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Reviewers 1 (anonymous) and 2 (Hodge) offer many valuable thoughts to
improve our manuscript. We thank them for their careful effort, which has
helped us to make this dense manuscript more readable. In addition, both of the
reviewers and Sam Holo have identified relatively minor but important mistakes,
and in some cases corrected them. We are especially grateful for these notes.

Our responses to these comments are below. Quotes from the referees are
in Roman font. Our responses are in italics. Quotes from our LaTeX source –
typically modifications to the manuscript text – are in monospace font that is
also italicized.

Responses to comments from Reviewer 1

One of my big pet peeves, although I may be the only geomorphologist who
thinks this, is calling slope the absolute value of the gradient. This can lead
to sediment moving uphill. You use a few absolute values in your equations
and then take care of the sediment moving uphill part by adding the signum
function to your qs equation. But then eventually you get rid of it. I didn’t
understand equation 3, (qs equation), I spent more time figuring out the sgn
function, than if you had just changed your if statement. Why not just change
the if statement that is already in the equation if to be if tb* ≤ tc*, then qs
= zero? I went around and around on this, and I think you get to the same
place by taking out the -sgn term and the absolute value on tau b* by changing
the if statement which to me is much simpler. Seeing the absolute value of bed
shear stress was weird for me. And it took me a while to work out why that
was needed when you also had sgn. It seemed overly complicated, but maybe I
am missing something.

I know this seems like a micro-detail to bring up in my big comments, but
when I have to go through 50+ equations, I don’t want to be struggling on
equation 3. And sgn is in other equations too. Why not just make the assump-
tion that you are calculating in the downslope direction, as you are modeling
1D profiles anyway?

We fully agree that the any absolute value requires a signum function. The
signum disappears in equation 21 because it is included in the ∂z/∂x term (which
has a sign) in the first term in the brackets (and the term on the RHS outside
the brackets). Furthermore, the absolute values on Q become unnecessary due
to the fact that (1/Q)∂Q/∂x can have only positive solutions for a real Q. This
explanation aside, it appears that I can do a few things to help make this portion
of the paper easier to follow!

The code for the model, as well as Equation 21, both include directionality.
Therefore the key to solving this problem should be to shed the bulkiness (and
hence confusion) caused by having these more general equations, while not los-
ing their accuracy. The best way I can think of doing this is by moving the
discussion with the signum function to an appendix. This will take some work,
but I have gone through the text and begun to shorten/simplify the section on
the derivation, while moving the essential information on directionality to an
appendix. I maintain directionality in Equation 21 by referring to the appendix.
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I also had a hard time going between general 2D network evolution and 1D
channel evolution. I think the dz/dt equations should be general, and apply to
a network, right? But the analytical solutions, which make the assumption that
the channel is conveying sediment through, and not eroding or depositing, is for
only 1D? Further confusing me, I think, is that when you bring up the Whipple
and Tucker 2002, you are making an assumption that Qs is increasing down-
stream, so different from the earlier analytical solution. The W&T slope-area
relationship – equation 51, and the 1D channel-only- conveying-what-is-sent-
in-from-upstream slope-area relationship – equation 55, look similar, but the
idea that in one, only sediment is coming in from the top of the profile, and in
the other there is a network producing sediment – seems like it should make a
huge difference. I wonder if by adding the area exponent on the steady-state
Qs relationship (eq. 50) but with such a low exponent – e.g. 0.2 – it basically
shows that inputs of sediment from tributaries are less important for channel
profile form than we thought? This is really hard for me to wrap my head
around. I’m not sure I have fully appreciated this or if I am following. But pos-
sibly it is worth more discussion, or I missed the links in this study of your paper.

The 1D vs. 2D question is a great point, and your confusion may be the
result of my own mistake in describing the analytical solution. Since there are
quite a few querstions / points here, I will have to break this response up in
order to make sure that I address them all.

1D VS 2D: We parameterized a full network with a set of power-law relation-
ships between discharge, drianage area, and downstream distance, without explic-
itly solving for a 2D network. These create a ficticious continuously-increasing
discharge, whereas rivers typically experience jumps of increases in discharge at
tributary junctions. You are correct that these equations could be generalized,
and to do so would require internal boundaries between 1D profiles at tributary
junctions. This is indeed an ongoing project!

ANALYTICAL SOLUTION: I (Wickert) made a mistake in describing this
that I think was the source of all of this confusion. Because I wrote the power-law
functions to relate discharge to downstream distance, and the equations assume
transport and capacity, then there must be increasing sediment input with dis-
charge downstream as well. Therefore, what I am instead indicating is that all
of the hillslopes, both inside and outside the computational domain, are provid-
ing an eternal supply of sediments to the channel at transport capacity. This
contradicts what I wrote:

For such a no-uplift steady-state condition to persist over

geologic time requires a constant input of sediment from upstream

.

Therefore, I have changed this text to:

For such a no-uplift steady-state condition to persist over

geologic time requires a constant input of sediment from the

hillslopes. This may be reasonable for a river that reaches an

equilibrium long profile much more rapidly than the surrounding

landscape evolves and its relief changes. It is also useful as a

benchmark for numerical solutions (Figure \ref{fig:

AnalyticalNumerical}).
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WHIPPLE & TUCKER 2002: We are allowing sediment discharge to in-
crease downstream, following water discharge, and removing my flub on the an-
alytical solution description should (we hope) make this clearer. Both Equation
51 and Equation 55 include sediment from the full landscape. This is because
sediment discharge in this transport-limited case is always directly proportional
to water discharge, and water discharge in turn is proportional to drainage area.

TRIBUTARY SEDIMENTS AND Pβ: The low exponent actually indicates
that locally-derived sediments should be more important – its power (pun not
intended!) to reduce sediment inputs increases as drainage area goes up. There-
fore, it should imply that the tributary loads are important, and may replace
sediments that are abraded, or, as Reviewer 2 (Hodge) points out, are preferen-
tially deposited.

I know that you relaxed the assumption of only upstream sediment supply a
bit in section 5.4.3, however this is very brief. I’m not sure what the answer is,
and I hate to tell you to lengthen the paper, however, I did get confused moving
among the different assumptions.

We hope that it is now clear that there was always locally-sourced sediment
in a pseudo-2D sense; thank you for your above comments and for identifying
my error.

EQ 1 : Many people (I think) might be used to thinking of this equation
only in terms of the first term in parentheses, and not the second one. Is it
worth explaining each term?

Yes, we agree that it is! Indeed, Exner and many others used just the 1D
form of this equation, but it is significant to discuss how I expanded it for valley
filling and/or emptying. We have added a new appendix to describe this. This
appendix also describes the source of the sinuosity term, which we are correcting
in the revision.

Eq 17 : It’s not intuitive that channel width increases with slope. Is the
explanation for that coming up? I immediately thought of Finnegan, Roe,
Montgomery & Hallet, Geology, 2005. Might need some discussion.

The difference is that we are holding shear stress ratio constant (per Parker
1978) and Finnegan et al. are focusing on continuity; we have modified the text
to describe this:

This is the width created by a channel that has a constant ratio

of basal Shields stress to critical Shields stress (Equation \ref

{eq:ThresholdSelfFormedWidth} \citep{Parker1978}, and Equation \

ref{eq:b} predicts that for a given grain size and discharge, a

steeper channel will be wider in order to reduce depth and

therefore reduce applied shear stress. If the channel does not
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widen to maintain a constant excess shear stress ratio, \citep{

Finnegan2005} predict that it should narrow instead in response

to steepening because, holding bed roughness constant, steeper

flow is faster and therefore does not require as large a channel

width to transmit a given water discharge.

P 10, L 1 : It finally dawned on me, should sediment discharge really be
termed sediment transport capacity? Isn’t qs what the channel can transport,
but it will only transport if that sediment is available?

These exist as separate entities in detachment-limited rivers, but are neces-
sarily the same in transport-limited rivers. In order to make this clear early-on,
I have added the following text to the description of the Meyer-Peter & Müller
sediment transport relationship:

This formula is technically for sediment-transport capacity,

$Q_c$, per unit channel width, but in a transport-limited river,

sediment is always supplied at or above capacity such that $Q_s \

equiv Q_c$.

P 12, L 23 : I’m not sure you should cite Whipple and Tucker here. I don’t
think they show any data on the discharge-area relationship or Hack’s law, they
just use them.

You are correct: I included it because it was one of my (Wickert’s) personal
introductions to these concepts; reference removed.

P 14, L 12 : Do you mean constant? Or uniform? I think uniform as you
say ”a short reach ... with no significant tributaries”

We mean both steady and uniform – uniform for the reason that you give
here, and steady in order to find a time-invariant analytical solution. We have
clarified this in the text.

Eq 44 : In the context of W&T 2002, I think what you have derived above
is Qc, not Qs. It might be worth stating that. Maybe some people will get
confused. Even in the appendix you call Qs sediment discharge, and Qc sedi-
ment discharge capacity. But it seems to me your equation 3, which your Qs
equations comes from, is really a capacity, and in a sediment starved system
this would not be the sediment discharge. Help me out please.

As noted above, transport-limited equations work only in non-sediment-starved
systems, so the two are interchangeable... EXCEPT here, where we note the
boundary case! Your comments have made me (Wickert) think that this may
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not be clear to the community that works across the broader spectrum of chan-
nels. Therefore, we define Qc at the first place where we note Qs, as noted above
(MPM).

P 16, L 12 : I know one can’t cite everything, but I particularly like the study
by Huang and Niemann, 2014 to show this point. GSA Reviews in Engineering
Geology, 2014 Simulating the impacts of small convective storms and channel
transmission losses on gully evolution

This is fantastic – thanks! We had been looking for a more recent reference
and had not found this one.

P 17, L 6 – 10 : Is this discussion of P beta actually beta? If P beta equals
zero, I think that means that the sediment flux is the same everywhere, or beta
* U, and not that all material weathers on the hillslopes. Similarly, if P beta =
1, but beta = 0, then no material reaches the stream as gravel. I’m confused.

Thank you for catching this error. I (Wickert) stand by the Pβ = 1 state-
ment, because I state that “every piece of eroded material” (so this requires
erosion). However, the Pβ = 0 statement is indeed incorrect because it implies
a drainage-area-independent sediment input, as you note here. I have corrected
this, and also removed the sentence about gravel packing because on re-reading,
I found it confusing and superfluous even though it seemed important to me at
the original time of writing.

Eq 50: Maybe also state bounds on Beta. Maybe obvious, maybe not?

I added this information.

P 18, Last paragraph : I’m a little lost in this paragraph... Are you talking
about spatial variation in rock uplift? I don’t think so, but ”reduce the con-
cavity in the downstream di- rection and ”increases the fraction of the eroded
landscape that acts to produce gravel” imply spatial variations to me. I think
you mean that where rock uplift rate is lower, res- idence time is probably
higher, so less gravel makes it to the channel. I guess this was also shown in
Sklar et al, 2017?

The reduction in concavity results from the fact that the valley floor becomes
a local sediment source – and hence, the valley (and channel) must maintain a
steeper slope in the channel’s downstream reaches to balance the ever-increasing
amount of local sediment input. (Downstream attenuation of this bed-derived
sediment is not taken into account, and therefore this steepening may be a max-
imum estimate.) The statement about increasing the fraction of the eroded land-
scape is confusing because of our ambiguous use of “this”, which is now replaced
by a proper noun, “uplift”, and additional explanation:

Uplift also impacts sediment supply by increasing the steepness
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of the hillslopes, which increases hillslope sediment transport

rates and hence decreases the time available for weathering and

soil formation \citep{Attal2015}, resulting in increased

hillslope gravel supply.

Figure 6 : In this figure, is sediment input at the headwaters and sediment
output at the outlet? I’m confused as to why these values assymptote to one
when the sedi- ment input varies or the base-level drops out for a period, but
in the case of an uplift rate change, it evolves to a new steady state in which
sediment flux is increasing or decreasing downstream. Is this something related
to Qs in is fixed?

INLET VS. OUTLET: The input sediment is catchment-wide, and we have
updated the text to reflect this:

Transient response and response times to external forcings as

quantified by the ratio of catchment-wide sediment input ($Q_\

text{s,in}$) to output sediment discharge ($Q_\text{s,out}$).

DIFFERENTIAL RATIOS: The tectonics cases involve a local source (up-
lift) or sink (subsidence) of sediment, whereas the river internally adjusts to
changing sediment supply. We checked the caption and we are happy with our
explanation of this; please let us know if you have an idea of how we can make
this clearer.

P 23, L 2,3 : This confuses me. Isn’t P beta in the concavity, and if that
changes, wouldn’t that change the input sediment-to-water discharge ratio?

Good point – this is clarified to “uniform changes”

P 24, L 12, 13 : I’m confused. I thought the first sentence of this section said
that the sediment-to-water discharge ratio does impact long-profile concavity.

We have updated some of the wording in this paragraph and the first para-
graph in this section to make it clearer that this is for uniform changes: that
is, I effectively set the upstream boundary-condition slope to set the incoming
sediment supply to the system. This does not include local sources/sinks, which
are in the same term as uplift/subsidence.

P 25 : “As this ratio becomes more positive, concavity decreases; as it
becomes more negative, the concavity decreases.” Should the last word be in-
creases?

Yes!

P 28, L 18: Is this supposed to be P DQ, not P BQ?

6



Yes! Thank you.

P 28, L 21 : Am I following this correctly? I think you are saying that
P DQ needs to be −2/9, but that is outside the range that you predicted in the
previous paragraph. If I’m right about that, then does that have implications
for theta values and/or exponent values in the width-discharge relationship? If
I’m wrong about this, I think I’ve gotten a bit lost.

This is in fact within the range that we predicted in the previous paragraph
– −4/9 to −1/18. (Thank you for mentally correcting my typo!)

P 29, L 26 : Not to be a pain in the ass, but this isn’t strictly true. They had
a coefficient on sediment production, but they didn’t have the area-to-a-power
scaling.

Quite right! Changed “all” to “a uniform fraction of”.
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Responses to comments from Reviewer 2 (Hodge)

The list of definitions at the end is useful, but there are places in the pa-
per where it would be helpful to remind the reader what various parameters are.

I (Wickert) have added a few more definitions, but I am not sure that I have
them in the places that you would like them. I hope that by adding the appen-
dices (see response to Reviewer 1) that the equations are now more streamlined
and that this satisfies some of the spirit of this comment as well.

One question that I had at a number of points is what the impact of size-
selective entrainment would be on the model results. The model uses a single
grain size, and the grain size is found to have to decease downstream in order to
produce realistic concavity values. This decrease is implied to be caused by grain
abrasion. However, we know that grain size also decreases downstream because
of size-selective entrainment (e.g. Hoey and Ferguson. 1994). If you attributed
the decrease in grain size to entrainment processes instead, would this have any
impact on the rest of the model formulation? For example, abrasion should
only be a function of transport distance, whereas the extent of size-selective
entrainment will depend on the rate of sediment deposition.

This is a great question, and the answer involves a combination of (1) cor-
recting a misconception, and (2) considering the some scientific thought behind
your suggestion. Towards (1), decreasing grain size does not alone impact con-
cavity: it is decreasing grain size to the point that grains are carried in high sus-
pension. The equations are insensitive to grain size so long as all of the grains
are gravel. Towards (2), losing gravel would mean that there was an effective
sediment sink; this could be lumped into the uplift/subsidence term and cause an
increase in concavity as the river slope decreased to transport the smaller sedi-
ment supply at equilibrium. As noted by Hodge, this term would be nonuniform
and a function of transport distance in the case of abrasion, whereas it could be
related to subsidence rate for deposition (though size-selective deposition should
matter less unless this affects the gravel–sand transition). I do not plan on cov-
ering (2) in this already-gigantic paper, but I do think that relationships between
long-profile shape and grain-size evolution would be a good application for this
approach.

The paper often refers to concavity and steepness, and it would be useful
to state explicitly the relationship between the two. I assumed that changing
the profile concavity would also change the slope of the profile (by different
amounts at different locations), so I wasn’t sure how the two could be seen as
being separate from each other.

The current text that describes these two terms is:

In order for a river at steady state to have a concave long

profile, meaning that channel slope decreases as drainage area

increases (as is observed in nature), the exponent to which
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drainage area ($A$) is raised must be negative. This slope--area

exponent, multiplied by $-1$, is defined as the concavity index,

$\theta$, \citep{Whipple1999}:

\begin{equation}

S = k_s A^{-\theta}.

\label{eq:theta}

\end{equation}

Here, $k_s$ is the channel steepness index \citep{Moglen1995,

Sklar1998, Whipple2001}.

To better explain the separation between these parameters, I have added two
additional sentences at the end:

Together, steepness (coefficient) and concavity (exponent) define

the power-law relationship for slope. Because slope is the $x$-

derivative of elevation, this also implies that the channel long

profile should be described by a power law, which is consistent

with the analytical solution (Section \ref{s:threshold_analytical

}).

One general comment about the discussion is that in some places the figures
are more extensively referred to by a section that is later on that the section that
they are presented in. It might be worth double checking that all figures are
in the most appropriate section and/or whether any sections could be combined.

I (Wickert) looked through the text and found instances of this in regards to
the figures of river transient response and their respective time scales. However,
in these cases, they are referenced in three sections that are nonetheless neigh-
boring. Therefore, I have moved these figures to the bottom of the section where
they first appear, and as close as I feel to be reasonable to the next figure, which
forms a maximum distance that I can move these in order to keep the figures in
the same order that they are mentioned in the text. I hope that the typesetting
of the two-column version will help with some of this presentation as well.

1/17: topographic relief of rivers or mountains?

Of mountains – I (Wickert) hadn’t thought of topographic relief of rivers
before. I changed one of the first sentences, using “topographic” in order to
avoid using “mountain” twice; let me know if this is ambiguous and I will revisit
it.

Such rivers build and maintain topographic relief by carrying

gravel out of the mountains

2/28: Suggest replacing ‘modifies’ with ‘defines’.
Thank you! That is much better.

2/29: So how is your approach different to/an improvement on Blom et al?

We have added a clearer description of this:
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In particular, we (1) consider evolution of the full river valley

, permitting analysis of time-scales longer than those of channel

filling; (2) follow \citep{Parker1978} in allowing channel

widths to self-form as a function of excess channel-forming shear

stress; and (3) define channel roughness as a function of flow

depth and grain size. (2) and (3) ultimately contribute to grain

size canceling out of the final equation, leading to a relatively

simple and applicable equation for gravel-bed river long-profile

evolution in response to changes in water supply, sediment

supply, and base level.

3/25: Isn’t the high excess shear stress also necessary to enable the river
to erode the bedrock bed as well as transport all the sediment? Also, is this
something that you should come back to later on when assessing your model
results from scenarios with an increase in uplift rates, as it suggests that your
model assumptions might not apply in those conditions?

A high excess shear stress enables the river to erode bedrock iff bedrock is
exposed. Here, Pfeiffer et al. look at reaches that have beds and banks of mo-
bile material, though in such settings should, as you write, erode into bedrock
as well. The point of these sentences is that these rivers need not have near-
threshold shear stress, so I do not think I can write something about this here
without diluting the paragraph. However, I obviously must agree with your gen-
eral point that incising rivers will eventually connect with bedrock, and if they
do and spend a comparable or greater amount of geomorphic work eroding the
bedrock as compared to moving sediment, they become closer to the detachment-
limited endmember. I have added the following text to describe

The range of applicable solutions is bounded by practical

limitations: uplift rates must be appropriate for the channels to

remain transport-limited, and subsidence rates must be low

enough that they do not overwhelm the sediment supply and cause

internal drainage to develop.

4/10: I got a bit confused by this material about the valley, probably because
I would tend to think of long-profiles models as just considering the channel bed.
It makes sense that if you want to raise the channel bed you also need to raise
the elevation of all the material in the valley, otherwise the river will just occupy
the lowest parts of the valley. However, you could state this more explicitly. In
line 5/8 I wasn’t sure if you were referring to the channel or the valley. I also
wasn’t sure where the terms in the brackets on the RHS of eq.1 had come from.

In response to both yourself and Reviewer 1, I have added an appendix to
address this. I think this to be an important issue because the standard paradigm
in eroding landscapes to think just of the channel only works when vertical inci-
sion rates are much greater than lateral erosion rates, forcing the channel into
a narrow space. Including the separation between the time-evolving river valley,
which integrates past processes and is important for mass balance, and the river
channel, which is the engine and driver, is key. This new appendix also includes
a figure to describe this, and a correction to our handling of sinuosity. The only
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thing that is not answered here is your confusion in line 5/8, because I cannot
see the ambiguity – if this remains ambiguous, please let me know!

5/8: I think that this sentence about sinuosity will be clearer if you clarify
the earlier material, but check; it took me a few reads to clarify what you meant.
Also, sinuosity is introduced as a term here, but doesn’t seem to feature in any
of the later analysis. Is the impact of sinuosity on channel form (or the other
way around?) something that you could look at in future work?

I have updated this section and also describe sinuosity in a new appendix. I
do not consider this strongly here, but I do think that the co-evolution of sinu-
osity and valley width could be important, with the latter (I believe) being the
more important variable.

6/4: I agree with reviewer 1 that the use of the signum function is not in-
tuitive. I can see why it might be useful to relax the assumptions, but I don’t
think that it is necessary is any of your analysis?

I agree that this is not completely necessary, and is rather part of my (Wick-
ert’s) personality to write really complete general equations. Therefore, I have
moved this discussion to an appendix as well. (See also the comments by Re-
viewer 1 and my replies; both of you were unified in your thoughts about this.

7/26 and 8/10: Could re-emphasise here that you are considering the excess
shear stress and depth at the channel forming discharge.

Done and thank you; these are the kinds of points that are difficult to see
when one is too close to the paper.

8/28: I wasn’t sure what I was meant to take away from that sentence.

I added:

, thus making it an equally accurate and more mathematically

convenient approach.

11/9: It took me a couple of reads to get this comment about valleys not
having vertical walls.

I added:

Therefore, changes in valley elevation produce changes in valley

width, even in absence of time-evolution of the valley geometry

that then feeds back into the rate of long-profile evolution.

14/4: Rephrase
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I can see how “Its solution is a law” wasn’t clear. What a difference a word
makes – it was meant to read “power law”. I have updated the text to reflect
this (and the later major typo) and to add a bit more explanation.

Its solution is a power law, solved using two known points along

the long profile -- ($x_0,z_0$) and ($x_1,z_1$). Practical

choices for these points are the upstream and downstream

boundaries of the river segment being studied.

14/6: This is one of the points where I was trying to remember what the
various P parameters were. You have defined them in a sensible way, but it
might help early on just to spell out your definition (e.g. that in all cases P xy
is the power that relates x to y).

Great idea – I have added the following text:

In order to write these in a consistent and intuitive way, all

power-law coefficients are designated $k$ and all exponents (‘‘

powers’’) are designated $P$. Each pair is given an ordered pair

of subscripts that indicates first the variable that one is

converting from, and second the variable that one is converting

to.

16/2: It’s not clear what studies you are referring to here.
Since the studies are listed, I am interpreting this to mean that it is unlcear

why I am referring to them – please let me know if I have misunderstood. I have
clarified the text to read:

based on our above derivation, which is grounded in sediment-

transport experiments and morphodynamics theory

16/31: What should I take from this example?

I have added the following sentence:

This provides a set of reasonable values for values that were

left as free parameters in earlier derivations \citep{Whipple2002

}, demonstrates the relative importance of slope vs. drainage

area in setting sediment discharge, and in Section \ref{s:

ConcavityRequirements} demonstrates how $m_t = P_{AQ}$ and $n_t =

7/6$ set the concavity index of transport-limited gravel bed

rivers.

17/30: If weathering can reduce the amount of gravel, presumably it also
alters the size?

Indeed it should, but this is not important here because the grain size can-
cels out. Towards what I perceive to be the spirit of your point, I can imagine
a more general set of equations that include transport of multiple size classes,
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considerations of hiding functions and equal mobility, etc., that may cause size-
selective transport. Here, combining the width closure with sediment transport in
a multi-D system would require some additional research that can connect hid-
ing functions, channel-forming discharge, width closure, etc. in these situations.

18/5: Couldn’t the location of the gravel-sand transition be as much a size-
selective transport phenomenon rather than an abrasion-of-gravel phenomenon?
I thought that Dingle et al actually supported your idea by the observation that
the amount of gravel leaving a basin didn’t seem to depend on basin size, and
therefore most of the gravel from the basin was abraded to sand before leaving
the mountain front.

Good point; we have rephrased this as follows to focus on abrasion:

this is qualitatively consistent with the work of \citet{

Dingle2017}, who observe that most gravel produced in the

Himalaya is converted into sand within 100 km travel distance in

the Himalaya

18/8: I wanted a bit more explanation as to how Fig 3 was produced. It
wasn’t clear to me whether the increase in P beta was falling out of the equa-
tions, or was something that you were altering.

The caption describes that Pβ is not altered (and therefore falls out of the
equations), but we have also altered the paragraph in the main text describing
this as follows:

Figure \ref{fig:UpliftSubsidence}, with long profiles calculated

using Equation \ref{eq:dzdt}, indicates that uplift can act to

reduce the concavity in the downstream direction.

As increasing rates of uplift (or base-level fall) force the

channel long profile towards a constant slope (concavity $\theta

\rightarrow 0$), Equation \ref{eq:SA_uplift_sed_supply}

demonstrates that the gravel persistence exponent, $P_\beta$,

increases until it equals the drainage-area-to-discharge exponent

, $P_{AQ}$.

19/5: If this model is for transport-limited conditions, can it be applied to
these upper parts of the network?

