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Abstract. Alluvial and transport-limited bedrock rivers constitute the majority of fluvial systems on Earth. Their long profiles

hold clues to their present state and past evolution. We currently possess first-principles-based governing equations for flow,

sediment transport, and channel morphodynamics in these systems, which we lack for detachment-limited bedrock rivers. Here

we formally couple these equations for transport-limited gravel-bed river long-profile evolution. The result is a new predictive

relationship whose functional form and parameters are grounded in theory and defined through experimental data. From this,5

we produce a power-law analytical solution and a finite-difference numerical solution to long-profile evolution. Steady-state

channel concavity and steepness are diagnostic of external drivers: concavity decreases with increasing uplift, and steepness

increases with increasing sediment-to-water supply ratio. Constraining free parameters explains common observations of river

form: To match observed channel concavities, gravel-sized sediments must weather and fine – typically rapidly – and valleys

must widen gradually. To match the empirical square-root width–discharge scaling in equilibrium-width gravel-bed rivers,10

downstream fining must occur. The ability to assign a cause to such observations is the direct result of a deductive approach to

developing equations for landscape evolution.

1 Introduction

Mountain and upland streams worldwide move clasts of gravel (>2 mm). In so doing, they consistently reshape their beds and

– unless they are fully bedrock-confined – their bars and banks as well (Parker, 1978; Brasington et al., 2000, 2003; Church,15

2006; Eke et al., 2014; Phillips and Jerolmack, 2016; Pfeiffer et al., 2017). Such rivers are responsible for carrying gravel

out of the mountains, and hence maintaining their topographic relief. They also can transport sediment across moderate-relief

continental surfaces and into sedimentary basins.

Geomorphologists commonly separate rivers into two broad categories based on the factor that limits their ability to change

their long profile: detachment-limited and transport-limited (Whipple and Tucker, 2002). Detachment-limited rivers incise at20

a rate that is set by the mechanics of river incision into bedrock. Transport-limited rivers can incise or aggrade at a rate that is

set by the divergence of sediment discharge through a river or valley cross-section.

Here we present a new derivation for transport-limited gravel-bed river long-profile evolution that is based on relationships

derived from theory, field work, and experimentation. We argue that developing this deductive approach – considering specific

process relationships – is essential to advancing fluvial geomorphology and landscape evolution.25
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Much past work has focused on an inductive “stream-power” based formulation for detachment-limited river incision, in

which erosion rate is proportional to drainage area (as a proxy for geomorphically-effective discharge) and channel slope (e.g.,

Gilbert, 1877; Howard, 1980; Howard and Kerby, 1983; Whipple and Tucker, 1999; Gasparini and Brandon, 2011; Harel

et al., 2016). This rule is intuitive, and may also be described in terms of the rate of power dissipation against the river bed.

However, such a generalized approach is agnostic to geomorphic processes. Efforts to understand the detailed mechanics of5

abrasion (Sklar and Dietrich, 1998, 2004; Johnson and Whipple, 2007) and quarrying (Dubinski and Wohl, 2013), the two main

mechanisms of bedrock river erosion (Whipple et al., 2000), have aided efforts to generate mechanistic models for bedrock

incision (Gasparini et al., 2006; Chatanantavet and Parker, 2009). However, the large number of measured parameters required

for these relationships limits their use in practice and/or requires simplifications, such that the basic stream-power law remains

the dominant model for detachment-limited rivers.10

Writing a set of equations to describe the long-profile evolution of transport-limited gravel-bed rivers, on the other hand is

aided by an extensive history of study that can be directly applied to models of long-profile evolution. This includes open-

channel flow and flow resistance that can be applied to sediment-covered channels (e.g., Nikuradse, 1933; Keulegan, 1938;

Limerinos, 1970; Aguirre-Pe and Fuentes, 1990; Parker, 1991; Clifford et al., 1992), bed-load transport (e.g., Shields, 1936;

Meyer-Peter and Müller, 1948; Gomez and Church, 1989; Parker et al., 1998; Wilcock and Crowe, 2003; Wong and Parker,15

2006; Bradley and Tucker, 2012; Furbish et al., 2012), and fluvial morphodynamics (e.g., Lane, 1953; Leopold and Maddock,

1953; Parker, 1978; Ikeda et al., 1988; Ashmore, 1991; Church, 2006; Pitlick et al., 2008; Eke et al., 2014; Bolla Pittaluga

et al., 2014; Blom et al., 2016; Phillips and Jerolmack, 2016; Pfeiffer et al., 2017; Blom et al., 2017). Critical to the present

work is the fact that the authors of these past studies have developed theory, tested it in both laboratory and field settings, and

empirically determined the values of the relevant coefficients (e.g., Wong and Parker, 2006). Furthermore, bedrock channels20

can act as transport-limited systems (Johnson et al., 2009), meaning that an approach to transport-limited conditions may

be able to describe the evolution of not only alluvial rivers, but rivers across much of Earth’s upland surface. Based on this

past research, we are able to write a simple and consistent set of equations for transport-limited gravel-bed river long-profile

evolution that eschews tunable parameters, common in stream-power approaches to river long-profile evolution (Howard and

Kerby, 1983; Whipple and Tucker, 1999, 2002) for those based on experimentation, measurements, and theory.25

Here we link sediment transport and river morphodynamics to develop equations to describe gravel-bed river long profiles

and, as a necessary extension, their tightly-coupled width evolution. Our approach, which allows channel widths to self-form,

modifies channel roughness as a function of flow depth and grain size, and allows for changes in sediment supply and base

level, is complementary to a recent set of relations for alluvial river long profile shapes developed by Blom et al. (2016) and

Blom et al. (2017), who explore equilibrium alluvial river long profile shapes in response to changes in grain size, slope, and30

width. Our approach and discussion are tailored to time-scales from decades to millions of years, a broad range that results

from the direct derivation of these equations and their parameter values from fundamental physics, observations, and laboratory

experiments.

Our approach is outlined as follows: First, we generate fully-coupled equations of gravel transport and fluvial morphody-

namics to describe how channel long profiles change. Second, we investigate how the governing equations for gravel-bed rivers35
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differ when we assume a channel with a self-formed equilibirum width versus when their width is externally set. Third, we de-

rive both analytical and numerical solutions for the case of an equilibrium-width channel, which is nearly ubiquitous in nature

(Phillips and Jerolmack, 2016). Fourth, we quantify the constants for stream-power-based bed-load transport from Whipple and

Tucker (2002) in a dimensionally-consistent form that is based on our derived equations and the sizes of storm footprints. Fifth,

we demonstrate that most gravel clasts in the landscape must be removed rapidly by weathering and/or downstream fining in5

order to produce rivers with concavities that lie within observed ranges. Sixth, we show that valley widening is required to

produce rivers with observed concavities. Seventh, we investigate both steady-state and transient effects of base-level change

(e.g., through tectonics) and sediment-to-water discharge ratio (via climate and/or tectonics) on river long profiles, and demon-

strate that the former changes concavity while the latter changes steepness. Eighth and finally, we derive that downstream

fining and channel concavity must combine to be the mechanistic cause of channel width scaling with the square root of wa-10

ter discharge (b∝Q0.5) (Lacey, 1930; Leopold and Maddock, 1953), at least in equilibrium-width (including near-threshold)

transport-limited gravel-bed rivers.

2 Derivations

We consider gravel-bed rivers to exist in one of two states: equilibrium-width and fixed-width. In the first, we assume that the

channel-forming (i.e. bankfull) shear stress on the bed remains a constant ratio of the critical shear stress that sets the threshold15

for initiation of sediment motion (after Parker, 1978). The channel width is set to maintain this ratio. In the second, the channel

and valley width are assumed to be identical in order to use the one-dimensional form of the sediment continuity equation,

called the Exner equation (e.g., Paola et al., 1992; Whipple and Tucker, 2002; Blom et al., 2016). A third and more general

case exists in which one externally imposes both channel and valley width. We do not address this case here, though it may be

solved using the provided equations.20

Our primary focus here is on equilibrium-width rivers, which are common throughout the world (Phillips and Jerolmack,

2016; Pfeiffer et al., 2017). Most maintain a bed shear stress that is slightly greater than that for the initiation of motion

(Parker, 1978; Phillips and Jerolmack, 2016), and this near-threshold condition is characteristic of both fully alluvial and

alluvial-mantled bedrock streams (Phillips and Jerolmack, 2016). Rivers in rapidly-uplifting mountain belts maintain a bed

shear stress that can be much greater than that for initiation of particle motion; this results in higher sediment discharges that25

help to balance the high inputs of sediment that result from rock uplift (Pfeiffer et al., 2017). Although these rivers do not exist

in a near-threshold state, they maintain an equilibrium width corresponding to their ratio of bed shear stress to critical shear

stress for initiation of motion that allows them to transport the sediment that they are supplied (Pfeiffer et al., 2017).

We split our derivations into sections on equilibrium-width (Section 2.1) and fixed-width (Section 2.2) rivers. We first

develop a sediment discharge relationship as a function of channel morphology. This portion of the derivation can apply to30

both alluvial (transport-limited) and bedrock (both transport- and detachment-limited) rivers. Simulating detachment-limited

rivers in which abrasion is the dominant mechanism of river incision requires sediment-flux-dependent erosion relationships

(Sklar and Dietrich, 2001; Whipple and Tucker, 2002; Sklar and Dietrich, 2004; Gasparini et al., 2006, 2007), which we do not
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Figure 1. Schematic block diagram of sediment transport through a reach of a transport-limited river. Variables are defined in the text and in

the “Notation” list at the end of the paper. The balance of sediment input, sediment output, and uplift determine whether the river bed at each

point downstream will rise, fall, or remain at a constant elevation.

discuss in detail here. We focus on alluvial and transport-limited bedrock cases by applying a statement of sediment volume

balance (the Exner equation) to develop a differential equation that describes alluvial river long-profile evolution over time.

The width closure for the equilibrium-width gravel-bed river produces a mathematically clean solution from which intuition

can be readily gained, and this is the focus of our discussion. The fixed-width case, which is characteristic of an engineered

gravel-bed river with rigid walls, is included for contrast with the equilibrium-width case and comparison with studies in which5

an externally-set width is assumed (e.g., Blom et al., 2016, 2017).

