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Abstract.

We used continuous data from a seismic monitoring system to automatically determine the avalanche activity at a remote

field site above Davos, Switzerland. The approach is based on combining a machine learning algorithm with array processing

techniques to provide an operational method capable of near real-time classification. First, we used a recently developed method

based on hidden Markos models (HMMs) to automatically identify events in continuous seismic data by using only a single5

training event. For the 2016-2017 winter period, this resulted in 117 events. Second, to eliminate falsely classified events such as

airplanes and local earthquakes, we implemented an additional HMM based classifier at a second array 14km away. By cross-

checking the results of both arrays, we reduced the number of classifications by about 50%. In a third and final step we used

multiple signal classifications (MUSIC), an array processing technique, to determine the direction of the source. Since snow

avalanches recorded at our arrays typically generate signals with small changes in source direction, events with large changes10

were dismissed. From the 117 initially detected events during the 4-month period, our classification workflow removed 96

events. The majority of the remaining 21 events were on 9 and 10 March 2017, in line with visual avalanche observations in

the region of Davos. Our results suggest that the presented classification workflow could be used to identify major avalanche

periods and highlight the importance of array processing techniques for the automatic classification of avalanches in seismic

data.15

1 Introduction

During the winter seasons, snow avalanches are a common threat in mountainous regions. Avalanche warning services therefore

inform the public of the avalanche danger. To assess the danger, warning services rely on information about the snowpack,

amount of new snow, weather conditions and avalanche activity (e.g. McClung and Schaerer, 2006). Whereas the first three

parameters can be measured or modeled, avalanche activity data are often hard to obtain, especially during snow storms or at20

night. Monitoring systems can possibly fill this gap by providing information on avalanche activity independent of the time of

day or visibility.
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Snow avalanches, like any other mass movement, generate seismic and infrasound waves (e.g. van Herwijnen and Schweizer,

2011b; Suriñach et al., 2005; Marchetti et al., 2015). Seismic signals of avalanches show some common characteristics, includ-

ing a spindle shaped envelope of the time series (Nishimura and Izumi, 1997) and a typical frequency content between 2 and 30

Hz (Schaerer and Salway, 1980; Suriñach et al., 2001). Several classification approaches were therefore developed to automati-

cally detect avalanches in seismic data. Leprettre et al. (1996) used a fuzzy logic approach to distinguish between different types5

of signals. Bessason et al. (2007) applied a nearest neighbor approach and detected 65% of all confirmed avalanches. Rubin

et al. (2012) compared 12 machine learning algorithms, 10 of which were able to detect at least 90% of all manually identified

avalanches. While these machine learning methods perform reasonably well in terms of detecting confirmed avalanche events,

a large training data set is typically required and false alarm rates are generally rather high (Rubin et al., 2012).

An alternative machine learning approach was recently presented by Hammer et al. (2017). They used hidden Markov models10

(HMMs) to automatically detect large avalanches released in February 1999 in seismic data recorded by a single broadband

station maintained by the Swiss Seismological Service (SED). HMMs use a sequence of multivariate Gaussian probability

distributions to model observations (e.g. seismic time series). To determine the characteristics of the distributions (i.e. mean

and covariance), classical HMMs also require a large number of training sets for each event class (e.g. avalanche, airplane

or earthquake). This classical approach was successfully used to automatic identify seismic events in continuous seismic data15

(Ohrnberger, 2001; Beyreuther et al., 2012). Avalanches, however, are relatively rare events and obtaining a large set of training

events is time consuming. To circumvent this, Hammer et al. (2012) developed an approach exploiting the abundance of data

containing mainly background signals to obtain general wave-field properties. From these properties, a widespread background

model was learned and only one training event was required. In contrast to the classical HMM approach, the classification

system thus consists of a background model and one event model for each implemented event class. Using this approach,20

Hammer et al. (2017) were able to identify 43 destructive avalanches during an exceptional 5-day avalanche period in February

1999 within a radius of 30km of the broadband seismic station. Heck et al. (2018a) recently adapted this HMM approach to

automatically detect smaller avalanches in data recorded by a seismic array consisting of seven less sensitive vertical geophones

during the winter season 2009-2010. Despite the large differences in model performance for the individual sensors, their model

performed best when pooling the data from the entire array and requiring a minimal event duration for the detections. These25

results highlighted that array based processing is likely to improve the automatic detection of avalanches in continuous seismic

data.