This relationship is appropriate here because I am comparing sediment sup-
ply to sediment-transport capacity, as has been done before to find the transition
zone between transport- and detachment-limited systems.

20/8: We think that Fig 4 shows that valley widening is likely, but there is
still a solution when P xB is zero.
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True; updated the “requires valley widening” in the section heading to “may
require valley widening”

20/25: Amplitude of what?

Updated text to:

The magnitude of the concavity response is controlled in part by

sediment supply.

21/fig 5: Explain in the caption which of the thick black/grey lines is the
start/end. Why is there a dashed line in a2?

We reorganized one sentence in the caption and added this:

Thick gray lines are the initial long profile; thick black lines

are the final long profile.

22/fig 6: I initially read the caption as being the ratio of sediment input to
water output discharge, so clarify this sentence. Also, why do b and c not get
to a state where the input and output sediment fluxes are equal?

Sentence clarified following this suggestion and that of reviewer 1. b and
c being unequal is because of the uplift/subsidence being a local source/sink of
sediment. As I noted to reviewer 1, I had thought this to be clear in the caption,
and on re-reading it cannot think of how to make it clearer. If you still think it
to be unclear and have ideas during a re-review, please let me know.

24/3: Another steepness/concavity confusion; looking at fig 3, different
slopes seem to be associated with different concavities.

Hopefully the additional introduction of the steepness index, as being sepa-
rate from the slope itself, will have clarified this.

24/21: This first phrase was not clear to me.

We have clarified this by revising the paragraph:

In order to compare both sediment discharge and uplift using a

dimensionless parameter, we define a characteristic alluvial

response rate ($\mathbb{A}$) as a velocity scale to compare

against uplift rate. The alluvial response rate is the ratio of

the incoming sediment discharge ($Q_{s_{\text{in}}}$) to the area

of the valley floor, which in turn equals the mean valley width

($\bar{B}$) multiplied by the length of the study river segment (

$L$). This is the maximum rate at which sediment transport

processes can cause the valley to aggrade, and also scales with

the power of the river to export sediment and incise.
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24/22: Here and after equation 56 are the first explicit mention of tribu-
taries. I think that their input is implied in many of the earlier relationships,
so it might be useful to mention them when presenting the earlier sections.

Yes, and this is a good point! I have added the following text to the section
introducing the power-law relationships:

These equations are continuum idealizations of a river with a

tributary network. Real rivers experience discrete jumps in water

discharge at tributary junctions. The smooth curves of water

discharge vs. downvalley distance produced by these relationships

, on the other hand, are beneficial for building intuition.

In the present section, we further clarify by removing the first offhand men-
tion of tributaries and later revising the text to read:

We note that $Q_{s_{\text{in}}}$ is only equal to the incoming

sediment discharge at the upstream boundary condition, $Q_{s_0}$,

for the case in which $P_{xQ}=P_{xQ}=0$, indicating that there

are no tributaries.

24/25: Might be useful to state that this time is that taken to fill the valley
floor to a depth of 1 m?

Sure: we can compute 1/A to obtain the time scale that you suggest, and
include this as follows:

Using SI units of length, $1/\mathbb{A}$ is the time that it

takes the river to aggrade 1 meter if no sediment is exported

from the catchment.

25/3: One of these decreases should be an increase.

Thank you; fixed per Reviewer 1.

26/19: I think that you have implied this point earlier, but this is the first
time that it is spelt out. Move to earlier on?

We have edited some above wording to highlight the common idea that water-
to-sediment discharge ratio is related to climate, whereas base-level changes are
related to tectonics.

27/fig 9: I needed a bit more explanation to understand how this figure
supported the point made in the text.

We have updated its caption to be much more descriptive:
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Covarying tectonic uplift (or base-level fall) and input sediment

-to-water supply ratio produces a range of channel long profiles

(a) and steepness and concavity indices (b). Changes in tectonic

uplift rate impact channel concavity indices, $\theta$, whereas

changes in water-to-sediment discharge ratio mainly impact

channel steepness indices, $k_s$. A higher sediment supply

dampens the effect of uplift on concavity. While these drivers

and responses are distinct, tectonic uplift may increase sediment

supply by steepening hillslopes, and therefore cause the

variables controlling both the upstream (sediment supply) and

downstream (base level) boundary conditions may change at the

same time.

29/14: Does whether bedrock rivers behave as transport limited depend on
the timescales over which you are considering them? One of the main assump-
tions about bedrock rivers is that over long timescales they are supply limited.

As I understand it, the question is more about the partitioning of geomor-
phic work: whether more goes to eroding the bedrock or more goes to moving
the sediment. However, I do see transport- and detachment-limited rivers as
endmembers, and the edge cases are hard to define. I have left the text as-is,
still citing the same paper, because I don’t think that I can reasonably tackle
the broader question of how to appropriately apply such approximations in the
conclusions section.

29/28: Is there any field evidence that identifies the location of the detachment-
to-transport-limited transition? How does it agree with your finding?

In a short search, I (Wickert) have not been able to find the necessary liter-
ature data to test this. However, one could conceivably combine long profiles of
transport-limited rivers with the positions of this transition to test this theory,
with the caveat that the observed bedrock–alluvial transition may only approxi-
mate the transport-limited-to-detachment-limited transition point.
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Response to comments by S. Holo
Sam Holo brought up concerns about a possible mistake in how we included

the sinuosity term. He was correct that there was a mistake, and we have
now corrected this throughout the paper. Because including sinuosity is not
immediately straightforward, We have included a description of how to do so in
the same new appendix where we describe the effort to create a valley-resolving
Exner equation. Fortunately, we ran all calculations with a sinuosity of 1,
meaning that these all remain valid. We thank Sam for taking the time to read
the paper and his help in improving it.

17
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Abstract. Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth. Their long profiles

hold clues to their present state and past evolution. We currently possess first-principles-based governing equations for flow,

sediment transport, and channel morphodynamics in these systems, which we lack for detachment-limited bedrock rivers. Here

we formally couple these equations for transport-limited gravel-bed river long-profile evolution. The result is a new predictive

relationship whose functional form and parameters are grounded in theory and defined through experimental data. From this,5

we produce a power-law analytical solution and a finite-difference numerical solution to long-profile evolution. Steady-state

channel concavity and steepness are diagnostic of external drivers: concavity decreases with increasing uplift, and steepness

increases with increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of river

form: To match observed channel concavities, gravel-sized sediments must weather and fine – typically rapidly – and valleys

must widen gradually. To match the empirical square-root width–discharge scaling in equilibrium-width gravel-bed rivers,10

downstream fining must occur. The ability to assign a cause to such observations is the direct result of a deductive approach to

developing equations for landscape evolution.

1 Introduction

Mountain and upland streams worldwide move clasts of gravel (>2 mm). In so doing, they consistently reshape their beds and

– unless they are fully bedrock-confined – their bars and banks as well (Parker, 1978; Brasington et al., 2000, 2003; Church,15

2006; Eke et al., 2014; Phillips and Jerolmack, 2016; Pfeiffer et al., 2017). Such rivers are responsible for
✿✿✿✿

build
✿✿✿

and
✿✿✿✿✿✿✿✿

maintain

✿✿✿✿✿✿✿✿✿✿

topographic
✿✿✿✿✿

relief
✿✿

by
✿

carrying gravel out of the mountains, and hence maintaining their topographic relief. They also can

transport sediment across moderate-relief continental surfaces and into sedimentary basins.

Geomorphologists commonly separate rivers into two broad categories based on the factor that limits their ability to change

their long profile: detachment-limited and transport-limited (Whipple and Tucker, 2002). Detachment-limited rivers incise at20

a rate that is set by the mechanics of river incision into bedrock. Transport-limited rivers can incise or aggrade at a rate that is

set by the divergence of sediment discharge through a river or valley cross-section.

Here we present a new derivation for transport-limited gravel-bed river long-profile evolution that is based on relationships

derived from theory, field work, and experimentation. We argue that developing this deductive approach – considering specific

process relationships – is essential to advancing fluvial geomorphology and landscape evolution.25
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Much past work has focused on an inductive “stream-power” based formulation for detachment-limited river incision, in

which erosion rate is proportional to drainage area (as a proxy for geomorphically-effective discharge) and channel slope (e.g.,

Gilbert, 1877; Howard, 1980; Howard and Kerby, 1983; Whipple and Tucker, 1999; Gasparini and Brandon, 2011; Harel

et al., 2016). This rule is intuitive, and may also be described in terms of the rate of power dissipation against the river bed.

However, such a generalized approach is agnostic to geomorphic processes. Efforts to understand the detailed mechanics of5

abrasion (Sklar and Dietrich, 1998, 2004; Johnson and Whipple, 2007) and quarrying (Dubinski and Wohl, 2013), the two main

mechanisms of bedrock river erosion (Whipple et al., 2000), have aided efforts to generate mechanistic models for bedrock

incision (Gasparini et al., 2006; Chatanantavet and Parker, 2009). However, the large number of measured parameters required

for these relationships limits their use in practice and/or requires simplifications, such that the basic stream-power law remains

the dominant model for detachment-limited rivers.10

Writing a set of equations to describe the long-profile evolution of transport-limited gravel-bed rivers, on the other hand is

aided by an extensive history of study that can be directly applied to models of long-profile evolution. This includes open-

channel flow and flow resistance that can be applied to sediment-covered channels (e.g., Nikuradse, 1933; Keulegan, 1938;

Limerinos, 1970; Aguirre-Pe and Fuentes, 1990; Parker, 1991; Clifford et al., 1992), bed-load transport (e.g., Shields, 1936;

Meyer-Peter and Müller, 1948; Gomez and Church, 1989; Parker et al., 1998; Wilcock and Crowe, 2003; Wong and Parker,15

2006; Bradley and Tucker, 2012; Furbish et al., 2012), and fluvial morphodynamics (e.g., Lane, 1953; Leopold and Maddock,

1953; Parker, 1978; Ikeda et al., 1988; Ashmore, 1991; Church, 2006; Pitlick et al., 2008; Eke et al., 2014; Bolla Pittaluga

et al., 2014; Blom et al., 2016; Phillips and Jerolmack, 2016; Pfeiffer et al., 2017; Blom et al., 2017). Critical to the present

work is the fact that the authors of these past studies have developed theory, tested it in both laboratory and field settings, and

empirically determined the values of the relevant coefficients (e.g., Wong and Parker, 2006). Furthermore, bedrock channels20

can act as transport-limited systems (Johnson et al., 2009), meaning that an approach to transport-limited conditions may

be able to describe the evolution of not only alluvial rivers, but rivers across much of Earth’s upland surface. Based on this

past research, we are able to write a simple and consistent set of equations for transport-limited gravel-bed river long-profile

evolution that eschews tunable parameters, common in stream-power approaches to river long-profile evolution (Howard and

Kerby, 1983; Whipple and Tucker, 1999, 2002) for those based on experimentation, measurements, and theory.25

Here we link sediment transport and river morphodynamics to develop equations to describe gravel-bed river long profiles

and, as a necessary extension, their tightly-coupled width evolution. Our approach , which allows channel widths to self-form,

modifies channel roughness as a function of flow depth and grain size, and allows for changes in sediment supply and base

level, is complementary to a recent set of relations for alluvial river long profile shapes developed by Blom et al. (2016) and

Blom et al. (2017), who explore equilibrium alluvial river long profile shapes in response to changes in grain size, slope, and30

width. Our approach and discussion are tailored to time-scales from decades to millions of years, a broad range that results

from the direct derivation of these equations and their parameter values from fundamental physics, observations, and laboratory

experiments.
✿

In
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿

we
✿✿

(1)
✿✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿

the
✿✿✿✿

full
✿✿✿✿

river
✿✿✿✿✿

valley,
✿✿✿✿✿✿✿✿✿

permitting
✿✿✿✿✿✿✿

analysis
✿✿

of
✿✿✿✿✿✿✿✿✿✿

time-scales
✿✿✿✿✿

longer
✿✿✿✿

than
✿✿✿✿✿

those

✿✿

of
✿✿✿✿✿✿

channel
✿✿✿✿✿✿

filling;
✿✿✿

(2)
✿✿✿✿✿✿

follow
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Parker, 1978)
✿

in
✿✿✿✿✿✿✿✿

allowing
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿

widths
✿✿

to
✿✿✿✿✿✿✿✿

self-form
✿✿

as
✿

a
✿✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿✿

excess
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

channel-forming

✿✿✿✿

shear
✿✿✿✿✿✿

stress;
✿✿✿

and
✿✿✿✿

(3)
✿✿✿✿✿

define
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿✿

roughness
✿✿

as
✿✿

a
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿✿✿

flow
✿✿✿✿✿

depth
✿✿✿

and
✿✿✿✿✿

grain
✿✿✿✿✿

size.
✿✿✿

(2)
✿✿✿

and
✿✿✿

(3)
✿✿✿✿✿✿✿✿✿

ultimately
✿✿✿✿✿✿✿✿✿

contribute35
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✿✿

to
✿✿✿✿

grain
✿✿✿✿

size
✿✿✿✿✿✿✿✿

canceling
✿✿✿✿

out
✿✿

of
✿✿✿

the
✿✿✿✿

final
✿✿✿✿✿✿✿✿✿

equation,
✿✿✿✿✿✿

leading
✿✿

to
✿✿

a
✿✿✿✿✿✿✿✿

relatively
✿✿✿✿✿✿

simple
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

applicable
✿✿✿✿✿✿✿

equation
✿✿✿

for
✿✿✿✿✿✿✿✿✿

gravel-bed
✿✿✿✿✿

river

✿✿✿✿✿✿✿✿✿

long-profile
✿✿✿✿✿✿✿✿

evolution
✿✿

in
✿✿✿✿✿✿✿✿

response
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

water
✿✿✿✿✿✿

supply,
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

supply,
✿✿✿

and
✿✿✿✿✿

base
✿✿✿✿

level.
✿

Our approach is outlined as follows: First, we generate fully-coupled equations of gravel transport and fluvial morphody-

namics to describe how channel long profiles change. Second, we investigate how the governing equations for gravel-bed rivers

differ when we assume a channel with a self-formed equilibirum width versus when their width is externally set. Third, we de-5

rive both analytical and numerical solutions for the case of an equilibrium-width channel, which is nearly ubiquitous in nature

(Phillips and Jerolmack, 2016). Fourth, we quantify the constants for stream-power-based bed-load transport from Whipple and

Tucker (2002) in a dimensionally-consistent form that is based on our derived equations and the sizes of storm footprints. Fifth,

we demonstrate that most gravel clasts in the landscape must be removed rapidly by weathering and/or downstream fining in

order to produce rivers with concavities that lie within observed ranges. Sixth, we show that valley widening is required to10

produce rivers with observed concavities. Seventh, we investigate both steady-state and transient effects of base-level change

(e.g., through tectonics) and sediment-to-water discharge ratio (via climate and/or tectonics) on river long profiles, and demon-

strate that the former changes concavity while the latter changes steepness. Eighth and finally, we derive that downstream

fining and channel concavity must combine to be the mechanistic cause of channel width scaling with the square root of wa-

ter discharge (b∝Q0.5) (Lacey, 1930; Leopold and Maddock, 1953), at least in equilibrium-width (including near-threshold)15

transport-limited gravel-bed rivers.

2 Derivations

We consider gravel-bed rivers to exist in one of two states: equilibrium-width and fixed-width. In the first, we assume that the

channel-forming (i.e.,
✿

bankfull) shear stress on the bed remains a constant ratio of the critical shear stress that sets the threshold

for initiation of sediment motion (after Parker, 1978). The channel width is set to maintain this ratio. In the second, the channel20

and valley width are assumed to be identical in order to use the one-dimensional form of the sediment continuity equation,

called the Exner equation (e.g., Paola et al., 1992; Whipple and Tucker, 2002; Blom et al., 2016). A third and more general

case exists in which one externally imposes both channel and valley width. We do not address this case here, though it may be

solved using the provided equations.

Our primary focus here is on equilibrium-width rivers, which are common throughout the world (Phillips and Jerolmack,25

2016; Pfeiffer et al., 2017). Most maintain a bed shear stress that is slightly greater than that for the initiation of motion

(Parker, 1978; Phillips and Jerolmack, 2016), and this near-threshold condition is characteristic of both fully alluvial and

alluvial-mantled bedrock streams (Phillips and Jerolmack, 2016). Rivers in rapidly-uplifting mountain belts maintain a bed

shear stress that can be much greater than that for initiation of particle motion; this results in higher sediment discharges that

help to balance the high inputs of sediment that result from rock uplift (Pfeiffer et al., 2017). Although these rivers do not exist30

in a near-threshold state, they maintain an equilibrium width corresponding to their ratio of bed shear stress to critical shear

stress for initiation of motion that allows them to transport the sediment that they are supplied (Pfeiffer et al., 2017).
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Figure 1. Schematic block diagram of sediment transport through a reach of a transport-limited river. Variables are defined in the text and in

the “Notation” list at the end of the paper. The balance of sediment input, sediment output, and uplift determine whether the river bed at each

point downstream will rise, fall, or remain at a constant elevation.

We split our derivations into sections on equilibrium-width (Section 2.1) and fixed-width (Section 2.2) rivers. We first

develop a sediment discharge relationship as a function of channel morphology. This portion of the derivation can apply to

both alluvial (transport-limited) and bedrock (both transport- and detachment-limited) rivers. Simulating detachment-limited

rivers in which abrasion is the dominant mechanism of river incision requires sediment-flux-dependent erosion relationships

(Sklar and Dietrich, 2001; Whipple and Tucker, 2002; Sklar and Dietrich, 2004; Gasparini et al., 2006, 2007), which we do not5

discuss in detail here. We focus on alluvial and transport-limited bedrock cases by applying a statement of sediment volume

balance (the Exner equation) to develop a differential equation that describes alluvial river long-profile evolution over time.

The width closure for the equilibrium-width gravel-bed river produces a mathematically clean solution from which intuition

can be readily gained, and this is the focus of our discussion. The fixed-width case, which is characteristic of an engineered

gravel-bed river with rigid walls, is included for contrast with the equilibrium-width case and comparison with studies in which10

an externally-set width is assumed (e.g., Blom et al., 2016, 2017).
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2.1 Equilibrium-width river

We derive an equation for the evolution of the long profile of an equilibrium-width gravel-bed river that lies within a valley

whose shape is arbitrary (though at least as wide as the channel) and may evolve through time. We first state the
✿

a
✿✿✿✿✿✿✿✿

modified

Exner equation for conservation of bed-load sediment discharge (Qs) for a river with sinuosity (river length divided by valley

length) S in a valley of width B (Figure 1):5

∂z

∂t
=− S

1−λp

1

1−λp
✿✿✿✿✿

(

1

B

∂Qs

∂x
− Qs

B2

∂B

∂x

)

(1)

Here, z is the elevation of the river bed surface, and is often also denoted as η in the alluvial river literature. Time is rep-

resented by t. λp is porosity, for which 0.65 is a representative value (consistent with Beard and Weyl, 1973), and
✿

. x is

distance downstream
✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿✿✿✿

distance,
✿✿✿✿✿

which
✿✿

is
✿✿✿

the
✿✿✿✿

same
✿✿✿

as
✿✿✿✿✿✿✿✿✿✿✿

down-channel
✿✿✿✿✿✿✿

distance
✿✿✿✿

only
✿✿✿

for
✿

a
✿✿✿✿✿✿✿

straight
✿✿✿✿

river
✿✿✿✿✿✿

flowing
✿✿✿✿✿✿✿

directly

✿✿✿✿✿✿✿✿✿✿

down-valley. B is the width of the river valley at the current level of the river bed; it may change with changes in river bed10

elevation and/or as the valley widens or narrows over time. These terms
✿✿✿

and
✿✿

all
✿✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿

defined
✿✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

A.
✿✿

λp
✿✿✿✿

and

✿✿

B scale the result: a higher porosity means that less sediment must be eroded or deposited to produce the same change in bed

elevation (i.e.,
✿

aggradation or incision). A wider valley means that more sediment must be moved to produce a given amount

of aggradation or incision. As channel sinuosity increases, a longer length of channel traverses each valley cross-section, thus

reducing the fraction of the valley width, B, that each channel cross section must fill or empty in order to cause the long profile15

to aggrade or incise. Here we approximate sinuosity as a term that may be averaged over length-scales and time-scales that

correspond to channel migration and valley filling or incision, such that we treat it as a constant that may change only gradually

in space.

✿✿✿✿✿✿✿

Equation
✿✿

1
✿✿✿✿✿

differs
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿

original
✿✿✿✿

form
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Exner (1920, 1925)
✿✿✿✿✿✿✿✿

developed
✿✿✿✿✿✿✿✿

(Equation
✿✿✿✿

B1),
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

considers
✿✿✿✿

only
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

channel-width-averaged

✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Paola et al., 1992; Paola and Voller, 2005)
✿

.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

aggradation
✿✿

or
✿✿✿✿✿✿✿

incision
✿✿✿✿✿✿

within
✿✿

a20

✿✿✿✿✿✿

channel
✿✿

or
✿✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

vertically-walled
✿✿✿✿✿✿

valley
✿✿✿

that
✿✿

is
✿✿✿✿✿✿✿

exactly
✿✿✿

one
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

width
✿✿✿✿✿

wide,
✿✿✿

but
✿✿

is
✿✿✿✿✿✿

unable
✿✿

to
✿✿✿

be
✿✿✿✿✿

solved
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

aggradation
✿✿✿

or

✿✿✿✿✿✿

incision
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

common
✿✿✿✿

case
✿✿

of
✿

a
✿✿✿✿✿✿

valley
✿✿✿

that
✿✿

is
✿✿✿✿✿

wider
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿

channel.
✿✿✿✿✿✿✿✿

Because
✿✿✿

the
✿✿✿✿✿✿✿

evolving
✿✿✿✿✿✿✿✿

landform
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

valley,
✿✿

we
✿✿✿✿✿

have

✿✿✿✿✿✿

chosen
✿

x
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿✿✿✿

distance,
✿✿✿✿

and
✿✿✿✿✿✿✿

describe
✿✿✿

the
✿✿✿✿

steps
✿✿✿✿✿✿✿

required
✿✿

to
✿✿✿✿

link
✿✿✿✿✿✿✿✿✿✿✿

channel-scale
✿✿✿✿✿✿✿✿

dynamics
✿✿

to
✿✿✿✿✿✿✿✿✿✿

longer-term
✿✿✿✿✿✿✿✿✿✿

long-profile

✿✿✿✿✿✿✿

evolution
✿✿✿✿✿

using
✿✿✿

our
✿✿✿✿✿✿✿✿

modified
✿✿✿✿✿

Exner
✿✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿

(Equation
✿✿

1)
✿✿✿

for
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

continuity
✿✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

B1.
✿

Following this definition of a
✿✿✿✿✿✿✿

sediment
✿

continuity equation, we take several steps towards developing a simple formulation25

for the total discharge of sediment through the river, Qs. Once we find the correct expression for this value, we insert it

into Equation 1, which we then simplify into a final differential equation for transport-limited gravel-bed river long-profile

evolution.

Towards this eventual goal, our second step is to define bed-load sediment discharge per unit width, qs, where

qs =
Qs

b
(2)30

Here, b is the width (breadth) of the river channel (b≤B). We compute bed-load transport using the Wong and Parker (2006)

formulation of the Meyer-Peter and Müller (1948) formula. This formula is semi-empirical: its core form is based on a balance

5



of shear stress along the bed driving particle motion and particle weight resisting that motion, but its power-law functional form

as well as its coefficients and exponents are fit to the results of laboratory experiments. More fully theory-based formulations

are under development (Furbish et al., 2012; Fathel et al., 2015) and promise significant advances in our understanding and

prediction of sediment transport. Our choice to use the Meyer-Peter and Müller (1948) formulation stems from its longevity, its

simplicity, the fact that it has been well tested (Wong and Parker, 2006), and its compatibility with the channel-width closure5

resulting from the work of Parker (1978). We stress that our general set of steps to deriving equations for long-profile evolution

may be repeated for any sediment transport relation.

qs =











0 if τ∗b ≤ τ∗c

φ
(

ρs−ρ
ρ

)1/2

g1/2 (τ∗b − τ∗c )
3/2

D3/2 if τ∗b > τ∗c

(3)

Here, sgn is the signum function (Equation ??), φ= 3.97 (Wong and Parker, 2006) is an experimentally-derived sediment

transport rate coefficient. ρs is sediment density, ρ is water density, and g is acceleration due to gravity. |τ∗b | is the magnitude10

of the dimensionless basal shear stress (defined in Equation 6, below), and is also called the “Shields stress” (after Shields,

1936). τ∗c = 0.0495 (Wong and Parker, 2006) is the experimentally-derived dimensionless critical shear stress for initiation of

particle motion, and is also called the “critical Shields stress”. D is a representative sediment grain (particle) size, which we

take to be the median gravel clast diameter. The signum function, sgn, is defined as:

sgn([value]) =























−1 if [value] < 0,

0 if [value] = 0,

1 if [value] > 0.

