the detections.
To perform the combined array detection, a second HMM was implemented to identify earthquakes and airplanes in the data

recorded at the Wannengrat array at 14km distance from the Dischma array. Classification results were then combined to

remove all events recorded simultaneously at both arrays.
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3.4 Localization results to confirm avalanches

Heck et al. (2018b) determined the direction of several avalanches using a multiple signal classification algorithm called
MUSIC and were able to locate the avalanche path of several avalanche events based on the data of a single array. The MUSIC
algorithm determines the back-azimuth angle and the apparent velocity of the incoming wave-field for a small time window.
This time window is shifted to provide a time series of back-azimuth and apparent velocity values. The MUSIC method is
based on the covariance matrix taking the data of all sensors into account at once, whereas beam-forming methods rely on
pair-wise cross-correlation (Schmidt, 1986; Rost and Thomas, 2002). MUSIC can resolve multiple sources more easily than
beam-forming methods. Furthermore, the MUSIC method can be applied to small frequency bands and the different frequency
contents of the wave-field can be analyzed. For further information on multiple signal classification the reader is referred to
Schmidt (1986) and Hobiger et al. (2016).

Heck et al. (2018b) found, that due to the small distance between the sensors, the seismic array mostly resolved sonic wave-
fields rather than seismic wave-fields to estimate the back-azimuth. Using a median smoothing filter they then calculated a
so-called median back-azimuth path with time. In this study, we used these median back-azimuth paths obtained by the event
localization to decide whether a classification was associated with an avalanche. Specifically, we used a threshold value for
the derivative of the median back-azimuth path. The assumption is that avalanche events have a smooth median back-azimuth
path with little variations, whereas false detections have randomly distributed back-azimuths with large variations in time. By
analyzing several avalanche events, especially the events identified by Heck et al. (2018b), we observed small changes below
10° for the back-azimuth path. Hence, we used a threshold value of 10° between two adjacent points of the median back-
azimuth path for the event detection. Even for events passing close to the array, we observed changes below 10° in the median
back-azimuth path. Heck et al. (2018a) suggested that a detected event should have a minimum duration of 12s to be considered
as an avalanche. For the localization step, however, it was necessary to increase this duration because the window length used
for the median smoothing filter was already 8s long (Heck et al., 2018b). To cover enough data points to use the minimal event
duration as a reliable classification criterion, we therefore required a minimum length of 20s for the back-azimuth path. Heck
et al. (2018b) also showed that only the frequency content of the signal between 4.5 and 12.5 Hz contained information valuable
for the localization performed at the used array. By further analysis of the already localized events by Heck et al. (2018b), we
observed, that a reduced frequency range provided similar results. Hence we reduced the number of analyzed frequency bands
to four bands between 6 and 7.5Hz and were able to speed up the calculation time. Nevertheless, the processing time for the

localization is about three times real time on the same computer used for the classification as mentioned earlier.

4 Classification results

We performed the avalanche detection for the data recorded at the Dischma array during the winter season 2016-2017 and
compared the results with the avalanche activity visually obtained by local observers and compiled by the avalanche warning
service at the SLF. It has to be noted that this compilation is incomplete and covers an area much larger than that monitored

with the Dischma array. Therefore, comparison with this compilation remains indicative.
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4.1 Overview of the winter season

The winter period of 2016-2017 was relatively short and characterized by a below-average snow depth. First snowfalls were
quite late in the season, in the middle of December, followed by four weeks without substantial precipitation and low temper-
atures. Due to the constant high temperature gradient within the snowpack, a poorly bonded layer of depth hoar was formed at
the base of the snow cover.

During the winter season, three significant snowfall periods occurred; one in each month from January to March (increase

of blue line in Figure 6). Each of these snowfalls were associated with considerable avalanche activity in the region of Davos

(red bars in Figure 6).
E 200 T (a) T 60 —
3] . S
— 150 | Snow height O
c I New snow 40 3
o
E 100 g
-1 20
z S0r ||| “ 2
o) (@)
L[C) 0 Ll I 1 II | I | Il 0 b
1 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1 May
é‘ T (b) T
> 100 .
v
c
Ok}
£ o 50r .
U
cC Q
0
S L e Ll ‘
< 1 Dec 1 Jan 1 Feb 1 Mar 1 Apr 1 May

Winter 2016 - 2017

Figure 6. a) Snow height measured at the automatic weather station at Weissfluhjoch 12km to the northwest of the Dischma array at
~ 2600m a.s.l. for the winter season 2016-2017. Red bars are the height of new snow measured each day at 8:00 am. b) Number of

avalanches observed per day in the region of Davos (~ 175km?).

