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Abstract

Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to
be described in the wavenumber domain by a power law characteristic of scale-independence.
Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale-
dependence as a result of systematic variations of the underlying framework geology. The LRD of
framework geology, which influences island geomorphology and its response to storms and sea
level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted
along Padre Island National Seashore (PAIS), Texas, USA, reveal that the EMI apparent
conductivity (s,) signal and, by inference, the framework geology exhibits LRD at scales up to 10!
to 102 km. Our study demonstrates the utility of describing EMI ca and LiDAR spatial series by a
fractional auto-regressive integrated moving average (ARIMA) process that specifically models
LRD. This method offers a robust and compact way for quantifying the geological variations along
a barrier island shoreline using three statistical parameters (p,d,q). We discuss how ARIMA
{6;¢:6)-models that use a single parameter d provide a quantitative measure for determining free
and forced barrier island evolutionary behaviorl across different scales. Statistical analyses at
regional, intermediate, and local scales suggest that the geologic framework within an area of
paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst
nearshore, beach and dune in areas outside this region are scale-independent, implying that barrier
islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the

island to sea level rise.
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1 Introduction
Barrier island transgression in response to storms and sea-level rise depends to varying degrees on
pre-existing geologic features. The traditional assumption of uniform sand at depth and alongshore

cannot explain many of observations

ascertain the degree to which the island is either free (such as a large sand body) or forced (i.e.

constrained) by the underlying geology.\ Despite growing evidence that the underlying geological

structure, otherwise termed framework geology, of barrier islands influences nearshore, beach and

dune morphology (e.g., Belknap and Kraft, 1985; Houser, 2012; Lentz and Hapke, 2011; McNinch
2004; Riggs et al., 1995), this variable remains largely absent from shoreline change models that

treat the geology as being uniform alongshore (e.qg., Dai et al., 2015; Plant and Stockdon, 2012;

_Spatial variation in the |height and position |

of the dune line impacts the overall transgression of the island with sea-level rise_(Sallenger, 2000).
Transgression is accomplished largely through the transport and deposition of beach and dune
sediments to the backbarrier as washover deposits during storms (Houser, 2012; Morton and
Sallenger Jr., 2003; Stone et al., 2004).,

1.1 Framework geology controls on barrier island evolution

The dynamic geomorphology of a barrier island system is the result of a lengthy, complex and
ongoing history that is characterized by sea level changes and episodes of deposition and erosion
(e.g., Anderson et al., 2015; Belknap and Kraft, 1985; Rodriguez et al., 2001). Previous studies
demonstrate that the-underlying-geological-structure-otherwise-termed-framework-geology
framework geology ;-of barrier islands plays a considerable role in the evolution of these coastal
landscapes (Belknap and Kraft, 1985; Evans et al., 1985; Kraft et al., 1982; Riggs et al., 1995). For
example, antecedent structures such as paleo-channels, ravinement surfaces, offshore ridge and swale

bathymetry, and relict transgressive features (e.g., overwash deposits) have been suggested to
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influence barrier island geomorphology over a wide range of spatial scales (Hapke et al., 2010;
Hapke et al., 2016; Houser, 2012; Lentz and Hapke, 2011; McNinch, 2004). In this study, the term
“framework geology” is specifically defined as the topographic surface of incised valleys, paleo-
channels, and/or the depth to ravinement surface beneath the modern beach.