15

The explicit signum and dz/dx terms are included in the place of the commonly-used “slope” term to (1) relax the assumption

that the downslope directionis known, (2) allow the numerical model to self-consistently handle changes in flow direction, and

(3) enable the sign and the magnitude of the slope to be separated in equations that include a slope term raised to a power,

which prevents a spurious imaginary part of the solution.
✿✿✿✿

This
✿✿✿✿✿✿✿

formula
✿✿

is
✿✿✿✿✿✿✿✿✿

technically
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

sediment-transport
✿✿✿✿✿✿✿

capacity,
✿✿✿✿

Qc,
✿✿✿

per

✿✿✿

unit
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿

width,
✿✿✿

but
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

transport-limited
✿✿✿✿✿

river,
✿✿✿✿✿✿✿✿

sediment
✿✿

is
✿✿✿✿✿✿

always
✿✿✿✿✿✿✿

supplied
✿✿

at
✿✿✿

or
✿✿✿✿✿

above
✿✿✿✿✿✿✿

capacity
✿✿✿✿✿

such
✿✿✿

that
✿✿✿✿✿✿✿✿✿

Qs ≡Qc.
✿✿✿

We20

✿✿✿✿✿✿

assume
✿✿✿

that
✿✿✿

we
✿✿✿✿✿

know
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿✿✿✿✿

direction;
✿

a
✿✿✿✿✿✿✿✿✿✿

supplement
✿✿

to
✿✿✿

this
✿✿✿✿✿✿✿✿✿

derivation
✿✿

in
✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿✿✿✿

consider
✿✿✿✿✿✿✿✿✿✿✿✿

directionality
✿✿✿✿✿✿✿✿

explicitly

✿

is
✿✿✿✿✿✿✿✿

included
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿

C
✿✿

in
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿✿✿✿✿

streamline
✿✿✿

the
✿✿✿✿

main
✿✿✿✿

text.
✿

While the Meyer-Peter and Müller (1948) equation is strictly valid only for a single grain size class, it is often an acceptable

approximation for natural rivers with multiple size classes (Gomez and Church, 1989; Paola and Mohrig, 1996). Interactions

among multiple grain size classes may cause a condition of “equal mobility” in gravel-bed rivers (e.g., Parker et al., 1982):25

small grains become trapped inside pits between larger grains, while large grains rest on a carpet of smaller grains and thus are

exposed to more of the force of the flow. Even where significant deviations from equal mobility are observed, τ∗c for the 50th

percentile grain size (D50) remains constant (Komar, 1987; Komar and Shih, 1992). For the representative grain size (D) in

Eq. 3 (and Eq. 27, below), Wong and Parker (2006) used the mean size of uniform gravel. We suggest the median grain size

6



(D50) as representative of D for the mixed-size sediment of natural rivers due to its relative ease of standardized measurement

(Wolman, 1954) and constant dimensionless critical shear stress for the initiation of motion (Komar, 1987; Komar and Shih,

1992; Paola and Mohrig, 1996). Regardless of this choice, D cancels out in our formulation for equilibrium-width gravel-bed

rivers, starting in Equation 18.

Basal shear stress induces a drag force on the grains and drives sediment transport. To compute this basal shear stress (τb),5

we invoke the normal flow (steady, uniform) assumption, the wide-channel approximation (b≫ h, where h is the flow depth),

and the small-angle formula (Figure 1, upper right inset): Here, τb is defined to be positive in the downslope direction (i.e.

positive in the direction of positively-directed sediment transport) and

τb = ρghsinα

≈ ρghS (4)10

✿✿✿✿

Here,
✿

α is the angle between the plane of the water surface and the horizontal
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿✿✿✿✿

direction,
✿✿✿

and
✿✿

S
✿✿✿

is
✿✿✿

the

✿✿✿✿✿✿

channel
✿✿✿✿✿

slope. The water surface and bed surface slopes are assumed to be parallel (following the normal flow assumption). In

order to self-consistently represent the direction of sediment transport when τb is raised to a power, we separate the magnitude

(absolute value) of shear stress from its direction (signum function)by following a similar approach to that taken for Equation

3. Following the geomorphic convention of writing
✿✿✿✿✿✿✿✿

Assuming
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

flow
✿✿

is
✿✿✿✿

from
✿✿✿

left
✿✿✿

to
✿✿✿✿

right,
✿✿✿

we
✿✿✿✿

can
✿✿✿✿✿

define
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

slope15

✿✿

as:
✿

S =−1

S

dz

dx
✿✿✿✿✿✿✿✿✿

(5)

✿✿✿

The
✿✿✿✿✿

above
✿✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿

includes
✿✿

the
✿✿✿✿✿✿✿✿

sinuosity
✿✿✿✿✿

(river
✿✿✿✿✿

length
✿✿✿✿✿✿✿

divided
✿✿

by
✿✿✿✿✿

valley
✿✿✿✿✿✿

length,
✿✿

S)
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿

in
✿✿✿

the
✿✿✿✿✿

valley;
✿✿✿✿

this
✿✿

is
✿✿✿✿✿✿✿✿

necessary

✿✿

to
✿✿✿✿✿✿

convert
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

slope,
✿✿✿✿✿

which
✿✿✿✿✿

drives
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

transport,
✿✿✿✿

into
✿✿✿

the
✿✿✿✿✿

valley
✿✿✿✿✿

slope,
✿✿✿✿✿✿

which
✿✿✿✿✿✿

follows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

x-coordinate
✿✿✿✿✿✿✿✿✿

orientation

✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿✿

Equation
✿✿

1
✿✿✿

(see
✿✿✿✿✿✿✿✿✿

Appendix
✿✿

B).
✿✿✿✿

The
✿✿✿✿✿✿✿

negative
✿✿✿✿

sign
✿✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿

denote
✿✿✿✿✿✿✿✿

direction,
✿✿✿

but
✿✿

is
✿✿✿✿✿✿✿

included
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

convenience
✿✿✿✿

and
✿✿✿✿✿✿✿

intuition20

✿✿✿✿✿

rather
✿✿✿✿

than
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

mathematical
✿✿✿✿✿✿✿✿

precision.
✿✿✿✿✿✿

When
✿✿✿✿

slope
✿✿

is
✿✿✿✿✿✿

raised
✿✿

to
✿

a
✿✿✿✿✿✿

power,
✿✿✿✿

only
✿

the magnitude of slope as S = |dz/dx|, we can

write:

|τb|= ρghS

✿✿

the
✿✿✿✿✿

slope
✿✿

is
✿✿✿✿✿✿✿

affected,
✿✿✿✿

with
✿✿✿

the
✿✿

−
✿✿✿✿

sign
✿✿✿✿✿

being
✿✿✿✿✿✿✿

applied
✿✿✿✿✿✿✿✿✿

afterwards.
✿

The drag force on sediment grains induced by basal shear stress is resisted by the submerged weight of the grains. The ratio25

of these forces defines the Shields stress.

τ∗b =
τbD

2

(ρs − ρ)gD3
=

τb
(ρs − ρ)gD

(6)

In gravel-bed rivers, all of the shear stress is assumed to act as skin friction, meaning that it is directly imparted to the particles

instead of being partially absorbed as form drag on larger-scale features (e.g., bedforms). When this dimensionless stress is in

excess of the critical Shields stress (τ∗c ), particles begin to move.30

7



In equilibrium-width gravel-bed rivers, the dimensionless basal shear stress at the channel-forming discharge is assumed to

be maintained as a constant multiple of the dimensionless critical shear stress for initiation of sediment motion (Parker, 1978).

This proportionality may be equally represented by dimensional stresses; we use the dimensionless Shields stresses here for

consistency.

τ∗b = (1+ ǫ)τ∗c (7)5

Parker (1978) derived based on theory and channel geometry that ǫ≈ 0.2 for self-formed gravel-bed rivers with mobile banks

made of the same size gravel as the bed. This value has been found empirically and near-universally in rivers around the world

outside of rapidly tectonically-uplifting environments (Phillips and Jerolmack, 2016; Pfeiffer et al., 2017). (1+ ǫ)τ∗c is the

dimensionless shear stress experienced by the bed of the channel when the shear stress experienced by the banks is equal to

τ∗c . The Parker (1978) near-threshold gravel-bed river solution states that any excess stress would cause the banks to erode and10

the channel to widen, reducing the flow depth, and thereby decreasing τ∗b to (1+ ǫ)τ∗c .

The channel-forming discharge, also termed the geomorphically-effective discharge, is equivalent to the bankfull flow in

a self-formed gravel-bed river with gravel bars and banks. Blom et al. (2017) derived a method to differentiate the channel-

forming discharge, defined as that required to maintain the channel slope, from the most effective discharges to move different

grain size classes of sediments. This is a significant distinction, but one that will not be necessary for our modeling approach, as15

we consider only the discharges that are large enough to cause non-negligible geomorphic change. In a self-formed gravel-bed

river, a near-threshold state is maintained in which τ∗b = 1.2τ∗c (Parker, 1978). We use this ratio between applied and critical

shear shear stress to compute the numerical values for constants given in this derivation.

Substituting τ∗b in Equation 3 with its value given in Equation 7 reduces the complexity of Equation 3 by converting its

excess shear stress terms
✿✿

at
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

channel-forming
✿✿✿✿✿✿✿✿

discharge
✿

(τ∗b − τ∗c ) into a constant (by a factor of ǫ) and requiring that only the20

case with a positive nonzero qs be a plausible solution.

qs = φ

(

ρs − ρ

ρ

)1/2

g1/2ǫ3/2τ∗c
3/2D3/2

= kqsD
3/2 (8)

In an equilibrium-width gravel-bed river, qs is a function only of grain size. The value of kqs = 0.0157 is obtained from

φ= 3.97 (Wong and Parker, 2006), ρs = 2650 kg m−3 (density of quartz), ρ = 1000 kg m−3 (density of water), g=9.807 m25

s−2, ǫ= 0.2 (for a threshold-width channel Parker, 1978), and τ∗c = 0.0495 (Wong and Parker, 2006).

It may be counterintuitive that sediment discharge per unit width increases with grain size. This is a result of the equilibrium-

width argument. Channel geometry adjusts to maintain a constant excess basal shear stress regardless of grain size. However,

larger grains have a greater vertical dimension: many small grains rolling or sliding along the bed will displace less mass than

a single larger grain.30

Equation 8 is physically valid only where b > D (see Equation 16, below) and is a good approximation only where b≫ h

and h >D (see Equation 9, below). It seems likely that, at a flow width that is some small multiple of D, an equilibrium-

8



width gravel-bed channel would be replaced by a boulder cascade or similar system that is more dispersed. While we do not

investigate the exact point of this process-domain boundary, this forms a practical limit to the theory presented here.

For a self-formed gravel-bed channel, channel depth must satisfy Equation 7. Using the normal flow assumption, the depth–

slope product (Equation ??
✿

4) defines basal shear stress. Inserting the
✿✿✿✿✿✿✿✿✿✿✿

dimensionless basal shear stress
✿✿✿✿✿✿✿✿

(calculated
✿✿✿

by
✿✿✿✿✿✿✿✿✿

combining

✿✿✿✿✿✿✿✿

Equations
✿✿✿

4
✿✿✿✿

and
✿✿

6)
✿

into Equation 7 and rearranging to solve for h
✿

at
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

channel-forming
✿✿✿✿✿✿✿✿✿

discharge results in:5

h=
ρs − ρ

ρ
(1+ ǫ)τ∗c

D

S
(9)

Next, we compute mean water flow velocity (ū) for a geomorphically-effective flow. We solve for mean flow velocity using

the empirically-derived Manning–Strickler formulation (after Parker, 1991) of the Chézy equation. We first write the Chézy

equation for steady, uniform flow,

ū=−sgn(α)Cz

√

ghS. (10)10

Here, Cz is a factor that relates flow velocity to shear velocity, and
√
ghS is the shear velocity for steady, uniform flow. We

then define Cz , following the Manning–Strickler formulation, as

Cz = 8.1

(

h

λr

)1/6

(11)

The coefficient of 8.1 is empirical (Parker, 1991). λr is the characteristic roughness length scale; this is often denoted as ks, but

we reserve this notation for the channel steepness index in slope–area space (Section 5.2). The flow depth (h) in the numerator15

and the roughness (λr) in the denominator indicate that flow velocity increases as more flow is far from the boundary, and

decreases with increasing boundary roughness. The gravel clasts themselves are the major source of roughness (and therefore

flow resistance) in a gravel-bed river. Clifford et al. (1992) related grain size to roughness length to obtain the approximation

that λr ≈ 6.8D, where D is the median gravel clast diameter. Carrying this forward, but using a standard “equals” sign,

produces an expression for flow velocity that depends only on constants and basic geomorphic parameters.20

ū=−sgn(α)5.9g1/2
h2/3S1/2

D1/6
(12)

The power-law form of the empirically-developed Manning–Strickler formulation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see Parker, 1991) closely approximates the

more theoretical logarithmic boundary layer approach of Keulegan (1938) for ratios of depth to roughness length that are

characteristic of gravel-bed rivers,
✿✿✿✿

thus
✿✿✿✿✿✿✿

making
✿✿✿

the
✿✿✿✿✿

former
✿✿✿

an
✿✿✿✿✿✿

equally
✿✿✿✿✿✿✿

accurate
✿✿✿✿

and
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿✿✿✿

mathematically
✿✿✿✿✿✿✿✿✿

convenient
✿✿✿✿✿✿✿✿

approach.

Water discharge per unit width can be computed by multiplying ū by h:25

q = ūh=−sgn(α)5.9g1/2
h5/3S1/2

D1/6
(13)

Substituting Equation 9 into Equation 13 gives:

q = ūh=−sgn(α)5.9g1/2
(

ρs − ρ

ρ

)5/3

(1+ ǫ)5/3τ∗c
5/3D

3/2

S7/6
(14)

9



The final equation that we require to obtain
✿✿✿✿✿✿

channel
✿✿✿✿✿

width
✿

(b
✿

)
✿

for Equation 2 is that for continuity. We approximate the

channel cross-section as rectangular such that the magnitude of the channel-forming water discharge, |Q|
✿✿

Q, is equal to the

product of the flow speed, width, and depth.

|Q|= |ū|bh= |q|b (15)

Rearranging Equation 15 to solve for b, and then substituting Equation 14 for |q|, yields: This is the width created by a5

b= 0.17g−1/2

(

ρs − ρ

ρ

)

−5/3

(1+ ǫ)−5/3τ∗c
−5/3QS7/6

D3/2

= kb
QS7/6

D3/2
(16)

✿✿✿✿✿✿✿

Equation
✿✿✿

16
✿✿✿✿✿✿✿

predicts
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

equilibrium
✿✿✿✿✿

width
✿✿

of
✿✿

a
✿✿✿✿✿

river channel that has a constant ratio of basal Shields stress to critical

Shields stress
✿✿✿✿✿✿✿✿

(Equation
✿✿✿

7),
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿✿

Parker (1978)
✿

.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

equilibrium
✿✿✿✿✿✿

width
✿✿

is
✿✿✿

set
✿✿✿

by
✿

a
✿✿✿✿✿✿✿✿

trade-off
✿✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿

and

✿✿✿✿✿

slope,
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿

basal
✿✿✿✿✿✿✿

Shields
✿✿✿✿✿✿

stress,
✿✿✿

and
✿✿✿✿✿

grain
✿✿✿✿✿

size,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

increases
✿✿✿

the
✿✿✿✿✿✿

critical
✿✿✿✿✿✿✿

Shields
✿✿✿✿✿

stress. To focus attention10

to the
✿✿

on
✿✿✿✿✿

these
✿✿✿✿

key variables (Q, S, and D
✿

,
✿✿✿✿✿✿✿✿✿✿

respectively), we lump the constants into kb = 2.61. ,
✿✿✿✿✿✿✿✿✿

assuming
✿✿✿✿✿✿✿✿✿✿✿✿

epsilon= 0.2

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Parker, 1978; Phillips and Jerolmack, 2016).
✿

Finally, channel width (b) and sediment discharge per unit width (qs, Equation 8) can be multiplied together to yield Qs. In

order to relate this product to the field, we include an additional term, the intermittency (I), which is the fraction of the total

time that a river produces a geomorphically-effective flow (after Paola et al., 1992); smaller flows are considered to be unable15

produce non-negligible geomorphic change. For example, if the annual flood on a self-formed gravel-bed river is a bankfull

event, and this event lasts for 3-4 days, I ≈ 0.01; such conditions are typical for rainfall-fed mid-latitude rivers.

We express this equation first in terms of magnitudes, Then, returning

Qs = kQs
IQS7/6. (17)

✿✿✿

We
✿✿✿✿

then
✿✿✿✿✿

return
✿

directionality to the equation ,
✿✿

by
✿✿✿✿✿✿✿✿

replacing
✿✿

S
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿

Equation
✿✿

5,
✿✿✿✿

and
✿✿✿✿✿

noting
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

sign
✿✿

is
✿✿✿✿✿✿

applied
✿✿✿✿✿

after20

✿✿✿✿✿

raising
✿✿✿

its
✿✿✿✿✿✿✿✿

argument
✿✿

to
✿

a
✿✿✿✿✿✿

power.
✿✿✿✿

(See
✿✿✿✿✿✿✿✿✿

Appendix
✿✿

C
✿✿✿

for
✿

a
✿✿✿✿

very
✿✿✿✿

brief
✿✿✿✿✿✿✿✿✿

discussion
✿✿✿

of
✿✿✿

the
✿✿✿

use
✿✿

of
✿✿✿✿✿

slope,
✿✿✿

S,
✿✿

in
✿✿✿✿

place
✿✿✿

of
✿✿✿✿✿✿✿

separate
✿✿✿✿✿

terms

✿✿

for
✿✿✿

its
✿✿✿✿✿✿✿

direction
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

magnitude.)

Qs =−kQsI

S7/6
Q

dz

dx

∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

1/6

. (18)

In both of these equations,

kQs = kqskb

=
0.17φǫ3/2

(

ρs−ρ
ρ

)7/6

(1+ ǫ)5/3τ∗c
1/6

25

= 0.041. (19)
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This
✿✿✿

The
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿

value
✿✿✿

for
✿✿✿✿

kQs ✿✿

is
✿✿✿✿✿✿✿

provided
✿✿✿

for
✿✿✿✿✿✿✿

ǫ= 0.2,
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿✿✿✿✿

(Parker, 1978)
✿

.
✿✿✿✿✿

While
✿✿✿

we
✿✿✿✿

treat
✿

ǫ
✿✿

as
✿✿

a
✿✿✿✿✿✿✿

constant
✿✿✿✿

here,
✿✿✿✿✿✿

recent

✿✿✿✿✿✿✿

research
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pfeiffer et al., 2017)
✿✿✿✿✿✿✿

indicates
✿✿✿

that
✿✿✿

its
✿✿✿✿

value
✿✿✿✿

may
✿✿✿✿✿

vary.
✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿

is
✿✿✿✿✿✿✿✿

important
✿✿

to
✿✿✿✿

note
✿✿✿✿

that
✿✿

by
✿✿✿✿✿

using
✿

a
✿✿✿✿✿✿✿✿✿✿

rectangular

✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿✿✿

assumption,
✿✿✿

we
✿✿✿✿✿✿

neglect
✿✿✿

the
✿✿✿✿✿✿✿✿✿

potentially
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿✿✿

component
✿✿

of
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿✿

variability
✿✿

in
✿✿✿✿

flow
✿✿✿✿✿

depth.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

variability,
✿✿✿✿✿✿

which

✿

is
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿

common
✿✿✿

in
✿✿✿✿✿✿

braided
✿✿✿✿✿✿✿

systems,
✿✿✿✿

can
✿✿✿✿✿

result
✿✿

in
✿✿✿✿

deep
✿✿✿✿✿✿

scours
✿✿✿

that
✿✿✿✿✿✿✿✿

increase
✿✿✿

the
✿✿✿

net
✿✿✿✿✿✿✿

bed-load
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿

capacity

✿✿

of
✿✿✿

the
✿✿✿✿

river
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Paola et al., 1999)
✿

.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

unaccounted-for
✿✿✿✿✿✿✿✿✿

variability
✿✿✿

thus
✿✿✿✿✿

may
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿

increase
✿✿✿✿

kQs ✿✿✿✿✿✿

beyond
✿✿✿✿✿

what
✿✿

is5

✿✿✿✿✿✿✿

predicted
✿✿✿✿✿

here.

✿✿✿✿✿✿✿

Equation
✿✿✿

18 demonstrates that in an equilibrium-width river, sediment discharge obeys a stream-power relationship (Paola

et al., 1992; Whipple and Tucker, 2002) in which the values of the coefficient and exponents are defined based on the above

derivation. Though it is beyond the scope of this work on transport-limited rivers, the derivation of transport capacity to this

point may be useful for studies of sediment-flux-dependent detachment-limited river incision (Gasparini et al., 2006, 2007;10

Hobley et al., 2011).

Hydraulic geometry adjustment in a threshold-width
✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

equilibrium-width gravel-bed river results in sediment discharge

being
✿✿✿✿✿

causes
✿✿✿✿✿✿✿✿

bed-load
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge
✿✿

to
✿✿

be
✿

independent of grain size. This is the result of a combination of depth to the

5/3 power in the Manning-style equation for water
✿✿✿✿✿✿✿✿

Sediment discharge per unit width (Equation 14), the direct proportionality

between flow depth and grain size in a threshold gravel-bed channel (Equation 9)
✿✿✿✿✿✿✿

increases
✿✿✿✿

with
✿✿✿✿✿

grain
✿✿✿✿

size
✿✿✿

as
✿✿✿✿✿✿✿✿✿

qs ∝D3/2
15

✿✿✿✿✿✿✿✿

(Equation
✿✿✿

8).
✿✿✿✿✿✿✿

Channel
✿✿✿✿✿✿

width,
✿✿

on
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿✿✿✿✿✿✿

decreases
✿✿✿

as
✿✿✿✿

grain
✿✿✿✿

size
✿✿✿✿✿✿✿✿

increases,
✿✿✿✿✿✿✿✿✿✿

b∝D−3/2
✿✿✿✿✿✿✿✿

(Equation
✿✿✿✿

16), flow resistance

proportional to grain size to the 1/6 power (Equation 12), and sediment discharge per unit width being proportional to grain

size to the 3/2 power (Equation 8, canceling D out of Equation 18). In more easily visualized terms, the constant excess

shear stress ratio maintained by gravel-bed channels (Equation 7)forces channels with larger grains to become narrower,

increasing sediment discharge per unit width (qs) but maintaining the same overall sediment discharge (Qs).
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

scaling20

✿✿✿✿✿✿✿✿✿✿

relationships
✿✿✿✿✿✿✿

between
✿✿✿✿✿

grain
✿✿✿✿

size
✿✿✿

and
✿✿✿✿

both
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

depth
✿✿✿

and
✿✿✿✿

flow
✿✿✿✿✿✿✿✿

resistance
✿✿✿✿✿✿✿✿✿✿

(Equations
✿

9
✿✿✿✿

and
✿✿✿

14).
✿

In this derivation, we hold τ∗c constant instead of making it a function of slope to the 1/4 power, as has been suggested

by Lamb et al. (2008) based on experimental and field data. We do so for three reasons. First, a constant Shields stress is

appropriate for rivers with slopes that are / 0.03 (Lamb et al., 2008); this set comprises most rivers in the world. Second, the

assumption of an equilibrium-width river (Parker, 1978) results in the removal of the threshold associated with τ∗c from the25

sediment-transport equation. Third, the remaining slope dependence is to the 1/24 power (Equation 19). Adding such a weak

slope dependence that may marginally improve accuracy would introduce a mathematically significant nonlinearity into the

system of equations, thereby impeding our goal of providing intuition into the behavior of gravel-bed rivers.

✿✿✿✿✿✿✿

Whereas
✿

q
✿✿✿✿

and
✿✿

qs
✿✿✿

are
✿✿✿✿✿✿

defined
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

down-channel
✿✿✿✿✿✿✿✿

direction,
✿✿

Q
✿✿✿

and
✿✿✿

Qs
✿✿✿

are
✿✿✿✿✿

equal
✿✿

for
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

down-channel
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

down-valley

✿✿✿✿✿✿✿✿

directions.
✿✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

convenient
✿✿✿✿✿✿✿

equality
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿✿✿✿✿✿

geometrically
✿✿✿✿✿

from
✿✿✿

the
✿✿✿

fact
✿✿✿✿✿

that,
✿✿

as
✿✿✿

the
✿✿✿✿✿

angle
✿✿✿✿✿✿✿✿

between
✿

a
✿✿✿✿✿

river
✿✿✿✿✿✿✿✿

centerline
✿✿✿✿

and
✿✿

a30

✿✿✿

line
✿✿✿✿

that
✿✿✿✿✿✿

crosses
✿✿✿

the
✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿✿✿✿✿✿

perpendicularly
✿✿✿✿✿✿✿✿✿

increases,
✿✿✿

the
✿✿✿✿

flux
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(width-normalized
✿✿✿✿✿✿✿✿✿

discharge)
✿✿✿✿✿✿✿✿✿

decreases,
✿✿✿

but
✿✿✿

the
✿✿✿✿✿✿

fraction
✿✿✿

of
✿✿✿

the

✿✿✿

line
✿✿✿✿✿✿✿✿

occupied
✿✿

by
✿✿✿✿✿

river
✿✿✿✿✿✿✿✿

increases
✿✿✿✿✿✿

(Figure
✿✿✿✿

B2).
✿✿✿✿

This
✿✿✿✿✿✿✿✿

decrease
✿✿✿

and
✿✿✿✿✿✿✿

increase
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

proportional,
✿✿✿✿

and
✿✿✿✿

thus
✿✿✿✿✿

cancel
✿✿✿✿

out.
✿✿✿✿

One
✿✿✿✿

may
✿✿✿✿

also

✿✿✿✿✿✿✿

consider
✿✿✿

this
✿✿

to
✿✿✿

be
✿✿✿

the
✿✿✿✿✿

result
✿✿

of
✿✿✿✿

path
✿✿✿✿✿✿✿✿✿✿✿✿

independence:
✿✿✿

the
✿✿✿✿✿✿✿✿

discharge
✿✿✿

that
✿✿✿✿✿

exits
✿

a
✿✿✿✿✿✿✿

segment
✿✿✿

of
✿✿✿✿✿

valley
✿✿✿✿

must
✿✿✿

be
✿✿✿✿✿

equal
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

discharge

✿✿✿

that
✿✿✿✿✿

enters
✿✿

it
✿✿✿✿✿✿✿✿✿

(Appendix
✿✿✿✿

B2).
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We combine Equations 1 and 18 with a source/sink term for uplift (or subsidence) to produce a long-profile evolution

equation for a transport-limited gravel-bed river.