In addition to these avalanche observations, we analyzed the pictures taken by the automatic cameras installed at our field
sites. Surprisingly, avalanche activity was low at the Dischma field site in January and February. During the early March snow

storm the visibility was poor and only very few avalanches were identified on the images of the automatic camera. However,

10



once the storm was over, the intensity of the avalanche cycle became clear as many avalanche deposits were visible on the

images. Five days after the storm we mapped 24 avalanches within a 4 km radius of the Dischma field site (Heck et al., 2018b).
4.2 Classification performed at single array

The main classification was performed at the Dischma field site for all seven sensors. Based on the visual inspection of the
5 seismic data performed by Heck et al. (2018b), several avalanche events suitable as training events for the HMM were identified.
However, they had mainly analyzed the period of high avalanche activity on 9 and 10 March 2017. Visually inspecting the entire
winter season we identified 44 avalanche events. However, as already shown by Heck et al. (2018a), visually inspecting seismic
data contains many uncertainties. An avalanche released on 9 March 2017 at 06:47 was already analyzed in detail by Heck
et al. (2018b) and can unambiguously be classified as an avalanche. We therefore decided to use this event as our training event

10 (Figure 7).

_ i
o
[V}
C
A
1
'~ 100 >
L 80 2
> =
g 60 g"_
g 40 2
S 20 -
i 0 B
0 20 40 60 80
Time [s]

Figure 7. Avalanche released on 9 March 2017 at 06:47 used as training event for the classifier. a) time series for the 7 sensors. The red area

indicates the part of the time series used as training event. b) corresponding spectrogram of the seismic time series.

Using the classifier trained with this event, we performed the classification for each single sensor of the array. In a next step,
the results of the classification were post-processed; first all results of each sensor with a duration < 12s were dismissed (Heck
et al., 2018a). Finally we dismissed all classifications that were classified by less than 5 sensors.

The classification and the following post-processing was applied to the continuous data set recorded from 1 January to 30

15 April 2017. For this period, a total of 117 events were classified as avalanches. A quarter of the events were detected by 5

11
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Figure 8. Classification results after post-processing (including voting-based classification) at the Dischma array. The colored bars indicate
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sensors and yellow bars by 5 sensors.

sensors, a quarter by 6 and about half by 7. Most events were classified during the early March snow storm on 9 and 10
March 2017 (Figure 8). In addition a peak in the middle of January and beginning of April and a cluster of events around the
beginning of February was visible. The peak in January as well as the cluster around the beginning of February correspond with
the avalanche activity period visually recorded in the region of Davos (Figure 6). For the peak in April, however, no avalanches
were observed in the surroundings of Davos. Furthermore, several single detections were distributed over the season showing
no accordance with the visual avalanche observations. Therefore we visually inspected the time series and the corresponding
spectrograms of each of the 117 classifications and found that the HMM also classified various airplanes (Figure 9 a)) and
regional earthquakes (Figure 9 b) as avalanches.

Although these events can be distinguished from avalanches through visual inspection (e.g. the sharp onset visible for
earthquakes), the classifier identified these events as belonging to the avalanche class, even when we used different training
events or varied the setup for the classification (results not shown). This was most likely because earthquake and airplane
signals were more similar to avalanches than to the background model, and consequently tagged as avalanches.

Analyzing the features also showed the similarities of the different types of events, especially the time dependent behav-
ior. In the beginning of the event, the feature behavior of the events is different, however, at the end of the event a similar
time dependent behavior is visible (Figure 10). Due to theses similarities, airplane and earthquake events are more similar to

avalanches than to noise resulting in false classifications of these events.
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4.3 Classification performed at both arrays

The majority of the misclassifications were produced by two types of events, i.e. airplanes and earthquakes. A comparison
of several detected earthquake events with the earthquake catalog of the Swiss Seismological Service (SED) showed, that all
compared earthquake events occurred within a range of 120km. As the Wannengrat array was deployed only 14 km away, all
observed earthquakes were likely to be detected simultaneously at both arrays. Moreover, Davos lies within an approaching
corridor of the international airport Ziirich and several commercial airplanes pass by every hour at an altitude of at least 5 km.
Similar to avalanches, airplanes also have a moving source character and due to the fast movement they are also observed
almost simultaneously at both arrays. Indeed, a comparison of both time series revealed that earthquakes were recorded at both
arrays at the same time whereas airplanes were recorded with a small delay of 20 to 30s due to the movement of the source.
The time series and spectrograms at Dischma and Wannengrat were very similar (Figure 11).