2.1 Equilibrium-width river

We derive an equation for the evolution of the long profile of an equilibrium-width gravel-bed river that lies within a valley

whose shape is arbitrary (though at least as wide as the channel) and may evolve through time. We first state the Exner equation

for conservation of bed-load sediment discharge (Qs) for a river with sinuosity (river length divided by valley length) S in a10
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valley of width B (Figure 1):

∂z

∂t
=− S

1−λp

(
1
B

∂Qs
∂x
− Qs
B2

∂B

∂x

)
(1)

Here, z is the elevation of the river bed surface, and is often also denoted as η in the alluvial river literature. Time is represented

by t. λp is porosity, for which 0.65 is a representative value (consistent with Beard and Weyl, 1973), and x is distance down-

stream. B is the width of the river valley at the current level of the river bed; it may change with changes in river bed elevation5

and/or as the valley widens or narrows over time. These terms scale the result: a higher porosity means that less sediment must

be eroded or deposited to produce the same change in bed elevation (i.e. aggradation or incision). A wider valley means that

more sediment must be moved to produce a given amount of aggradation or incision. As channel sinuosity increases, a longer

length of channel traverses each valley cross-section, thus reducing the fraction of the valley width, B, that each channel cross

section must fill or empty in order to cause the long profile to aggrade or incise. Here we approximate sinuosity as a term that10

may be averaged over length-scales and time-scales that correspond to channel migration and valley filling or incision, such

that we treat it as a constant that may change only gradually in space.

Following this definition of a continuity equation, we take several steps towards developing a simple formulation for the

total discharge of sediment through the river, Qs. Once we find the correct expression for this value, we insert it into Equation

1, which we then simplify into a final differential equation for transport-limited gravel-bed river long-profile evolution.15

Towards this eventual goal, our second step is to define bed-load sediment discharge per unit width, qs, where

qs =
Qs
b

(2)

Here, b is the width (breadth) of the river channel (b≤B). We compute bed-load transport using the Wong and Parker (2006)

formulation of the Meyer-Peter and Müller (1948) formula. This formula is semi-empirical: its core form is based on a balance

of shear stress along the bed driving particle motion and particle weight resisting that motion, but its power-law functional form20

as well as its coefficients and exponents are fit to the results of laboratory experiments. More fully theory-based formulations

are under development (Furbish et al., 2012; Fathel et al., 2015) and promise significant advances in our understanding and

prediction of sediment transport. Our choice to use the Meyer-Peter and Müller (1948) formulation stems from its longevity, its

simplicity, the fact that it has been well tested (Wong and Parker, 2006), and its compatibility with the channel-width closure

resulting from the work of Parker (1978). We stress that our general set of steps to deriving equations for long-profile evolution25

may be repeated for any sediment transport relation.

qs =





0 if |τ∗b | ≤ τ∗c
−sgn

( dz
dx

)
φ
(
ρs−ρ
ρ

)1/2

g1/2 (|τ∗b | − τ∗c )3/2D3/2 if |τ∗b |> τ∗c

(3)

Here, sgn is the signum function (Equation 4), φ= 3.97 (Wong and Parker, 2006) is an experimentally-derived sediment

transport rate coefficient. ρs is sediment density, ρ is water density, and g is acceleration due to gravity. |τ∗b | is the magnitude

of the dimensionless basal shear stress (defined in Equation 7, below), and is also called the “Shields stress” (after Shields,30

1936). τ∗c = 0.0495 (Wong and Parker, 2006) is the experimentally-derived dimensionless critical shear stress for initiation of
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particle motion, and is also called the “critical Shields stress”. D is a representative sediment grain (particle) size, which we

take to be the median gravel clast diameter. The signum function, sgn, is defined as:

sgn([value]) =





−1 if [value]< 0,

0 if [value] = 0,

1 if [value]> 0.

(4)

The explicit signum and dz/dx terms are included in the place of the commonly-used “slope” term to (1) relax the assumption

that the downslope direction is known, (2) allow the numerical model to self-consistently handle changes in flow direction,5

and (3) enable the sign and the magnitude of the slope to be separated in equations that include a slope term raised to a power,

which prevents a spurious imaginary part of the solution.

While the Meyer-Peter and Müller (1948) equation is strictly valid only for a single grain size class, it is often an acceptable

approximation for natural rivers with multiple size classes (Gomez and Church, 1989; Paola and Mohrig, 1996). Interactions

among multiple grain size classes may cause a condition of “equal mobility” in gravel-bed rivers (e.g., Parker et al., 1982):10

small grains become trapped inside pits between larger grains, while large grains rest on a carpet of smaller grains and thus are

exposed to more of the force of the flow. Even where significant deviations from equal mobility are observed, τ∗c for the 50th

percentile grain size (D50) remains constant (Komar, 1987; Komar and Shih, 1992). For the representative grain size (D) in

Eq. 3 (and Eq. 28, below), Wong and Parker (2006) used the mean size of uniform gravel. We suggest the median grain size

(D50) as representative of D for the mixed-size sediment of natural rivers due to its relative ease of standardized measurement15

(Wolman, 1954) and constant dimensionless critical shear stress for the initiation of motion (Komar, 1987; Komar and Shih,

1992; Paola and Mohrig, 1996). Regardless of this choice, D cancels out in our formulation for equilibrium-width gravel-bed

rivers, starting in Equation 19.

Basal shear stress induces a drag force on the grains and drives sediment transport. To compute this basal shear stress (τb),

we invoke the normal flow (steady, uniform) assumption, the wide-channel approximation (b� h, where h is the flow depth),20

and the small-angle formula (Figure 1, upper right inset):

τb =−ρghsinα

≈−ρgh dz
dx

(5)

Here, τb is defined to be positive in the downslope direction (i.e. positive in the direction of positively-directed sediment

transport) and α is the angle between the plane of the water surface and the horizontal. The water surface and bed surface25

slopes are assumed to be parallel (following the normal flow assumption). In order to self-consistently represent the direction

of sediment transport when τb is raised to a power, we separate the magnitude (absolute value) of shear stress from its direction

(signum function) by following a similar approach to that taken for Equation 3. Following the geomorphic convention of

writing the magnitude of slope as S = |dz/dx|, we can write:

|τb|= ρghS (6)30
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The drag force on sediment grains induced by basal shear stress is resisted by the submerged weight of the grains. The ratio

of these forces defines the Shields stress.

τ∗b =
τbD

2

(ρs− ρ)gD3
=

τb
(ρs− ρ)gD

(7)

In gravel-bed rivers, all of the shear stress is assumed to act as skin friction, meaning that it is directly imparted to the particles

instead of being partially absorbed as form drag on larger-scale features (e.g., bedforms). When this dimensionless stress is in5

excess of the critical Shields stress (τ∗c ), particles begin to move.

In equilibrium-width gravel-bed rivers, the dimensionless basal shear stress at the channel-forming discharge is assumed to

be maintained as a constant multiple of the dimensionless critical shear stress for initiation of sediment motion (Parker, 1978).

This proportionality may be equally represented by dimensional stresses; we use the dimensionless Shields stresses here for

consistency.10

τ∗b = (1 + ε)τ∗c (8)

Parker (1978) derived based on theory and channel geometry that ε≈ 0.2 for self-formed gravel-bed rivers with mobile banks

made of the same size gravel as the bed. This value has been found empirically and near-universally in rivers around the world

outside of rapidly tectonically-uplifting environments (Phillips and Jerolmack, 2016; Pfeiffer et al., 2017). (1 + ε)τ∗c is the

dimensionless shear stress experienced by the bed of the channel when the shear stress experienced by the banks is equal to15

τ∗c . The Parker (1978) near-threshold gravel-bed river solution states that any excess stress would cause the banks to erode and

the channel to widen, reducing the flow depth, and thereby decreasing τ∗b to (1 + ε)τ∗c .

The channel-forming discharge, also termed the geomorphically-effective discharge, is equivalent to the bankfull flow in

a self-formed gravel-bed river with gravel bars and banks. Blom et al. (2017) derived a method to differentiate the channel-

forming discharge, defined as that required to maintain the channel slope, from the most effective discharges to move different20

grain size classes of sediments. This is a significant distinction, but one that will not be necessary for our modeling approach, as

we consider only the discharges that are large enough to cause non-negligible geomorphic change. In a self-formed gravel-bed

river, a near-threshold state is maintained in which τ∗b = 1.2τ∗c (Parker, 1978). We use this ratio between applied and critical

shear shear stress to compute the numerical values for constants given in this derivation.

Substituting τ∗b in Equation 3 with its value given in Equation 8 reduces the complexity of Equation 3 by converting its25

excess shear stress terms (τ∗b − τ∗c ) into a constant (by a factor of ε) and requiring that only the case with a positive nonzero qs

be a plausible solution.

qs = φ

(
ρs− ρ
ρ

)1/2

g1/2ε3/2τ∗c
3/2D3/2

= kqsD
3/2 (9)

In an equilibrium-width gravel-bed river, qs is a function only of grain size. The value of kqs = 0.0157 is obtained from30

φ= 3.97 (Wong and Parker, 2006), ρs = 2650 kg m−3 (density of quartz), ρ = 1000 kg m−3 (density of water), g=9.807 m

s−2, ε= 0.2 (for a threshold-width channel Parker, 1978), and τ∗c = 0.0495 (Wong and Parker, 2006).

7

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-39
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 14 May 2018
c© Author(s) 2018. CC BY 4.0 License.



It may be counterintuitive that sediment discharge per unit width increases with grain size. This is a result of the equilibrium-

width argument. Channel geometry adjusts to maintain a constant excess basal shear stress regardless of grain size. However,

larger grains have a greater vertical dimension: many small grains rolling or sliding along the bed will displace less mass than

a single larger grain.

Equation 9 is physically valid only where b > D (see Equation 17, below) and is a good approximation only where b� h5

and h >D (see Equation 10, below). It seems likely that, at a flow width that is some small multiple of D, an equilibrium-

width gravel-bed channel would be replaced by a boulder cascade or similar system that is more dispersed. While we do not

investigate the exact point of this process-domain boundary, this forms a practical limit to the theory presented here.