∂z

∂t
=

SkQs
I

1−λp

kQs
I

S7/6 (1−λp)
✿✿✿✿✿✿✿✿✿✿✿

[

7

6

1
(

∂z
∂x

)

∂2z

∂x2
+

1

Q

∂Q

∂x
− 1

B

∂B

∂x

]

|Q|
B

Q

B
✿✿

∂z

∂x

∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

1/6

+U (20)

This
✿✿✿✿✿✿✿

equation has the general form of a nonlinear diffusion equation, with the nonlinearity being a combination of |dz/dx|1/6

and any possible nonlinear relationships that arise in Q(x) and B(x). To the right of the equals sign, the leftmost term is a5

collection of constants. The brackets hold the gradients in slope, water discharge, and valley width. To the right of the brackets

are the main drivers: long-profile response rates increase with increasing discharge magnitude and slope, both of which speed

sediment transport, and response rates decrease as valley width increases, which creates more space that must be filled or

emptied to produce a change in river-bed elevation.
✿✿

By
✿✿✿✿✿✿✿

placing
✿✿✿✿✿✿✿

sinuosity
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

constants,
✿✿✿

we
✿✿✿✿✿✿

assume
✿✿✿

that
✿✿

it
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

space

✿✿✿✿

only
✿✿✿✿✿✿✿✿

gradually,
✿✿

if
✿✿

at
✿✿✿

all.
✿

This equation would simplify to the linear diffusional relationship derived by Paola et al. (1992) if10

we (1) considered a constant bed roughness instead of including the Manning-Strickler-based flow resistance that introduces a

depth dependence (Equation 12), (2) removed the effects of variable valley width, and (3) considered a uniform water discharge.

Uplift and subsidence (U ) are not the only possible source and sink for material: Murphy et al. (2016) note the importance of

chemical weathering, which must remove mass from rock, and Shobe et al. (2016) investigate the importance of local colluvial

input to rivers. We do not focus on either of these here, but note that the latter must also be related to valley width evolution,15

which may produce enhanced hillslope sediment inputs, for example, through bank collapse and landsliding.

Equation 20 describes the long-profile evolution of an equilibrium-width gravel-bed alluvial river. The dependencies of the

variables in Equation 20 are as follows:

z =z(x,t) (21)

Q=Q(x,t) (22)20

B =B(z(x,t), t) (23)

U =U(x,t) (24)

The dependency of valley width, B, on elevation of the river bed, z, is the result of the fact that few valleys have vertical

walls.
✿✿✿✿✿✿✿✿✿

Therefore,
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿

elevation
✿✿✿✿✿✿✿

produce
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

valley
✿✿✿✿✿✿

width,
✿✿✿✿

even
✿✿

in
✿✿✿✿✿✿✿

absence
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

time-evolution
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

valley

✿✿✿✿✿✿✿✿

geometry
✿✿✿

that
✿✿✿✿

then
✿✿✿✿✿

feeds
✿✿✿✿

back
✿✿✿✿

into
✿✿✿

the
✿✿✿✿

rate
✿✿

of
✿✿✿✿✿✿✿✿✿✿

long-profile
✿✿✿✿✿✿✿✿

evolution.
✿

Mathematically, this adds an arbitrary dependence on z25

that limits the analytically-solvable forms of Equation 20.

2.2 Fixed-width river

If the width of the river is externally known and is identical to the width of the valley, another solution is possible. To produce

this solution, we first simplify the Exner equation to its one-dimensional form for the case in which b=B by
✿✿✿✿✿✿✿✿✿

b= kbBB,
✿✿

in
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✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿✿✿✿

kbB ≤ 1.
✿✿✿

By
✿

expanding Qs = qsb and canceling out width:

∂z

∂t
=− 1

1−λp

kbB
1−λp
✿✿✿✿✿

∂qs
∂x

(25)

Combining this form of the Exner equation with the Wong and Parker (2006) version of the Meyer-Peter and Müller (1948)

gravel transport formula, given in Equation 3, and assuming that τ∗b ≥ τ∗c , leads to the following differential equation for

gravel-bed river long-profile evolution:5

dz

dt
=

1

1−λp

kbB
1−λp
✿✿✿✿✿

3

2
φ

(

ρs − ρ

ρ

)1/2

g1/2 (τ∗b − τ∗c )
1/2

D1/2

[

D
dτ∗b
dx

+(τ∗b − τ∗c )
dD

dx

]

(26)

Here, no form of width closure is assumed. We maintain the assumption that τ∗c is a constant, meaning that this equation is valid

for rivers of slopes that are / 0.03 (Lamb et al., 2008). This is done for both
✿✿✿✿✿✿✿✿✿✿✿

simplification
✿✿

is
✿✿✿✿✿✿✿✿

included
✿✿✿✿

both
✿✿✿

for comparison

with Equation 20 for equilibrium-width rivers and because of
✿✿

to
✿✿✿✿✿

avoid the added mathematical complexity of including a weak

nonlinearity.10

Equation 26 hides discharge, width, slope, and an additional grain-size dependence within τ∗b . To include these explicitly, we

combine Equations 15 and 12 to solve for flow depth, h, and insert this depth into the Meyer-Peter and Müller (1948) sediment

transport formula (Equation 3) via the definition of dimensionless basal shear stress given in Equation 6:

qs =















0 if |τ∗b | ≤ τ∗c

−sgn
(

dz
dx

)

φ
(

ρs−ρ
ρ

)1/2

g1/2
(

0.345
g3/10S7/10

1
ρs−ρ

ρ

1
D9/10

(

Q
b

)3/5
∣

∣

∂z
∂x

∣

∣

7/10 − τ∗c

)3/2

D3/2 if |τ∗b |> τ∗c

(27)

In a natural river, qs is combined with an intermittency, I , which is equal to the fraction of the time that the discharge is15

geomorphically effective; smaller discharges are assumed to carry negligible bed-load sediment (Paola et al., 1992).

To formulate the differential equation for long-profile evolution of a transport-limited gravel-bed river of arbitrary width,

we combine our transport relationship (Equation 27) with our statement of volume balance (Equation 25). In the following

equation, we again consider only flows in which τ∗b > τ∗c ; to use it in practice, one would first run a check as to whether

τ∗b > τ∗c . If true, the bed would evolve as shown; if false, ∂z/∂t= 0.20

∂z

∂t
=
3

2

kbBφg
1/2I

1−λp

(

ρs − ρ

ρ

)1/2
(

1
ρs−ρ

ρ

0.345

g3/10S7/10

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

7/10
1

D9/10

Q3/5

b3/5
− τ∗c

)1/2

D1/2

[

Q3/5D1/10

b3/5

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

7/10
(

3

5

1

Q

∂Q

∂x
− 3

5

1

b

∂b

∂x
+

7

10

1
∣

∣

∂z
∂x

∣

∣

∂2z

∂x2
− 9

10

1

D

∂D

∂x

)

+

(

1
ρs−ρ

ρ

0.345

g3/10S7/10

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

7/10
1

D9/10

Q3/5

b3/5
− τ∗c

)

∂D

∂x

]

+U (28)

When b is set such that Equation 7 for an equilibrium-width gravel-bed channel holds true and b=B, Equation 28 becomes

equal to Equation 20.
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In addition to the variable space–time dependencies listed in Equations 21–24, we include the following two for Equation

28:

b=b(z(x,t), t) =B(z(x,t), t) (29)

D =D(x,t) (30)

3 Analytical solutions5

Two analytical solutions are presented here to help build intuition into the shape of gravel-bed river long profiles. The most

generally-applicable of these, for an equilibrium-width gravel-bed river that is neither aggrading nor incising in an area with no

tectonic activity, is presented first. This solution is a power law that relates measurable hydrologic and landscape parameters to

river long-profile shape. The second analytical solution is for a fixed-width river that adds the additional assumtions that width,

discharge, and grain size are held constant. This solution provides an equilibrium transport slope.10

3.1 Relationships between width, discharge, drainage area, and downstream distance

In order to analytically solve special cases of the provided equations for river channel long-profile evolution, we need a way

to write Equation 20 in terms of only z and x, meaning that we should rewrite Q and B in terms of x. For any real river,

there is a measurable relationship between discharge and distance downstream.
✿✿✿✿

Such
✿✿✿✿✿✿✿✿✿✿✿

relationships,
✿✿✿✿

and
✿✿✿✿✿✿

others
✿✿

in
✿✿✿

this
✿✿✿✿✿✿

paper,

✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿✿

power-law
✿✿✿✿✿

form.
✿✿✿

In
✿✿✿✿

order
✿✿✿

to
✿✿✿✿

write
✿✿✿✿✿

these
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

and
✿✿✿✿✿✿✿

intuitive
✿✿✿✿

way,
✿✿✿

all
✿✿✿✿✿✿✿✿✿

power-law
✿✿✿✿✿✿✿✿✿✿

coefficients
✿✿✿

are
✿✿✿✿✿✿✿✿✿

designated
✿✿

k15

✿✿✿

and
✿✿

all
✿✿✿✿✿✿✿✿✿

exponents
✿✿✿✿✿✿✿✿✿

(“powers”)
✿✿✿

are
✿✿✿✿✿✿✿✿✿

designated
✿✿✿

P .
✿✿✿✿✿

Each
✿✿✿✿✿✿✿✿

coefficient
✿✿✿✿

and
✿✿✿✿✿✿✿✿

exponent
✿✿

is
✿✿✿✿

given
✿✿

a
✿✿✿✿✿✿✿✿

two-letter
✿✿✿✿✿✿✿✿

subscript
✿✿✿✿✿

whose
✿✿✿✿

first
✿✿✿✿✿

letter

✿✿✿✿✿✿✿

indicates
✿✿✿

the
✿✿✿✿✿✿✿

variable
✿✿✿✿✿

from
✿✿✿✿✿

which
✿✿✿

one
✿✿

is
✿✿✿✿✿✿✿✿✿

converting
✿✿✿✿✿✿✿✿✿✿

(right-hand
✿✿✿✿

side)
✿✿✿✿

and
✿✿✿✿✿✿

whose
✿✿✿✿✿✿

second
✿✿✿✿

letter
✿✿✿✿✿✿✿✿

indicates
✿✿✿

the
✿✿✿✿✿✿✿

variable
✿✿

to
✿✿✿✿✿✿

which

✿✿✿

one
✿✿

is
✿✿✿✿✿✿✿✿✿

converting
✿✿✿✿✿✿✿✿

(left-hand
✿✿✿✿✿

side).

Based on observations (Hack, 1957; Costa and O’Connor, 1995; Whipple and Tucker, 1999):
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hack, 1957; Costa and O’Connor, 1995)

✿

:20

|Q|= kAQA
PAQ (31)

A= kxAx
PxA (32)

Q in Equation 31 refers to the discharge of a geomorphically effective flood – in our case, this is one that applies a shear

stress τ∗b ≈ (1+ ǫ)τ∗c (Wolman and Miller, 1960; Parker, 1978; Sullivan and Lucas, 2007). PxA ≈ 4/7 in the inverse of Hack’s25

exponent (Gray, 1961; Maritan et al., 1996; Birnir et al., 2001). Substituting A in Equation 31 with Equation 32 provides the

needed transfer function between Q and x:

Q= kAQk
PAQ

xA xPxAPAQ (33)

= kxQx
PxQ (34)
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✿✿✿✿✿

These
✿✿✿✿✿✿✿✿

equations
✿✿✿

are
✿✿✿✿✿✿✿✿✿

continuum
✿✿✿✿✿✿✿✿✿✿✿

idealizations
✿✿

of
✿✿

a
✿✿✿✿

river
✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿

tributary
✿✿✿✿✿✿✿

network.
✿✿✿✿✿

Real
✿✿✿✿✿

rivers
✿✿✿✿✿✿✿✿✿

experience
✿✿✿✿✿✿✿

discrete
✿✿✿✿✿✿

jumps
✿✿

in

✿✿✿✿

water
✿✿✿✿✿✿✿✿✿

discharge
✿✿

at
✿✿✿✿✿✿✿✿

tributary
✿✿✿✿✿✿✿✿

junctions.
✿✿✿✿

The
✿✿✿✿✿✿✿

smooth
✿✿✿✿✿✿

curves
✿✿

of
✿✿✿✿✿

water
✿✿✿✿✿✿✿✿✿

discharge
✿✿✿

vs.
✿✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿✿

produced
✿✿✿

by
✿✿✿✿✿

these

✿✿✿✿✿✿✿✿✿✿✿

relationships,
✿✿

on
✿✿✿

the
✿✿✿✿✿

other
✿✿✿✿✿

hand,
✿✿✿

are
✿✿✿✿✿✿✿✿

beneficial
✿✿✿

for
✿✿✿✿✿✿✿

building
✿✿✿✿✿✿✿✿

intuition.

Solutions to Equation 20 also depend on how valley width, B, changes with distance downstream. Following Snyder et al.

(2000) and Tomkin et al. (2003), who formulated a power-law relationship between valley width and drainage area, we propose5

that B is also a power-law function of x:

B = kxBx
PxB (35)

3.2 Equilibrium-width river

In order to develop an analytical solution to Equation 20, we first replace Q and B with Equations 31–35:

∂z

∂t
=

SkQsI

1−λp

kQsI

S7/6 (1−λp)
✿✿✿✿✿✿✿✿✿✿✿

[

7

6

1
(

∂z
∂x

)

∂2z

∂x2
+

PxQ

x
− PxB

x

]

kxQx
PxQ

kxBxPxB

(

∂z

∂x

)

∣

∣

∣

∣

∣

dz

dx

∂z

∂x
✿✿

∣

∣

∣

∣

∣

1/6

+U (36)10

One useful analytical solution to this equation would be that for the steady-state case, in which

∂z

∂t
= 0. (37)

However, no analytical solution exists for this form of the equation when tectonic uplift or subsidence is present. As a close

substitute, and one that can greatly simplify Equation 36, we choose the case in which the river is neither aggrading nor

incising. Its only vertical motion, therefore, is as it passively rides up or down on the Earth’s surface.15

∂z

∂t
= U (38)

For the special case in which there is no uplift, equation 37 holds. It is important to note that this case implies a continuous

externally-sourced sediment supply in order to maintain a fixed topography without relative uplift across the stream profile.

For such a no-uplift steady-state condition to persist over geologic time requires a constant input of sediment from upstream.

This in turn implies that, upstream of the segment of the river for which the analytical solution is calculated, some process is20

responsible for this constant sediment supply. This could be a constant erosion rate (which can correspond to a constant uplift

rate in steady state), or perhaps continual supply of gravel-sized sediment from a source outside of the catchment (such as coarse

sediment supply by ice caps and ice sheets that can carry gravel across land-surface-defined drainage divides). This steady-state

solution may also approximate conditions in a disequilibrium landscape with no tectonic uplift in which the gravel-bed river

long profile achieves an equilibrium state over time-scales that are much shorter than changes in sediment supply, which in25

turn is likely derived from the long-term reduction in landscape relief.
✿✿✿

the
✿✿✿✿✿✿✿✿✿

hillslopes.
✿✿✿✿

This
✿✿✿✿

may
✿✿

be
✿✿✿✿✿✿✿✿✿

reasonable
✿✿✿

for
✿✿

a
✿✿✿✿

river
✿✿✿✿

that

✿✿✿✿✿✿

reaches
✿✿

an
✿✿✿✿✿✿✿✿✿✿

equilibrium
✿✿✿✿

long
✿✿✿✿✿✿

profile
✿✿✿✿✿

much
✿✿✿✿✿

more
✿✿✿✿✿✿

rapidly
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

surrounding
✿✿✿✿✿✿✿✿

landscape
✿✿✿✿✿✿✿

evolves
✿✿✿

and
✿✿

its
✿✿✿✿✿

relief
✿✿✿✿✿✿✿

changes.
✿✿

It
✿✿

is
✿✿✿✿

also

✿✿✿✿✿

useful
✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿✿

benchmark
✿✿✿

for
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿

solutions
✿✿✿✿✿✿

(Figure
✿✿✿

2).

15



Applying Equation 38 to Equation 36 yields a second-order nonlinear ordinary differential equation that is analytically

solvable:

0 =
7

6

1
(

dz
dx

)

d2z

dx2
+

PxQ −PxB

x
(39)

Its solution is a
✿✿✿✿✿

power
✿

law, solved using of two known points
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿

long
✿✿✿✿✿

profile
✿✿

– (x0, z0) and (x1, z1)on a stream. .
✿✿✿✿✿✿✿✿

Practical

✿✿✿✿✿✿

choices
✿✿✿

for
✿✿✿✿

these
✿✿✿✿✿✿

points
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿

upstream
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿✿✿✿✿

boundaries
✿✿✿

of
✿✿✿

the
✿✿✿✿

river
✿✿✿✿✿✿✿

segment
✿✿✿✿✿

being
✿✿✿✿✿✿✿

studied.5

z = (z1 − z0)

(

x(1+6(PxB−PxQ)/7) −x
(1+6(PxB−PxQ)/7)
0

x
(1+6(PxB−PxQ)/7)
1 −x

(1+6(PxB−PxQ)/7)
0

)

+ z0 (40)

The tunable parameter in this power-law solution is PxB −PxQ. As PxB may be measured from the landscape, the value of

the fit should be able to be related directly to the exponent that describes the downstream increase in geomorphically effective

stream discharge.

3.3 Fixed-width river10

In order to generate an analytical solution for a fixed-width gravel-bed river, starting from Equation 28, we assume that three

key variables are constant
✿✿✿✿

(i.e.,
✿✿✿✿

both
✿✿✿✿✿

steady
✿✿✿✿

and
✿✿✿✿✿✿✿✿

uniform): width (b=B
✿

,
✿✿

so
✿✿✿✿

kbB
✿

=
✿✿

1), water discharge (Q), and grain size (D).

As a result, q =Q/b is also constant
✿✿✿✿✿

steady
✿✿✿

and
✿✿✿✿✿✿✿

uniform. This may be considered to be a short reach of an incised river with

no significant tributaries or a portion of an engineered canal for which discharge varies extremely gradually. Applying these

assumptions, and
✿

as
✿✿✿✿

well
✿✿✿

as assuming that τ∗b ≥ τ∗c , produces the following nonlinear diffusion equation with a source/sink15

(uplift/subsidence) term:

∂z

∂t
=
21

20

φg1/2I

1−λp

(

ρs − ρ

ρ

)1/2

(qD)
3/5

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

−3/10

(

1
ρs−ρ

ρ

0.345

g3/10S7/10

∣

∣

∣

∣

∂z

∂x

∣

∣

∣

∣

7/10
q3/5

D9/10
− τ∗c

)1/2
∂2z

∂x2
+U. (41)

Solving this equation for the case in which any vertical motion is provided by uplift or subsidence (Equation 38) is a general

case of a steady-state long profile (∂z/∂t= 0) with no uplift or subsidence (U = 0). Applying this assumption defines a channel20

with a uniform slope, where (x0, z0) is a point along the channel long profile,

z = z0 − 4.57g3/7S
✿

(

ρs − ρ

ρ

)10/7
τ∗c

10/7D9/7

q6/7
(x−x0). (42)

Slope adjusts to the driving force required to maintain a uniform bed-load sediment discharge. Increasing submerged specific

gravity, (ρs − ρ)/ρ, and grain size, D, resist sediment motion by increasing the weight of the grains, therefore increasing the

equilibrium fluvial transport slope. Increasing discharge per unit width (q), on the other hand, decreases the equilibrium fluvial25

transport slope, as this provides more power to move the bed-material sediment.

16



4 Numerical solutions

To solve more general cases of Equations 20 and 28, we derive numerical solutions described in Appendix D. The solution to

Equation 20 (D3) is solved semi-implicitly by constructing equations with a diffusive component that can be solved directly

in a tridiagonal matrix and a set of nonlinear terms that require Picard iteration. This solution method improves numerical

stability and reduces compute times. Python code to solve for the shapes of river long profiles is provided as a snapshot in the5

Supporting Information and online at https://github.com/awickert/gravel-river-long-profile. This library includes functions to

analytically solve for the long profile shape as well (Equation 40), and with the proper inputs, this can match the analytical

solution (Figure 2).

Figure 2. When dz/dt= U , the analytical solution for an equilibrium-width river (Equation 40) matches the numerical solution for an

equilibrium-width river (Equation 36). Equation 36 is derived from the general equation for an equilibrium-width river, Equation 20, to

include power-law downstream relationships for valley width and water discharge (Equations 31–35). Here, the slope at the upstream bound-

ary condition is S0 = 0.015; this is set to produce an input bed-load sediment discharge of Qs0 = 3.48× 10
−4 m3 s−1. Water discharge,

Q= 1.43× 10
−5x49/40 m3 s−1; drainage area, A= x7/4 m2, and valley width, B = 25x1/5 m.

5 Discussion

5.1 Parameterizing stream-power-based sediment discharge10

Whipple and Tucker (2002, Equation 4) posited that sediment discharge should follow the power-law relationship

Qc =KtA
mtSnt , (43)

where Qc is the bed-load sediment transport capacity and is equal to Qs for transport-limited rivers, Kt is a coefficient, A

is drainage area, and mt and nt are exponents. Howard and Kerby (1983) and Willgoose et al. (1991) present arguments for

mt = nt = 2 for sand-bed rivers, and Whipple and Tucker (2002) posit that nt = 1 for gravel-bed rivers.15
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The sediment-transport formulation that we present in Equation 18, when combined with the discharge to drainage area

relationship of Equation 31 and dropping references to directionality, can be rewritten in a way that is analogous to the above

equation for Qc:

Qc = kQs
kAQIA

PAQS7/6 (44)

This relationship provides a value for nt, based on experiments and
✿✿✿

our
✿✿✿✿✿

above
✿✿✿✿✿✿✿✿✿

derivation,
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿

grounded
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

sediment-transport5

✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

morphodynamic
✿

theory (Meyer-Peter and Müller, 1948; Parker, 1978; Wong and Parker, 2006). It also pro-

vides a likely range of values for mt based on empirical studies that relate drainage basin area to geomorphically-effective

discharge. Furthermore, it defines a starting point towards quantifying the free parameter Kt: kQs
= 0.041 is known (Equation

19), I relates to the variability of the hydrograph, and kAQ must relate to precipitation patterns across the drainage basin.

We therefore focus on understanding the power-law discharge–drainage-area scaling (kAQ and PAQ), as solving this would10

constrain or define the remaining constants in Equation 44 and allow us to relate slope and drainage area, easily measured from

digital elevation models (DEMs), directly to gravel transport capacity.

The appropriate value of PAQ depends on the flow of interest. For mean flow in a basin that experiences uniform precip-

itation, it is 1 (given catchment-wide water balance). For more rare flows, PAQ < 1. This is because smaller basins may be

completely covered by a storm event, leading to a catchment-wide response to a unit hydrograph, but larger basins may not have15

coherent storms across the whole basin, leading to attenuation of flood peaks and a decrease of the likelihood of a flood that is as

large a ratio of the mean flow as in the small basin (Aron and Miller, 1978; Snow and Slingerland, 1987; Milly and Eagleson, 1988)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Aron and Miller, 1978; Snow and Slingerland, 1987; Milly and Eagleson, 1988; Huang and Niemann, 2014). Aron and Miller

(1978) found that, for annual flood peaks in ∼50 streams in Pennsylvania and New Jersey (USA), PAQ ≈ 0.7; such annual

floods are generally also those that move gravel. Whipple and Tucker (1999) suggest values of 0.7–1.0 for bedrock erosion,20

and Sólyom and Tucker (2004) find that 1/2≤ PAQ ≤ 1, which is in agreement with field data from Strahler (1964, p. 50).

The lower limit from Sólyom and Tucker (2004) is for a single storm that whose duration is ≪ its travel time
✿✿✿✿

much
✿✿✿✿

less
✿✿✿✿

than

✿✿

the
✿✿✿✿✿

time
✿

it
✿✿✿✿✿

takes
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

water
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

storm
✿✿✿

to
✿✿✿✿✿

travel through the basin. O’Connor and Costa (2004) used the entire U.S.