Array processing techniques have been used to exploit infrasound signals for the automatic detection of avalanches (Scott

et al., 2007; Marchetti et al., 2015; Thüring et al., 2015). By comparing the back-azimuth with the directions of known

avalanche paths, possible avalanche events were identified (Marchetti et al., 2015). Thüring et al. (2015) used a similar ap-30

proach for the automatic detection, but relied on support vector machines (SVM), a machine learning algorithm. The success

of array processing techniques on infrasound signals led to the development of operational avalanche detection systems to auto-

matically identify avalanches (Steinkogler et al., 2016). A recent comprehensive study on the performance of these systems has

shown that in the absence of major topographic barriers, infrasound avalanche detection systems relying on array processing

techniques are well suited to reliably monitor larger avalanches up to a distance of 3 to 4 kilometers (Mayer et al., 2018).35

2



Array processing techniques have also been used to locate the source of avalanches in seismic data. Lacroix et al. (2012)

implemented a beam-forming approach and were able to assign recorded avalanches to three known avalanche paths. Heck

et al. (2018b) compared a beam-forming method with a multiple signal classification (MUSIC) approach (Schmidt, 1986)

and obtained better results with the latter. The MUSIC method is based on the covariance matrix of all sensors, whereas

beam-forming methods rely on pair-wise cross-correlation (Schmidt, 1986; Rost and Thomas, 2002). Heck et al. (2018b)5

subsequently applied this method to manually identified avalanches during a two-day period in March 2017 and were able to

reconstruct the avalanche path of several recorded events. They concluded that their seismic array mostly recorded infrasound

signals due to the limited distance between the sensors. While both Lacroix et al. (2012) and Heck et al. (2018b) showed

that avalanches within a distance of approximately 3km of their seismic monitoring systems were detected, seismic array

processing techniques have not yet been used for the automatic detection of avalanches in seismic data.10

Our aim is to design a workflow to automatically identify avalanches in continuous seismic data. Our method consists of

using the machine learning techniques based on hidden Markov models presented by Heck et al. (2018a) in combination with

seismic array processing techniques to locate the source of avalanches presented by Heck et al. (2018b). The goal is to assess

the performance of a fully automatic classifier in view of possible future operational use. To develop and test the automatic

classification method, we used continuous seismic data recorded during the winter season 2016-2017 at two field sites above15

Davos, Switzerland.

2 Field site and instrumentation

During the 2016-2017 winter season, we installed two seismic arrays above Davos, Switzerland (Figure 1). The arrays were

similar to the system described by van Herwijnen and Schweizer (2011a). The first array was deployed at the Dischma field

site (yellow square in Figure 1), 14km away from Davos at the end of a tributary valley (Heck et al., 2018b). The field site is20

a flat meadow at an elevation of 2000m a.s.l. surrounded by mountain peaks which rise up to 3000m. The second array was

deployed at the Wannengrat field site above Davos at 2400m a.s.l. (red square in Figure 1). This field site is surrounded by

several avalanche starting zones (van Herwijnen and Schweizer, 2011a). Both arrays consisted of a 300m long string with 7

vertical component geophones with an natural frequency of 4.5Hz. The sensors of the Dischma array were buried about 50cm

into the ground whereas the sensors at the Wannengrat field site were attached to rocks using an anchor. For each array, the25

sensors were circularly arranged (Figure 1). The maximum distance between two sensors at the Dischma and Wannengrat field

site was 64m and 74m, respectively, and the average distance was 36m and 45m, respectively.

The instrumentation and data logging systems were identical for both arrays. Data were continuously recorded at a sampling

rate of 500Hz. Due to technical problems, only two sensors of the Wannengrat array recorded data throughout the entire winter

(4 and 5 in Figure 1b) and no data were collected between 12 and 20 January 2017. Both field sites were also equipped with30

several automatic cameras (8 at Dischma, 6 at Wannengrat) to monitor the surrounding slopes (Figure 2). Images were recorded

every 10 minutes throughout the winter. In addition, we also performed a field survey at the Dischma site on 15 March 2017

shortly after a period of high avalanche activity to identify avalanches and map their outlines (Figure 3) (Heck et al., 2018b).
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(a)

(b) (c)

Figure 1. a) Map of the area of Davos, Switzerland. The two seismic arrays are indicated by a black triangle on colored background. Red

represents the Wannengrat array, yellow the Dischma array. The wind wheel indicates the location of the Weissfluhjoch weather station. (b)

Deployment geometry of the Dischma array. (c) Deployment geometry of the Wannengrat array. The open red circles indicate positions of

malfunctioning sensors during the winter 2017. Reproduced by permission of swisstopo (JA100118).
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(a) (b)

Figure 2. (a) Detailed map of the Dischma field site showing the position of the seismic array and automatic cameras. (b) Same for the

Wannengrat field site. Reproduced by permission of swisstopo (JA100118).