For a self-formed gravel-bed channel, channel depth must satisfy Equation 8. Using the normal flow assumption, the depth–

slope product (Equation 6) defines basal shear stress. Inserting the basal shear stress into Equation 8 and rearranging to solve10

for h results in:

h=
ρs− ρ
ρ

(1 + ε)τ∗c
D

S
(10)

Next, we compute mean water flow velocity (ū) for a geomorphically-effective flow. We solve for mean flow velocity using

the empirically-derived Manning–Strickler formulation (after Parker, 1991) of the Chézy equation. We first write the Chézy

equation for steady, uniform flow,15

ū=−sgn(α)Cz
√
ghS. (11)

Here, Cz is a factor that relates flow velocity to shear velocity, and
√
ghS is the shear velocity for steady, uniform flow. We

then define Cz , following the Manning–Strickler formulation, as

Cz = 8.1
(
h

λr

)1/6

(12)

The coefficient of 8.1 is empirical (Parker, 1991). λr is the characteristic roughness length scale; this is often denoted as ks, but20

we reserve this notation for the channel steepness index in slope–area space (Section 5.2). The flow depth (h) in the numerator

and the roughness (λr) in the denominator indicate that flow velocity increases as more flow is far from the boundary, and

decreases with increasing boundary roughness. The gravel clasts themselves are the major source of roughness (and therefore

flow resistance) in a gravel-bed river. Clifford et al. (1992) related grain size to roughness length to obtain the approximation

that λr ≈ 6.8D, where D is the median gravel clast diameter. Carrying this forward, but using a standard “equals” sign,25

produces an expression for flow velocity that depends only on constants and basic geomorphic parameters.

ū=−sgn(α)5.9g1/2h
2/3S1/2

D1/6
(13)

The power-law form of the empirically-developed Manning–Strickler formulation closely approximates the more theoretical

logarithmic boundary layer approach of Keulegan (1938) for ratios of depth to roughness length that are characteristic of

gravel-bed rivers.30
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Water discharge per unit width can be computed by multiplying ū by h:

q = ūh=−sgn(α)5.9g1/2h
5/3S1/2

D1/6
(14)

Substituting Equation 10 into Equation 14 gives:

q = ūh=−sgn(α)5.9g1/2

(
ρs− ρ
ρ

)5/3

(1 + ε)5/3τ∗c
5/3D

3/2

S7/6
(15)

The final equation that we require to obtain b for Equation 2 is that for continuity. We approximate the channel cross-section5

as rectangular such that the magnitude of the channel-forming water discharge, |Q|, is equal to the product of the flow speed,

width, and depth.

|Q|= |ū|bh= |q|b (16)

Rearranging Equation 16 to solve for b, and then substituting Equation 15 for |q|, yields:

b= 0.17g−1/2

(
ρs− ρ
ρ

)−5/3

(1 + ε)−5/3τ∗c
−5/3 |Q|S7/6

D3/2
10

= kb
|Q|S7/6

D3/2
(17)

This is the width created by a channel that has a constant ratio of basal Shields stress to critical Shields stress. To focus attention

to the variables (Q, S, and D), we lump the constants into kb = 2.61.

Finally, channel width (b) and sediment discharge per unit width (qs, Equation 9) can be multiplied together to yield Qs. In

order to relate this product to the field, we include an additional term, the intermittency (I), which is the fraction of the total15

time that a river produces a geomorphically-effective flow (after Paola et al., 1992); smaller flows are considered to be unable

produce non-negligible geomorphic change. For example, if the annual flood on a self-formed gravel-bed river is a bankfull

event, and this event lasts for 3-4 days, I ≈ 0.01; such conditions are typical for rainfall-fed mid-latitude rivers.

We express this equation first in terms of magnitudes,

|Qs|= kQsI|Q|S7/6. (18)20

Then, returning directionality to the equation,

Qs =−kQsI|Q|
dz
dx

∣∣∣∣
dz
dx

∣∣∣∣
1/6

. (19)

In both of these equations,

kQs = kqskb

=
0.17φε3/2

(
ρs−ρ
ρ

)7/6

(1 + ε)5/3τ∗c
1/6

= 0.041. (20)25
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This demonstrates that in an equilibrium-width river, sediment discharge obeys a stream-power relationship (Paola et al., 1992;

Whipple and Tucker, 2002) in which the values of the coefficient and exponents are defined based on the above derivation.

Though it is beyond the scope of this work on transport-limited rivers, the derivation of transport capacity to this point may

be useful for studies of sediment-flux-dependent detachment-limited river incision (Gasparini et al., 2006, 2007; Hobley et al.,

2011).5

Hydraulic geometry adjustment in a threshold-width gravel-bed river results in sediment discharge being independent of

grain size. This is the result of a combination of depth to the 5/3 power in the Manning-style equation for water discharge

per unit width (Equation 15), the direct proportionality between flow depth and grain size in a threshold gravel-bed channel

(Equation 10), flow resistance proportional to grain size to the 1/6 power (Equation 13), and sediment discharge per unit width

being proportional to grain size to the 3/2 power (Equation 9, canceling D out of Equation 19). In more easily visualized10

terms, the constant excess shear stress ratio maintained by gravel-bed channels (Equation 8) forces channels with larger grains

to become narrower, increasing sediment discharge per unit width (qs) but maintaining the same overall sediment discharge

(Qs).

In this derivation, we hold τ∗c constant instead of making it a function of slope to the 1/4 power, as has been suggested

by Lamb et al. (2008) based on experimental and field data. We do so for three reasons. First, a constant Shields stress is15

appropriate for rivers with slopes that are / 0.03 (Lamb et al., 2008); this set comprises most rivers in the world. Second, the

assumption of an equilibrium-width river (Parker, 1978) results in the removal of the threshold associated with τ∗c from the

sediment-transport equation. Third, the remaining slope dependence is to the 1/24 power (Equation 20). Adding such a weak

slope dependence that may marginally improve accuracy would introduce a mathematically significant nonlinearity into the

system of equations, thereby impeding our goal of providing intuition into the behavior of gravel-bed rivers.20

We combine Equations 1 and 19 with a source/sink term for uplift (or subsidence) to produce a long-profile evolution

equation for a transport-limited gravel-bed river.

∂z

∂t
=

SkQsI
1−λp

[
7
6

1(
∂z
∂x

) ∂
2z

∂x2
+

1
Q

∂Q

∂x
− 1
B

∂B

∂x

]
|Q|
B

∂z

∂x

∣∣∣∣
dz
dx

∣∣∣∣
1/6

+U (21)

This has the general form of a nonlinear diffusion equation, with the nonlinearity being a combination of |dz/dx|1/6 and any

possible nonlinear relationships that arise in Q(x) and B(x). To the right of the equals sign, the leftmost term is a collection of25

constants. The brackets hold the gradients in slope, water discharge, and valley width. To the right of the brackets are the main

drivers: long-profile response rates increase with increasing discharge magnitude and slope, both of which speed sediment

transport, and response rates decrease as valley width increases, which creates more space that must be filled or emptied to

produce a change in river-bed elevation. This equation would simplify to the linear diffusional relationship derived by Paola

et al. (1992) if we (1) considered a constant bed roughness instead of including the Manning-Strickler-based flow resistance that30

introduces a depth dependence (Equation 13), (2) removed the effects of variable valley width, and (3) considered a uniform

water discharge.

Uplift and subsidence (U ) are not the only possible source and sink for material: Murphy et al. (2016) note the importance of

chemical weathering, which must remove mass from rock, and Shobe et al. (2016) investigate the importance of local colluvial

10
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input to rivers. We do not focus on either of these here, but note that the latter must also be related to valley width evolution,

which may produce enhanced hillslope sediment inputs, for example, through bank collapse and landsliding.

Equation 21 describes the long-profile evolution of an equilibrium-width gravel-bed alluvial river. The dependencies of the

variables in Equation 21 are as follows:

z =z(x,t) (22)5

Q=Q(x,t) (23)

B =B(z(x,t), t) (24)

U =U(x,t) (25)

The dependency of valley width, B, on elevation of the river bed, z, is the result of the fact that few valleys have vertical walls.

Mathematically, this adds an arbitrary dependence on z that limits the analytically-solvable forms of Equation 21.10

2.2 Fixed-width river

If the width of the river is externally known and is identical to the width of the valley, another solution is possible. To produce

this solution, we first simplify the Exner equation to its one-dimensional form for the case in which b=B by expanding

Qs = qsb and canceling out width:

∂z

∂t
=− 1

1−λp
∂qs
∂x

(26)15

Combining this form of the Exner equation with the Wong and Parker (2006) version of the Meyer-Peter and Müller (1948)

gravel transport formula, given in Equation 3, and assuming that τ∗b ≥ τ∗c , leads to the following differential equation for

gravel-bed river long-profile evolution:

dz
dt

=
1

1−λp
3
2
φ

(
ρs− ρ
ρ

)1/2

g1/2 (τ∗b − τ∗c )1/2D1/2

[
D

dτ∗b
dx

+ (τ∗b − τ∗c )
dD
dx

]
(27)

Here, no form of width closure is assumed. We maintain the assumption that τ∗c is a constant, meaning that this equation is valid20

for rivers of slopes that are / 0.03 (Lamb et al., 2008). This is done for both comparison with Equation 21 for equilibrium-width

rivers and because of the added mathematical complexity of including a weak nonlinearity.

Equation 27 hides discharge, width, slope, and an additional grain-size dependence within τ∗b . To include these explicitly, we

combine Equations 16 and 13 to solve for flow depth, h, and insert this depth into the Meyer-Peter and Müller (1948) sediment

transport formula (Equation 3) via the definition of dimensionless basal shear stress given in Equation 7:25

qs =





0 if |τ∗b | ≤ τ∗c

−sgn
( dz

dx

)
φ
(
ρs−ρ
ρ

)1/2

g1/2

(
0.345
g3/10

1
ρs−ρ
ρ

1
D9/10

(
|Q|
b

)3/5 ∣∣ ∂z
∂x

∣∣7/10− τ∗c
)3/2

D3/2 if |τ∗b |> τ∗c

(28)

In a natural river, qs is combined with an intermittency, I , which is equal to the fraction of the time that the discharge is

geomorphically effective; smaller discharges are assumed to carry negligible bed-load sediment (Paola et al., 1992).
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To formulate the differential equation for long-profile evolution of a transport-limited gravel-bed river of arbitrary width,

we combine our transport relationship (Equation 28) with our statement of volume balance (Equation 26). In the following

equation, we again consider only flows in which τ∗b > τ∗c ; to use it in practice, one would first run a check as to whether

τ∗b > τ∗c . If true, the bed would evolve as shown; if false, ∂z/∂t= 0.