Geological Survey gauging history (Slack and Landwehr, 1992) to compute that, on average, PAQ = 0.57 for 90th-percentile

floods and PAQ = 0.53 for 99th-percentile floods.25

We normalize A to a characteristic footprint area of storms that occur across the catchment over the time scale of interest,

AR, and assume that A≥AR for transport-limited gravel-bed rivers:

Qc = kQs
IqRAR

(

A

AR

)PAQ

S7/6. (45)

This definition applies the power PAQ to a dimensionless ratio, thereby ensuring that the coefficients can be framed in terms of

rainfall. Here, we define a new coefficient that is the rainfall rate (i.e.,
✿

flux) during a specific set of coincident rainfall events,30

qR; kAQ = qRA
1−PAQ

R . For simplicity, we do not consider inefficiencies in rainfall-to-discharge conversion, though factors

could be added to an analogous expression to represent evapotranspiration and/or groundwater loss to other catchments.
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From this relationship, we can assign values to the following parameters from Whipple and Tucker (2002):

Kt = kQsIqRA
1−PAQ

R (46)

mt = PAQ (47)

nt = 7/6 (48)

For example, picking a characteristic storm footprint of 100 km2, PAQ = 7/10 (after Aron and Miller, 1978), and qR = 1 cm5

hr−1, we find that Kt ≈ 2×10−5 m2/7 s−1, mt = 7/10, and nt = 7/6.
✿✿✿✿

This
✿✿✿✿✿✿✿

provides
✿

a
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿

reasonable
✿✿✿✿✿✿

values
✿✿✿

for
✿✿✿✿✿

values
✿✿✿✿

that

✿✿✿✿

were
✿✿✿

left
✿✿

as
✿✿✿✿

free
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

in
✿✿✿✿✿

earlier
✿✿✿✿✿✿✿✿✿✿

derivations
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Whipple and Tucker, 2002),
✿✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿

importance
✿✿

of
✿✿✿✿✿

slope

✿✿

vs.
✿✿✿✿✿✿✿✿

drainage
✿✿✿

area
✿✿

in
✿✿✿✿✿✿

setting
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge,
✿✿✿✿

and
✿✿

in
✿✿✿✿✿✿

Section
✿✿✿

5.2
✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿✿✿

how
✿✿✿✿✿✿✿✿✿

mt = PAQ
✿✿✿

and
✿✿✿✿✿✿✿✿

nt = 7/6
✿✿✿

set
✿✿✿

the
✿✿✿✿✿✿✿✿

concavity

✿✿✿✿

index
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

transport-limited
✿✿✿✿✿

gravel
✿✿✿

bed
✿✿✿✿✿✿

rivers.

5.2 Concave-up long profiles require weathering and/or downstream fining10

Whipple and Tucker (2002) proposed that at steady state, sediment discharge should be proportional to uplift times contributing

area
✿✿

by
✿

a
✿✿✿✿✿✿✿✿

constant,
✿✿✿✿✿✿✿✿✿

0≤ β ≤ 1.
✿✿✿

β=0
✿✿✿✿✿✿✿✿

indicates
✿✿✿

that
✿✿✿

all
✿✿✿✿✿

eroded
✿✿✿✿✿✿✿✿

material
✿

is
✿✿✿✿✿✿✿✿

removed
✿✿

as
✿✿✿✿✿

wash
✿✿✿✿

load
✿✿

or
✿✿✿✿✿✿✿✿

dissolved
✿✿✿✿

load.
✿✿✿✿

β=1
✿✿✿✿✿✿✿✿

indicates

✿✿✿

that
✿✿

all
✿✿✿✿✿✿

eroded
✿✿✿✿✿✿✿

material
✿✿✿✿✿✿✿✿

becomes
✿✿✿✿✿✿✿

bed-load
✿✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿✿✿✿

gravel-sized)
✿✿✿✿✿✿✿✿✿

sediment.

We make the modification that contributing area must be raised to a power, 0≤ Pβ ≤ 1, that we term the “gravel persistence

exponent”. This describes the persistence of gravel-sized particles as they are weathered through hillslope processes (Attal15

et al., 2015; Sklar et al., 2017) and/or fine downstream
✿

to
✿✿✿✿✿

sizes
✿✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿

smaller
✿✿✿✿

than
✿✿✿✿✿

gravel
✿

(Sternberg, 1875; Attal and Lavé,

2009; Dingle et al., 2017). If Pβ = 1, every piece of eroded material on the landscape becomes gravel that reaches the stream.

Considering that fluvial gravels have round edges and therefore cannot pack together without void space, this is topologically

impossible. If Pβ = 0, all material weathers on the hillslope before it reaches the stream
✿✿

the
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿

gravel
✿✿✿✿✿✿✿✿

reaching
✿✿✿

the

✿✿✿✿✿

stream
✿✿

is
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿

of
✿✿✿✿✿✿✿

drainage
✿✿✿✿

area. Intermediate values of Pβ indicate that some combination of hillslope weathering and20

downstream fining reduce the gravel supply to a nonzero fraction of the initially-eroded material.

Qs = βAPβU. (49)

By assuming that channels are transporting sediment at capacity and that most transport-limited gravel-bed rivers should have

gravel banks and exist at a threshold state
✿✿✿✿✿✿✿

therefore
✿✿✿✿

exist
✿✿✿✿

with
✿✿✿

an
✿✿✿✿✿✿✿✿✿

equilibrium
✿✿✿✿✿✿

width
✿✿✿✿✿✿✿✿✿

(following
✿✿✿✿✿✿✿

Equation
✿✿

7,
✿✿✿✿

i.e.,
✿✿✿✿✿✿✿✿

Qs =Qc), we

can equate this to Equation 44 and
✿✿

set
✿✿✿✿✿✿✿✿✿

Equations
✿✿

44
✿✿✿

and
✿✿✿

49
✿✿✿✿✿

equal
✿✿

to
✿✿✿

one
✿✿✿✿✿✿✿

another,
✿✿✿

and
✿

rearrange the terms to create a slope–area25

relationship:

S =

(

βU

kQs
kAQ

)6/7

A(6/7)(Pβ−PAQ). (50)

In order for
✿✿✿

For a river at steady state to have a concave long profile, meaning that channel slope decreases as drainage area

increases (as is observed in nature), the exponent to which drainage area (A) is raised must be negative. This slope–area

exponent, multiplied by −1, is defined as the concavity index, θ, (Whipple and Tucker, 1999):30

S = ksA
−θ. (51)
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Here, ks is the channel steepness index (Moglen and Bras, 1995; Sklar and Dietrich, 1998; Whipple, 2001).
✿✿✿✿✿✿✿✿

Together,
✿✿✿✿✿✿✿✿

steepness

✿✿✿✿✿✿✿✿✿✿

(coefficient)
✿✿✿

and
✿✿✿✿✿✿✿✿

concavity
✿✿✿✿✿✿✿✿✿

(exponent)
✿✿✿✿✿

define
✿✿✿

the
✿✿✿✿✿✿✿✿✿

power-law
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿

for
✿✿✿✿✿

slope.
✿✿✿✿✿✿✿

Because
✿✿✿✿

slope
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

x-derivative
✿✿

of
✿✿✿✿✿✿✿✿

elevation,

✿✿✿

this
✿✿✿✿

also
✿✿✿✿✿✿

implies
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

long
✿✿✿✿✿

profile
✿✿✿✿✿✿✿

should
✿✿

be
✿✿✿✿✿✿✿✿

described
✿✿✿

by
✿✿

a
✿✿✿✿✿

power
✿✿✿✿

law,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿✿

consistent
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

analytical

✿✿✿✿✿✿

solution
✿✿✿✿✿✿✿✿

(Section
✿✿✿✿

3.2).

In the case of Equation 50, θ =−(6/7)(Pβ −PAQ). If Pβ = 1, as assumed by Whipple and Tucker (2002, Equation 7b),5

and 0.5≤ PAQ / 0.7
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

0.5≤ PAQ ≤ 1.0, as prior work has demonstrated (Aron and Miller, 1978; Snow and Slingerland, 1987;

Whipple and Tucker, 1999; O’Connor and Costa, 2004), then the exponent to which A is raised would become positive. Such

a river would be required to have a downstream-increasing
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

constant-to-downstream-increasing
✿

slope in order to transport the

sediment that it is supplied. This would result in a convex
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

straight-to-convex steady-state long profile, which is not observed in

nature
✿✿✿

runs
✿✿✿✿✿✿✿✿

contrary
✿✿

to
✿✿✿✿✿✿✿

common
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿

of
✿✿✿✿✿✿

natural
✿✿✿✿✿✿✿

channels.10

These assumptions produce a convex long profile because as drainage area increases, sediment supply increases more

strongly than water discharge. A straightforward solution is to adjust Pβ , which describes the attenuation rate of gravel-sized

particles with increasing drainage area. As drainage area increases, so does the mean transport distance of a particle that reaches

the corresponding point on the stream. As transport distance increases, so does the possibility of significant weathering on the

hillslope or breakdown in the channel (Attal and Lavé, 2009; Attal et al., 2015; Sklar et al., 2017; Dingle et al., 2017). This15

combination of weathering and downstream fining can significantly reduce the amount of gravel-sized sediment supplied to a

channel cross-section as drainage area increases.

An approximate value for the gravel persistence exponent, Pβ , can be calculated by noting that in most natural rivers,

θ ≈ 0.45 to 0.5. Combining this with the observation that 0.5≤ PAQ / 0.7 leads to the result that Pβ / 0.2. This low gravel

persistence exponent implies rapid attenuation of gravel-sized sediment as drainage area increases: doubling of drainage basin20

area would produce a <15% increase in the volume of gravel-sized sediment supplied to a channel cross-section. For break-

down of clasts within the fluvial system, this is qualitatively consistent with the observation by Dingle et al. (2017)that gravel

is entirely absent from Himalayan rivers starting 10–40 km from where they enter the Ganga Plain, the point at which gravel

inputs terminate
✿✿✿✿

work
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Dingle et al. (2017),
✿✿✿✿

who
✿✿✿✿✿✿✿

observe
✿✿✿✿

that
✿✿✿✿

most
✿✿✿✿✿✿

gravel
✿✿✿✿✿✿✿✿

produced
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Himalaya
✿✿

is
✿✿✿✿✿✿✿✿✿

converted
✿✿✿

into
✿✿✿✿✿

sand

✿✿✿✿✿

within
✿✿✿✿

100
✿✿✿

km
✿✿✿✿✿

travel
✿✿✿✿✿✿✿

distance
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

Himalaya.25

Figure 3,
✿✿✿✿

with
✿✿✿✿

long
✿✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿✿

calculated
✿✿✿✿✿

using
✿✿✿✿✿✿✿

Equation
✿✿✿

20,
✿

indicates that uplift can act to reduce the concavity in the down-

stream direction. This increases the fraction of the eroded landscape that acts to produce gravel, which is intuitively consistent

with the implicit reduced residence time of soils on hillslopes, and presumably the shorter time available to weather into

fine sediment (Attal et al., 2015)
✿✿✿✿

The
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿✿✿✿

applicable
✿✿✿✿✿✿✿✿

solutions
✿✿

is
✿✿✿✿✿✿✿✿

bounded
✿✿

by
✿✿✿✿✿✿✿✿

practical
✿✿✿✿✿✿✿✿✿✿

limitations:
✿✿✿✿✿

uplift
✿✿✿✿

rates
✿✿✿✿✿

must
✿✿✿

be

✿✿✿✿✿✿✿✿✿

appropriate
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

channels
✿✿

to
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

transport-limited,
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

subsidence
✿✿✿✿

rates
✿✿✿✿

must
✿✿✿

be
✿✿✿

low
✿✿✿✿✿✿

enough
✿✿✿✿

that
✿✿✿✿

they
✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿

overwhelm30

✿✿

the
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

supply
✿✿✿✿

and
✿✿✿✿✿

cause
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿✿

drainage
✿✿

to
✿✿✿✿✿✿✿

develop.
✿✿✿✿✿✿

Uplift
✿✿✿✿

also
✿✿✿✿✿✿

impacts
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

supply
✿✿✿

by
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿

the
✿✿✿✿✿✿✿✿

steepness

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

hillslopes,
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

increases
✿✿✿✿✿✿✿

hillslope
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

transport
✿✿✿✿✿

rates
✿✿✿

and
✿✿✿✿✿

hence
✿✿✿✿✿✿✿✿

decreases
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿✿✿✿✿✿

weathering
✿✿✿✿

and

✿✿✿

soil
✿✿✿✿✿✿✿✿

formation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Attal et al., 2015),
✿✿✿✿✿✿✿✿

resulting
✿✿

in
✿✿✿✿✿✿✿✿✿

increased
✿✿✿✿✿✿✿

hillslope
✿✿✿✿✿✿

gravel
✿✿✿✿✿✿

supply. As increasing rates of uplift (or base-level

fall) force the channel long profile to become straight (concavity θ = 0),
✿✿✿✿✿✿

towards
✿✿

a
✿✿✿✿✿✿✿

constant
✿✿✿✿✿

slope
✿✿✿✿✿✿✿✿

(concavity
✿✿✿✿✿✿✿

θ → 0),
✿✿✿✿✿✿✿✿

Equation
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Figure 3. Steady-state numerical model outputs with steady uplift (base-level fall), subsidence (base-level rise), or neither. These numerical

solutions are formulated following Equation D3, which is a finite-difference discretization of the general equation for an equilibrium-width

transport-limited gravel-bed river, Equation 20. Power-law relationships describe downstream increases in water discharge (Q) and valley

width (B), following Equations 31–36. (a) Long profiles. (b) Slope-area plots: concavities increase with increasing subsidence. All channels

are plotted such that they are pinned to the same upstream
✿✿✿✿✿✿✿✿✿

downstream
✿

point.
✿✿✿

(b)
✿✿✿✿✿✿✿✿

Slope-area
✿✿✿✿✿

plots:
✿✿✿✿✿✿✿✿

concavities
✿✿✿✿✿✿✿

increase
✿✿✿✿

with
✿✿✿✿✿✿✿✿

increasing

✿✿✿✿✿✿✿✿

subsidence.
✿

Model input parameters other than uplift are the same as those given for the long profiles displayed in Figure 2.

✿✿

50
✿✿✿✿✿✿✿✿✿✿✿

demonstrates
✿✿✿✿

that
✿

the gravel persistence exponent, Pβ , increases to equal
✿✿✿✿

until
✿✿

it
✿✿✿✿✿

equals
✿

the drainage-area-to-discharge

exponent, PAQ; constant channel slope requires a constant ratio of water to sediment discharge.
✿

.

The small value of Pβ significantly increases the critical drainage area for the transition between from a detachment-limited

channel to a transport-limited channel (Whipple and Tucker, 2002). This is because increasing drainage area does not increase

sediment supply as rapidly as assumed by (Whipple and Tucker, 2002). Therefore, a relatively larger portion of the landscape5

may be assumed to be detachment-limited than previously thought.
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Figure 4. The slope–area concavity index defined in Equations 51 and 54 limits the range of possible powers for discharge–drainage-area and

width–distance relationships. The light gray field includes all concave long profile solutions, and the dark gray indicates where the concavity

index is in a commonly-observed range for rivers in the field, between 0.4 and 0.5. The hatched area on the left is below the theoretical lower

limit for the exponent that relates drainage area to water discharge, PAQ = 0.5, which exists in the limit where storm duration is much less

than the time for that water to pass through the catchment (Sólyom and Tucker, 2004). This example is given for an equilibrium-width river

for which dz/dt= U , which corresponds to the analytically-solvable case in Equations 39 and 40.

5.3 Concave-up long profiles
✿✿✿✿

may require valley widening

Equation 39 for a steady-state river with neither uplift nor subsidence can be rewritten with dz/dx replaced by S and PxQ

replaced by its constituent components PxA and PAQ:

7

6

1

S

dS

dx
=

PxB −PxAPAQ

x
(52)

In order to solve this equation, we rely on the fact that at the upstream boundary condition, x= x0 and S = S0. Here, the slope5

is set to prescribe the input sediment discharge, Qs0 , in a way that is independent of the water discharge (see Equation 18). We

solve Equation 52 to obtain a slope–distance relationship,

S = S0

(

x

x0

)(6/7)(PxB−PxAPAQ)

. (53)

We then substitute drainage area, A, for x based on an inversion of Equation 32:

S = S0
k
(6/7)(PAQ−PxB/PxA)
xA

x
(6/7)(PxB−PxAPAQ)
0

A(6/7)(PxB/PxA−PAQ) (54)10

Based on Equation 54, the concavity index (Equation 51) is θ = (6/7)(PAQ −PxB/PxA), and the steepness index, ks is

equal to the terms forming the coefficient before the A term. For a characteristic inverse Hack’s exponent (PxA = 7/4) and

range of likely concavity index values, 0.4/ θ / 0.5, a tight bound exists on the possible values of PAQ and PxB (Figure 4).
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These values span the range of observed (Aron and Miller, 1978; Howard and Kerby, 1983; Whipple and Tucker, 1999) and

theoretical (Sólyom and Tucker, 2004) steady-state river concavity index values. Furthermore, this formulation demonstrates

that a downstream-widening valley can be necessary to produce rivers of observed concavity index values for common values

of PAQ. Insofar as valley widening can be recognized in the field, this observation can be used in areas of little to no uplift to

connect geomorphic form directly to the area scaling relationship for a dominant river discharge (Figure 4, dark gray diagonal5

region).

5.4 Signatures of change in sediment-to-water supply ratio (climate) and/or base level (tectonics)

Transient long profiles from numerical model runs. Base model boundary conditions and parameters S0 = 0.01; 10 km ≤ x≤
100 km; Q= 1.43× 10−5x49/40 m3 s−1; A= x7/4 m2, B = 79.06x1/10 m. Each fine gray line represents 30,000 years with an

intermittency of I = 1 (i.e. constant geomorphically-effective discharge conditions). All base-level changes are purely vertical,10

and therefore can represent steeply-dipping faults or sea-level change across a steep coastline. (a) An instantaneous 100 m

base-level fall causes a transient response but eventually produces the same channel long profile, albeit translated downward.

(b) The onset of 1 mm yr−1 steady base-level fall (or tectonic uplift) reduces channel concavity; this allows the river to transport

the additional bed-derived sediment as it incises. (c) The onset of 0.5 mm yr−1 steady base-level rise (or subsidence) increases

concavity due to increasing deposition rates that are required to fill the accommodation space created. (d) Doubling the input15

sediment discharge (Qs0 ), facilitated by adjusting S0 according to Equation 18, increases channel steepness proportionally

(Equation 54); this increase in steepness propagates downstream. (e) Doubling the water discharge (Q) decreases channel

steepness proportionally; this decrease in steepness propagates downstream more rapidly than that due to doubling sediment

input because an increase in water discharge increases sediment transport capacity.

Transient response and response times to external forcings as quantified by the ratio of sediment input to output discharge.20

Each dot on this figure corresponds to a gray line on the panels of Figure 6 bearing the same letter. (a) A sudden increase

in sediment flux following a sudden base-level fall event gradually decays until the sediment output is equal to the sediment

input. (b) Sediment output rises to accommodate the additional material supplied at the river bed by tectonic uplift. (c) Sediment

output falls in response to subsidence, which creates accommodation space for local storage in the subsiding valley floor. (d)

Doubling input sediment discharge gradually leads to channel steepening and an increase in output sediment discharge. (e)25

Doubling water discharge leads to a decrease in channel steepness and an increase in output sediment discharge; the river

responds faster than if sediment input were doubled (d) because increasing water discharge drives a higher sediment transport

capacity (Equation 18. We quantify these relationships with exponential decay functions and an e-folding time scale, but note

that this does not describe the changes in sediment discharge immediately following the perturbation.

One major aim of fluvial geomorphology is to interpret changing environmental forcing from the shape of river long profiles30

. The two major controls on transport-limited river channel long-profile evolution are the ratio between

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Transport-limited
✿✿✿✿✿✿✿✿✿✿✿

river-channel
✿✿✿✿✿

long
✿✿✿✿✿✿

profiles
✿✿✿✿✿✿

evolve
✿✿

in
✿✿✿✿✿✿✿✿

response
✿✿

to
✿

water and sediment supply (e.g., Parker et al., 1998) ,

which drives the upstream flux boundary condition
✿✿✿✿✿

inputs
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Parker et al., 1998)
✿✿

and
✿✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿

base-level
✿✿✿✿✿✿

change
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Hilley and Strecker, 2005)

✿

.
✿✿✿✿✿

Water
✿✿✿

and
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

inputs
✿✿✿

can
✿✿✿✿✿

occur
✿✿✿✿

both
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

upstream
✿✿✿✿✿✿✿✿

boundary
✿✿✿

and
✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment, and changes in the relative

23



elevation between the river and its base-level, which drive
✿✿✿✿✿✿

relative
✿✿✿✿

base
✿✿✿✿✿

level
✿✿✿✿✿

occur
✿✿

at
✿

the downstream boundarycondition

(Hilley and Strecker, 2005). The upstream boundary condition may be driven by changes in climate (Tucker and Slingerland, 1997; Simpson

; tectonics, which by modifying topographic relief can influence sediment supply and grain size (Attal et al., 2015; Sklar et al., 2017)

; or by other factors – including humans – that impact water and/or sediment delivery to rivers (e.g., Liébault and Piégay, 2001)

. The downstream boundary condition is defined as a relative change, and therefore may be driven by .
✿✿✿

We
✿✿✿✿

find
✿✿

by
✿✿✿✿✿✿✿✿

applying
✿✿✿

the5

✿✿✿✿✿

above
✿✿✿✿✿✿✿✿

derivation
✿✿✿

for
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

equilibrium-width
✿✿✿✿✿✿✿✿✿

gravel-bed
✿✿✿✿

river (1) rise and fall of the river outlet (Faulkner et al., 2016) and/or (2)

uplift or subsidence of the solid Earth beneath the river (Paola et al., 1992; Whipple and Tucker, 2002; Johnson et al., 2009).

Here we demonstrate that transport-limited gravel-bed
✿✿✿✿✿✿

Section
✿✿✿✿

2.1)
✿✿✿

that
✿✿✿✿

such
✿

rivers adjust their steepnesses
✿✿✿✿✿✿✿✿

steepness to the

sediment-to-water input ratio (Figure 6d,e; associated response time in Figure ??d,e
✿✿✿✿✿✿

Section
✿✿✿✿✿

5.4.1) and adjust their concavities

to uplift rate (i.e. relative changes in base level: Figures 3, 6b,c), and ??b, c) with an amplitude that is controlled in part10

by sediment supply .
✿✿

the
✿✿✿✿

rate
✿✿

of
✿✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿

base-level
✿✿✿✿✿✿✿

change,
✿✿✿✿

such
✿✿✿

as
✿✿✿

that
✿✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

tectonic
✿✿✿✿✿

uplift
✿✿

or
✿✿✿✿✿✿✿✿✿✿

subsidence
✿✿✿✿✿✿✿

(Section
✿✿✿✿✿✿

5.4.2).

✿✿✿✿✿✿✿✿

Increasing
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

supply
✿✿✿✿✿✿✿✿

dampens
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

concavity
✿✿✿✿✿✿✿

response
✿✿✿

by
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿

the
✿✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿

uplifting
✿✿

or
✿✿✿✿✿✿✿✿

subsiding
✿✿✿✿✿✿

valley
✿✿✿✿

floor
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

budget.

These distinct modes of response allow
✿✿✿

can
✿✿✿✿

help
✿

us to distinguish whether the upstream (flux) boundary condition or

the downstream (base level) boundary condition, or both, are controlling the river long-profile shape. Over short
✿✿✿✿

river
✿✿

is15

✿✿✿✿✿✿✿✿✿

responding
✿✿✿✿✿✿✿✿

primarily
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿

water
✿✿✿✿✿

and/or
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

supply,
✿✿

or
✿✿

to
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿

base
✿✿✿✿✿

level.
✿✿✿✿

This
✿✿✿✿

may
✿✿✿✿

help
✿✿

to
✿✿✿✿✿✿✿✿✿✿

disentangle
✿✿✿

the

✿✿✿✿✿

effects
✿✿

of
✿✿✿✿✿✿✿

climate
✿

–
✿✿✿✿✿

often
✿✿✿✿✿✿

related
✿✿

to
✿✿✿✿✿

water
✿✿✿

and
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

supply
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Tucker and Slingerland, 1997; Simpson and Castelltort, 2012)

✿

–
✿✿✿✿

and
✿✿✿✿✿✿✿✿

tectonics,
✿✿✿✿✿✿

which
✿✿✿

can
✿✿✿✿✿✿✿

change
✿✿✿✿✿✿

relative
✿✿✿✿✿

base
✿✿✿✿✿

level.
✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿✿

tectonics
✿✿✿✿

may
✿✿✿✿

also
✿✿✿✿✿

affect
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

supply
✿✿✿✿

and
✿✿✿✿✿

grain
✿✿✿✿

size

✿✿

by
✿✿✿✿✿✿✿✿✿

modifying
✿✿✿✿✿✿✿✿✿✿

topographic
✿✿✿✿✿

relief
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Attal et al., 2015; Sklar et al., 2017)
✿

.
✿✿✿✿

Over
✿✿✿✿✿✿

longer
✿

time scales, this river-profile adjustment

could relate to natural or anthropogenic changes in water andsediment supply, as well as
✿✿✿✿✿✿✿✿

tectonics
✿✿✿✿

may
✿✿✿✿

also
✿✿✿✿✿✿✿

increase
✿✿✿

or20

✿✿✿✿✿

reduce
✿✿✿✿✿

water
✿✿✿✿✿✿

inputs
✿✿✿

by
✿✿✿✿✿✿✿✿✿

influencing
✿✿✿✿✿✿✿✿✿✿

orographic
✿✿✿✿✿✿✿✿✿✿

precipitation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Pingel et al., 2014).
✿✿✿✿✿✿

Other
✿✿✿✿✿✿✿✿✿✿

nonclimatic
✿✿✿✿✿✿

factors
✿

–
✿✿✿✿✿✿✿✿✿

including

✿✿✿✿✿✿

human,
✿✿✿✿✿✿✿✿✿

biological,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(bio)geochemical
✿✿✿✿✿✿

activity
✿✿

–
✿✿✿✿

may
✿✿✿✿

also
✿✿✿✿✿✿

impact
✿✿✿✿✿

water
✿✿✿✿✿✿

and/or
✿✿✿✿✿✿✿✿✿✿✿

bed-material
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

delivery
✿✿✿

to
✿✿✿✿✿

rivers

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g., Liébault and Piégay, 2001; James, 2013; Pelletier et al., 2015; Acosta et al., 2015; Sklar et al., 2016; Garcin et al., 2017)

✿

.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿✿✿✿✿✿✿✿

non-tectonic
✿

changes in base leveldue to, for example,
✿

,
✿✿✿✿

such
✿✿

as
✿✿✿✿✿

those
✿✿✿✿✿✿✿

caused
✿✿

by
✿

sea-level change, glacial-

isostatic adjustment, reservoir construction, or dam removal. Importantly,
✿✿✿

dam
✿✿✿✿✿✿✿✿

removal,
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

climatically-driven
✿✿✿✿✿✿✿✿✿✿

aggradation
✿✿

or25

✿✿✿✿✿✿

incision
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

mainstem
✿✿✿✿

river
✿✿✿✿

into
✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿

study
✿✿✿✿✿✿✿

tributary
✿✿✿✿✿

flows,
✿✿✿✿✿

could
✿✿✿✿✿✿✿✿✿✿

contaminate
✿

a
✿✿✿✿✿✿✿✿✿

“tectonic”
✿✿✿✿✿

signal
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Cantelli et al., 2004; Faulkner et al.,

✿

.
✿✿

An
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿

caveat
✿✿

to
✿✿✿✿

this
✿✿

is
✿✿✿

that
✿

many such natural base-level changes also change the horizontal position of the river out-

let, and the overall river response is due to both horizontal and vertical changes in outlet position, even though we discuss

only an idealized vertical base-level change here. Over geologic time scales, such river adjustments may record climate and/or

tectonics, and the equilibrium long-profile shape is a function of the competition between tectonics – uplift adds material to30

the river profile and subsidence takes it away – and the incoming sediment discharge that sets the pace at which the river can

remove uplifting sediment or deposit sediment in a region of subsidence.