As noted by Hapke et al. (2013), the framework geology at the regional scale (> 30 km)
influences the geomorphology of an entire island. Of particular importance are the location and size
of glacial, fluvial, tidal, and/or inlet paleo-valleys and channels (Belknap and Kraft, 1985; Colman et
al., 1990; Demarest and Leatherman, 1985), and paleo-deltaic systems offshore or beneath the
modern barrier system (Coleman and Gagliano, 1964; Frazier, 1967; Miselis et al., 2014; Otvos and
Giardino, 2004; Twichell et al., 2013). At the regional scale, nonlinear hydrodynamic interactions
between incident wave energy and nearshore ridge and swale bathymetric features can generate
periodic alongshore variations in beach-dune morphology (e.g., Houser, 2012; McNinch, 2004)
that are superimposed on larger-scale topographic variations as a result of transport gradients
(Tebbens, et al., 2002). At the intermediate scale (10 - 30 km), feedbacks between geologic
features and relict sediments of the former littoral system (e.g., Honeycutt and Krantz, 2003;
Riggs et al., 1995; Rodriguez et al., 2001; Schwab et al., 2000) act as an important control on
dune formation (Houser et al., 2008) and offshore bathymetric features (e.g., Browder &
McNinch, 2006; Schwab et al., 2013). Framework geology at the local scale (< 10 km), induces
meso (~10* — 10? m) to micro-scale (< 1 m) sedimentological changes (e.g., Murray and Thieler,
2004; Schupp, et al., 2006), variations in the thickness of shoreface sediments (Brown and
Macon, 1977; Miselis and McNinch, 2006), and spatial variations in sediment transport across
the island (Houser and Mathew, 2011; Houser, 2012; Lentz and Hapke, 2011).

To date, most of what is known regarding barrier island framework geology is based on
studies done at either intermediate or local scales (e.g., Hapke et al., 2010; Lentz and Hapke, 2011;
McNinch, 2004) whereas few studies exist at the regional scale for United States coastlines (Hapke et
al., 2013). The current study focuses on barrier islands in the US and we do not consider work on
barrier islands in other regions. Assessments of framework geology at regional and intermediate
spatial scales for natural and anthropogenically-modified barrier islands are essential for improved
coastal management strategies and risk evaluation since these require a good understanding of the

connections between subsurface geology and surface morphology. For example, studies by Lentz and
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Hapke (2011); Lentz et al., (2013) at Fire Island, New York suggest that the short-term
effectiveness of engineered structures is likely influenced by the framework geology. Extending
their work, Hapke et al. (2016) identified distinct patterns of shoreline change that represent
different responses alongshore to oceanographic and geologic forcing. These authors applied
empirical orthogonal function (EOF) analysis to a time series of shoreline positions to better
understand the complex multi-scale relationships between framework geology and contemporary
morphodynamics. Gutierrez et al. (2015) used a Bayesian network to predict barrier island
geomorphic characteristics and argue that statistical models are useful for refining predictions of
locations where particular hazards may exist. These examples demonstrate the benefit of using
statistical models as quantitative tools for interpreting coastal processes at multiple spatial and

temporal scales (Hapke et al., 2016).

1.2 Statistical measures of coastline geomorphology
It has long been known that many aspects of landscapes exhibit similar statistical properties
regardless of the length or time scale over which observations are sampled (Burrough, 1981). An
often-cited example is the length L of a rugged coastline (Mandelbrot, 1967), which increases
without bound as the length G of the ruler used to measure it decreases, in rough accord with the
formula L(G) —~ G*~P, where D > 1 is termed the fractal dimension of the coastline. Andrle
(1996), however, has identified limitations of the self-similar coastline concept, suggesting that a
coastline may contain irregularities that are concentrated at certain characteristic length-scales
owing to local processes or structural controls. Recent evidence from South Padre Island, Texas
(Houser and Mathew, 2011), Fire Island, New York (Hapke et al., 2010), and Santa Rosa Island,
Florida (Houser et al., 2008) suggests that the geomorphology of barrier islands is affected to
varying degrees by the underlying framework geology and that this geology varies, often with
periodicities, over multiple length-scales. The self-similarity of the framework geology and its
impact on the geomorphology of these barrier islands was not examined explicitly.

Many lines of evidence suggest that geological formations in general are inherently rough
(i.e., heterogeneous) and contain multi-scale structure (Bailey and Smith, 2005; Everett and
Weiss, 2002; Radlinski et al., 1999; Schlager, 2004). Some of the underlying geological factors
that lead to self-similar terrain variations are reviewed by Xu et al. (1993). In essence, competing
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and complex morphodynamic processes, influenced by the underlying geological structure,
operate over different spatiotemporal scales, such that the actual terrain is the result of a complex
superposition of the various effects of these processes (see Lazarus et al., 2011). Although no
landscape is strictly self-similar on all scales, Xu et al. (1993) show that the fractal dimension, as
a global morphometric measure, captures multi-scale aspects of surface roughness that are not
evident in conventional local morphometric measures such as slope gradient and profile
curvature.