Avalanche signals, however, were only detected within a radius of 3 to 4km of the array and were therefore only recorded
at one array (Heck et al., 2018b). In order to eliminate classified events recorded at both arrays, we performed a second
classification at the Wannengrat array. Due to similarities of the transient signals as mentioned earlier, a HMM trained with
an airplane signal was capable to also detect earthquakes. A closer look at the classification results for the Wannengrat array
revealed, that it was sufficient to only use the HMM trained with an airplane signal (not shown here). The number of detected
events at this array varies strongly per day (blue bars in Figure 12).

The start times obtained by the secondary classification performed with the Wannengrat data were then compared with

the classification results for the Dischma array. Overall, 53 of the 117 classifications were detected almost simultaneously at
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recorded at the Dischma array and b) at the Wannengrat array.
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Blue bars are the number of airplanes and earthquakes detected at the Wannengrat array. Between 5 and 20 January no data were recorded at

the Wannengrat array due to technical issues.

both arrays and we considered theses events as airplanes or earthquakes (yellow bars in Figure 12). After the comparison of
the classification results obtained by both arrays 64 potential avalanche events remained (turquoise bars in Figure 12). The
distribution of these events is similar to visually observed avalanches (Figure 6), except for detections at the beginning of April
and no detections at the beginning of February. These events were only detected using the automatic classification approach.
Furthermore, due to the previously mentioned acquisition problem of the Wannengrat array, all events between 12 and 20
January 2017 were considered as avalanches as we had no further information from the second array. Hence, we expected

some misclassifications among the remaining 64 avalanche events.
4.4 Localization post-processing

In a last processing step, we applied the MUSIC method to the remaining 64 classified events to estimate the back-azimuth
and to find a possible median back-azimuth path. The event used to train the HMMs had a duration of around 50s showing
a median back-azimuth path with slight changes in the angle (straight black line in Figure 13 a). Before and after the event,

however, the back-azimuths were randomly distributed as would be expected for noise. For the training event, the derivative
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Figure 13. Localization results for an avalanche event recorded 9 March 2017 at 6:47. a) polar plot representation of the back-azimuth
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back-azimuth path. The solid part of the line has variations below the threshold value for the derivative, whereas the dotted line refers to
strong variations. b) derivative of median back-azimuth path. The dotted lines represents the threshold value of 10°. The part between 52

and 113s corresponds to the solid line in a).
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of the back-azimuth path has low values for the 50s part with a median back-azimuth path with small changes (Figure 13 b).
For this 50s long interval, changes below 10° were observed for the median back-azimuth path. Before and after the event,
however, the changes are very high due to the randomly distributed back-azimuths. Further analyzed avalanche events also had

changes of the back-azimuth below 10° and we therefore set the 10° as a maximum threshold value. Doing so, another 37 events
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Figure 14. Turquoise bars are the number of events per day which are locatable and are considered as avalanches. Yellow bars are the number
of events per day which were not locatable and therefore dismissed. Red bars are the number of avalanches visually observed in the area of

Davos.

were dismissed and only 27 avalanche events remained. 15 of the remaining avalanche events were observed during 9 and 10
March 2017 and some events were detected during the other periods of considerable avalanche activity in February (Figure 6).
Furthermore, another 10 single events were also confirmed. For each of the 27 events we determined a mean back-azimuth,
which is the mean direction the signals were coming from. The mean back-azimuths were all pointing towards the surrounding
slopes where we expected avalanches to release (Figure 15). Events with a duration longer than 100s were detected coming
either from the north-west or south-east.

Apart from analyzing only the events remaining after the combined array classification, we also performed the localization
post-processing for those 53 events we had dismissed. Based on the localization, 48 events were again dismissed, but 5 had
a median back-azimuth path within the threshold value. Hence, by directly applying the localization step 32 avalanche events

remained, but including at least 5 false detections (15 %).
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Figure 15. Polar plot representation overlaid on a map section of the field site. The angle represents the direction of the origin of the event,
thin lines represent events with a duration < 60s, thick lines events with duration > 60s. The different colors of the lines represent the time

of the year. Reproduced by permission of swisstopo (JA100118).