3 Methods

The overall goal was to develop a processing workflow to automatically identify avalanches in seismic data from the Dis-

chma field site by combining HMMs with seismic array processing techniques. The developed workflow consists of five steps

which are described in more detail below (Figure 4): (1) pre-processing, (2) feature calculation, (3) HMM construction, (4)

classification and (5) post-processing.5

3.1 Data pre-processing

The continuous seismic data mostly consisted of noise, which for the current application was of little interest. We therefore

applied a simple threshold based event detector to reduce the total amount of data (Heck et al., 2018a). For a window i with

a length of 1024 samples, we determined the mean absolute amplitude Ai. When Ai ≥ 5A, with A the daily mean amplitude,

the data within the window were kept. If the amplitude threshold for the following window was also reached, data were10

concatenated. Furthermore, a section of t= 60s before and after the threshold passing were kept to ensure that the onset and

coda of events were incorporated. Doing so, data were reduced by 80% to data windows of various lengths. In addition, we

filtered the data using a 4th order Butterworth bandpass filter with corner frequencies of 1 and 50Hz.

3.2 Feature calculation

Raw seismic time series are not suited for the HMM classification, as information which characterizes seismic signals generated15

by avalanches in the time and frequency domain cannot be exploited. We therefore used specific features of the seismic time

series as input for the HMMs. Features represent different aspects of the time series such as spectral, temporal or polarization
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Figure 3. Picture of the field site of Dischma facing to the south. It was taken on 15 March 2017 shortly after a period of high avalanche

activity and several recent avalanches were observed (red areas). The triangle indicates the location of the seismic array and the camera icon

the location of the automatic camera.

characteristics. These are calculated using a sliding window and therefore the time series is represented in a compressed form.

Since we used data from single component geophones, we only used the spectral and temporal features suggested by Heck

et al. (2018a): central frequency (Barnes, 1993), dominant frequency (Kramer, 1996), instantaneous bandwidth (Barnes, 1993),

instantaneous frequency (Taner et al., 1979), cepstral coefficients (Kanasewich, 1981) and half-octave bands (Joswig, 1994).

We used 6 half-octave bands for the classification and the first half-octave band had a central frequency of 3.9Hz. To calculate5

the features from the pre-processed data, we used a sliding window of width w = 512 samples and a step size of 25 samples,

resulting in an overlap of 97%.
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Figure 4. Flow chart of the classification process. Green lines show the construction of the event model. Blue lines show the construction of

the background model. The orange lines show, how the data to be classified are processed.

3.3 HMM construction

The hidden Markov models we used to automatically identify avalanches in the continuous seismic consisted of a background

model and an event model for each event class (Hammer et al., 2017; Heck et al., 2018a). In our application we used only one

event class, either avalanches at the Dischma field site or airplanes at the Wannengrat field site.

The background model was learned by using features extracted from the pre-processed data. Previous work has shown that a5

background model which is regularly updated provides better classification results throughout a season (e.g. Heck et al., 2018a).

In our case, we therefore used the pre-processed data from a 24h window to train the background model and recalculated it

every hour, i.e. we used a sliding window of length tmodel = 24h and then shifted it forward by one hour (background data in

Figure 4).

In contrast to the background model, the event model was only calculated once for the entire season (training event in Figure10

4). For the Dischma field site, our training event consisted of a signal generated by an avalanche that had released on 9 March
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2017 at 06:47 (Figure 5a), an unambiguous event that was analyzed in detail by Heck et al. (2018b). For the Wannengrat field

site, our training event consisted of a signal generated by an airplane on 31 January 2017 at 21:46 (Figure 5b).

Figure 5. Avalanche released on 9 March 2017 at 06:47 and airplane detected on 28 January 2017 at 09:17 used as training event for the

classifier. a) time series of the avalanche recorded at the 7 sensors of the Dischma array and b) time series of the airplane recorded at the two

working sensors of the Wannengrat array. The red area indicates the part of the time series used as training event. b) and d) corresponding

average spectrogram of all sensors.