5.4.1 Sediment-to-water discharge ratio determines channel steepness
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Changes
✿✿✿✿✿✿✿

Uniform
✿✿✿✿✿✿✿

changes
✿

in the input sediment-to-water discharge ratio, in the absence of changes in uplift rate (or equiva-

lently, rate of base-level change), determine the steepness index of a channel
✿

, but do not affect its concavity (Equations 51 and

54). As the input sediment-to-water discharge ratio increases, the channel steepens in order to transport the additional sediment

load out of the system at the rate that it is supplied (Figures 6d and 5
✿

5
✿✿✿

and
✿✿✿

6d). This increase in steepness and associated aggra-

dation is sourced at the headwaters (i.e. the location of the sediment and water source) and propagates downstream
✿✿✿✿✿✿✿✿

upstream5

✿✿✿✿✿✿✿✿

boundary
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

propagates
✿✿✿✿✿✿✿✿✿✿✿

downstream:
✿✿

all
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

within
✿✿✿

the
✿✿✿✿✿✿✿✿✿

computed
✿✿✿✿

long
✿✿✿✿✿✿

profile
✿✿

is
✿✿✿✿✿✿✿✿✿✿

transported
✿✿

at
✿✿✿✿✿✿✿✿

capacity,
✿✿✿✿✿✿✿✿✿

following

✿✿✿✿✿✿✿

Equation
✿✿✿✿

18),
✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿

to
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿

supply
✿✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿✿

sourced
✿✿

by
✿✿✿✿✿

either
✿✿✿✿✿✿✿✿

changing
✿✿✿

the
✿✿✿✿

input
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿✿✿

condition,

✿✿

as
✿✿✿

we
✿✿

do
✿✿✿✿✿

here,
✿✿

or
✿✿

by
✿✿✿✿✿✿

adding
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿

“uplift”
✿✿✿✿✿✿✿✿✿✿

source/sink
✿✿✿✿

term
✿✿✿

(U
✿✿

in
✿✿✿✿✿✿✿✿

Equation
✿✿✿

20). Conversely, a

decrease in input sediment-to-water discharge ratio causes a downstream-propagating decrease in steepness (Figure 6e). The

time scale of slope response can be approximated as an exponential decay fit to the ratio of output to input sediment discharge,10

which results from a change in the amount of sediment stored within the system (Figure ??d,e). Changing the sediment-to-

water discharge ratio requires adjusting the virtual slope at the upstream boundary (S0). Thus, this steepening can also be

viewed as the natural result of requiring the solution to the equation for the long profile to accommodate a steeper upstream

gradient boundary condition.

k
s=18.8, Q

s/Q=0.0001

k
s=34.1, Q

s/Q=0.0002

k
s=48.3, Q

s/Q=0.0003

k
s=61.8, Q

s/Q=0.0004

a

b

Figure 5. As sediment-to-water discharge ratio increases, a steeper channel is required to mobilize the sediments, and as a result, the channel

steepness index (ks, Equation 51) increases.
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a1 a2

b1 b2

c2c1

Instantaneous 100 m 
base-level fall

Sediment input discharge doubles
water discharge constant

Uplift rate step change from
0 mm yr-1 to 1 mm yr-1

Channel concavity decreases as uplift
rate increases; this change is

accentuated downstream.

Sudden base-level fall causes a transient
reduction in concavity; same initial

and final slope-area relationships

Channel steepness increases as the
sediment-to-water discharge

ratio increases

d2d1

Water discharge doubles;
sediment input discharge constant

Subsidence rate step change
from 0 mm yr-1 to 0.5 mm yr-1

Channel concavity increases as subsidence
rate increases; this change is

accentuated downstream.

Channel steepness decreases as the
sediment-to-water discharge

ratio decreases

e2e1

e-folding response time: 80 kyr

e-folding response time: 92 kyr

e-folding response time: 102 kyr

a3

Instantaneous 100 m 
base-level fall

Sediment input
discharge doubles;

water discharge constant

Subsidence rate step change
from 0 mm yr-1 to 0.5 mm yr-1

e-folding response time: 62 kyr

Water discharge doubles;
sediment input

discharge constant

e-folding response time: 104 kyr

Uplift rate step change from
0 mm yr-1 to 1 mm yr-1

b3

c3

d3

e3

Figure 6.
✿✿✿✿✿✿✿

Transient
✿✿✿✿

long
✿✿✿✿✿✿

profiles
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

model
✿✿✿✿

runs
✿✿✿✿

and
✿✿✿✿

their
✿✿✿✿✿✿✿

response
✿✿✿✿✿

times
✿✿

to
✿✿✿✿✿✿✿

external
✿✿✿✿✿✿✿

forcings.
✿✿✿✿

Each
✿✿✿✿

fine
✿✿✿✿

gray
✿✿✿

line
✿✿✿

in

✿✿✿✿

panel
✿✿✿

sets
✿✿

1
✿✿✿

and
✿✿✿

2,
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿✿✿

gray
✿✿✿✿

dots
✿✿

on
✿✿✿✿✿

panel
✿✿✿

set
✿✿

3,
✿✿✿✿✿✿✿✿

represents
✿✿✿✿✿

30,000
✿✿✿✿✿

years
✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

intermittency
✿✿

of
✿✿✿✿✿

I = 1
✿✿✿✿

(i.e.,
✿✿✿✿✿✿✿

constant

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

geomorphically-effective
✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿

conditions).
✿✿✿✿✿

Thick
✿✿✿

gray
✿✿✿✿

lines
✿✿

on
✿✿✿✿✿

panel
✿✿✿

sets
✿

1
✿✿✿

and
✿

2
✿✿✿

are
✿✿

the
✿✿✿✿✿

initial
✿✿✿

long
✿✿✿✿✿✿

profile;
✿✿✿✿

thick
✿✿✿✿

black
✿✿✿✿

lines
✿✿✿

are
✿✿

the
✿✿✿✿

final

✿✿✿

long
✿✿✿✿✿✿

profile.
✿✿

In
✿✿

the
✿✿✿✿✿✿✿✿✿

slope–area
✿✿✿✿

plots
✿✿✿✿✿✿

(center),
✿✿✿

the
✿✿✿✿

slope
✿✿

of
✿✿✿

the
✿✿✿

line
✿

is
✿✿✿

the
✿✿✿✿✿✿

negative
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

concavity
✿✿✿✿✿

index
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

y-intercept
✿✿

is
✿✿

the
✿✿✿✿✿✿✿✿✿

normalized

✿✿✿✿✿✿✿

steepness
✿✿✿✿

index
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Whipple and Tucker, 1999)
✿

.
✿✿✿✿✿✿✿

Transient
✿✿✿✿✿✿✿

response
✿✿✿✿

times
✿✿✿✿✿

(right)
✿✿✿

are
✿✿✿✿✿✿✿✿

quantified
✿✿

by
✿✿✿

the
✿✿✿

ratio
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

catchment-wide
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿

input

✿✿✿✿

(Qs,in)
✿✿

to
✿✿✿✿✿✿

output
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿

(Qs,out).
✿✿✿

We
✿✿✿✿✿✿✿

quantify
✿✿✿✿✿✿✿

response
✿✿✿✿

times
✿✿✿✿

using
✿✿✿✿✿✿✿✿✿

exponential
✿✿✿✿✿

decay
✿✿✿✿✿✿✿

functions
✿✿✿✿

and
✿✿✿✿✿✿✿

e-folding
✿✿✿✿

time
✿✿✿✿✿

scales,
✿✿✿

but

✿✿✿

note
✿✿✿

that
✿✿✿

this
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

describe
✿✿✿

the
✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿✿

immediately
✿✿✿✿✿✿✿

following
✿✿✿

the
✿✿✿✿✿✿✿✿✿

perturbation.
✿✿✿

All
✿✿✿✿✿✿✿✿

base-level
✿✿✿✿✿✿

changes
✿✿✿

are
✿✿✿✿✿

purely

✿✿✿✿✿✿

vertical,
✿✿✿

and
✿✿✿✿✿✿✿

therefore
✿✿✿

can
✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿✿✿✿✿✿

steeply-dipping
✿✿✿✿✿

faults
✿✿

or
✿✿✿✿✿✿✿

sea-level
✿✿✿✿✿

change
✿✿✿✿✿

across
✿

a
✿✿✿✿

steep
✿✿✿✿✿✿✿✿

coastline.
✿✿✿✿

Base
✿✿✿✿✿

model
✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿✿

conditions
✿✿✿

and

✿✿✿✿✿✿✿✿

parameters
✿✿✿✿✿✿✿✿

S0 = 0.01;
✿✿✿

10
✿✿

km
✿✿✿✿✿

≤ x≤
✿✿✿

100
✿✿✿✿

km;
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Q= 1.43× 10
−5x49/40

✿✿

m3

✿✿✿✿

s−1;
✿✿✿✿✿✿✿

A= x7/4
✿✿✿✿

m2,
✿✿✿✿✿✿✿✿✿✿✿✿

B = 79.06x1/10
✿✿

m.
✿✿✿

(a)
✿✿

An
✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿

100

✿

m
✿✿✿✿✿✿✿✿

base-level
✿✿✿

fall
✿✿✿✿✿

causes
✿

a
✿✿✿✿✿✿✿

transient
✿✿✿✿✿✿✿

response
✿✿✿

and
✿

a
✿✿✿✿✿

sudden
✿✿✿✿✿✿✿

increase
✿

in
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

output
✿✿✿

but
✿✿✿✿✿✿✿✿

eventually
✿✿✿✿✿✿✿

produces
✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿

channel
✿✿✿

long
✿✿✿✿✿✿

profile,

✿✿✿✿

albeit
✿✿✿✿✿✿✿

translated
✿✿✿✿✿✿✿✿✿

downward.
✿✿✿

(b)
✿✿✿

The
✿✿✿✿

onset
✿✿

of
✿

1
✿✿✿✿

mm
✿✿✿✿

yr−1

✿✿✿✿✿

steady
✿✿✿✿✿✿✿

base-level
✿✿✿

fall
✿✿✿

(or
✿✿✿✿✿✿

tectonic
✿✿✿✿✿

uplift)
✿✿✿✿✿✿

reduces
✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿

concavity;
✿✿✿

this
✿✿✿✿✿

allows
✿✿✿

the

✿✿✿

river
✿✿

to
✿✿✿✿✿✿✿

transport
✿✿✿

the
✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿

bed-derived
✿✿✿✿✿✿✿

sediment
✿✿

as
✿

it
✿✿✿✿✿✿

incises
✿✿✿

and
✿✿✿✿✿

causes
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

output
✿

to
✿✿✿

rise
✿✿

as
✿

a
✿✿✿✿✿

result.
✿✿✿

(c)
✿✿✿

The
✿✿✿✿

onset
✿✿

of
✿✿✿

0.5
✿✿✿

mm
✿✿✿✿

yr−1

✿✿✿✿✿

steady
✿✿✿✿✿✿✿

base-level
✿✿✿

rise
✿✿✿

(or
✿✿✿✿✿✿✿✿✿

subsidence)
✿✿✿✿✿✿✿

increases
✿✿✿✿✿✿✿

concavity
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿✿

deposition
✿✿✿

rates
✿✿✿✿

that
✿✿

are
✿✿✿✿✿✿✿

required
✿

to
✿✿✿

fill
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

accommodation
✿✿✿✿✿

space

✿✿✿✿✿✿

created,
✿✿✿

and
✿✿✿✿✿✿

reduces
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

output
✿✿✿✿✿✿✿✿✿

accordingly.
✿✿✿

(d)
✿✿✿✿✿✿✿

Doubling
✿✿

the
✿✿✿✿✿

input
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

discharge
✿✿✿✿✿

(Qs0 ),
✿✿✿✿✿✿✿✿

facilitated
✿✿

by
✿✿✿✿✿✿✿

adjusting
✿✿

S0
✿✿✿✿✿✿✿✿

according
✿✿

to

✿✿✿✿✿✿

Equation
✿✿✿

18,
✿✿✿✿✿✿✿

increases
✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿

steepness
✿✿✿✿✿✿✿✿✿✿✿

proportionally
✿✿✿✿✿✿✿✿

(Equation
✿✿✿

54);
✿✿✿

this
✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿✿✿

steepness
✿✿✿✿✿✿✿✿

propagates
✿✿✿✿✿✿✿✿✿

downstream
✿✿✿

and
✿✿✿✿✿✿✿✿

gradually
✿✿✿✿

leads

✿

to
✿✿✿

an
✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿✿

output
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge.
✿✿

(e)
✿✿✿✿✿✿

Doubling
✿✿✿

the
✿✿✿✿✿

water
✿✿✿✿✿✿✿

discharge
✿✿✿

(Q)
✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿

steepness
✿✿✿✿✿✿✿✿✿✿✿

proportionally;
✿✿✿

this
✿✿✿✿✿✿✿

decrease

✿

in
✿✿✿✿✿✿✿✿

steepness
✿✿✿✿✿✿✿✿

propagates
✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿

more
✿✿✿✿✿✿

rapidly
✿✿✿

than
✿✿✿✿

that
✿✿✿

due
✿

to
✿✿✿✿✿✿✿

doubling
✿✿✿✿✿✿✿

sediment
✿✿✿✿

input
✿✿✿✿✿✿✿

because
✿✿

an
✿✿✿✿✿✿

increase
✿✿

in
✿✿✿✿

water
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿

increases

✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿

capacity;
✿✿✿✿✿

output
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿

increases
✿✿✿

until
✿✿✿

the
✿✿✿✿

slope
✿✿✿✿✿✿✿✿

decreases,
✿✿✿✿✿✿✿

returning
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

output
✿✿

to
✿✿

its
✿✿✿✿✿

initial
✿✿✿

rate.

5.4.2 Tectonic uplift and subsidence modulate river concavity
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With a constant incoming sediment-to-water discharge ratio, changes
✿✿✿✿✿✿

Changes
✿

in the rate of base-level rise or fall, including

those caused by tectonic subsidence or uplift, modify the concavity but not the steepness of a transport-limited gravel-bed river

long profile (Figure 3),
✿✿✿

for
✿

a
✿✿✿✿✿

given
✿✿✿✿✿

input
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

sediment-to-water
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿

ratio. Rivers experiencing tectonic subsidence (base-level

rise) will have more concave steady-state long profiles than those with no uplift or subsidence, and those experiencing uplift

(base-level fall) will have straighter (less concave) long profiles (Figure 3). This can be understood as follows: base-level rise5

"pushes" the bottom of the river profile upwards, bending it, while base-level fall "pulls" the bottom of this curve downwards,

straightening it.

The analytical solution (Equation 40) provides a long profile in the absence of uplift or subsidence (dz/dt= 0). This solution

follows the black line in Figure 3 and can be can be a useful reference case for against which to compare numerical solutions

of long-profile shape. Numerical solutions, on the other hand, demonstrate deviations in long-profile shape from this reference10

case in response to nonzero uplift and/or subsidence.

Even though
✿✿✿✿✿✿

uniform
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿

the water-to-sediment discharge ratio cannot on its
✿✿✿✿

their own impact long-profile concavity,

it
✿✿✿

they
✿

can (through volume balance) influence degree to which uplift (or subsidence) do. Uplift or subsidence add or remove

material from the bed of the river, and changes in concavity are the river’s response to redistribute sediment discharge to

balance these local sources or sinks of sediment. If the sediment discharge of the river is large compared to the amount of15

material moved by uplift or subsidence, then only a small adjustment of concavity is necessary to balance this source (uplift) or

sink (subsidence) and maintain steady-state topography. A river carrying very little sediment, however, will have to dramatically

change its long-profile concavity in order to reach steady state. Therefore, the steady-state long-profile concavity
✿✿✿✿✿

(Figure
✿✿✿

8)

results from a competition between tectonics and sediment discharge, in which a channel-concavity change is induced by a

tectonic (or base-level) forcing, but is dampened by increasing sediment input.20

In order to compare both sediment discharge and uplift as velocity scales
✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

dimensionless
✿✿✿✿✿✿✿✿✿

parameter, we define a

characteristic alluvial response rate as
✿✿✿

(A)
✿✿

as
✿✿

a
✿✿✿✿✿✿✿

velocity
✿✿✿✿

scale
✿✿✿

to
✿✿✿✿✿✿✿

compare
✿✿✿✿✿✿

against
✿✿✿✿✿

uplift
✿✿✿✿

rate.
✿✿✿✿

The
✿✿✿✿✿✿✿

alluvial
✿✿✿✿✿✿✿

response
✿✿✿✿

rate
✿✿

is
✿✿✿

the

✿✿✿✿

ratio
✿✿

of
✿

the incoming sediment discharge from all tributaries (Qsin ) , divided by
✿✿

to the area of the valley floor, which
✿✿

in
✿✿✿✿

turn

equals the mean valley width (B̄) multiplied by the length of the study river segment (L). We term this alluvial response rate

A, and it has
✿✿✿

This
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

maximum
✿✿✿

rate
✿✿

at
✿✿✿✿✿✿

which
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿✿

processes
✿✿✿✿

can
✿✿✿✿✿

cause
✿✿

the
✿✿✿✿✿✿

valley
✿✿

to
✿✿✿✿✿✿✿

aggrade,
✿✿✿✿

and
✿✿✿

also
✿✿✿✿✿✿

scales25

✿✿✿✿

with
✿✿

the
✿✿✿✿✿✿

power
✿✿

of
✿✿✿

the
✿✿✿✿

river
✿✿

to
✿✿✿✿✿✿

export
✿✿✿✿✿✿✿✿

sediment
✿✿✿

and
✿✿✿✿✿✿

incise.

A=
Qsin

LB̄
.

✿✿✿✿✿✿✿✿

(55)

✿✿✿✿✿

Using
✿✿

SI
✿

units of lengthper time :

A=
Qsin

LB̄
.

Deviations in concavity from a no-uplift state are amplified as the ratio of uplift rate to alluvial response rate increase
✿

,
✿✿✿✿

1/A
✿✿

is30

✿✿

the
✿✿✿✿

time
✿✿✿✿

that
✿✿

it
✿✿✿✿

takes
✿✿✿

the
✿✿✿✿

river
✿✿

to
✿✿✿✿✿✿✿

aggrade
✿✿

1
✿✿✿✿✿

meter
✿✿

if
✿✿

no
✿✿✿✿✿✿✿✿

sediment
✿✿

is
✿✿✿✿✿✿✿

exported
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

catchment.

We note that Qsin is only equal to the incoming sediment discharge at the upstream boundary condition, Qs0 , for the case

in which
✿✿✿✿✿✿✿✿✿✿✿✿✿

PxQ = PxQ = 0,
✿✿✿✿✿✿✿✿✿

indicating
✿✿✿

that
✿

there are no tributaries. When implicitly considering tributary inputs of water and
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Uplift rate divided by alluvial response rate
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Figure 7. Concavity changes uplift (or subsidence) rates increase when compared to a characteristic alluvial response rate. (a) As in Figure

3, increasing uplift rates decrease the channel concavity index. Here we vary channel width, sediment discharge, and uplift, and demonstrate

how channel concavity change follows the ratio of uplift rate, the external driver, to the internal system response rate (Equation 56). We

disallow solutions that produce adverse slopes (these occur with high subsidence) or negative concavity indices (these occur with high uplift

rates), as the former break the assumptions of our equations and the latter are not observed steady-state forms in nature. Changes in the valley

width exponent, PxB , change the shape of this curve by changing the downstream distribution of valley widths and therefore altering the

local alluvial response rates; all calculations for both panels were performed using PxB = 1. (b) For a single mean valley width (177 m), we

compare concavity index against the ratio of sediment discharge to uplift rate. It is important to note that with no uplift, concavity is constant

at θ = 0.5 regardless of sediment discharge.

sediment, as we do for any nonzero PxA and PxQ, the total sediment input can be calculated by imposing a steady-state

assumption with no uplift, which requires that the total sediment output must equal the sediment input. This can be calculated

using Equation 18, with discharge at the downstream boundary known, and the slope at the downstream boundary calculated

using Equation 53.

Dividing the tectonic uplift (or subsidence) rate (U ) by the alluvial response rate (A) provides a dimensionless number that5

defines the relative importance of sediment discharge vs. tectonics in determining the concavity of transport-limited gravel-bed
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Qs=0.0005 m 3 s -1; U=0 mm yr -1

Qs=0.001 m 3 s -1; U=0 mm yr -1

Qs=0.0005 m 3
 s -1

; U=1 mm yr -1

Qs=0.001 m 3
 s -1

; U=1 mm yr -1

a

b

Figure 8.
✿✿✿✿✿✿✿

Covarying
✿✿✿✿✿✿

tectonic
✿✿✿✿✿

uplift
✿✿

(or
✿✿✿✿✿✿✿✿

base-level
✿✿✿✿

fall)
✿✿✿

and
✿✿✿✿

input
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

sediment-to-water
✿✿✿✿✿

supply
✿✿✿✿

ratio
✿✿✿✿✿✿✿

produces
✿

a
✿✿✿✿✿

range
✿✿

of
✿✿✿✿✿✿

channel
✿✿✿✿

long
✿✿✿✿✿✿

profiles

✿✿

(a)
✿✿✿

and
✿✿✿✿✿✿✿✿

steepness
✿✿✿

and
✿✿✿✿✿✿✿✿

concavity
✿✿✿✿✿✿

indices
✿✿✿

(b).
✿✿✿✿✿✿✿

Changes
✿✿

in
✿✿✿✿✿✿✿

tectonic
✿✿✿✿✿

uplift
✿✿✿

rate
✿✿✿✿✿✿

impact
✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿

concavity
✿✿✿✿✿✿

indices,
✿✿

θ,
✿✿✿✿✿✿✿

whereas
✿✿✿✿✿✿✿

changes
✿✿

in

✿✿✿✿✿✿✿✿✿✿✿✿✿

water-to-sediment
✿✿✿✿✿✿✿

discharge
✿✿✿✿

ratio
✿✿✿✿✿✿

mainly
✿✿✿✿✿

impact
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿

steepness
✿✿✿✿✿✿

indices,
✿✿✿

ks.
✿✿

A
✿✿✿✿✿

higher
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

supply
✿✿✿✿✿✿✿

dampens
✿✿✿

the
✿✿✿✿✿

effect
✿✿

of
✿✿✿✿

uplift
✿✿✿

on

✿✿✿✿✿✿✿

concavity.
✿✿✿✿✿

While
✿✿✿✿

these
✿✿✿✿✿

drivers
✿✿✿

and
✿✿✿✿✿✿✿✿

responses
✿✿

are
✿✿✿✿✿✿✿

distinct,
✿✿✿✿✿✿

tectonic
✿✿✿✿

uplift
✿✿✿

may
✿✿✿✿✿✿✿

increase
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

supply
✿✿

by
✿✿✿✿✿✿✿✿

steepening
✿✿✿✿✿✿✿✿

hillslopes,
✿✿✿

and
✿✿✿✿✿✿✿

therefore

✿✿✿✿

cause
✿✿✿

the
✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿✿

controlling
✿✿✿✿

both
✿✿✿

the
✿✿✿✿✿✿✿

upstream
✿✿✿✿✿✿✿✿

(sediment
✿✿✿✿✿✿

supply)
✿✿✿

and
✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿

(base
✿✿✿✿

level)
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿✿✿✿

conditions
✿✿✿

may
✿✿✿✿✿✿

change
✿✿

at
✿✿✿

the

✿✿✿✿

same
✿✿✿✿

time.

rivers.