∂z

∂t
=

3
2
φg1/2I

1−λp

(
ρs− ρ
ρ

)1/2
(

1
ρs−ρ
ρ

0.345
g3/10

∣∣∣∣
∂z

∂x

∣∣∣∣
7/10 1

D9/10

|Q|3/5
b3/5

− τ∗c

)1/2

D1/2

[
|Q|3/5D1/10

b3/5

∣∣∣∣
∂z

∂x

∣∣∣∣
7/10

(
3
5

1
Q

∂Q

∂x
− 3

5
1
b

∂b

∂x
+

7
10

1∣∣ ∂z
∂x

∣∣
∂2z

∂x2
− 9

10
1
D

∂D

∂x

)
5

+

(
1

ρs−ρ
ρ

0.345
g3/10

∣∣∣∣
∂z

∂x

∣∣∣∣
7/10 1

D9/10

|Q|3/5
b3/5

− τ∗c

)
∂D

∂x

]
+U (29)

When b is set such that Equation 8 for an equilibrium-width gravel-bed channel holds true and b=B, Equation 29 becomes

equal to Equation 21.

In addition to the variable space–time dependencies listed in Equations 22–25, we include the following two for Equation

29:10

b=b(z(x,t), t) =B(z(x,t), t) (30)

D =D(x,t) (31)

3 Analytical solutions

Two analytical solutions are presented here to help build intuition into the shape of gravel-bed river long profiles. The most

generally-applicable of these, for an equilibrium-width gravel-bed river that is neither aggrading nor incising in an area with no15

tectonic activity, is presented first. This solution is a power law that relates measurable hydrologic and landscape parameters to

river long-profile shape. The second analytical solution is for a fixed-width river that adds the additional assumtions that width,

discharge, and grain size are held constant. This solution provides an equilibrium transport slope.

3.1 Relationships between width, discharge, drainage area, and downstream distance

In order to analytically solve special cases of the provided equations for river channel long-profile evolution, we need a way20

to write Equation 21 in terms of only z and x, meaning that we should rewrite Q and B in terms of x. For any real river,

there is a measurable relationship between discharge and distance downstream. Based on observations (Hack, 1957; Costa and

O’Connor, 1995; Whipple and Tucker, 1999):

|Q|= kAQA
PAQ (32)

25

A= kxAx
PxA (33)
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Q in Equation 32 refers to the discharge of a geomorphically effective flood – in our case, this is one that applies a shear

stress τ∗b ≈ (1+ ε)τ∗c (Wolman and Miller, 1960; Parker, 1978; Sullivan and Lucas, 2007). PxA ≈ 4/7 in the inverse of Hack’s

exponent (Gray, 1961; Maritan et al., 1996; Birnir et al., 2001). Substituting A in Equation 32 with Equation 33 provides the

needed transfer function between Q and x:

|Q|= kAQk
PAQ
xA xPxAPAQ (34)5

= kxQx
PxQ (35)

Solutions to Equation 21 also depend on how valley width, B, changes with distance downstream. Following Snyder et al.

(2000) and Tomkin et al. (2003), who formulated a power-law relationship between valley width and drainage area, we propose

that B is also a power-law function of x:

B = kxBx
PxB (36)10

3.2 Equilibrium-width river

In order to develop an analytical solution to Equation 21, we first replace Q and B with Equations 32–36:

∂z

∂t
=

SkQsI
1−λp

[
7
6

1(
∂z
∂x

) ∂
2z

∂x2
+
PxQ
x
− PxB

x

]
kxQx

PxQ

kxBxPxB

(
∂z

∂x

)∣∣∣∣
dz
dx

∣∣∣∣
1/6

+U (37)

One useful analytical solution to this equation would be that for the steady-state case, in which

∂z

∂t
= 0. (38)15

However, no analytical solution exists for this form of the equation when tectonic uplift or subsidence is present. As a close

substitute, and one that can greatly simplify Equation 37, we choose the case in which the river is neither aggrading nor

incising. Its only vertical motion, therefore, is as it passively rides up or down on the Earth’s surface.

∂z

∂t
= U (39)

For the special case in which there is no uplift, equation 38 holds. It is important to note that this case implies a continuous20

externally-sourced sediment supply in order to maintain a fixed topography without relative uplift across the stream profile.

For such a no-uplift steady-state condition to persist over geologic time requires a constant input of sediment from upstream.

This in turn implies that, upstream of the segment of the river for which the analytical solution is calculated, some process

is responsible for this constant sediment supply. This could be a constant erosion rate (which can correspond to a constant

uplift rate in steady state), or perhaps continual supply of gravel-sized sediment from a source outside of the catchment (such25

as coarse sediment supply by ice caps and ice sheets that can carry gravel across land-surface-defined drainage divides). This

steady-state solution may also approximate conditions in a disequilibrium landscape with no tectonic uplift in which the gravel-

bed river long profile achieves an equilibrium state over time-scales that are much shorter than changes in sediment supply,

which in turn is likely derived from the long-term reduction in landscape relief.
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Applying Equation 39 to Equation 37 yields a second-order nonlinear ordinary differential equation that is analytically

solvable:

0 =
7
6

1( dz
dx

) d2z

dx2
+
PxQ−PxB

x
(40)

Its solution is a law, solved using of two known points (x0,z0) and (x1,z1) on a stream.

z = (z1− z0)

(
x(1+6(PxB−PxQ)/7)−x(1+6(PxB−PxQ)/7)

0

x
(1+6(PxB−PxQ)/7)
1 −x(1+6(PxB−PxQ)/7)

0

)
+ z0 (41)5

The tunable parameter in this power-law solution is PxB −PxQ. As PxB may be measured from the landscape, the value of

the fit should be able to be related directly to the exponent that describes the downstream increase in geomorphically effective

stream discharge.

3.3 Fixed-width river

In order to generate an analytical solution for a fixed-width gravel-bed river, starting from Equation 29, we assume that three10

key variables are constant: width (b=B), water discharge (Q), and grain size (D). As a result, q =Q/b is also constant. This

may be considered to be a short reach of an incised river with no significant tributaries or a portion of an engineered canal for

which discharge varies extremely gradually. Applying these assumptions, and assuming that τ∗b ≥ τ∗c , produces the following

nonlinear diffusion equation with a source/sink (uplift/subsidence) term:

∂z

∂t
=

21
20
φg1/2I

1−λp

(
ρs− ρ
ρ

)1/2

(qD)3/5
∣∣∣∣
∂z

∂x

∣∣∣∣
−3/10

15

(
1

ρs−ρ
ρ

0.345
g3/10

∣∣∣∣
∂z

∂x

∣∣∣∣
7/10

q3/5

D9/10
− τ∗c

)1/2
∂2z

∂x2
+U. (42)

Solving this equation for the case in which any vertical motion is provided by uplift or subsidence (Equation 39) is a general

case of a steady-state long profile (∂z/∂t= 0) with no uplift or subsidence (U = 0). Applying this assumption defines a channel

with a uniform slope, where (x0,z0) is a point along the channel long profile,

z = z0− 4.57g3/7

(
ρs− ρ
ρ

)10/7
τ∗c

10/7D9/7

q6/7
(x−x0). (43)20

Slope adjusts to the driving force required to maintain a uniform bed-load sediment discharge. Increasing submerged specific

gravity, (ρs− ρ)/ρ, and grain size, D, resist sediment motion by increasing the weight of the grains, therefore increasing the

equilibrium fluvial transport slope. Increasing discharge per unit width (q), on the other hand, decreases the equilibrium fluvial

transport slope, as this provides more power to move the bed-material sediment.

4 Numerical solutions25

To solve more general cases of Equations 21 and 29, we derive numerical solutions described in Appendix B. The solution to

Equation 21 (B3) is solved semi-implicitly by constructing equations with a diffusive component that can be solved directly
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in a tridiagonal matrix and a set of nonlinear terms that require Picard iteration. This solution method improves numerical

stability and reduces compute times. Python code to solve for the shapes of river long profiles is provided as a snapshot in the

Supporting Information and online at https://github.com/awickert/gravel-river-long-profile. This library includes functions to

analytically solve for the long profile shape as well (Equation 41), and with the proper inputs, this can match the analytical

solution (Figure 2).5

Figure 2. When dz/dt= U , the analytical solution for an equilibrium-width river (Equation 41) matches the numerical solution for an

equilibrium-width river (Equation 37). Equation 37 is derived from the general equation for an equilibrium-width river, Equation 21, to

include power-law downstream relationships for valley width and water discharge (Equations 32–36). Here, the slope at the upstream bound-

ary condition is S0 = 0.015; this is set to produce an input bed-load sediment discharge of Qs0 = 3.48× 10−4 m3 s−1. Water discharge,

Q= 1.43× 10−5x49/40 m3 s−1; drainage area, A= x7/4 m2, and valley width, B = 25x1/5 m.

5 Discussion

5.1 Parameterizing stream-power-based sediment discharge

Whipple and Tucker (2002, Equation 4) posited that sediment discharge should follow the power-law relationship

Qc =KtA
mtSnt , (44)

where Qc is the bed-load sediment transport capacity and is equal to Qs for transport-limited rivers, Kt is a coefficient, A10

is drainage area, and mt and nt are exponents. Howard and Kerby (1983) and Willgoose et al. (1991) present arguments for

mt = nt = 2 for sand-bed rivers, and Whipple and Tucker (2002) posit that nt = 1 for gravel-bed rivers.

The sediment-transport formulation that we present in Equation 19, when combined with the discharge to drainage area

relationship of Equation 32 and dropping references to directionality, can be rewritten in a way that is analogous to the above

equation for Qc:15

Qc = kQskAQIA
PAQS7/6 (45)
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This relationship provides a value for nt, based on experiments and theory (Meyer-Peter and Müller, 1948; Parker, 1978;

Wong and Parker, 2006). It also provides a likely range of values for mt based on empirical studies that relate drainage basin

area to geomorphically-effective discharge. Furthermore, it defines a starting point towards quantifying the free parameter

Kt: kQs = 0.041 is known (Equation 20), I relates to the variability of the hydrograph, and kAQ must relate to precipitation

patterns across the drainage basin. We therefore focus on understanding the power-law discharge–drainage-area scaling (kAQ5

and PAQ), as solving this would constrain or define the remaining constants in Equation 45 and allow us to relate slope and

drainage area, easily measured from digital elevation models (DEMs), directly to gravel transport capacity.