3.4 Classification

To classify unknown data, we used a window of length tclass = 1h immediately following the 24h long training window

(Unclassified data in Figure 4). These data were pre-processed and features were calculated. Based on these features, the5

HMM classification process then calculated the likelihood that an unknown data stream was generated by a specific event class

(Hammer et al., 2012, 2013). The classification was performed for each individual sensor.

3.5 Post-processing

Since the classification algorithm is not perfect, several post-processing steps were applied to reduce the number of false

detections. Detections with a duration ≤ 12s were dismissed (Heck et al., 2018a), and we only considered an event as an10

avalanche when it was detected by at least five sensors of the array, as proposed by Heck et al. (2018a). Two additional steps

were also implemented in the classification workflow and are described in the following.

3.5.1 Combined array detection

Avalanche signals are typically only detected within a radius of 3 km of our seismic arrays (van Herwijnen and Schweizer,

2011b; Heck et al., 2018b). Since the distance between the Dischma and the Wannengrat array was 14km, it is therefore very15

unlikely that an avalanche was recorded at both arrays simultaneously. Signals that were recorded simultaneously at both arrays

were thus most likely not generated by an avalanche. To remove such signals from the events automatically classified at the
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Dischma array, we implemented a second HMM trained with the airplane event from 31 January at 21:46 (Figure 5b) to classify

the data recorded at the Wannengrat and subsequently using the same post-processing steps mentioned earlier. However, since

only two sensors recorded data at the Wannengrat array, we only considered events detected by these two sensors. Classification

results from the Dischma and Wannengrat arrays were then combined to remove all events recorded simultaneously at both

arrays, which means that the time difference between the detections at both field sites was less than 1min.5

3.5.2 Source localization

Array processing methods provide information on the signal source and can provide additional parameters to classify events as

avalanches, as is commonly done when exploiting infrasound signals (Scott et al., 2007; Marchetti et al., 2015; Thüring et al.,

2015). To locate the source of events, we used the MUSIC algorithm, as suggested by Heck et al. (2018b). The MUSIC method

was applied to non-overlapping data windows for four frequency bands between 6 and 7.5Hz to determine the back-azimuth10

angle and the apparent velocity of the incoming wave-field with time. The length of the windows was set to five cycles of the

lower corner of the analysed frequency band, meaning that the data were divided into more windows for higher frequencies.

By combining the back-azimuth values for all four frequency bands, we then applied a median smoothing filter on a moving

window of 8s to determine a median back-azimuth path with time, as in Heck et al. (2018b) (Figure 6a).

To decide whether a classification was associated with an avalanche or not, we applied a threshold value to the derivative15

of the median back-azimuth path. The assumption was that avalanche events have a relatively smooth median back-azimuth

path with little variations, whereas other signal sources show larger variations in back-azimuth, which is also the case for

earthquakes and airplanes for our specific array geometry. Indeed, the training event at the Dischma array had a duration of

around 50s and a median back-azimuth path with slight changes in the angle (black line in Figure 6 a) whereas before and after

the event, the back-azimuths were more erratic, as expected for noise. For the training event, the derivative of the median back-20

azimuth path stayed below 10◦s−1 for 50s, while before and after the event it was much larger (Figure 6b). Other avalanche

events had very similar results (not shown). Events with derivatives of the median back-azimuth path smaller than 10◦ for a

minimum duration of 20s were then classified as avalanches. Since we used 8s windows for the calculation of the median

back-azimuth path, we had to increase the minimal event duration to 20s.

4 Results25

We applied our automatic avalanche detection workflow on data recorded at the Dischma field site from 1 January to 30 April

2017. We then compared the results with an avalanche catalogue obtained by visual observations from local observers compiled

by the avalanche warning service at the SLF. The visual observations in the area of Davos can be incomplete and cover an area

much larger than the area monitored with our seismic system at the Dischma site. Therefore, comparison with this avalanche

catalogue remains indicative.30
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(a)

(b)

Figure 6. Localization results for an avalanche event recorded on 9 March 2017 at 6:47. a) polar plot representation of the back-azimuth

calculated using the MUSIC method. Red dots are the back-azimuth values for a single time window. The black line represents the median

back-azimuth path. The solid part of the line has variations below the threshold value for the derivative, whereas the dotted line refers to

strong variations. b) derivative of median back-azimuth path. The dotted lines represents the threshold value of 10◦. The part between 52s

and 113s corresponds to the solid line in a).
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4.1 Overview of the winter season

The winter period of 2016-2017 was relatively short and characterized by a below-average snow depth. First snowfalls were

quite late in the season, in the middle of December, followed by four weeks without substantial precipitation and low tempera-

tures. As the thin snowpack was subjected to large temperature gradients for an extended period of time, a poorly bonded layer

of depth hoar formed at the base of the snow cover.