5 Discussion

We used hidden Markov models (HMMs), a machine learning algorithm, to automatically detect avalanches in data from
seismic systems deployed above Davos, Switzerland. The approach builds on the work of Heck et al. (2018a), who adapted the
HMM method developed by Hammer et al. (2017) to detect avalanches in continuous seismic data from a small aperture
geophone array. Using their approach on our data resulted in automatic detections that still contained a large number of
falsely classified events because only one event type (avalanche) and the background noise was used for the classification
with HMM. Earthquake and airplane signals have characteristics closer to avalanches than the background noise, and were
therefore included in the detections.

By combining the classification results with a classification performed at a second array located 14km away, simultane-
ously recorded events such as local earthquakes and airplanes could be dismissed. In addition, we applied the multiple signal
classification (MUSIC) method to estimate the back-azimuth of the detected events to eliminate false alarms. Overall, this

work flow allowed us to automatically identify 27 events that were very likely generated by avalanches, as the temporal trend
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corresponded well with the avalanche activity for the region of Davos obtained through conventional visual field observations
(Figure 6 and 14). It was not possible to confirm any event with visual observations since most avalanches released during
periods of bad visibility. However, Heck et al. (2018b) manually identified 13 avalanches during 9 and 10 March 2017, 12 of
which were automatically identified with the approach presented here.

Apart from HMMs, several other machine learning techniques are suited to classify signals in seismic data. It is possible to
use a convolutional neural network for earthquake detection and location (Perol et al., 2018) or to pick the P-wave arrival of
seismic wave fields (Ross et al., 2018). Comparable to the classical HMM approach, these studies rely on large pre-labelled
training data sets. Another approach is the so-called Random Forest classifier, which can be used to discriminate seismic waves
(Li et al., 2018). Automatic classification approaches are also suitable to differentiate between earthquakes and quarry blasts
(Hammer et al., 2013) or to characterize larger rockfalls (Dammeier et al., 2016). Further mass movements, such as landslides,
can also be identified in the seismic data based on automatic classification approaches (Esposito et al., 2006; Hibert et al., 2014;
Provost et al., 2016).

The automatic classification of avalanches yet remains a difficult task. Rubin et al. (2012) used several machine learning
algorithms to identify avalanches in seismic data and compared the results obtained with the different approaches. With all
methods a high probability of detection was achieved, but the number of false alarms was too high. A recent study by Heck et al.
(2018a) showed that HMM s are a suitable tool to detect avalanches, but there is still a need for additional post-processing steps.
The work presented here confirms that HMMs in combination with further post-processing steps provide reliable classification
results.

In addition, Heck et al. (2018a) highlighted the difficulty in obtaining a reliable classifier trained on data from a geophone
array very similar to the one used in this work. Their results showed that there were large differences in model performance
between the sensors, with the number of detections per sensor ranging from about 150 to over 2000. This was attributed to
local heterogeneities as the sensors were packed in a Styrofoam housing and inserted within the snowpack. Heck et al. (2018a)
therefore suggested to deploy the sensors below the snow cover and either on or below the ground. In our deployment, the
geophones were buried about half a meter below the ground on a flat meadow. This approach was successful as it resulted in a
much more consistent number of detections per sensor, ranging from 125 to 169. Clearly, the deployment strategy can have a
substantial influence on the performance of the classifier.

In contrast to the classification approach used by Hammer et al. (2017), who used a fixed background model as they analyzed
a relatively short period (5 days), we used an approach more suited for operational purposes. Indeed, for the operational set-up
the background model was determined using 24 hours of data prior to the hourly data that were classified. In combination
with the post-processing steps related to signal duration and number of sensors the events were detected as suggested by
Heck et al. (2018a), the HMMs identified 117 possible avalanche events (Figure 8). Even though this approach identified the
main avalanche cycle in March 2017 (compare Figure 6 and Figure 8), visual inspection of the classified events indicated
that at least 50 % of the events were false alarms produced by distant airplanes or regional earthquakes (Figure 9). Even by
training a classifier with different feature combinations, changing the training event and/or the length of the training event,

the classification results did not substantially change and airplanes and earthquakes were still classified as avalanches. This

20



10

15

20

25

30

35

highlights the difficulty in training an accurate HMM for low energy signals generated by avalanches. We concluded that using
HMMs to automatically identify avalanches in seismic data from our geophone array will inherently contain false detections, as
the overall feature behavior from distant airplanes or regional earthquakes was very similar to signals generated by avalanches
(Figure 10).