U

A
=

LBU

Qs
(56)

As this ratio becomes more positive, concavity decreases; as it becomes more negative, the concavity decreases
✿✿✿✿✿✿✿✿

concavity

✿✿✿✿✿✿✿

increases. Uplift (or subsidence) rate determines the existence and sign of the concavity change, whereas the ratio of uplift

rate to alluvial response rate determines the magnitude by which concavity deviates from a reference value for a river that5

experiences no uplift; in Figure 7, this
✿✿✿✿✿✿✿

reference
✿

value is 0.5.

Rivers also exhibit a transient response to changes in base level at a rate that is proportional to the alluvial response rate, A

(Equation 55). A single sudden change in base level generates a diffusive wave of incision (Figure 6a1) or aggradation. This

wave propagates upstream until the channel achieves the same slope and concavity as it did prior to the incision or aggradation

event (Figure 6a2), just at a different absolute elevation. A change in the rate of base-level change over time (through, for10
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example, a change in tectonic uplift or subsidence rate) propagates upstream and changes the concavity of the river (Figure

6b,c). We characterize the time scale of this response in terms of the ratio of the input vs. output sediment flux. When this ratio

is less than unity, the river valley is storing sediment, and when it is greater than unity, it is releasing sediment. This change

in sediment storage produces a disequilibrium change in the long-profile shape. The first stage of response to a perturbation

does not follow a simple pattern, but following this
✿✿✿✿✿✿✿✿✿

Following
✿✿

the
✿✿✿✿✿✿

initial
✿✿✿✿✿✿

change, an exponential decay function can describe the5

approach to a new equilibrium state. This
✿✿✿✿✿✿✿

behavior
✿

allows us to define an e-folding response time that approximates the time

required for a river system to respond to a perturbation (Figure ??
✿✿✿✿✿

6a3–e3).

5.4.3 Feedbacks between sediment supply and tectonics

In the above section, we have just separated the effects of tectonics and climate as concavity and steepness responses, respec-

tively. Our concavity changes derived from theory and their causes are generally consistent with the broad range of concavities10

and causes thereof synthesized by Whipple (2004, p. 161), albeit for bedrock rivers. However, such observations do not preclude

a potential feedback by which increasing tectonic uplift rates may also increase gravel-sized sediment supply to the channel. In

other words, the simplified approach of “climate = water-to-sediment supply, tectonics = base level” may be over-simplified.

Section 5.2 indicates that as uplift rates increase, the landscape surrounding the channel system steepens and erodes (Roering

et al., 1999). Our above solutions for changes in tectonic uplift rates (Figures 6b and ??b
✿✿✿

6b3) require only that the channel15

excavates the additional sediment from the bed of its valley. This
✿✿✿✿✿✿✿✿✿

excavation does not include additional sediments
✿✿✿✿✿✿✿

sediment

from the surrounding hillslopes, and steeper landscapes (often resulting from tectonic uplift) may be expected to produce a

larger fraction of coarse material through landsliding and a shorter residence for weathering in the shallow subsurface (Attal

et al., 2015; Carretier et al., 2015; Schildgen et al., 2016; Sklar et al., 2017). Changing gravel supply can dramatically alter

river long profiles (Savi et al., 2016), and therefore an increase in tectonic uplift rate may lead to both an increase in channel20

steepness that is not related
✿✿✿✿✿✿✿

unrelated
✿

to climate and a dampened decrease in concavity due to the increase in incoming bed-

load sediment discharge that increases the alluvial response rate, A (Figure 8). This tight channel–hillslope linkage challenges

the paradigm that channel incision rates control hillslope morphology and motivates future work into models of landscape

evolution that track and conserve sediment (Shobe et al., 2016; Sklar et al., 2017).

Covarying tectonic uplift (or base-level fall) and input sediment-to-water supply ratio produces a range of channel long25

profiles (a) and steepness and concavity indices (b). It is likely that sediment supply increases with tectonic uplift, and therefore

that the variables controlling both the upstream and downstream boundary conditions may change at the same time.

5.5 Concavity and downstream fining required for b ∝ Q1/2

It has long been recognized that river channel width scales with discharge to the 1/2 power,

b∝Q1/2. (57)30

This observation has been confirmed by a century of field studies (Lacey, 1930; Leopold and Maddock, 1953; Hey and Thorne,

1986; Singh, 2003). It has also been the subject of theoretical approaches to determine the static shape of a river channel

30



(Savenije, 2003; Millar, 2005). Here we derive a physically-based reason for this observation for an equilibrium-width gravel-

bed river.

Equation 16 relates the width of an equilibrium-width gravel-bed river to discharge, slope, and grain size. Starting with Equa-

tion 16, a slope–area relationship of S = ksA
−θ (Equation 51), and the drainage-area–discharge relationship from Equation

31, one can write that5

b= kbk
7/6
s k

(7/6)θ/PAQ

AQ

Q1−(7/6)θ/PAQ

D3/2
. (58)

This
✿✿✿✿✿✿✿

equation
✿

demonstrates that channel width is controlled by water discharge, channel concavity (through the concavity

index) and downstream fining. Assuming a tight bound on channel concavity, as is generally assumed and has been observed

in bedrock channels in the field (Duvall, 2004), though not universally (Whipple, 2004), two main drivers
✿✿

of
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

width

remain: water discharge and downstream fining
✿

of
✿✿✿✿✿✿✿✿✿✿✿

gravel-sized
✿✿✿✿✿✿✿

sediment
✿

(Figure 9). Increasing water discharge can cause the10

channel to widen by requiring more space for the water to flow. Decreasing bed-material grain size reduces the critical Shields

stress for initiation of motion, and in order for an equilibrium-width channel to maintain a constant ratio of applied to critical

Shields stress, the channel slope must become gentler and/or the channel itself must become wider. Due to the aforementioned

tight bounds on concavity index, the rate at which the channel slope decreases is also fixed, and any additional channel response

to downstream fining must occur through channel widening.15

Combining Equations 57 and 58 and simplifying the result produces a solution for a power that relates grain size to discharge,

PDQ. This demonstrates how grain size must vary downstream in order to maintain the observed channel-width–discharge

relationship:

D ∝Q(3−7θ/PAQ)/9. (59)

Therefore,20

PDQ =
3

9
− 7

9

θ

PAQ
. (60)

The range of physically permissible values for the exponent that relates drainage area to discharge, PAQ, is 0.5–1.0 (Costa

and O’Connor, 1995; Sólyom and Tucker, 2004). Combining this range of values with a typical concavity index of θ = 0.5

produces bounds on the exponent in Equation 59 of −4/9≤ PBQ ≤−1/18
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

−4/9≤ PDQ ≤−1/18: all plausible solutions

require downstream fining to occur in order to reproduce the observed channel-width–discharge relationship (Lacey, 1930).25

Using standard values of θ = 0.5 and PAQ = 0.7 (for a one-year flood Aron and Miller, 1978), one finds that b∝Q1/6D−3/2.

In this case, in order to recover the empirical b∝Q0.5 relationship, D must be proportional to Q−2/9. Testing this prediction

against downstream fining data, requires that we convert discharge (Q) to distance downstream (x). While Sternberg (1875)

provides reasoning to expect an exponential decay of grain size
✿✿✿

due
✿✿

to
✿✿✿✿✿✿✿

abrasion
✿

with distance downstream from a source

area, this may be approximated by a power-law function,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿

fining
✿✿✿✿

may
✿✿✿✿

also
✿✿✿✿✿✿

result
✿✿✿✿

from
✿✿✿✿✿✿✿✿

selective
✿✿✿✿✿✿✿✿✿

deposition30

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Whittaker et al., 2011). Multiplying PAQ = 0.7 by the inverse Hack’s exponent PxA = 7/4 (Equation 34) produces the mul-

tipler to convert the grain-size–discharge relationship to a grain-size–downstream-distance relationship: D ∝ x0.27. We have
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Figure 9. In an equilibrium-width self-formed gravel-bed river channel, the common field observation that river channel width is proportional

to the square root of water discharge may be explained by a combination of the direct impact of river discharge on channel width and by

downstream fining of bed-material sediment.

performed no rigorous analysis of this result, but data from Gomez et al. (2001) from the braided Waipoa River in New Zealand

are broadly consistent with this exponent.

6 Conclusions

We have produced equations to describe the long-profile evolution of transport-limited gravel-bed rivers by combining the

Exner equation for conservation of volume, the Wong and Parker (2006) modification of the (Meyer-Peter and Müller, 1948)5

formulation for gravel transport, a Manning-style flow resistance equation (Parker, 1991), the normal-flow approximation for

basal shear stress, the channel-width closure of (Parker, 1978), and the continuity equation. The key equation of this paper

is Equation 20, which captures the dynamics of a gravel-bed river whose bed shear stress is a multiple of the critical shear

stress for initiation of motion; such systems are ubiquitous in nature (Phillips and Jerolmack, 2016; Pfeiffer et al., 2017).

Furthermore, bedrock rivers can behave as transport-limited systems (Johnson et al., 2009), extending the applicability of our10

approach. Transport-limited gravel-bed river long profiles evolve more rapidly when they are steeper and experience a greater

water discharge, and more slowly when their valleys are wider, as this requires that they fill more space. We solve Equation

20 analytically for the special case in which dz/dt= U – that is, that the river neither incises nor aggrades and does not

respond to tectonic or base-level forcings. Both this solution and numerical solutions of steady-state rivers with constant uplift

(or subsidence) rates have a power-law form, meaning that a power law can be appropriate fit to transport-limited river long15

profiles.

Our derivation brings to light several significant relationships that may aid further efforts to understand river long profiles:

(1) The sediment transport formula for an equilibrium-width (τ∗b /τ
∗

c = constant) gravel-bed river has the stream-power form

proposed by (Whipple and Tucker, 2002). We quantify the values of its coefficient and exponents. The slope exponent is

7/6, and the other exponents relate to the scaling between drainage area and geomorphically effective discharge. (2) Gravel20

supply to rivers scales with uplift rate times contributing drainage area to a power that is less than 1, significantly modifying the
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implicit assumption of Whipple and Tucker (2002) that all sediment
✿

a
✿✿✿✿✿✿✿

uniform
✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

sediment
✿✿✿

that
✿✿

is
✿

generated by rock

uplift must be transported as bed load, and therefore moving the expected position of the transition between detachment- and

transport-limited long profile evolution farther downstream. (3) Maintaining the observed slope–area scaling often requires that

valleys widen downstream. (4) Changes in water-to-sediment discharge ratio affect channel steepness, while changes in the rate

of base-level change affect channel concavity. This separation may allow the impacts of climate and tectonics to be separately5

inferred from channel long profiles, but increases in uplift rate are often accompanied by increases in gravel-sized sediment

supply via erosional processes (e.g., landsliding) associated with increasing landscape relief. Tectonic uplift therefore can

drive changes in long-profile shapes by inducing both base-level fall (reducing concavity) and an increase in sediment supply

(increasing steepness). (5) The long-observed relationship that channel width increases as the square root of discharge (Lacey,

1930; Leopold and Maddock, 1953) can be explained through a combination of valley widening and downstream fining.10

In this paper, we have derived a physics-based expression for the long-profile evolution of transport-limited gravel bed

rivers, whose parameters are determined by theory, experimentation, and field work. We hope that this approach to under-

standing gravel-bed rivers provides forward momentum towards a more formal treatment of sediment transport and fluvial

morphodynamics in river long profile analysis and landscape evolution. Furthermore, by combining our derivation with other

observations, we predict relationships among valley morphology, coarse sediment production and evolution, and the power-law15

scaling between drainage area and geomorphically effective floods. While rivers are complex, we hope that these connections

with broader pieces of the geomorphic puzzle can provide a path to build a better theory of fluvial system change and landscape

evolution.

Code availability. The GitHub repository at https://github.com/awickert/gravel-river-long-profile contains the “grlp” Python module, which

holds functions for both the analytical and numerical solutions presented here.20

Appendix A: Notation

Appendix B:
✿✿✿✿✿

River
✿✿✿✿✿

valley
✿✿✿✿✿✿

width,
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿✿

sinuosity,
✿✿✿

and
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

balance
✿

B1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Width-resolving
✿✿✿✿✿✿

Exner
✿✿✿✿✿✿✿✿

equation

✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿

canonical
✿✿✿✿✿✿

Exner
✿✿✿✿✿✿✿✿

equation,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

one-dimensional
✿✿✿✿✿✿✿✿

negative
✿✿✿✿✿✿✿✿✿

divergence
✿✿

in
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿

flux
✿✿

is
✿✿✿✿✿✿

stated
✿✿

to
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

proportional
✿✿✿

to

✿✿✿✿✿✿✿✿✿

aggradation
✿✿✿

or
✿✿✿✿✿✿✿

incision,
✿✿

as
✿✿✿✿✿

given
✿✿

in
✿✿✿✿✿✿✿✿

Equation
✿✿✿

25.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

one-dimensional
✿✿✿✿

form
✿✿✿✿✿✿✿

implies
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿

and
✿✿✿✿✿✿

valley
✿✿✿✿✿

width
✿✿✿

are
✿✿✿

the25

✿✿✿✿

same
✿✿✿✿✿✿✿

(Figure
✿✿✿✿

B1a)
✿✿✿✿

and
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿

valley
✿✿✿✿✿

walls
✿✿✿

are
✿✿✿✿✿✿

vertical
✿✿✿✿

and
✿✿✿✿✿✿✿

infinite.
✿✿✿✿

Such
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿✿✿

may
✿✿✿✿

not
✿✿

be
✿✿✿✿

bad
✿✿

in
✿✿

an
✿✿✿✿✿✿✿✿

artificial

✿✿✿✿

canal
✿✿

or
✿✿✿

for
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

rapidly-incising
✿✿✿✿

river
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

consistently
✿✿✿

cuts
✿✿

a
✿✿✿✿✿

valley
✿✿✿✿

that
✿✿

is
✿✿✿✿✿✿

exactly
✿✿✿

one
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿

width.
✿✿✿✿✿✿✿✿

However,
✿✿✿

the
✿✿✿✿✿✿

former
✿✿✿✿

case

✿

is
✿✿✿

of
✿✿✿

less
✿✿✿✿✿✿✿

interest
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

geomorphologists
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

latter
✿✿✿✿

case
✿✿

is
✿✿✿✿

more
✿✿✿✿✿✿✿✿

common
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

rapidly-incising
✿✿✿✿✿✿✿

bedrock
✿✿✿✿✿✿✿✿✿✿

landscapes,
✿✿✿✿✿✿

where
✿✿✿

the

✿✿✿

rate
✿✿

of
✿✿✿✿✿✿✿

vertical
✿✿✿✿✿✿

incision
✿✿✿✿✿✿✿

greatly
✿✿✿✿✿✿✿

outpaces
✿✿✿✿

that
✿✿

of
✿✿✿✿✿

lateral
✿✿✿✿✿✿✿

erosion
✿✿✿

and
✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿✿

widening.
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a b c

Figure B1.
✿✿✿

Our
✿✿✿✿✿✿✿✿

equations
✿✿

for
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

transport
✿✿✿✿✿

follow
✿✿✿

the
✿✿✿✿

river,
✿✿

but
✿✿✿✿✿✿✿✿✿

geomorphic
✿✿✿✿✿✿✿✿

evolution
✿✿✿✿✿

occurs
✿✿✿✿

along
✿✿✿✿✿

valley
✿✿✿✿✿✿✿

networks.
✿✿

In
✿✿✿✿✿

some
✿✿✿✿

cases
✿✿

(a)
✿

,

✿✿✿✿

these
✿✿

are
✿✿✿✿✿✿✿

perfectly
✿✿✿✿✿✿

aligned
✿✿✿

and
✿✿✿✿

have
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿

width.
✿✿✿✿✿✿✿

However,
✿✿

if
✿✿

the
✿✿✿✿

river
✿✿

is
✿✿✿✿✿✿✿✿

aggrading
✿✿✿

and
✿✿

the
✿✿✿✿✿

valley
✿✿✿✿

walls
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿

vertical,
✿✿✿✿✿

and/or
✿✿✿

the
✿✿✿✿

river

✿

is
✿✿✿✿✿✿

eroding
✿✿✿

its
✿✿✿✿

valley
✿✿✿✿✿

walls
✿✿

at
✿

a
✿✿✿

rate
✿✿✿✿

that
✿

is
✿✿✿✿✿✿✿✿✿

comparable
✿✿

to
✿✿

or
✿✿✿✿✿

faster
✿✿✿✿

than
✿✿

its
✿✿✿

rate
✿✿

of
✿✿✿✿✿✿

vertical
✿✿✿✿✿✿✿

incision,
✿✿✿

(b)
✿✿

the
✿✿✿✿

river
✿✿✿✿

may
✿✿✿✿

carve
✿✿

a
✿✿✿✿✿

valley
✿✿✿

that
✿✿

is

✿✿✿✿

wider
✿✿✿✿

than
✿✿

its
✿✿✿✿✿✿

channel.
✿✿✿✿✿

(Here,
✿✿✿

the
✿✿✿✿✿✿

channel
✿✿

is
✿✿✿✿✿✿

pictured
✿✿

at
✿✿

the
✿✿✿✿✿✿

center,
✿✿

but
✿✿✿✿

need
✿✿✿

not
✿✿

be
✿✿✿✿✿✿✿✿

positioned
✿✿✿✿✿

there.)
✿✿

In
✿✿✿✿✿✿

creating
✿✿

a
✿✿✿✿

wide
✿✿✿✿✿

valley,
✿✿

the
✿✿✿✿

river
✿✿✿✿

may

✿✿✿✿

move
✿✿✿✿✿✿✿

laterally,
✿✿✿✿✿✿

leading
✿

to
✿✿✿

(c)
✿✿✿✿✿✿✿✿

downstream
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿

flow
✿✿✿✿✿✿✿

directions
✿✿✿

that
✿✿✿

are
✿✿✿

not
✿✿✿✿✿✿

aligned.
✿✿✿✿✿

While
✿✿✿

this
✿✿✿✿✿✿

depicts
✿

a
✿✿✿✿✿✿✿✿✿✿

single-thread
✿✿✿✿✿✿✿

channel,

✿✿✿

this
✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

differentiation
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

channels
✿✿✿

and
✿✿✿✿✿

valleys
✿✿

is
✿✿✿✿✿✿✿✿

applicable
✿✿

to
✿✿✿✿✿✿✿✿✿

multi-thread
✿✿✿✿✿✿✿

channels.

✿✿

In
✿✿✿✿

order
✿✿✿

to
✿✿✿✿✿✿✿✿✿

understand
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿

a
✿✿✿✿✿

valley,
✿✿✿✿

one
✿✿✿

can
✿✿✿✿

first
✿✿✿✿✿✿

rewrite
✿✿✿✿✿✿✿✿

Equation
✿✿

25
✿✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿✿✿✿

definition
✿✿✿

of
✿✿

qs
✿✿✿✿✿✿✿✿

(Equation
✿✿✿

2)

✿✿

as:
✿

∂z

∂t
=− 1

1−λp

∂(Qs,x̂/b)

∂x
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(B1)

✿✿✿✿

Here,
✿✿✿✿✿

Qs,x̂
✿✿

is
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

downvalley
✿✿✿✿✿✿✿✿

direction,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿

always
✿✿✿✿✿✿

parallel
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

downchannel
✿✿✿✿✿✿✿✿

direction
✿✿✿✿✿

when
✿✿✿

the

✿✿✿✿✿

valley
✿✿✿

and
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿

widths
✿✿✿

are
✿✿✿

the
✿✿✿✿✿

same.
✿✿✿✿✿✿✿

Explicit
✿✿✿✿✿✿✿✿

inclusion
✿✿

of
✿✿✿✿✿✿

channel
✿✿✿✿✿✿

width,
✿✿

b,
✿✿✿✿✿✿✿

provides
✿✿

a
✿✿✿✿✿

space
✿✿

to
✿✿✿✿✿✿✿✿

substitute
✿✿✿

the
✿✿✿✿✿

valley
✿✿✿✿✿✿

width,5

✿✿

B,
✿✿

as
✿✿✿

the
✿✿✿✿✿

scale
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿

material
✿✿✿

that
✿✿✿✿✿

must
✿✿

fill
✿✿

or
✿✿✿

be
✿✿✿✿✿✿✿

emptied
✿✿✿✿

from
✿✿

a
✿✿✿✿

cross
✿✿✿✿✿✿✿

section
✿✿

in
✿✿✿✿

order
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

river
✿✿

to
✿✿✿✿✿✿✿

aggrade
✿✿

or

✿✿✿✿✿

incise:
✿

∂z

∂t
=− 1

1−λp

∂(Qs,x̂/B)

∂x

=− 1

1−λp

(

1

B

∂Qs,x̂

∂x
− Qs,x̂

B2

∂B

∂x

)

(B2)

✿✿✿✿

This
✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿✿✿

corresponds
✿✿✿

to
✿✿✿✿✿

Figure
✿✿✿✿✿

B1b.
✿✿✿

For
✿✿✿✿✿✿✿✿✿

simplicity,
✿✿✿✿

this
✿✿✿✿✿

figure
✿✿

is
✿✿✿✿✿

drawn
✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿

valley
✿✿✿✿✿✿

width,
✿✿✿✿✿✿✿

meaning
✿✿✿✿

that
✿✿✿

the10

✿✿✿✿✿✿

second
✿✿✿✿

term
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

right-hand
✿✿✿✿

side
✿✿✿✿✿✿✿

becomes
✿

0
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿

time
✿✿✿✿✿✿✿✿

required
✿✿

to
✿✿✿✿✿✿

aggrade
✿✿

or
✿✿✿✿✿✿

incise
✿

is
✿✿✿✿✿✿✿

linearly
✿✿✿✿✿✿

dilated
✿✿✿✿

from
✿✿✿✿

that

✿✿

in
✿✿✿✿✿✿✿

Equation
✿✿✿

B1
✿✿✿

by
✿✿✿

the
✿✿✿✿

ratio
✿✿✿✿

B/b.
✿

✿✿

In
✿✿✿✿✿

order
✿✿

to
✿✿✿✿✿

solve
✿✿✿✿

this
✿✿✿✿✿✿✿✿

equation,
✿✿✿

we
✿✿✿✿✿✿✿

require
✿✿

a
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿

that
✿✿✿✿✿

links
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿✿

discharge,
✿✿✿✿✿

Qs,x̂,
✿✿

to
✿✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge,
✿✿✿✿

Qs.
✿✿✿✿

Both
✿✿✿✿

are
✿✿✿✿✿✿✿✿

obviously
✿✿✿✿✿✿✿✿

identical
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿✿

and
✿✿✿✿✿

valley
✿✿✿

are
✿✿✿✿✿✿✿

aligned
✿✿✿✿✿✿

(Figure
✿✿✿✿✿✿✿

B1a,b).