During the winter season, four pronounced snowfall periods occurred: between 1 and 15 January, around 1 February, from5

1 to 10 March and around 15 April (increase of blue line in Figure 7). Each snowfall was associated with increased avalanche

activity in the region of Davos, except the snowfall in April (red bars in Figure 7b).

Figure 7. a) Snow height measured at the automatic weather station at Weissfluhjoch 12km to the northwest of the Dischma array at 2540m

a.s.l. for the winter season 2016-2017. Orange bars are the height of new snow measured each day at 8:00 am. b) Number of avalanches

observed per day in the region of Davos (∼ 175km2).

In addition to these visual avalanche observations by local observers, we inspected pictures taken by the automatic cameras

installed at the Dischma field site. Surprisingly, avalanche activity was very low in January and February, and only a few

avalanches were identified on 1 February 2017. During the early March snow storm, visibility was poor and very few avalanches10

were identified on the images of the automatic cameras. However, once the storm had passed, the intensity of the avalanche
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cycle became clear as many avalanche deposits were visible on the images. Five days after the storm we mapped 24 avalanches

within a 4km radius of the Dischma field site (for more details see Heck et al., 2018b). Later in the season, we did not observe

any more avalanches on the images. Thus, the avalanche cycle between 9 and 10 March was the most prominent avalanche

period at the Dischma field site.

4.2 Classification performed at single array

Using the classifier trained with the avalanche event from 9 March 2017 at 06:47 (Figure 5a), we classified the data from each5

single sensor of the Dischma array and post-processed the results to remove events with a duration ≤ 12s and all classifications

that were classified by less than 5 sensors. This resulted in a total of 117 automatically detected events between 1 January and

30 April 2017 (Figure 8). A quarter of the events were detected by 5 sensors, a quarter by 6 and about half by 7 sensors.

Figure 8. Classification results after post-processing (including voting-based classification) at the Dischma array. The colored bars indicate

the number of classified events per day depending on the number of sensors: Violet bar indicates detections by 7 sensor, turquoise bars by 6

sensors and yellow bars by 5 sensors.

Most events occurred on 9 and 10 March 2017. In addition, peaks in the middle of January and early April were visible.

The peak in January corresponded with the avalanche activity period visually recorded in the region of Davos (Figure 7). For10

the peak in April, however, no avalanches were observed in the area of Davos. Furthermore, several single detections were

distributed over the season showing no clear link to the avalanche observations in the region of Davos. We therefore visually

inspected the time series and spectrograms of each of the 117 classifications and found that the HMM also classified ∼ 50

airplanes (Figure 9 a)) and regional earthquakes (Figure 9 b) as avalanches.

Although these misclassified events can be distinguished from avalanches through visual inspection (e.g. the sharp onset15

visible for earthquakes), the classifier identified these events as belonging to the avalanche class. We attribute these false
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Figure 9. Time series and corresponding spectrograms for two false classifications, airplane detected at a) Dischma and b) at Wannengrat

and an earthquake detected at c) Dischma and d) Wannengrat.

classifications to the fact that these earthquake and airplane signals were more similar to the avalanche training event than to

the background model and no event type earthquake or airplane was included in the system.. Indeed, the temporal trends in the

features exhibited many similarities (Figure 10). Using different training events did not substantially change these results (not

shown).

4.3 Classification performed at both arrays

The vast majority of the misclassifications were produced by two types of events: airplanes and earthquakes. Davos lies within5

an approaching corridor of the international airport Zürich and numerous commercial airplanes pass by every hour. Similar

to avalanches, airplanes also have a moving source character. However, due to the high altitude (typically > 5 km) and fast

movement of the source, airplanes are likely recorded at both arrays. Furthermore, based on the earthquake catalog of the

Swiss Seismological Service (SED), we concluded that regional earthquakes within a range of 120km were recorded by both

arrays. Airplanes and earthquakes were therefore recorded almost simultaneously at both arrays (Figure 9). To eliminate these10

false classifications, we thus used data from the Wannengrat array classified with the HMM trained with the airplane event of

31 January at 21:46 (Figure 5b). As the transient signals of airplanes and earthquakes were very similar (Figure 10), this HMM

also detected earthquakes.