To circumvent the problem of developing an optimal event classifier for one specific array, we made use of a second array at
the Wannengrat. There we performed a second classification to automatically identify airplanes and earthquakes using an event
model trained by an airplane event. Since transient signals produced by earthquakes, airplanes or avalanches have similarities,
the results obtained for the second classification based on the airplane event model also falsely identified avalanches and
earthquakes. Hence, a classification performed with only one event model was sufficient. The assumption for the second
classification was that most falsely classified events were recorded at both arrays. Comparing the time series of detected events
at both arrays allowed us to dismiss about 50 % of the classified events (Figure 12). Identifying co-detections across arrays is
therefore an efficient approach to reduce the number of false alarms. Although it was possible, that the classification results
of the second array contained avalanche events, it was unlikely that two avalanches released simultaneously at both field sites.
Furthermore, avalanches were only recorded at one array since the distance between both arrays was about 14 km. In the future,
a promising approach could be to reduce the distance to about 2 or 3 km, as this could also help improve the localization.

Although the combination of two arrays for the classification allowed us to reduce the number of false classification, some
uncertainty remained about the origin of the identified events. In a final step, we therefore used the MUSIC method to estimate
the median back-azimuth path, as suggested by Heck et al. (2018b), to further dismiss false detections. Similar approaches were
suggested for the automatic detection of avalanches in infrasonic data by Marchetti et al. (2015) and Thiiring et al. (2015). In
those studies, the back-azimuth of continuous infrasound data was calculated on the fly using cross-correlation techniques,
and only events with slight changes in back-azimuth over a predefined minimal duration were assumed as avalanche events. In
contrast, here we only determined the back-azimuth for events automatically identified by the HMM with the MUSIC method,
as Heck et al. (2018b) showed that for our instrumentation pair-wise cross-correlation technique (beam forming) did not result
in robust back-azimuth estimates. This last processing step further reduced the number of classified events to 27 (Figure 14).
We also found out, that the MUSIC method would have been sufficient to determine the reliability of a detection as it was not
possible to locate airplane or earthquake events with our array. After applying the localization based step to all detections, 32
events were identified as avalanches, 5 more events compared to the combined array and the localization based classification.

After applying the combined array classification and the MUSIC method to the data, 27 classification remained for the
winter season 2017. Nearly all of these classifications occurred during periods of observed high avalanche activity (Figure
14). However, for the first two periods of high avalanche activity in January and February only few events were detected,
whereas in the surroundings of Davos many events were observed. This may be due to fact that the Dischma site is located
about 12km to the southeast of Davos and weather and snow conditions are sometimes different since major storms arrive
from the northwest. Indeed, based on the images from the automatic cameras, very little avalanche activity was observed in the
area in January and February. Nevertheless, it was possible to reconstruct the avalanche activity period in March based on the

automatic classification. Results from the localization showed that during the season avalanches released from many different
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slopes at the field site (Figure 15). This could be observed especially during the snow storm in March. A seismic monitoring
system is therefore a suitable tool to monitor a wide area and not just one single slope. Although the detection range is with 2 -
3km rather small (Heck et al., 2018b) the seismic system in combination with an automatic classifier provides great potential
to identify the major avalanche periods.

Although we were able to identify one major avalanche activity period in the winter season 2016 - 2017, the method presented
here has its limitations. Based on the sensors used for the automatic monitoring, we identified avalanches within a range of
2 - 3km. However, by using more sensitive sensors, e.g. seismological broadband stations, the detection range of avalanches
can be increased, even up to 30km for very large avalanches (run-out distance > 2km (Hammer et al., 2017). However, it is
difficult to deploy such sensors in mountain terrain, since these stations require existing infrastructure (e.g. electricity, storage
room in a hut), which is typically not available at remote locations. In addition, the last post-processing step requires a second
array. Hence low-power systems with less sensitivity proved to be the best solution. Furthermore, the limited power supply at
the field sites also prevents performing first processing steps directly at the field sites and hence limits the possibility of near
real-time analysis. However, it is possible to overcome this problem by designing special hardware for this particular task.