With respect to coastal landscapes, it has been suggested that barrier shorelines are scale
independent, such that the wavenumber spectrum of shoreline variation can be approximated by
a power law at alongshore scales from tens of meters to several kilometers (Lazarus et al., 2011;
Tebbens et al., 2002). However, recent findings by Houser et al. (2015) suggest that the beach-
dune morphology of barrier islands in Florida and Texas is scale-dependent and that
morphodynamic processes operating at swash (0-50 m) and surf-zone (< 1000 m) scales are
different than the processes operating at larger scales. In this context, scale-dependence implies
that a certain number of different processes are simultaneously operative, each process acting at
its own scale of influence, and it is the superposition of the effects of these multiple processes
that shapes the overall behavior and shoreline morphology. This means that shorelines may have
different patterns of irregularity alongshore with respect to barrier island geomorphology, which
has important implications for analyzing long-term shoreline retreat and island transgression.
Lazarus et al. (2011) point out that deviations from power law scaling at larger spatial scales
(tens of km) emphasizes the need for more studies that investigate large-scale shoreline change.
While coastal terrains might not satisfy the strict definition of self-similarity, it is reasonable to
expect them to exhibit long-range dependence (LRD). LRD pertains to signals in which the
correlation between observations decays like a power law with separation, i.e. much slower than
one would expect from independent observations or those that can be explained by a short-
memory process, such as an autoregressive-moving-average (ARMA) with small (p,q) (Beran,
1994; Doukhan et al., 2003).

1.3 Research objectives
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This study performed at Padre Island National Seashore (PAIS), Texas, USA utilizes
electromagnetic induction (EMI) apparent conductivity o, responses to provide insight into the
relation between spatial variations in framework geology and surface morphology. Two
alongshore EMI surveys at different spatial scales (100 km and 10 km) were conducted to test

the hypothesis that, like barrier island morphology, subsurface framework geology exhibits LRD

characteristic of scale-independence.] The oa responses, which are sensitive to parameters such as
porosity and mineral content, are regarded herein as a rough proxy for subsurface framework
geology (Weymer et al., 2015a). This assumes, of course, that alongshore variations in salinity
and water saturation, and other factors that shape the ca response, can be neglected to first order.
A corroborating 800 m ground-penetrating radar (GPR) survey, providing an important check on
the variability observed within the EMI signal, confirms the location of a previously identified
paleo-channel (Fisk, 1959) at ~ 5 — 10 m depth. The overall geophysical survey design allows for
a detailed evaluation of the long-range-dependent structure of the framework geology over a
range of length scales spanning several orders of magnitude. We explore the applicability of
autoregressive integrated moving-average (ARIMA) processes as statistical-models that describe
the statistical connections between EMI and Light Detection and Ranging (LiDAR) spatial data
series, This paper utilizesintroduces-the-use-of a generalized fractional ARIMA (0,d,0) process

(Hosking, 1981) that is specifically designed to model LRD for a given data series using a single

differencing non-integer parameter d. The parameter d can be used in the present context to

discriminate between forced, scale-dependent controls by the framework geology; i.e., stronger
LRD (d — 0.5) and free behavior that is scale-independent; i.e., weaker LRD (0 « d). In other
words, it is the particular statistical characteristics of the framework geology LRD at PAIS that
we are trying to ascertain from the EMI o, signal, with the suggestion that ca measurements can

be used similarly at other sites to reveal the hidden LRD characteristics of the framework

geology.

2 Background and regional setting
2.1 Utility of electromagnetic methods in coastal environments
Methods to ascertain the alongshore variability of framework geology, and to test long-range