The number of detected events at the Wannengrat array varied strongly per day (blue bars in Figure 11). 53 of these events

coincided with events classified at the Dischma array and were dismissed (yellow bars in Figure 11 and Table 1). The remaining15
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Figure 10. Instantaneous frequency with normalized time (normalized with event duration) for signals generated by an airplane (yellow), an

earthquake (green) and an avalanche (blue). The black lines are the moving mean. The black vertical dashed lines at 0 and 1 indicate the start

and the end of the events.

single array combined detection location based detection

total analyzed 117 64

classified as avalanche 117 64 21

dismissed 53 43
Table 1. Number of analyzed events, events classified as an avalanche and dismissed events for the different steps in the classification

workflow. For the single array classification, the total number of analyzed and dismissed events cannot be provided as the entire time series

was classified.

64 potential avalanches were again mostly concentrated in January, around 9 and 10 March and early April. The distribution of

these events was somewhat similar to visually observed avalanches (compare to red bars in Figure 7), except for the detections

in April and the absence of detections at the beginning of February. Hence, we expected some misclassifications among the

remaining 64 avalanche events.

4.4 Localization post-processing

We applied the MUSIC method to the remaining 64 classified events to determine the median back-azimuth paths. Events with5

derivatives in the median back-azimuth path larger than 10◦ were dismissed. Doing so, another 43 events were dismissed and

only 21 events remained (Figure 12; Table 1). The majority of these events (i.e. 13 of 21) were observed on 9 and 10 March

2017, while the other events showed no clear link to the visual observations (red bars in Figure 12).
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Figure 11. Number of events during the season. Yellow bars indicate the events detected at both arrays, the turquoise bars show the events

only recorded at the Dischma array. Blue bars show the events automatically detected at the Wannengrat array. Between 5 and 20 January no

data were recorded at the Wannengrat array.

For each of the 21 events we determined a mean back-azimuth, which is the mean direction the signals came from. The mean

back-azimuths were all pointing towards the surrounding slopes where we expected avalanches to release (Figure 13). Events

with a duration longer than 100s were detected coming either from the north-west or south-east.

5 Discussion

Machine learning algorithms are increasingly used for automatic signal detection in seismic data, in particular when investi-

gating gravitational mass movements such as landslides, avalanches, rockfalls and debris flows. They include neural networks5

(Perol et al., 2018; Esposito et al., 2006), deep learning (Ross et al., 2018), random forest classifiers (Li et al., 2018; Provost

et al., 2016), nearest neighbors (Bessason et al., 2007) or kurtosis-based picking (Hibert et al., 2014). While with appropriate

calibration these methods generally perform rather well, the main drawback is that a large pre-labelled training database is

required. The same is true for signals generated by snow avalanches (e.g. Rubin et al., 2012). The classification workflow we

presented used hidden Markov models (HMMs) to automatically detect avalanches in data from seismic systems deployed10
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Figure 12. Turquoise bars are the number of events per day which are locatable and are considered as avalanches. Yellow bars are the number

of events per day which could not be located and were therefore dismissed. Red bars are the number of avalanches visually observed in the

area of Davos.

above Davos, Switzerland. The approach builds on the work of Heck et al. (2018a), who adapted the HMM method developed

by Hammer et al. (2017) to detect avalanches in continuous seismic data from a small aperture geophone array. A major benefit

of this approach is that only one training event is required. This has substantial advantages, as the workflow could be imple-

mented at a newly instrumented site without the need to first establish an extensive training data set. Still, a pre-operational

training phase, typically one winter season, is needed to acquire at least one training event and to identify any site-specific pecu-

liarities. Using training events recorded at different arrays might be unreliable due to possible differences in the instrumentation5

or heterogeneities in the local geology.

For the training event, we only used the first section of the avalanche signal, up to the maximum amplitude (Figure 5). Using

the entire length of the avalanche signal resulted in poorer classification results (not shown) as there were very little variations

in the transient feature behavior after the maximum in the signal. Including larger parts of the training event therefore did not

provide any useful additional information for the classification. Heck et al. (2018a) also investigated using different avalanche10

signals to represent different classes (i.e. dry- and wet-snow avalanches). However, this also did not improve the classification

results as in the feature space, dry- and wet-snow avalanches are very similar.