Based on the approach presented here, a near real-time classification of the seismic data and hence a near real-time detection
of avalanches seems possible. The computational times on a computer with a regularly available 8-core processor with 12 GB
ram are reasonably short and almost near real-time whereas the localization based on the MUSIC is very costly (three times real
time). Although we decided to implement a combined array classification step to save computational time, directly localizing
every detection is also possible. Since the amount of detections for the whole season was very low, a near real-time detection
could be provided with or without the combined array classification. In future systems, pre-processing steps can be integrated
in the data logging unit to reduce the amount of data while recording. Using a standard personal computer, feature calculation
is performed near real-time for all sensors simultaneously as well as the HMM construction and the classification. However, a
major obstacle of our method is the necessity of an adequate training event recorded at the seismic array. Using training events
recorded at different arrays might be unreliable due to possible differences in the instrumentation and changes in the overall
background noise or local heterogeneities in the local geology and in snow conditions. To set up the classification experts will
still be needed to define correct and confirmed training events. Future research will assess the possibility to use one training

event for several seasons recorded at the same array.

6 Conclusions

During the winter season 2016-2017 we used a seismic array to continuously monitor avalanche activity in a remote area
above Davos, Switzerland. By implementing an operational classification method based on hidden Markov models (HMMs),
we detected 117 events in the seismic data from January to April, which were likely produced by avalanches. Subsequent visual
inspection revealed a false alarm rate of at least 50 %. Most of the false detections were associated with airplanes or earthquakes.
By implementing additional steps such as a combined array classification and the localization of the events based on multiple

signal classifications (MUSIC), we improved the classification results by reducing the number of identified events to 27. Only
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using the localization to remove false detections resulted in at least 15 % of false detections yet at a higher computational cost.
Our results therefore show that dismissing false detections with a second array improves the overall classification accuracy. If a
second avalanche monitoring array is in the vicinity, combing the results of both arrays will improve the classification results.
In future experiments we want to reduce the distance between the arrays to some kilometers to improve the localization of

avalanches.

Acknowledgements. M.H. was supported by a grant of the Swiss National Science Foundation (200021_149329). We thank numerous col-

leagues from SLF for help with field work and maintaining the instrumentation.

Competing interests. The authors declare that they have no conflict of interest.

23



10

15

20

25

30

35

References

Barnes, A. E.: Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data, Geophysics, 58, 419—
428, 1993.

Bessason, B., Eiriksson, G., Thorarinsson, O., Thorarinsson, A., and Einarsson, S.: Automatic detection of avalanches and debris flows by
seismic methods, J. Glaciol., 53, 461-472, https://doi.org/10.3189/002214307783258468, 2007.

Beyreuther, M., Hammer, C., Wassermann, J., Ohrnberger, M., and Megies, T.: Constructing a Hidden Markov Model based earthquake
detector: application to induced seismicity, Geophys. J. Int., 189, 602—610, https://doi.org/10.1111/j.1365-246X.2012.05361.x, 2012.

Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., and Loew, S.: Automatic detection of alpine rockslides in continuous seismic data
using hidden Markov models, J. Geophys. Res. Earth Surf, 121, 351-371, https://doi.org/10.1002/2015JF003647, 2016.

Esposito, A. M., Giudicepietro, F., Scarpetta, S., D’ Auria, L., Marinaro, M., and Martini, M.: Automatic discrimination among landslide,
explosion-quake and microtremor seismic signals at Stromboli Volcano using neural networks, Bull. Seismol. Soc. Am., 96, 1230,
https://doi.org/10.1785/0120050097, +http://dx.doi.org/10.1785/0120050097, 2006.

Hammer, C., Beyreuther, M., and Ohrnberger, M.: A seismic-event spotting system for Volcano fast-response systems, Bull. Seismol. Soc.
Am., 102, 948-960, https://doi.org/10.1785/0120110167, 2012.

Hammer, C., Ohrnberger, M., and Fih, D.: Classifying seismic waveforms from scratch: a case study in the alpine environment, Geophys. J.
Int., 192, 425-439, 2013.

Hammer, C., Fih, D., and Ohrnberger, M.: Automatic detection of wet-snow avalanche seismic signals, Nat. Hazards, 86, 601-618,
https://doi.org/10.1007/s11069-016-2707-0, 2017.

Heck, M., Hammer, C., van Herwijnen, A., Schweizer, J., and Fih, D.: Automatic detection of snow avalanches in continuous seismic data
using hidden Markov models, Nat. Hazards Earth Syst. Sci., 18, 383-396, https://doi.org/10.5194/nhess-18-383-2018, 2018a.