The appropriate value of PAQ depends on the flow of interest. For mean flow in a basin that experiences uniform precip-

itation, it is 1 (given catchment-wide water balance). For more rare flows, PAQ < 1. This is because smaller basins may be

completely covered by a storm event, leading to a catchment-wide response to a unit hydrograph, but larger basins may not10

have coherent storms across the whole basin, leading to attenuation of flood peaks and a decrease of the likelihood of a flood

that is as large a ratio of the mean flow as in the small basin (Aron and Miller, 1978; Snow and Slingerland, 1987; Milly and

Eagleson, 1988). Aron and Miller (1978) found that, for annual flood peaks in ∼50 streams in Pennsylvania and New Jersey

(USA), PAQ ≈ 0.7; such annual floods are generally also those that move gravel. Whipple and Tucker (1999) suggest values

of 0.7–1.0 for bedrock erosion, and Sólyom and Tucker (2004) find that 1/2≤ PAQ ≤ 1, which is in agreement with field data15

from Strahler (1964, p. 50). The lower limit from Sólyom and Tucker (2004) is for a single storm that whose duration is �
its travel time through the basin. O’Connor and Costa (2004) used the entire U.S. Geological Survey gauging history (Slack

and Landwehr, 1992) to compute that, on average, PAQ = 0.57 for 90th-percentile floods and PAQ = 0.53 for 99th-percentile

floods.

We normalize A to a characteristic footprint area of storms that occur across the catchment over the time scale of interest,20

AR, and assume that A≥AR for transport-limited gravel-bed rivers:

Qc = kQsIqRAR

(
A

AR

)PAQ
S7/6. (46)

This definition applies the power PAQ to a dimensionless ratio, thereby ensuring that the coefficients can be framed in terms of

rainfall. Here, we define a new coefficient that is the rainfall rate (i.e. flux) during a specific set of coincident rainfall events, qR;

kAQ = qRA
1−PAQ
R . For simplicity, we do not consider inefficiencies in rainfall-to-discharge conversion, though factors could25

be added to an analogous expression to represent evapotranspiration and/or groundwater loss to other catchments.

From this relationship, we can assign values to the following parameters from Whipple and Tucker (2002):

Kt = kQsIqRA
1−PAQ
R (47)

mt = PAQ (48)

nt = 7/6 (49)30

For example, picking a characteristic storm footprint of 100 km2, PAQ = 7/10 (after Aron and Miller, 1978), and qR = 1 cm

hr−1, we find that Kt ≈ 2× 10−5 m2/7 s−1, mt = 7/10, and nt = 7/6.
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5.2 Concave-up long profiles require weathering and/or downstream fining

Whipple and Tucker (2002) proposed that at steady state, sediment discharge should be proportional to uplift times contributing

area. We make the modification that contributing area must be raised to a power, 0≤ Pβ ≤ 1, that we term the “gravel per-

sistence exponent”. This describes the persistence of gravel-sized particles as they are weathered through hillslope processes

(Attal et al., 2015; Sklar et al., 2017) and/or fine downstream (Sternberg, 1875; Attal and Lavé, 2009; Dingle et al., 2017).5

If Pβ = 1, every piece of eroded material on the landscape becomes gravel that reaches the stream. Considering that fluvial

gravels have round edges and therefore cannot pack together without void space, this is topologically impossible. If Pβ = 0,

all material weathers on the hillslope before it reaches the stream. Intermediate values of Pβ indicate that some combination

of hillslope weathering and downstream fining reduce the gravel supply to a nonzero fraction of the initially-eroded material.

Qs = βAPβU. (50)10

By assuming that channels are transporting sediment at capacity and that most transport-limited gravel-bed rivers should have

gravel banks and exist at a threshold state, we can equate this to Equation 45 and rearrange the terms to create a slope–area

relationship:

S =
(

βU

kQskAQ

)6/7

A(6/7)(Pβ−PAQ). (51)

In order for a river at steady state to have a concave long profile, meaning that channel slope decreases as drainage area15

increases (as is observed in nature), the exponent to which drainage area (A) is raised must be negative. This slope–area

exponent, multiplied by −1, is defined as the concavity index, θ, (Whipple and Tucker, 1999):

S = ksA
−θ. (52)

Here, ks is the channel steepness index (Moglen and Bras, 1995; Sklar and Dietrich, 1998; Whipple, 2001).

In the case of Equation 51, θ =−(6/7)(Pβ −PAQ). If Pβ = 1, as assumed by Whipple and Tucker (2002, Equation 7b),20

and 0.5≤ PAQ / 0.7, as prior work has demonstrated (Aron and Miller, 1978; Snow and Slingerland, 1987; Whipple and

Tucker, 1999; O’Connor and Costa, 2004), then the exponent to which A is raised would become positive. Such a river would

be required to have a downstream-increasing slope in order to transport the sediment that it is supplied. This would result in a

convex steady-state long profile, which is not observed in nature.

These assumptions produce a convex long profile because as drainage area increases, sediment supply increases more25

strongly than water discharge. A straightforward solution is to adjust Pβ , which describes the attenuation rate of gravel-sized

particles with increasing drainage area. As drainage area increases, so does the mean transport distance of a particle that reaches

the corresponding point on the stream. As transport distance increases, so does the possibility of significant weathering on the

hillslope or breakdown in the channel (Attal and Lavé, 2009; Attal et al., 2015; Sklar et al., 2017; Dingle et al., 2017). This

combination of weathering and downstream fining can significantly reduce the amount of gravel-sized sediment supplied to a30

channel cross-section as drainage area increases.
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Figure 3. Steady-state numerical model outputs with steady uplift (base-level fall), subsidence (base-level rise), or neither. These numerical

solutions are formulated following Equation B3, which is a finite-difference discretization of the general equation for an equilibrium-width

transport-limited gravel-bed river, Equation 21. Power-law relationships describe downstream increases in water discharge (Q) and valley

width (B), following Equations 32–37. (a) Long profiles. (b) Slope-area plots: concavities increase with increasing subsidence. All channels

are plotted such that they are pinned to the same upstream point. Model input parameters other than uplift are the same as those given for the

long profiles displayed in Figure 2.

An approximate value for the gravel persistence exponent, Pβ , can be calculated by noting that in most natural rivers,

θ ≈ 0.45 to 0.5. Combining this with the observation that 0.5≤ PAQ / 0.7 leads to the result that Pβ / 0.2. This low gravel

persistence exponent implies rapid attenuation of gravel-sized sediment as drainage area increases: doubling of drainage basin

area would produce a <15% increase in the volume of gravel-sized sediment supplied to a channel cross-section. For break-

down of clasts within the fluvial system, this is qualitatively consistent with the observation by Dingle et al. (2017) that gravel5

is entirely absent from Himalayan rivers starting 10–40 km from where they enter the Ganga Plain, the point at which gravel

inputs terminate.

Figure 3 indicates that uplift can act to reduce the concavity in the downstream direction. This increases the fraction of the

eroded landscape that acts to produce gravel, which is intuitively consistent with the implicit reduced residence time of soils on

hillslopes, and presumably the shorter time available to weather into fine sediment (Attal et al., 2015). As increasing rates of10

uplift (or base-level fall) force the channel long profile to become straight (concavity θ = 0), the gravel persistence exponent,
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Pβ , increases to equal the drainage-area-to-discharge exponent, PAQ; constant channel slope requires a constant ratio of water

to sediment discharge.

The small value of Pβ significantly increases the critical drainage area for the transition between from a detachment-limited

channel to a transport-limited channel (Whipple and Tucker, 2002). This is because increasing drainage area does not increase

sediment supply as rapidly as assumed by (Whipple and Tucker, 2002). Therefore, a relatively larger portion of the landscape5

may be assumed to be detachment-limited than previously thought.

5.3 Concave-up long profiles require valley widening
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Figure 4. The slope–area concavity index defined in Equations 52 and 55 limits the range of possible powers for discharge–drainage-area and

width–distance relationships. The light gray field includes all concave long profile solutions, and the dark gray indicates where the concavity

index is in a commonly-observed range for rivers in the field, between 0.4 and 0.5. The hatched area on the left is below the theoretical lower

limit for the exponent that relates drainage area to water discharge, PAQ = 0.5, which exists in the limit where storm duration is much less

than the time for that water to pass through the catchment (Sólyom and Tucker, 2004). This example is given for an equilibrium-width river

for which dz/dt= U , which corresponds to the analytically-solvable case in Equations 40 and 41.

Equation 40 for a steady-state river with neither uplift nor subsidence can be rewritten with dz/dx replaced by S and PxQ

replaced by its constituent components PxA and PAQ:

7
6

1
S

dS
dx

=
PxB −PxAPAQ

x
(53)10

In order to solve this equation, we rely on the fact that at the upstream boundary condition, x= x0 and S = S0. Here, the slope

is set to prescribe the input sediment discharge, Qs0 , in a way that is independent of the water discharge (see Equation 19). We

solve Equation 53 to obtain a slope–distance relationship,

S = S0

(
x

x0

)(6/7)(PxB−PxAPAQ)

. (54)

19

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-39
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 14 May 2018
c© Author(s) 2018. CC BY 4.0 License.



We then substitute drainage area, A, for x based on an inversion of Equation 33:

S = S0
k

(6/7)(PAQ−PxB/PxA)
xA

x
(6/7)(PxB−PxAPAQ)
0

A(6/7)(PxB/PxA−PAQ) (55)

Based on Equation 55, the concavity index (Equation 52) is θ = (6/7)(PAQ−PxB/PxA), and the steepness index, ks is

equal to the terms forming the coefficient before the A term. For a characteristic inverse Hack’s exponent (PxA = 7/4) and

range of likely concavity index values, 0.4 / θ / 0.5, a tight bound exists on the possible values of PAQ and PxB (Figure 4).5

These values span the range of observed (Aron and Miller, 1978; Howard and Kerby, 1983; Whipple and Tucker, 1999) and

theoretical (Sólyom and Tucker, 2004) steady-state river concavity index values. Furthermore, this formulation demonstrates

that a downstream-widening valley can be necessary to produce rivers of observed concavity index values for common values

of PAQ. Insofar as valley widening can be recognized in the field, this observation can be used in areas of little to no uplift to

connect geomorphic form directly to the area scaling relationship for a dominant river discharge (Figure 4, dark gray diagonal10

region).

5.4 Signatures of change in sediment-to-water supply ratio (climate) and/or base level (tectonics)

One major aim of fluvial geomorphology is to interpret changing environmental forcing from the shape of river long profiles.