Heck et al. (2018a) highlighted difficulties in obtaining a reliable classifier with the HMM approach applied to a geophone

array. They obtained large differences in model performance with the number of detections per sensor ranging from about 150

to over 2000. This was attributed to local heterogeneities as the sensors were packed in a styrofoam housing and inserted within15

the snow. In our deployment, the geophones were buried about half a meter below the ground on a flat meadow. This approach
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Figure 13. Polar plot representation overlaid on a map section of the field site. The angle represents the direction of the origin of the event,

thin lines represent events with a duration < 60s, thick lines events with duration ≥ 60s. The different colors of the lines represent the time

of the year. Reproduced by permission of swisstopo (JA100118).

resulted in a much more consistent number of detections per sensor, ranging from 125 to 169, showing that the deployment

strategy can have substantial influence on the performance of the classifier.

Applying the post-processing steps suggested by Heck et al. (2018a) to remove events with a duration ≤ 12s and all clas-

sifications that were classified by less than 5 sensors resulted in 117 possible avalanche events (Figure 8). Even though this

approach identified the main avalanche cycle in March 2017 (compare Figure 7 and Figure 8), visual inspection of the classified

events indicated that at least 50% of the events were generated by airplanes or regional earthquakes (Figure 9). Although we5

did not perform an exhaustive sensitivity study, some ad-hoc testing showed that these classification results did not substan-

tially change when training a classifier with different feature combinations, changing the training event and/or the length of the

training event. The main conclusion to be drawn from this observation is that seismic wavefield attributes of earthquakes and

airplanes share significantly more similarities to the seismic wavefield characteristics recorded for avalanches if compared to

the characteristics of seismic background noise. In fact, the transient feature behavior from airplanes or regional earthquakes10

was very similar to signals generated by avalanches (Figure 10). Implementing also an earthquake and airplane HMM at the

same site may improve the classification performance. Imposing a duration threshold for the detections did not allow us to de-
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tect small avalanches, as signal duration relates to avalanche size (van Herwijnen et al., 2013). However, as powder avalanches

travel at higher velocities than wet snow avalanches, it remains unclear what avalanche size is excluded due to the minimum

duration threshold. Due to a lack of ground truth data, we could also not investigated the influence of avalanches size.

To circumvent the problem of developing an optimal event classifier for one specific array, we made use of a second array

at the Wannengrat. There we performed a second classification to automatically identify airplanes and earthquakes using an

event model trained with an airplane event. Since transient signals produced by earthquakes, airplanes or avalanches have5

similarities (Figure 10), the results obtained for the second classification based on the airplane event model likely also include

avalanches and earthquakes. However, this was not a drawback since we assume that it was very unlikely that two avalanches

released simultaneously at both field sites. Typically, signals generated by airplanes either have clear overtones or at least a

clear Doppler effect in the signal (van Herwijnen and Schweizer, 2011a). The airplane signals that were falsely classified as

avalanches with our method did not have such obvious features (Figure 9). While we do not know why and when airplanes10

generate such signals, and we have not identified a clear pattern explaining their presence, we have seen multiple signals like

these recorded at both arrays and we are confident that these signals are generated by airplanes. Comparing the time series of

detected events at both arrays allowed us to dismiss about 50% of the classified events (Figure 11). In our case, identifying co-

detections across arrays is therefore an efficient approach to reduce the number of false alarms, as the weak signals generated

by avalanches were only recorded at one array since the distance between both arrays was about 14km.15

Combining the classification results from two separate arrays allowed us to reduce the number of classifications. Neverthe-

less, some uncertainty remained about the origin of the identified events. In a final step, we therefore used the MUSIC method

to estimate the median back-azimuth path, as suggested by Heck et al. (2018b), to further dismiss false detections. Similar

approaches were suggested for the automatic detection of avalanches in infrasonic data by Marchetti et al. (2015) and Thüring

et al. (2015). In those studies, the back-azimuth of continuous infrasound data was calculated using cross-correlation tech-20

niques, and only events with slight changes in back-azimuth over a predefined minimal duration were assumed as avalanche

events. In contrast, we determined the back-azimuth with the MUSIC method only for those events that were already identified

by the HMM, since pair-wise cross-correlation technique (beam forming) did not result in robust back-azimuth estimates for

our instrumentation (Heck et al., 2018b). This last processing step further reduced the number of classified events to 21 (Figure

12).25

The majority of the remaining 21 automatic classifications occurred during a period which coincided with the observed

high avalanche activity in March (Figure 12). However, very few avalanches were automatically detected during the first

two avalanche periods observed in the surroundings of Davos in January and February. This may be due to fact that the