Heck, M., Hobiger, M., van Herwijnen, A., Schweizer, J., and Féh, D.: Localization of seismic events produced by avalanches using multiple
signal classifications, Geophys. J. Int., https://doi.org/10.1093/gji/ggy394, http://dx.doi.org/10.1093/gji/ggy394, 2018b.

Hibert, C., Mangeney, A., Grandjean, G., Baillard, C., Rivet, D., Shapiro, N. M., Satriano, C., Maggi, A., Boissier, P., Ferrazzini, V., and
Crawford, W.: Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano, Journal of Geo-
physical Research: Earth Surface, 119, 1082—1105, https://doi.org/10.1002/2013JF002970, https://agupubs.onlinelibrary.wiley.com/doi/
abs/10.1002/2013JF002970, 2014.

Hobiger, M., Cornou, C., Bard, P.-Y., Le Bihan, N., and Imperatori, W.: Analysis of seismic waves crossing the Santa Clara Valley using the
three-component MUSIQUE array algorithm, Geophys. J. Int., 207, 439-456, 2016.

Joswig, M.: Knowledge-Based Seismogram Processing by Mental Images, IEEE Trans. Syst. Man. Cybern., 24, 429 — 439, 1994.

Kanasewich, E. R.: Time Sequence Analysis in Geophysics, The University of Alberta Press, Edmonton, Alberta, Canada, 1981.

Kramer, S.: Geotechnical Earthquake Engineering, Always learning, Prentice-Hall international series in Civil Engineering and engineering
mechanics, Upper Saddle River, New Jersey, 1996.

Lacroix, P., Grasso, J.-R., Roulle, J., Giraud, G., Goetz, D., Morin, S., and Helmstetter, A.: Monitoring of snow avalanches using a
seismic array: Location, speed estimation, and relationships to meteorological variables, J. Geophys. Res. Earth Surf, 117, FO1 034,
https://doi.org/10.1029/2011JF002106, 2012.

Leprettre, B., Navarre, J., and Taillefer, A.: First results from a pre-operational system for automatic detection and recognition of seismic

signals associated with avalanches, J. Glaciol., 42, 352-363, https://doi.org/10.1109/ICMLA.2012.12, 1996.

24


https://doi.org/10.3189/002214307783258468
https://doi.org/10.1111/j.1365-246X.2012.05361.x
https://doi.org/10.1002/2015JF003647
https://doi.org/10.1785/0120050097
+ http://dx.doi.org/10.1785/0120050097
https://doi.org/10.1785/0120110167
https://doi.org/10.1007/s11069-016-2707-0
https://doi.org/10.5194/nhess-18-383-2018
https://doi.org/10.1093/gji/ggy394
http://dx.doi.org/10.1093/gji/ggy394
https://doi.org/10.1002/2013JF002970
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JF002970
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JF002970
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JF002970
https://doi.org/10.1029/2011JF002106
https://doi.org/10.1109/ICMLA.2012.12

10

15

20

25

30

35

Li, Z., Meier, M.-A., Hauksson, E., Zhan, Z., and Andrews, J.: Machine Learning Seismic Wave Discrimination: Application to Earthquake
Early Warning, Geophysical Research Letters, 45, 4773—4779, https://doi.org/10.1029/2018 GL077870, 2018.

Marchetti, E., Ripepe, M., Ulivieri, G., and Kogelnig, A.: Infrasound array criteria for automatic detection and front velocity estimation of
snow avalanches: towards a real-time early-warning system, Nat. Hazards Earth Syst. Sci., 15, 2545 — 2555, https://doi.org/10.5194/nhess-
15-2545-2015, 2015.

McClung, D. and Schaerer, P. A.: The Avalanche Handbook, The Mountaineers Books, 2006.

Nishimura, K. and Izumi, K.: Seismic signals induced by snow avalanche flow, Nat. Hazards, 15, 89-100,
https://doi.org/10.1023/A:1007934815584, 1997.

Ohrnberger, M.: Continuous automatic classification of seismic signals of volcanic origin at Mt. Merapi, Java, Indonesia, PhD. thesis, 2001.

Perol, T., Gharbi, M., and Denolle, M.: Convolutional neural network for earthquake detection and location, Science Advances, 4,
https://doi.org/10.1126/sciadv.1700578, 2018.