The two major controls on transport-limited river channel long-profile evolution are the ratio between water and sediment

supply (e.g., Parker et al., 1998), which drives the upstream flux boundary condition, and changes in the relative elevation15

between the river and its base-level, which drive the downstream boundary condition (Hilley and Strecker, 2005). The upstream

boundary condition may be driven by changes in climate (Tucker and Slingerland, 1997; Simpson and Castelltort, 2012);

tectonics, which by modifying topographic relief can influence sediment supply and grain size (Attal et al., 2015; Sklar et al.,

2017); or by other factors – including humans – that impact water and/or sediment delivery to rivers (e.g., Liébault and Piégay,

2001). The downstream boundary condition is defined as a relative change, and therefore may be driven by (1) rise and fall of20

the river outlet (Faulkner et al., 2016) and/or (2) uplift or subsidence of the solid Earth beneath the river (Paola et al., 1992;

Whipple and Tucker, 2002; Johnson et al., 2009).

Here we demonstrate that transport-limited gravel-bed rivers adjust their steepnesses to the sediment-to-water input ratio

(Figure 5d,e; associated response time in Figure 6d,e) and adjust their concavities to uplift rate (i.e. relative changes in base

level: Figures 3, 5b,c), and 6b,c) with an amplitude that is controlled in part by sediment supply. These distinct modes of25

response allow us to distinguish whether the upstream (flux) boundary condition or the downstream (base level) boundary

condition, or both, are controlling the river long-profile shape. Over short time scales, this river-profile adjustment could relate

to natural or anthropogenic changes in water and sediment supply, as well as changes in base level due to, for example, sea-

level change, glacial-isostatic adjustment, reservoir construction, or dam removal. Importantly, many such natural base-level

changes also change the horizontal position of the river outlet, and the overall river response is due to both horizontal and30

vertical changes in outlet position, even though we discuss only an idealized vertical base-level change here. Over geologic

time scales, such river adjustments may record climate and/or tectonics, and the equilibrium long-profile shape is a function of

the competition between tectonics – uplift adds material to the river profile and subsidence takes it away – and the incoming

20

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-39
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 14 May 2018
c© Author(s) 2018. CC BY 4.0 License.



a1 a2

b1 b2

c2c1

Instantaneous 100 m 
base-level fall

Sediment input discharge doubles
water discharge constant

Uplift rate step change from
0 mm yr-1 to 1 mm yr-1

Channel concavity decreases as uplift
rate increases; this change is

accentuated downstream.

Sudden base-level fall causes a transient
reduction in concavity; same initial

and final slope-area relationships

Channel steepness increases as the
sediment-to-water discharge

ratio increases

d2d1

Water discharge doubles;
sediment input discharge constant

Subsidence rate step change
from 0 mm yr-1 to 0.5 mm yr-1

Channel concavity increases as subsidence
rate increases; this change is

accentuated downstream.

Channel steepness decreases as the
sediment-to-water discharge

ratio decreases

e2e1

Figure 5. Transient long profiles from numerical model runs. Base model boundary conditions and parameters S0 = 0.01; 10 km≤ x≤ 100

km; Q= 1.43× 10−5x49/40 m3 s−1; A= x7/4 m2, B = 79.06x1/10 m. Each fine gray line represents 30,000 years with an intermittency

of I = 1 (i.e. constant geomorphically-effective discharge conditions). All base-level changes are purely vertical, and therefore can represent

steeply-dipping faults or sea-level change across a steep coastline. (a) An instantaneous 100 m base-level fall causes a transient response but

eventually produces the same channel long profile, albeit translated downward. (b) The onset of 1 mm yr−1 steady base-level fall (or tectonic

uplift) reduces channel concavity; this allows the river to transport the additional bed-derived sediment as it incises. (c) The onset of 0.5 mm

yr−1 steady base-level rise (or subsidence) increases concavity due to increasing deposition rates that are required to fill the accommodation

space created. (d) Doubling the input sediment discharge (Qs0 ), facilitated by adjusting S0 according to Equation 19, increases channel

steepness proportionally (Equation 55); this increase in steepness propagates downstream. (e) Doubling the water discharge (Q) decreases

channel steepness proportionally; this decrease in steepness propagates downstream more rapidly than that due to doubling sediment input

because an increase in water discharge increases sediment transport capacity.

sediment discharge that sets the pace at which the river can remove uplifting sediment or deposit sediment in a region of

subsidence.
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e-folding response time: 80 kyr

e-folding response time: 92 kyr

e-folding response time: 102 kyr

c

b

a

Instantaneous 100 m 
base-level fall

Sediment input
discharge doubles;

water discharge constant

Subsidence rate step change
from 0 mm yr-1 to 0.5 mm yr-1

d

e

e-folding response time: 62 kyr

Water discharge doubles;
sediment input

discharge constant

e-folding response time: 104 kyr

Uplift rate step change from
0 mm yr-1 to 1 mm yr-1

Figure 6. Transient response and response times to external forcings as quantified by the ratio of sediment input to output discharge. Each

dot on this figure corresponds to a gray line on the panels of Figure 5 bearing the same letter. (a) A sudden increase in sediment flux

following a sudden base-level fall event gradually decays until the sediment output is equal to the sediment input. (b) Sediment output rises

to accommodate the additional material supplied at the river bed by tectonic uplift. (c) Sediment output falls in response to subsidence,

which creates accommodation space for local storage in the subsiding valley floor. (d) Doubling input sediment discharge gradually leads

to channel steepening and an increase in output sediment discharge. (e) Doubling water discharge leads to a decrease in channel steepness

and an increase in output sediment discharge; the river responds faster than if sediment input were doubled (d) because increasing water

discharge drives a higher sediment transport capacity (Equation 19. We quantify these relationships with exponential decay functions and an

e-folding time scale, but note that this does not describe the changes in sediment discharge immediately following the perturbation.
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5.4.1 Sediment-to-water discharge ratio determines channel steepness

Changes in the input sediment-to-water discharge ratio, in the absence of changes in uplift rate (or equivalently, rate of base-

level change), determine the steepness index of a channel but do not affect its concavity (Equations 52 and 55). As the input

sediment-to-water discharge ratio increases, the channel steepens in order to transport the additional sediment load out of the

system at the rate that it is supplied (Figures 5d and 7). This increase in steepness and associated aggradation is sourced at the5

headwaters (i.e. the location of the sediment and water source) and propagates downstream. Conversely, a decrease in input

sediment-to-water discharge ratio causes a downstream-propagating decrease in steepness (Figure 5e). The time scale of slope

response can be approximated as an exponential decay fit to the ratio of output to input sediment discharge, which results from

a change in the amount of sediment stored within the system (Figure 6d,e). Changing the sediment-to-water discharge ratio

requires adjusting the virtual slope at the upstream boundary (S0). Thus, this steepening can also be viewed as the natural result10

of requiring the solution to the equation for the long profile to accommodate a steeper upstream gradient boundary condition.

k
s=18.8, Q

s/Q=0.0001

k
s=34.1, Q

s/Q=0.0002

k
s=48.3, Q

s/Q=0.0003

k
s=61.8, Q

s/Q=0.0004

a

b

Figure 7. As sediment-to-water discharge ratio increases, a steeper channel is required to mobilize the sediments, and as a result, the channel

steepness index (ks, Equation 52) increases.
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5.4.2 Tectonic uplift and subsidence modulate river concavity

With a constant incoming sediment-to-water discharge ratio, changes in the rate of base-level rise or fall, including those

caused by tectonic subsidence or uplift, modify the concavity but not the steepness of a transport-limited gravel-bed river long

profile (Figure 3). Rivers experiencing tectonic subsidence (base-level rise) will have more concave steady-state long profiles

than those with no uplift or subsidence, and those experiencing uplift (base-level fall) will have straighter (less concave) long5

profiles (Figure 3). This can be understood as follows: base-level rise "pushes" the bottom of the river profile upwards, bending

it, while base-level fall "pulls" the bottom of this curve downwards, straightening it.

The analytical solution (Equation 41) provides a long profile in the absence of uplift or subsidence (dz/dt= 0). This solution

follows the black line in Figure 3 and can be can be a useful reference case for against which to compare numerical solutions

of long-profile shape. Numerical solutions, on the other hand, demonstrate deviations in long-profile shape from this reference10

case in response to nonzero uplift and/or subsidence.

Even though water-to-sediment discharge ratio cannot on its own impact long-profile concavity, it can (through volume

balance) influence degree to which uplift (or subsidence) do. Uplift or subsidence add or remove material from the bed of the

river, and changes in concavity are the river’s response to redistribute sediment discharge to balance these local sources or sinks

of sediment. If the sediment discharge of the river is large compared to the amount of material moved by uplift or subsidence,15

then only a small adjustment of concavity is necessary to balance this source (uplift) or sink (subsidence) and maintain steady-

state topography. A river carrying very little sediment, however, will have to dramatically change its long-profile concavity in

order to reach steady state. Therefore, the steady-state long-profile concavity results from a competition between tectonics and

sediment discharge, in which a channel-concavity change is induced by a tectonic (or base-level) forcing, but is dampened by

increasing sediment input.20

In order to compare both sediment discharge and uplift as velocity scales, we define a characteristic alluvial response rate

as the incoming sediment discharge from all tributaries (Qsin ), divided by the area of the valley floor, which equals the mean

valley width (B̄) multiplied by the length of the study river segment (L). We term this alluvial response rate A, and it has units

of length per time:

A =
Qsin

LB̄
. (56)25

Deviations in concavity from a no-uplift state are amplified as the ratio of uplift rate to alluvial response rate increase.

We note that Qsin is only equal to the incoming sediment discharge at the upstream boundary condition, Qs0 , for the case in

which there are no tributaries. When implicitly considering tributary inputs of water and sediment, as we do for any nonzero

PxA and PxQ, the total sediment input can be calculated by imposing a steady-state assumption with no uplift, which requires

that the total sediment output must equal the sediment input. This can be calculated using Equation 19, with discharge at the30

downstream boundary known, and the slope at the downstream boundary calculated using Equation 54.

Dividing the tectonic uplift (or subsidence) rate (U ) by the alluvial response rate (A) provides a dimensionless number that

defines the relative importance of sediment discharge vs. tectonics in determining the concavity of transport-limited gravel-bed
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Figure 8. Concavity changes uplift (or subsidence) rates increase when compared to a characteristic alluvial response rate. (a) As in Figure

3, increasing uplift rates decrease the channel concavity index. Here we vary channel width, sediment discharge, and uplift, and demonstrate

how channel concavity change follows the ratio of uplift rate, the external driver, to the internal system response rate (Equation 57). We

disallow solutions that produce adverse slopes (these occur with high subsidence) or negative concavity indices (these occur with high uplift

rates), as the former break the assumptions of our equations and the latter are not observed steady-state forms in nature. Changes in the valley

width exponent, PxB , change the shape of this curve by changing the downstream distribution of valley widths and therefore altering the

local alluvial response rates; all calculations for both panels were performed using PxB = 1. (b) For a single mean valley width (177 m), we

compare concavity index against the ratio of sediment discharge to uplift rate. It is important to note that with no uplift, concavity is constant

at θ = 0.5 regardless of sediment discharge.

rivers.