✿✿

In
✿✿✿

the
✿✿✿✿

next
✿✿✿✿✿✿✿

section,
✿✿

we
✿✿✿✿✿✿✿✿✿✿✿

demonstrate
✿✿✿

that
✿✿✿✿✿✿✿✿✿✿

Qs,x̂ =Qs
✿✿✿

for
✿✿✿

any
✿✿✿✿✿✿✿✿

arbitrary
✿✿✿✿✿✿

channel
✿✿✿✿✿

path
✿✿✿

that
✿✿✿✿✿

starts
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

upstream
✿✿✿✿

end
✿✿

of
✿

a
✿✿✿✿✿✿

valley15

✿✿✿✿✿✿✿

segment
✿✿✿

and
✿✿✿✿

ends
✿✿

at
✿✿✿

its
✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿

end.
✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿

necessary
✿✿✿

for
✿✿✿

the
✿✿✿✿

final
✿✿✿

step
✿✿

to
✿✿✿✿✿✿✿

convert
✿✿✿✿✿✿✿✿

Equation
✿✿

B2
✿✿✿✿

into
✿✿✿✿✿✿✿✿

Equation
✿✿

1.
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B2
✿✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

equivalence
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

downstream
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿✿✿✿✿✿

discharge

✿✿✿

Our
✿✿✿✿✿

main
✿✿✿✿

goal
✿✿

is
✿✿✿

to
✿✿✿✿✿✿✿✿✿

understand
✿✿✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿✿

networks,
✿✿

as
✿✿✿✿✿✿✿✿

channels
✿✿✿✿✿✿✿

perform
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

geomorphic
✿✿✿✿✿

work
✿✿✿

but
✿✿✿✿✿✿✿

valleys

✿✿

are
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

geomorphic
✿✿✿✿✿

units
✿✿✿✿

that
✿✿✿✿✿✿

evolve
✿✿✿

and
✿✿✿✿✿✿✿✿✿

constitute
✿✿✿

the
✿✿✿✿✿✿✿

broader
✿✿✿✿✿✿✿✿✿

landscape.
✿✿✿

In
✿✿✿✿✿✿

alluvial
✿✿✿✿✿✿✿✿

systems,
✿✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿✿

geometries
✿✿✿

are
✿✿✿✿

not

✿✿✿✿✿✿

always
✿✿✿✿✿✿✿

identical
✿✿

to
✿✿✿✿✿

those
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿

networks
✿✿✿✿

that
✿✿✿✿✿✿

occupy
✿✿✿✿✿

them
✿✿✿✿✿✿

(Figure
✿✿✿✿

B1),
✿✿✿✿✿✿

though
✿✿✿✿

they
✿✿✿✿✿✿

follow
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿✿✿

network-scale

✿✿✿✿✿✿✿

structure
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

connectivity.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿

possibility
✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

non-alignment
✿✿✿✿✿✿✿

requires
✿✿

us
✿✿

to
✿✿✿✿✿✿✿✿

abandon
✿✿

the
✿✿✿✿✿✿✿✿✿✿

convenient
✿✿✿✿✿

choice
✿✿

of
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

channel-aligned5

✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿✿

system,
✿✿✿✿✿✿✿✿

typically
✿✿✿✿

used
✿✿✿✿✿

when
✿✿✿✿✿✿

solving
✿✿✿

for
✿✿✿✿✿

water
✿✿

or
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge,
✿✿✿✿

and
✿✿✿✿✿✿

instead
✿✿✿✿✿

define
✿✿✿

our
✿✿

x
✿✿✿

and
✿✿

y
✿✿✿✿✿✿✿✿✿✿

coordinates
✿✿

to

✿✿

be
✿✿✿✿✿

down-
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

cross-valley
✿✿✿✿✿✿✿✿✿✿

respectively
✿✿✿✿✿✿

(Figure
✿✿✿✿

B2).
✿

+

−

+

−
+

−

+

−

Figure B2.
✿✿✿✿✿✿✿✿✿

Down-valley
✿✿✿✿✿✿✿✿

discharge
✿✿

of
✿✿✿✿✿

water
✿✿✿

and
✿✿✿✿✿✿✿

sediment
✿✿

in
✿✿✿✿

each
✿✿✿✿

cross
✿✿✿✿✿✿

section
✿✿

is
✿✿✿✿✿

equal,
✿✿✿

and
✿✿✿✿✿

equals
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

down-channel
✿✿✿✿✿✿✿✿

discharge.
✿✿✿✿✿

Here,

✿✿✿

this
✿

is
✿✿✿✿✿✿✿✿✿✿✿

demonstrated
✿✿✿✿✿✿✿✿✿✿✿

geometrically,
✿✿✿

and
✿✿✿✿✿

results
✿✿✿✿

from
✿✿✿✿✿✿✿✿

discharge
✿✿✿

per
✿✿✿

unit
✿✿✿✿✿

width
✿✿✿✿✿✿✿✿

decreasing
✿✿

as
✿✿✿

the
✿✿✿✿

flow
✿✿✿✿✿✿✿

becomes
✿✿✿✿

more
✿✿✿✿✿✿

oblique
✿✿

to
✿✿✿

the
✿✿✿✿✿

valley

✿✿✿✿✿✿✿✿✿

cross-section
✿✿✿✿

line,
✿✿✿

but
✿✿

the
✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿✿✿✿

cross-valley
✿✿✿

line
✿✿✿✿✿✿✿

occupied
✿✿

by
✿✿✿✿

river
✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿

inversely
✿✿✿✿✿✿✿✿✿✿✿✿

proportionately.
✿✿✿✿

This
✿✿✿✿✿✿

remains

✿✿✿

true
✿✿✿

even
✿✿✿

for
✿✿✿✿✿✿✿

up-valley
✿✿✿✿

flow,
✿✿✿✿✿

which
✿✿✿✿

must
✿✿

be
✿✿✿✿✿✿

balanced
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿

flow
✿✿

for
✿✿✿✿✿

water
✿

to
✿✿

be
✿✿✿✿

able
✿✿

to
✿✿✿✿

move
✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿✿

upstream
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

downstream

✿✿✿

ends
✿✿

of
✿✿✿

the
✿✿✿✿✿

valley.
✿✿✿

The
✿✿✿✿✿

direct
✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿✿✿✿✿

discharge
✿✿

of
✿✿✿✿✿

water
✿✿

or
✿✿✿✿✿✿✿

sediment
✿✿✿

per
✿✿✿

unit
✿✿✿✿

width
✿✿

is
✿✿✿✿

given
✿✿✿

by
✿✿

q0.
✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿✿

schematic,
✿✿✿✿✿✿✿✿

discharge
✿

is
✿✿✿✿✿

given

✿✿

by
✿

a
✿✿✿

set
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

boxcar-function
✿✿✿✿✿✿✿✿✿✿✿

approximations
✿✿✿✿✿

(mean
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿

across
✿✿✿✿✿

width)
✿✿✿

for
✿✿

the
✿✿✿✿

sake
✿✿

of
✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿✿

illustration.
✿✿✿✿✿

While
✿✿✿

we
✿✿

use
✿✿

a
✿✿✿✿✿✿✿✿✿✿

single-thread

✿✿✿

river
✿✿✿

for
✿✿✿✿✿✿✿✿

simplicity,
✿✿✿

this
✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿

holds
✿✿✿

for
✿✿✿✿✿✿✿✿✿

partitioning
✿✿

of
✿✿✿

flow
✿✿✿

and
✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿

transport
✿✿✿✿✿

across
✿

a
✿✿✿✿✿✿✿✿✿✿

multi-thread
✿✿✿✿✿✿

channel.

✿✿✿

For
✿✿

an
✿✿✿✿✿

angle
✿✿

γ
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

down-channel
✿✿✿✿✿✿✿✿✿

directions,
✿✿✿✿✿

there
✿✿✿✿✿

exists
✿✿

a
✿✿✿✿✿✿✿

trade-off
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿✿✿

width

✿✿✿✿✿✿✿✿

occupying
✿✿✿✿

that
✿✿✿✿✿✿✿✿✿✿✿

cross-section
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

amount
✿✿

of
✿✿✿✿✿✿✿✿

sediment
✿✿✿

per
✿✿✿✿

unit
✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿✿

width
✿✿✿✿✿✿✿

crossing
✿✿✿

it.
✿✿✿✿✿✿✿✿

Sediment
✿✿✿✿✿✿✿✿

discharge
✿✿✿

per
✿✿✿✿

unit
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✿✿✿✿✿

width
✿

–
✿✿✿✿✿

which
✿✿✿

in
✿✿✿✿

map
✿✿✿✿✿

view
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿

a
✿✿✿✿✿✿

vector
✿

–
✿✿

is
✿✿✿✿✿✿✿

reduced
✿✿✿✿✿

when
✿✿

the
✿✿✿✿

flow
✿✿✿✿✿

does
✿✿✿

not
✿✿✿✿

align
✿✿✿✿✿✿✿

directly
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

valley.
✿

qs,x̂ = qs cosγ
✿✿✿✿✿✿✿✿✿✿✿

(B3)

✿✿✿

For
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿

angle
✿✿

γ,
✿✿✿

the
✿✿✿✿✿

width
✿✿

of
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿✿✿✿

cross-section
✿✿✿✿✿✿✿✿

increases:
✿

bx̂ =
b

cosγ
✿✿✿✿✿✿✿✿

(B4)

✿✿✿✿✿✿✿

Through
✿✿✿✿✿✿✿✿✿

continuity,
✿✿✿✿✿✿✿✿

Qs = qsb
✿✿✿✿✿✿✿✿

(Equation
✿✿✿

2).
✿✿✿✿

The
✿✿✿✿

cosγ
✿✿✿✿✿

terms
✿✿

in
✿✿✿

the
✿✿✿✿✿

above
✿✿✿✿

two
✿✿✿✿✿✿✿✿

equations
✿✿✿✿✿

cancel
✿✿✿✿

out,
✿✿✿✿

thus
✿✿✿✿✿✿✿✿✿✿✿✿

demonstrating
✿✿✿✿

that:5

Qs,x̂ = qs cosγ
b

cosγ
= qsb=Qs

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(B5)

✿

If
✿✿✿

the
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿

crosses
✿✿✿

the
✿✿✿✿✿✿

valley
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

times
✿✿✿✿✿✿

(Figure
✿✿✿✿

B2,
✿✿✿

top
✿✿✿

two
✿✿✿✿

and
✿✿✿✿✿✿

bottom
✿✿✿✿✿✿

plots),
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge
✿✿

is
✿✿✿✿✿✿

simply

✿✿

the
✿✿✿✿✿

sum
✿✿

of
✿✿✿✿

that
✿✿

in
✿✿✿✿✿

these
✿✿✿✿✿

cross
✿✿✿✿✿✿✿

sections,
✿✿✿✿

and
✿✿✿

this
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿

solved
✿✿✿

by
✿✿✿✿✿✿✿✿

summing
✿✿✿✿✿✿

across
✿✿

y,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

cross-valley
✿✿✿✿✿✿✿✿

direction.
✿✿✿✿✿✿✿✿✿

Similarly,

✿✿✿✿✿✿✿✿✿

partitioning
✿✿✿

of
✿✿✿✿

flow
✿✿✿

and
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿✿✿

branches
✿✿

of
✿

a
✿✿✿✿✿✿✿✿✿✿✿

multi-thread
✿✿✿✿✿✿

channel
✿✿✿✿

may
✿✿✿

be
✿✿✿✿✿✿✿✿

accounted
✿✿✿

for
✿✿✿

by
✿✿✿✿✿✿✿✿

summing
✿✿✿

qs,x̂
✿✿✿✿✿✿

across

✿✿

y.10

✿✿✿✿

This
✿✿✿✿✿✿✿✿

geometric
✿✿✿✿✿✿✿✿

argument
✿✿✿✿✿✿✿

contains
✿✿✿✿

one
✿✿✿✿✿✿✿✿✿✿✿

mathematical
✿✿✿✿✿✿

caveat.
✿✿✿✿✿✿

Where
✿✿

a
✿✿✿✿✿✿

channel
✿✿✿✿✿

flows
✿✿✿✿✿✿✿

directly
✿✿✿✿✿

across
✿✿✿

the
✿✿✿✿✿✿

valley
✿✿✿✿

(i.e.,
✿✿

in
✿✿✿

the
✿✿

y

✿✿✿✿✿✿✿✿

direction),
✿✿✿

the
✿✿✿✿✿✿✿

solution
✿✿✿

for
✿✿✿

Qs
✿✿

is
✿✿✿✿✿✿✿✿

undefined.
✿✿✿

We
✿✿✿✿✿✿✿

address
✿✿✿

this
✿✿✿✿✿✿✿

problem
✿✿✿

by
✿✿✿✿✿✿✿✿

assigning
✿

a
✿✿✿✿✿

value
✿✿

of
✿✿

0
✿✿

to
✿✿✿

this
✿✿✿✿✿✿✿✿

undefined
✿✿✿✿✿✿✿✿

solution,
✿✿✿✿✿

based

✿✿

on
✿✿✿

our
✿✿✿✿✿✿✿✿

physical
✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿✿

that
✿✿✿✿

flow
✿✿✿

that
✿✿

is
✿✿✿✿✿✿

neither
✿✿✿✿✿✿✿✿✿

up-valley
✿✿✿

nor
✿✿✿✿✿✿✿✿✿✿

down-valley
✿✿✿✿

will
✿✿✿✿✿✿✿

produce
✿✿✿

no
✿✿✿✿✿✿✿✿

discharge
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

along-valley

✿✿✿✿✿✿✿✿✿

orientation.
✿

✿✿

By
✿✿✿✿✿✿✿✿✿✿

considering
✿

a
✿✿✿✿✿✿✿✿✿

continuity
✿✿✿✿✿✿✿

solution
✿✿✿✿✿

rather
✿✿✿✿

than
✿

a
✿✿✿✿✿✿✿✿

geometric
✿✿✿✿

one,
✿✿

it
✿

is
✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿✿

reason
✿✿✿

that
✿✿✿

our
✿✿✿✿✿✿✿✿

treatment
✿✿

of
✿✿✿

the
✿✿✿✿✿

above
✿✿✿✿✿✿

caveat15

✿

is
✿✿✿✿✿✿✿

correct.
✿✿

In
✿

a
✿✿✿✿✿✿

system
✿✿

at
✿✿✿✿✿

steady
✿✿✿✿✿

state,
✿✿✿✿

each
✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿✿✿✿

cross-section
✿✿✿✿

must
✿✿✿✿✿✿✿

transmit
✿✿✿✿✿✿✿✿✿✿✿

downstream
✿✿

as
✿✿✿✿

much
✿✿✿✿✿✿✿✿✿

discharge
✿✿

as
✿

it
✿✿

is
✿✿✿✿✿✿✿

provided
✿✿✿

by

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

cross-section
✿✿✿✿✿✿✿✿✿✿✿

immediately
✿✿✿✿✿✿✿✿

upstream.
✿✿✿✿✿✿✿✿✿

Therefore,
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿

through
✿✿✿✿✿

every
✿✿✿✿✿✿✿✿✿✿

cross-section
✿✿✿✿✿

must
✿✿

be
✿✿✿✿✿

equal,
✿✿✿✿✿✿✿✿✿

regardless
✿✿

of
✿✿✿✿✿✿✿

channel

✿✿✿✿✿✿✿✿✿

orientation.
✿✿

If
✿✿✿✿

this
✿✿

is
✿✿✿

the
✿✿✿✿

case,
✿✿✿✿

then
✿✿

a
✿✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿

segment
✿✿✿✿✿✿✿

directed
✿✿

in
✿✿✿✿

line
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

valley
✿✿✿✿

must
✿✿✿✿✿✿✿

transmit
✿✿✿✿

just
✿✿

as
✿✿✿✿✿

much
✿✿✿✿✿

water
✿✿✿✿

and

✿✿✿✿✿✿✿

sediment
✿✿

as
✿✿

a
✿✿✿✿✿✿

channel
✿✿✿✿✿✿✿✿

segment
✿✿✿

that
✿✿

is
✿✿

at
✿✿

an
✿✿✿✿✿✿✿

oblique
✿✿✿✿✿

angle
✿✿

to
✿✿✿

the
✿✿✿✿✿

valley
✿✿✿✿

axis.
✿✿✿

As
✿

a
✿✿✿✿✿✿

result,
✿✿✿✿✿✿✿✿✿

Qs,x̂ ≡Qs.
✿

✿✿✿✿✿✿

Finally,
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿

sediment
✿✿✿

(or
✿✿✿✿

any)
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿

remains
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

path-independent,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿

discharge
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

path-dependent.
✿✿

A20

✿✿✿✿

more
✿✿✿✿✿✿✿

sinuous
✿✿✿✿

river
✿✿✿✿✿✿

course
✿✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿✿

channel
✿✿✿✿

slope
✿✿✿✿✿✿✿✿✿

(Equation
✿✿✿

5),
✿✿✿

and
✿✿✿✿

thus
✿✿✿

the
✿✿✿✿✿✿

driving
✿✿✿✿✿

stress
✿✿✿

for
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

transport.
✿✿✿✿✿✿✿✿✿

Therefore,

✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿✿

sediment
✿✿✿✿✿✿✿✿

discharge
✿✿✿✿✿✿✿✿✿

(Equations
✿✿✿

18
✿✿✿

and
✿✿✿

27
✿

)
✿✿✿

and
✿✿✿✿✿✿

valley
✿✿✿✿✿✿✿✿✿✿

long-profile
✿✿✿✿✿✿✿✿

evolution
✿✿✿✿✿✿✿✿✿

(Equations
✿✿

20
✿✿✿✿

and

✿✿✿

28)
✿✿✿✿✿✿✿

decrease
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿✿

sinuosity.

Appendix C:
✿✿✿✿✿✿✿✿✿✿✿✿

Directionality

✿✿✿

The
✿✿✿

full
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Meyer-Peter and Müller (1948)
✿✿✿✿✿✿✿✿

equation,
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿

directionality
✿✿✿✿✿✿✿✿

included,
✿✿

is:
✿

25

qs =











0 if |τ∗b | ≤ τ∗c

−sgn
(

dz
dx

)

φ
(

ρs−ρ
ρ

)1/2

g1/2 (|τ∗b | − τ∗c )
3/2

D3/2 if |τ∗b |> τ∗c
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(C1)
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✿✿✿✿

Here,
✿✿✿✿

sgn
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

signum
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿

(Equation
✿✿✿✿✿

C2),
✿✿✿

and
✿✿✿

all
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

variables
✿✿✿

are
✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿✿✿✿

Section
✿✿✿

2.1
✿✿✿✿

add
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

A.
✿✿✿✿

The

✿✿✿✿✿✿

signum
✿✿✿✿✿✿✿✿

function,
✿✿✿

sgn,
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

as:
✿

sgn([value]) =























−1 if [value] < 0,

0 if [value] = 0,

1 if [value] > 0.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(C2)

✿✿✿

One
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿

Equation
✿✿✿

C1
✿✿✿

and
✿✿✿✿✿✿✿✿

Equation
✿✿

3
✿✿

is
✿✿✿

that
✿✿✿✿✿✿✿✿

Equation
✿✿✿

C1
✿✿✿✿✿✿✿✿✿✿✿

incorporates
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

τ∗b ✿✿

as
✿✿✿

an

✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿

result
✿✿

of
✿✿✿✿✿✿✿

relaxing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assumption
✿✿✿

that
✿✿✿

the
✿✿✿✿

river
✿✿✿✿✿✿

slopes
✿✿✿✿✿✿✿✿✿✿

downwards
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

positive
✿✿

x
✿✿✿✿✿✿✿✿

direction.
✿

5

✿✿✿✿✿✿✿✿

Including
✿✿✿✿✿✿

explicit
✿✿✿✿✿✿✿✿✿✿✿✿

directionality
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

common
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿✿

representing
✿✿✿✿✿✿

fluvial
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

geomorphology
✿✿✿✿✿✿✿✿✿✿✿✿✿

mathematically.
✿✿✿✿✿✿

Slope,
✿✿✿

S,
✿✿

is

✿✿✿✿✿✿✿

typically
✿✿✿✿

used
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿

convenient
✿✿✿✿✿✿✿✿✿

shorthand
✿✿✿

for
✿✿✿✿

both
✿✿✿

its
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

and
✿✿✿✿✿✿✿✿✿

direction.
✿✿✿✿✿

While
✿✿✿

we
✿✿✿✿✿✿

follow
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

convention
✿✿

in
✿✿✿

the
✿✿✿✿✿

main

✿✿✿

text
✿✿

to
✿✿✿✿✿✿✿✿✿

streamline
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

explanation,
✿✿✿

we
✿✿✿✿✿✿

include
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

explanation
✿✿✿✿✿

here
✿✿✿✿✿✿

because
✿✿✿

we
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿✿

incorporated
✿✿✿

the
✿✿✿✿✿✿

signum
✿✿✿✿✿✿✿

function
✿✿✿

in
✿✿

to

✿✿

the
✿✿✿✿✿

more
✿✿✿✿✿✿✿

general
✿✿✿✿✿✿✿✿✿

derivation,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿

accounts
✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

directionality.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

inclusion
✿✿✿

has
✿✿✿✿✿✿✿

allowed
✿✿

us
✿✿✿

to:
✿✿✿

(1)
✿✿✿✿✿

relax
✿✿✿

the
✿✿✿✿✿✿✿✿✿

assumption
✿✿✿✿

that

✿✿

the
✿✿✿✿✿✿✿✿✿✿

downslope
✿✿✿✿✿✿✿

direction
✿✿

is
✿✿✿✿✿✿

known,
✿✿✿

(2)
✿✿✿✿✿

write
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿

model
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

self-consistently
✿✿✿✿✿

handle
✿✿✿✿✿✿✿

changes
✿✿

in
✿✿✿✿

flow
✿✿✿✿✿✿✿✿

direction,
✿✿✿✿

and
✿✿✿

(3)10

✿✿✿✿✿✿✿

separate
✿✿✿

the
✿✿✿✿

sign
✿✿✿

and
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

slope
✿✿

in
✿✿✿✿✿✿✿✿

equations
✿✿✿✿

that
✿✿✿✿✿✿

include
✿✿

a
✿✿✿✿✿

slope
✿✿✿✿

term
✿✿✿✿✿✿

raised
✿✿

to
✿

a
✿✿✿✿✿✿

power,
✿✿✿✿✿✿✿

thereby
✿✿✿✿✿✿✿✿✿

preventing
✿✿

a

✿✿✿✿✿✿✿

spurious
✿✿✿✿✿✿✿✿

imaginary
✿✿✿✿

part
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

solution.

Appendix D: Numerical solutions

D1 Threshold-shear-stress river

Equation 20 has the form of a nonlinear advection–diffusion equation that can be rewritten for a numerical implementation as:15

∂z

∂t
=

kQsSI

1−λp

kQsI

S(1−λp)
✿✿✿✿✿✿✿✿

∣

∣

∣

∣

dz

dx

∣

∣

∣

∣

1/6
[

7

6

|Q|
B

Q

B
✿✿

∂2z

∂x2
+

1

B

∂|Q|
∂x

∂Q

∂x
✿✿✿

∂z

∂x
− |Q|

B2

Q

B2
✿✿

∂B

∂x

∂z

∂x

]

+U (D1)

For arbitrary Q – x relationships and valley cross-sectional geometries (B(z(x,t))), and for solutions in which the valley

geometry or discharge change with time (B(z(x,t), t)), a numerical solution becomes necessary. The above form of Equation
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20 can be solved semi-implicitly as:

zi,l =− ∆t

4(∆x)2
kQs

I

S(1−λp)

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

2∆x

∣

∣

∣

∣

1/6

[

14

3

(

Qi,l +Qi,l+1

Bi,l(zi,l)+Bi,l+1(zi,l∗)

)

(zi+1,l+1 − 2zi,l+1 + zi−1,l+1)+

(

(Qi+1,l +Qi+1,l+1)− (Qi−1,l +Qi−1,l+1))

Bi,l(zi,l)+Bi,l+1(zi,l∗)

)

(zi+1,l+1 − zi−1,l+1)−

(Bi+1,l(zi+1,l)+Bi+1,l+1(zi+1,l∗))− (Bi−1,l(zi−1,l)+Bi−1,l+1(zi−1,l∗))

(Bi,l(zi,l)+Bi,l+1(zi,l∗))
2

(Qi,l +Qi,l+1)(zi+1,l+1 − zi−1,l+1)

]

+ zi,l+1 −U∆t (D2)

Here, i is the x index, l is the t index, and ∆x and ∆t are the spatial step and time step, respectively, assuming a uniform grid

in space. The subscript l∗ of z indicates that this term will be part of a Picard iteration: that is, it starts at l and approaches l+15

as multiple iterations of the solution provide sequentially better estimates of zl+1.

Time-averaged values of B and and Q are chosen to approximate conditions during the solution to the given time-step. Each

of these can be simplified if Q is known (as it typically is) or varies gradually in t and/or B varies gradually in both z and t.

Using notation that they are constant in time: This

zi,l =− ∆t

4(∆x)2
kQsI

S(1−λp)

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

2∆x

∣

∣

∣

∣

1/6

[

14

3

(

Qi

Bi

)

(zi+1,l+1 − 2zi,l+1 + zi−1,l+1)

+
Qi+1 −Qi−1

Bi
(zi+1,l+1 − zi−1,l+1)

− Bi+1 −Bi−1

B2
i

Qi (zi+1,l+1 − zi−1,l+1)

]

10

+ zi,l+1 −U∆t (D3)

✿✿✿✿

This
✿✿✿✿✿✿✿

equation may be further simplified by moving one of the (1/Bi) terms outside of the square brackets.

For an implicit solution, the terms inside the square brackets, plus zi,l+1, constitute the stencil. The slope to the 1/6 power

term outside of the stencil is a weak nonlinearity, and nonlinearities may also be introduced by changes in B with z and/or t.

The uplift term modifies a Dirichiclet boundary condition at the downstream end, and is analogous with base-level rise and/or15

fall.
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A Neumann boundary condition of sediment discharge input is used to set the slope at the upstream boundary using a

“ghost-point” approach. This is solved for a defined Qs by rearranging Equation 18 to:

S0 = sgn(Qq)

(

1

kQsI

∣

∣

∣

∣

Qs

Q

∣

∣

∣

∣

)6/7

(D4)

This
✿✿✿✿✿✿✿

equation demonstrates that slope increases with increasing sediment to water supply ratio, in agreement with the general

principle of Lane’s balance (Lane, 1955). For a domain that begins at 0,5

S0 = − dz

dx

∣

∣

∣

∣

x0

≈ z1 − z−1

2∆x
. (D5)

This equation can be rearranged to solve for the outside-domain elevation, z−1 in terms of values inside the domain, and both

the stencil and the right-hand-side column vector for the tridiagonal matrix solution can be updated accordingly.

D2 Valley-width-controlled river

The general discretization of Equation 28 for the long-profile evolution of a valley-width-confined transport-limited gravel-bed10

river is:

zi,l =−K0∆t

(

K1

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

2∆x

∣

∣

∣

∣

7/10
1

D
9/10
i

Q
3/5
i

b
3/5
i

− τ∗c

)1/2

D
1/2
i

[

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

2∆x

∣

∣

∣

∣

−3/10

(

3

5

D
1/10
i

Q
2/5
i b

3/5
i

(

Qi+1 −Qi−1

2∆x

)(

zi+1,l+1 − zi−1,l+1

2∆x

)

− 3

5

Q
3/5
i D

1/10
i

b
8/5
i

(

bi+1 − bi−1

2∆x

)(

zi+1,l+1 − zi−1,l+1

2∆x

)

+
7

10

Q
3/5
i D

1/10
i

b
3/5
i

(

zi+1,l+1 − 2zi,l+1 + zi−1,l+1

(∆x)2

)

− 9

10

Q
3/5
i

D
9/10
i b

3/5
i

(

Di+1 −Di−1

2∆x

)(

zi+1,l+1 − zi−1,l+1

2∆x

)

)

+

(

K1

∣

∣

∣

∣

zi+1,l∗ − zi−1,l∗

2∆x

∣

∣

∣

∣

7/10
1

D
9/10
i

Q
3/5
i

b
3/5
i

− τ∗c

)1/2
(

Di+1 −Di−1

2∆x

)

]

+ zi,l+1 −U∆t (D6)

Here, K0 and K1 are constants standing in for sets of sediment-transport-related terms in Equation 28. This relationship is

more nonlinear than that for the threshold-shear-stress river, above.15
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