Dischma site is located about 12km km to the southeast of Davos where avalanches are regularly observed and weather and

snow conditions are sometimes different since major storms arrive from the northwest. Indeed, based on the images from the30

automatic cameras, very little avalanche activity was observed in the area in January and February, suggesting that there was

only one main avalanche period at our site in March. With our automatic classification, it was thus possible to reconstruct the

main avalanche activity period in March. Results from the localization showed that during the season avalanches released from

many different slopes at the field site, in particular for the avalanche period in March (Figure 13). A seismic monitoring system
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is therefore a suitable tool to monitor an area with many slopes and not just one single slope. Although the detection range is35

with 2 - 3km rather limited (Heck et al., 2018b), the seismic monitoring system in combination with an automatic classifier

provides great potential to identify at least the major avalanche periods. These results suggest that the detection capabilities of

seismic monitoring systems are very similar to those of infrasound monitoring systems (Mayer et al., 2018).

Although we were able to identify one major avalanche activity period in the winter season 2016-2017, the method presented

here has its limitations. Our suggested workflow requires two arrays to eliminate events by finding co-detections. This is clearly5

a limiting factor as it increases the cost for the instrumentation as well as deployment and maintenance time. However, we could

have directly applied the MUSIC method to all detections from the Dischma array to reduce the number of events. Indeed, after

applying the localization based step to all detections, 32 events were identified as avalanches, 11 more than with the combined

array and the localization based classification. Although we decided to implement a combined array classification step to save

computational time, directly localizing every automatically detected event is thus also possible.10

The main limitation is that we could not quantify the reliability of the classifier as no independent verification data were

available. Our results suggest that the HMMs trained at the Dischma array with a single avalanche training event had a false

alarm rate of ∼ 80%, which was reduced by applying the suggested post-processing steps. However, the probability of detection

or the exact false alarm rate are difficult to estimate, since ground truth data are missing. As avalanches generally release during

periods of poor visibility, this is a common problem when assessing the detection performance of automatic avalanche detection15

systems (Mayer et al., 2018; Heck et al., 2018a; Thüring et al., 2015). Alternatively, one could visually inspect the waveforms

and spectrograms over the entire season (e.g. van Herwijnen et al., 2016). However, events identified in this manner often

contain many uncertainties (Heck et al., 2018a). For example, two of the authors independently identified possible avalanches,

resulting in 44 and 23 events, respectively. Thus, the only events we could use to assess the performance of our classifier

were the 13 manually identified avalanches by Heck et al. (2018b) on 9 and 10 March. Twelve of these were automatically20

identified with our approach, suggesting good performance in terms of probability of detection and the number of missed

events. However, we cannot make any statements on the false alarm rate, which from an operational point of view is also very

important.

Based on the approach presented here, a near real-time classification of the seismic data and hence a near real-time detection

of avalanches seems possible. The computational times on a standard personal computer (8-core processor with 12GB ram) are25

reasonably short as feature calculation can be performed in near real-time for all sensors simultaneously as well as the HMM

construction and the classification. The MUSIC method, on the other hand, is very costly (three times real time). However,

since the amount of detections for the entire season was very low, a near real-time detection could be provided with or without

the combined array classification. In future systems, the pre-processing steps can be integrated in the data logging unit to

substantially reduce the data transmission.30
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6 Conclusions

During the winter season 2016-2017 we used a seismic array to continuously monitor avalanche activity in a remote area above

Davos, Switzerland. By training a machine learning algorithm based on hidden Markov models (HMMs), we detected 117

events in the seismic data from January to April. Subsequent visual inspection revealed a false alarm rate of at least 50% and

most of the false detections were associated with airplanes or earthquakes. We therefore trained a second HMM with data

from a seismic array at a distance of 14km to remove any co-detections. Finally, we applied a multiple signal classification5

(MUSIC) approach to define threshold criteria for automatic avalanche identification by considering avalanches as a moving

source. Overall, this workflow resulted in 21 automatic classifications. The majority of these events occurred on 9 and 10

March 2017, in accordance with a period of high avalanche activity observed in the surroundings of Davos.

Our results show that seismic monitoring systems in combination with an automatic classifier provides great potential to

identify at least the major avalanche periods. In our workflow, using an array processing method to determine the source of10

the seismic events was of crucial importance to reduce falsely classified events. In future experiments we want to introduce an

additional array within a shorter distance to improve the localization and no longer require the combined array classification

approach.
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