U

A
=
LBU

Qs
(57)

As this ratio becomes more positive, concavity decreases; as it becomes more negative, the concavity decreases. Uplift (or

subsidence) rate determines the existence and sign of the concavity change, whereas the ratio of uplift rate to alluvial response
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rate determines the magnitude by which concavity deviates from a reference value for a river that experiences no uplift; in

Figure 8, this value is 0.5.

Rivers also exhibit a transient response to changes in base level at a rate that is proportional to the alluvial response rate, A

(Equation 56). A single sudden change in base level generates a diffusive wave of incision (Figure 5a1) or aggradation. This

wave propagates upstream until the channel achieves the same slope and concavity as it did prior to the incision or aggradation5

event (Figure 5a2), just at a different absolute elevation. A change in the rate of base-level change over time (through, for

example, a change in tectonic uplift or subsidence rate) propagates upstream and changes the concavity of the river (Figure

5b,c). We characterize the time scale of this response in terms of the ratio of the input vs. output sediment flux. When this ratio

is less than unity, the river valley is storing sediment, and when it is greater than unity, it is releasing sediment. This change in

sediment storage produces a disequilibrium change in the long-profile shape. The first stage of response to a perturbation does10

not follow a simple pattern, but following this, an exponential decay function can describe the approach to a new equilibrium

state. This allows us to define an e-folding response time that approximates the time required for a river system to respond to

a perturbation (Figure 6).

5.4.3 Feedbacks between sediment supply and tectonics

In the above section, we have just separated the effects of tectonics and climate as concavity and steepness responses, respec-15

tively. Our concavity changes derived from theory and their causes are generally consistent with the broad range of concavities

and causes thereof synthesized by Whipple (2004, p. 161), albeit for bedrock rivers. However, such observations do not preclude

a potential feedback by which increasing tectonic uplift rates may also increase gravel-sized sediment supply to the channel. In

other words, the simplified approach of “climate = water-to-sediment supply, tectonics = base level” may be over-simplified.

Section 5.2 indicates that as uplift rates increase, the landscape surrounding the channel system steepens and erodes (Roering20

et al., 1999). Our above solutions for changes in tectonic uplift rates (Figures 5b and 6b) require only that the channel excavates

the additional sediment from the bed of its valley. This does not include additional sediments from the surrounding hillslopes,

and steeper landscapes (often resulting from tectonic uplift) may be expected to produce a larger fraction of coarse material

through landsliding and a shorter residence for weathering in the shallow subsurface (Attal et al., 2015; Carretier et al., 2015;

Schildgen et al., 2016; Sklar et al., 2017). Changing gravel supply can dramatically alter river long profiles (Savi et al., 2016),25

and therefore an increase in tectonic uplift rate may lead to both an increase in channel steepness that is not related to climate

and a dampened decrease in concavity due to the increase in incoming bed-load sediment discharge that increases the alluvial

response rate, A (Figure 9). This tight channel–hillslope linkage challenges the paradigm that channel incision rates control

hillslope morphology and motivates future work into models of landscape evolution that track and conserve sediment (Shobe

et al., 2016; Sklar et al., 2017).30
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Qs=0.0005 m3 s -1; U=0 mm yr -1

Qs=0.001 m3 s -1; U=0 mm yr-1

Qs=0.0005 m 3 s -1; U=1 mm yr -1

Qs=0.001 m 3 s -1; U=1 mm yr -1

a

b

Figure 9. Covarying tectonic uplift (or base-level fall) and input sediment-to-water supply ratio produces a range of channel long profiles

(a) and steepness and concavity indices (b). It is likely that sediment supply increases with tectonic uplift, and therefore that the variables

controlling both the upstream and downstream boundary conditions may change at the same time.

5.5 Concavity and downstream fining required for b ∝ Q1/2

It has long been recognized that river channel width scales with discharge to the 1/2 power,

b∝Q1/2. (58)

This observation has been confirmed by a century of field studies (Lacey, 1930; Leopold and Maddock, 1953; Hey and Thorne,

1986; Singh, 2003). It has also been the subject of theoretical approaches to determine the static shape of a river channel5

(Savenije, 2003; Millar, 2005). Here we derive a physically-based reason for this observation for an equilibrium-width gravel-

bed river.

Equation 17 relates the width of an equilibrium-width gravel-bed river to discharge, slope, and grain size. Starting with Equa-

tion 17, a slope–area relationship of S = ksA
−θ (Equation 52), and the drainage-area–discharge relationship from Equation

32, one can write that10

b= kbk
7/6
s k

(7/6)θ/PAQ
AQ

Q1−(7/6)θ/PAQ

D3/2
. (59)
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This demonstrates that channel width is controlled by water discharge, channel concavity (through the concavity index) and

downstream fining. Assuming a tight bound on channel concavity, as is generally assumed and has been observed in bedrock

channels in the field (Duvall, 2004), though not universally (Whipple, 2004), two main drivers remain: water discharge and

downstream fining (Figure 10). Increasing water discharge can cause the channel to widen by requiring more space for the

water to flow. Decreasing bed-material grain size reduces the critical Shields stress for initiation of motion, and in order for5

an equilibrium-width channel to maintain a constant ratio of applied to critical Shields stress, the channel slope must become

gentler and/or the channel itself must become wider. Due to the aforementioned tight bounds on concavity index, the rate at

which the channel slope decreases is also fixed, and any additional channel response to downstream fining must occur through

channel widening.

Combining Equations 58 and 59 and simplifying the result produces a solution for a power that relates grain size to discharge,10

PDQ. This demonstrates how grain size must vary downstream in order to maintain the observed channel-width–discharge

relationship:

D ∝Q(3−7θ/PAQ)/9. (60)

Therefore,

PDQ =
3
9
− 7

9
θ

PAQ
. (61)15

The range of physically permissible values for the exponent that relates drainage area to discharge, PAQ, is 0.5–1.0 (Costa

and O’Connor, 1995; Sólyom and Tucker, 2004). Combining this range of values with a typical concavity index of θ = 0.5

produces bounds on the exponent in Equation 60 of −4/9≤ PBQ ≤−1/18: all plausible solutions require downstream fining

to occur in order to reproduce the observed channel-width–discharge relationship (Lacey, 1930).

Empirical observation

Mechanistic increase in
width with increasing discharge

Increase in width due to downstream

fining reducing critical Shields stress

Figure 10. In an equilibrium-width self-formed gravel-bed river channel, the common field observation that river channel width is propor-

tional to the square root of water discharge may be explained by a combination of the direct impact of river discharge on channel width and

by downstream fining of bed-material sediment.

Using standard values of θ = 0.5 andPAQ = 0.7 (for a one-year flood Aron and Miller, 1978), one finds that b∝Q1/6D−3/2.20

In this case, in order to recover the empirical b∝Q0.5 relationship, D must be proportional to Q−2/9. Testing this prediction
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against downstream fining data, requires that we convert discharge (Q) to distance downstream (x). While Sternberg (1875)

provides reasoning to expect an exponential decay of grain size with distance downstream from a source area, this may be

approximated by a power-law function. Multiplying PAQ = 0.7 by the inverse Hack’s exponent PxA = 7/4 (Equation 35)

produces the multipler to convert the grain-size–discharge relationship to a grain-size–downstream-distance relationship: D ∝
x0.27. We have performed no rigorous analysis of this result, but data from Gomez et al. (2001) from the braided Waipoa River5

in New Zealand are broadly consistent with this exponent.

6 Conclusions

We have produced equations to describe the long-profile evolution of transport-limited gravel-bed rivers by combining the

Exner equation for conservation of volume, the Wong and Parker (2006) modification of the (Meyer-Peter and Müller, 1948)

formulation for gravel transport, a Manning-style flow resistance equation (Parker, 1991), the normal-flow approximation for10

basal shear stress, the channel-width closure of (Parker, 1978), and the continuity equation. The key equation of this paper

is Equation 21, which captures the dynamics of a gravel-bed river whose bed shear stress is a multiple of the critical shear

stress for initiation of motion; such systems are ubiquitous in nature (Phillips and Jerolmack, 2016; Pfeiffer et al., 2017).

Furthermore, bedrock rivers can behave as transport-limited systems (Johnson et al., 2009), extending the applicability of our

approach. Transport-limited gravel-bed river long profiles evolve more rapidly when they are steeper and experience a greater15

water discharge, and more slowly when their valleys are wider, as this requires that they fill more space. We solve Equation

21 analytically for the special case in which dz/dt= U – that is, that the river neither incises nor aggrades and does not

respond to tectonic or base-level forcings. Both this solution and numerical solutions of steady-state rivers with constant uplift

(or subsidence) rates have a power-law form, meaning that a power law can be appropriate fit to transport-limited river long

profiles.20

Our derivation brings to light several significant relationships that may aid further efforts to understand river long profiles:

(1) The sediment transport formula for an equilibrium-width (τ∗b /τ
∗
c = constant) gravel-bed river has the stream-power form

proposed by (Whipple and Tucker, 2002). We quantify the values of its coefficient and exponents. The slope exponent is

7/6, and the other exponents relate to the scaling between drainage area and geomorphically effective discharge. (2) Gravel

supply to rivers scales with uplift rate times contributing drainage area to a power that is less than 1, significantly modifying25

the implicit assumption of Whipple and Tucker (2002) that all sediment generated by rock uplift must be transported as bed

load, and therefore moving the expected position of the transition between detachment- and transport-limited long profile

evolution farther downstream. (3) Maintaining the observed slope–area scaling often requires that valleys widen downstream.

(4) Changes in water-to-sediment discharge ratio affect channel steepness, while changes in the rate of base-level change affect

channel concavity. This separation may allow the impacts of climate and tectonics to be separately inferred from channel long30

profiles, but increases in uplift rate are often accompanied by increases in gravel-sized sediment supply via erosional processes

(e.g., landsliding) associated with increasing landscape relief. Tectonic uplift therefore can drive changes in long-profile shapes

by inducing both base-level fall (reducing concavity) and an increase in sediment supply (increasing steepness). (5) The long-
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observed relationship that channel width increases as the square root of discharge (Lacey, 1930; Leopold and Maddock, 1953)

can be explained through a combination of valley widening and downstream fining.