Provost, F., Hibert, C., and Malet, J.-P.: Automatic classification of endogenous landslide seismicity using the Random Forest supervised
classifier, Geophysical Research Letters, 44, 113-120, https://doi.org/10.1002/2016GL070709, 2016.

Rabiner, L.: A tutorial on Hidden Markov Models and selected application in speech recognition, Proceedings of the IEEE, 77, 257-286,
https://doi.org/10.1109/5.18626, 1989.

Ross, Z. E., Meier, M.-A., and Hauksson, E.: P Wave Arrival Picking and First-Motion Polarity Determination With Deep Learning, Journal
of Geophysical Research: Solid Earth, 123, 5120-5129, https://doi.org/10.1029/2017JB015251, 2018.

Rost, S. and Thomas, C.: Array seismology: methods and application, Rev. Geophys., 40, 2.1-2.27, https://doi.org/10.1029/2000RG000100,
2002.

Rubin, M., Camp, T., van Herwijnen, A., and Schweizer, J.: Automatically detecting avalanche events in passive seismic data, IEEE Interna-
tional Conference on Machine Learning and Applications, 1, 13-20, https://doi.org/10.1109/ICMLA.2012.12, 2012.

Schaerer, P. A. and Salway, A. A.: Seismic and impact-pressure monitoring of flowing avalanches, J. Glaciol., 26, 179-187,
https://doi.org/10.1017/S0022143000010716, 1980.

Schmidt, R.: Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag., 34, 276-280,
https://doi.org/10.1109/TAP.1986.1143830, 1986.

Scott, E., Hayward, C., Kubichek, R., Hamann, J., Pierre, J., Comey, B., and Mendenhall, T.: Single and multiple sensor identification of
avalanche-generated infrasound, Cold Reg. Sci. Technol., 47, 159-170, https://doi.org/10.1016/j.coldregions.2006.08.005, 2007.

Surifiach, E., Furdada, G., Sabot, F., Biescas, B., and Vilaplana, J.: On the characterization of seismic signals generated by snow avalanches
for monitoring purposes, Ann. Glaciol., 32, 268-274, https://doi.org/10.3189/172756401781819634, 2001.

Surifiach, E., Vilajosana, I., Khazaradze, G., Biescas, B., Furdada, G., and Vilaplana, J.: Seismic detection and characterization of landslides
and other mass movements, Nat. Hazards Earth Syst. Sci., 5, 791-798, https://doi.org/10.5194/nhess-5-791-2005, 2005.

Taner, M. T., Koehler, F., and Sheriff, R.: Complex seismic trace analysis, Geophysics, 44, 1041-1063, 1979.

Thiiring, T., Schoch, M., van Herwijnen, A., and Schweizer, J.: Robust snow avalanche detection using supervised machine learning with
infrasonic sensor arrays, Cold Reg. Sci. Tech., 111, 60 — 66, https://doi.org/10.1016/j.coldregions.2014.12.014, 2015.

van Herwijnen, A. and Schweizer, J.: Seismic sensor array for monitoring an avalanche start zone: design, deployment and preliminary
results, J. Glaciol., 57, 257-264, https://doi.org/10.3189/002214311796405933, 2011a.

van Herwijnen, A. and Schweizer, J.: Monitoring avalanche activity using a seismic sensor, Cold Reg. Sci. Tech., 69, 165-176,

https://doi.org/10.1016/j.coldregions.2011.06.008, 2011b.

25


https://doi.org/10.1029/2018GL077870
https://doi.org/10.5194/nhess-15-2545-2015
https://doi.org/10.5194/nhess-15-2545-2015
https://doi.org/10.5194/nhess-15-2545-2015
https://doi.org/10.1023/A:1007934815584
https://doi.org/10.1126/sciadv.1700578
https://doi.org/10.1002/2016GL070709
https://doi.org/10.1109/5.18626
https://doi.org/10.1029/2017JB015251
https://doi.org/10.1029/2000RG000100
https://doi.org/10.1109/ICMLA.2012.12
https://doi.org/10.1017/S0022143000010716
https://doi.org/10.1109/TAP.1986.1143830
https://doi.org/10.1016/j.coldregions.2006.08.005
https://doi.org/10.3189/172756401781819634
https://doi.org/10.5194/nhess-5-791-2005
https://doi.org/10.1016/j.coldregions.2014.12.014
https://doi.org/10.3189/002214311796405933
https://doi.org/10.1016/j.coldregions.2011.06.008