In this paper, we have derived a physics-based expression for the long-profile evolution of transport-limited gravel bed

rivers, whose parameters are determined by theory, experimentation, and field work. We hope that this approach to under-

standing gravel-bed rivers provides forward momentum towards a more formal treatment of sediment transport and fluvial5

morphodynamics in river long profile analysis and landscape evolution. Furthermore, by combining our derivation with other

observations, we predict relationships among valley morphology, coarse sediment production and evolution, and the power-law

scaling between drainage area and geomorphically effective floods. While rivers are complex, we hope that these connections

with broader pieces of the geomorphic puzzle can provide a path to build a better theory of fluvial system change and landscape

evolution.10

Code availability. The GitHub repository at https://github.com/awickert/gravel-river-long-profile contains the “grlp” Python module, which

holds functions for both the analytical and numerical solutions presented here.

Appendix A: Notation

z River bed elevation [m].

t Time [s].15

S Sinuosity (river length / valley length) [–].

λp Porosity (≈ 0.65) [–].

B Valley width [m].

L River segment length [m].

Qs Sediment discharge (=qsb) [m3 s−1]20

x Downstream distance [m].

qs Sediment discharge per unit channel width [m3 s−1].

b Channel width [m].

φ Sediment transport rate coefficient (=3.97) [–]

ρs Sediment density (=2650) [kg/m3]25

ρ Water density (=1000) [kg/m3]
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g Acceleration due to gravity (=9.807) [m/s2]

τ∗b Dimensionless bed shear stress (i.e. Shields stress) [–].

τ∗c Dimensionless critical shear stress (i.e. critical Shields stress) [–]

D Grain size

τb Bed shear stress [Pa].5

ε Excess bed shear stress at bankfull flow (≈ 0.2) [–]

α Angle of water surface and river bed w.r.t. horizontal [degrees or radians]

S slope of water surface and river bed (=tanα) [–]

h Flow depth [m]

ū Mean flow velocity [m s−1]10

Cz Chézy coefficient (for flow velocity) [–]

λr Roughness length scale (for flow resistance) [m]

q Water discharge per unit channel width (=ūh) [m2 s−1]

Q Water discharge (=qb) [m3 s−1]

I Intermittency: fraction of time at geomorphically-effective discharge [–]15

U Uplift (or subsidence) rate [m s−1]

Qc Sediment discharge capacity (= Qs if not supply-limited) [m3 s−1]

Kt Sediment discharge capacity power-law coefficient (=kQsqRA
1−PAQ
R ) [m3−2mt ]

mt Drainage area to sediment discharge capacity exponent (=PAQ) [m3 s−1]

nt Slope to sediment discharge capacity exponent (=7/6) [m3 s−1]20

qR Rainfall flux [m s−1]

AR Rainstorm footprint area [m s−1]

ks Channel steepness index (slope–area coefficient) [m2θ]

θ Channel concavity index (slope–area space) [–]
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A Alluvial response rate [m s−1]

kqs Specific sediment discharge coefficient (≈0.0157) [–]

kb Threshold river width coefficient (≈2.61) [–]

kQs Sediment discharge coefficient (= kqskb ≈0.041) [–]

A Drainage area [m2]5

kAQ Coefficient to relate drainage area to water discharge [m3−2PAQ s−1]

PAQ Power to relate drainage area to water discharge [–]

kxA Coefficient to relate distance downstream to drainage area [mPxA−1]

PxA Power to relate distance downstream to drainage area (Hack exponent) [–]

kxQ Coefficient to relate distance downstream to water discharge [m3−PxQ s−1]10

PxQ Power to relate distance downstream to water discharge [–]

kxB Coefficient to relate distance downstream to valley width [m1−PxB ]

PxB Power to relate distance downstream to valley width [–]

β Gravel production coefficient [m3−2Pβ s−1]

Pβ Gravel attenuation (weathering/fining) exponent [–]15

PDQ Power to relate bed-material grain size to water discharge [–]

z0 Bed elevation at x0 [m]

z1 Bed elevation at x1 [m]

x0 First (or only) known downstream distance for analytical solution [m]

x1 Second known downstream distance for analytical solution [m]20

S0 Upstream slope boundary condition; sets sediment input [–]

Qs0 Upstream boundary condition sediment input [m3 s−1]

Qsin Combined sediment input from all tributaries [m3 s−1]
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Appendix B: Numerical solutions

B1 Threshold-shear-stress river

Equation 21 has the form of a nonlinear advection–diffusion equation that can be rewritten for a numerical implementation as:

∂z

∂t
=
kQsSI
1−λp

∣∣∣∣
dz
dx

∣∣∣∣
1/6 [7

6
|Q|
B

∂2z

∂x2
+

1
B

∂|Q|
∂x

∂z

∂x
− |Q|
B2

∂B

∂x

∂z

∂x

]
+U (B1)

For arbitrary Q – x relationships and valley cross-sectional geometries (B(z(x,t))), and for solutions in which the valley5

geometry or discharge change with time (B(z(x,t), t)), a numerical solution becomes necessary. The above form of Equation

21 can be solved semi-implicitly as:

zi,l =− ∆t
4(∆x)2

kQsSI
1−λp

∣∣∣∣
zi+1,l∗ − zi−1,l∗

2∆x

∣∣∣∣
1/6

[
14
3

( |Q|i,l + |Q|i,l+1

Bi,l(zi,l) +Bi,l+1(zi,l∗)

)
(zi+1,l+1− 2zi,l+1 + zi−1,l+1)+

(
(|Q|i+1,l + |Q|i+1,l+1)− (|Q|i−1,l + |Q|i−1,l+1))

Bi,l(zi,l) +Bi,l+1(zi,l∗)

)
(zi+1,l+1− zi−1,l+1)−

(Bi+1,l(zi+1,l) +Bi+1,l+1(zi+1,l∗))− (Bi−1,l(zi−1,l) +Bi−1,l+1(zi−1,l∗))
(Bi,l(zi,l) +Bi,l+1(zi,l∗))2

(|Q|i,l + |Q|i,l+1)(zi+1,l+1− zi−1,l+1)

]

+ zi,l+1−U∆t (B2)

Here, i is the x index, l is the t index, and ∆x and ∆t are the spatial step and time step, respectively, assuming a uniform grid10

in space. The subscript l∗ of z indicates that this term will be part of a Picard iteration: that is, it starts at l and approaches l+1

as multiple iterations of the solution provide sequentially better estimates of zl+1.

Time-averaged values of B and and Q are chosen to approximate conditions during the solution to the given time-step. Each

of these can be simplified if Q is known (as it typically is) or varies gradually in t and/or B varies gradually in both z and t.

Using notation that they are constant in time:15

zi,l =− ∆t
4(∆x)2

kQsSI
1−λp

∣∣∣∣
zi+1,l∗ − zi−1,l∗

2∆x

∣∣∣∣
1/6

[
14
3

( |Q|i
Bi

)
(zi+1,l+1− 2zi,l+1 + zi−1,l+1)

+
|Q|i+1− |Q|i−1

Bi
(zi+1,l+1− zi−1,l+1)

− Bi+1−Bi−1

B2
i

|Q|i (zi+1,l+1− zi−1,l+1)

]

+ zi,l+1−U∆t (B3)
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This may be further simplified by moving one of the (1/Bi) terms outside of the square brackets.

For an implicit solution, the terms inside the square brackets, plus zi,l+1, constitute the stencil. The slope to the 1/6 power

term outside of the stencil is a weak nonlinearity, and nonlinearities may also be introduced by changes in B with z and/or t.

The uplift term modifies a Dirichiclet boundary condition at the downstream end, and is analogous with base-level rise and/or

fall.5

A Neumann boundary condition of sediment discharge input is used to set the slope at the upstream boundary using a

“ghost-point” approach. This is solved for a defined Qs by rearranging Equation 19 to:

S0 = sgn(Q)
(

1
kQsI

∣∣∣∣
Qs
Q

∣∣∣∣
)6/7

(B4)

This demonstrates that slope increases with increasing sediment to water supply ratio, in agreement with the general principle

of Lane’s balance (Lane, 1955). For a domain that begins at 0,10

S0 = − dz
dx

∣∣∣∣
x0

≈ z1− z−1

2∆x
. (B5)

This equation can be rearranged to solve for the outside-domain elevation, z−1 in terms of values inside the domain, and both

the stencil and the right-hand-side column vector for the tridiagonal matrix solution can be updated accordingly.

B2 Valley-width-controlled river

The general discretization of Equation 29 for the long-profile evolution of a valley-width-confined transport-limited gravel-bed15

river is:

zi,l =−K0∆t

(
K1

∣∣∣∣
zi+1,l∗ − zi−1,l∗

2∆x

∣∣∣∣
7/10 1

D
9/10
i

|Q|3/5i

b
3/5
i

− τ∗c

)1/2

D
1/2
i

[∣∣∣∣
zi+1,l∗ − zi−1,l∗

2∆x

∣∣∣∣
−3/10

(
3
5

D
1/10
i

|Q|2/5i b
3/5
i

( |Q|i+1− |Q|i−1

2∆x

)(
zi+1,l+1− zi−1,l+1

2∆x

)

− 3
5
|Q|3/5i D

1/10
i

b
8/5
i

(
bi+1− bi−1

2∆x

)(
zi+1,l+1− zi−1,l+1

2∆x

)

+
7
10
|Q|3/5i D

1/10
i

b
3/5
i

(
zi+1,l+1− 2zi,l+1 + zi−1,l+1

(∆x)2

)

− 9
10

|Q|3/5i

D
9/10
i b

3/5
i

(
Di+1−Di−1

2∆x

)(
zi+1,l+1− zi−1,l+1

2∆x

))

+

(
K1

∣∣∣∣
zi+1,l∗ − zi−1,l∗

2∆x

∣∣∣∣
7/10 1

D
9/10
i

|Q|3/5i

b
3/5
i

− τ∗c

)1/2(
Di+1−Di−1

2∆x

)]

+ zi,l+1−U∆t (B6)
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Here, K0 and K1 are constants standing in for sets of sediment-transport-related terms in Equation 29. This relationship is

more nonlinear than that for the threshold-shear-stress river, above.
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