dependence, are difficult to implement and can be costly. Cores provide detailed point-wise
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geologic data; however, they do not provide laterally continuous subsurface information (Jol et
al., 1996). Alternatively, geophysical techniques including seismic and GPR provide spatially
continuous stratigraphic information (e.g., Buynevich et al., 2004; Neal, 2004; Nummedal and
Swift, 1987; Tamura, 2012), but they are not ideally suited for LRD testing because the data
combine depth and lateral information at a single acquisition point. Moreover, GPR signals
attenuate rapidly in saltwater environments whereas seismic methods are labor-intensive and
cumbersome. On the other hand, terrain conductivity profiling is an easy-to-use alternative that
has been used in coastal environments to investigate fundamental questions involving;
instrument performance characteristics (Delefortrie et al., 2014; Weymer et al., 2016),
groundwater dynamics (Stewart, 1982; Fitterman and Stewart, 1986; Nobes, 1996; Swarzenski,
and Izbicki, 2009), and framework geology (Seijmonsbergen et al. 2004; Weymer et al. 2015).
Previous studies combining EMI with either GPR (Evans and Lizarralde, 2011) or coring
(Seijmonsbergen et al. 2004) demonstrate the validity of EM measurements as a means to
quantify alongshore variations in the framework geology of coastlines.

|In the alongshore direction, Seijmonsbergen et al. (2004) used a Geonics EM34™ terrain
conductivity meter ericrtecr—the-herizentdinalemadepdth-niereelsepartiopand-skatien

km-length-EMI-transeetwas-coHected-along-the-baekbeaech-crossing a former outlet of the Rhine

River, Netherlands to evaluate alongshore variations in subsurface lithology. The survey was

conducted in an area that was previously characterized by drilling and these data were used to

calibrate the cameasurements. The results from the study suggest that coastal sediments can be

classified according to 6, Signature and- Therange-of 6. valueswas-categorized-into-three-groups:

atthers-suggest-that high ca Values occur in areas where the underlying conductive layer is thick and

close to the surface. Although Seijmonsbergen et al. (2004) proposesuggest that EMI surveys are a
rapid, inexpensive method to investigate subsurface lithology they also acknowledge that variations
in salinity as a result of changing hydrologic conditions, storm activity and/or tidal influence

8
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confound the geological interpretation and should be investigated in further detail (see Weymer et al.,
2016)|

The challenge on many barrier islands and protected National Seashores is obtaining
permission for extracting drill cores to validate geophysical surveys. At PAIS, numerous areas
along the island are protected nesting sites for the endangered Kemp’s ridley sea turtle,
migratory birds, while other areas comprise historic archeological sites with restricted access.

Thus, coring is not allowed and only non-invasive techniques, such as EMI/GPR are permitted.

2.2 Regional setting

North Padre Island is part of a large arcuate barrier island system located along the Texas Gulf of
Mexico coastline-and-is-the-tongest-undeveloped-barrierisland-in-the-werld. The island is one of
ten national seashores in the United States and is protected and managed by the National Park
Service, a bureau of the Department of the Interior. PAIS is 129 km in length, and is an ideal
setting for performing EMI surveys because there is minimal cultural noise to interfere with the
oasignal, which as stated earlier we regard as a proxy for alongshore variations in framework
geology (Fig. 1). Additionally, there is high-resolution elevation data available from a 2009
aerial LIDAR survey. istane-is-wel-covered-by-high-reselution-aerial- LiDAR-data—The island is

not dissected by inlets or navigation channels (excluding Mansfield Channel separating north and

south Padre Island), or modified by engineered structures (e.g., groynes, jetties, etc.) that often
interfere with natural morphodyamic processes (see Talley et al., 2003). The above
characteristics make the study area an exceptional location for investigating the relationships

between large-scale framework geology and surface morphology.

W&MWWM%WM@%@MN}%S described in
Weymer et al. (2015a; [Fig. 3), locations of several paleo-channels were established by Fisk
(1959) based on 3,000 cores and severat-seismic surveys. More than 100 borings were drilled to

the top of the late Pleistocene surface (tens of m depth) providing sedimentological data for

interpreting the depth and extent of the various paleo-channels. These cores were extracted ~ 60
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years ago, but the remnant Pleistocene and Holocene fluvial/deltaic features described in Fisk's
study likely have not changed over decadal time scales.

Geologic interpretations based on the Fisk (1959) data suggest that the thickness of the
modern beach sands is ~ 2 — 3 m, and they are underlain by Holocene shoreface sands and muds
to a depth of ~ 10 — 15 m (Brown and Macon, 1977; Fisk, 1959). The Holocene deposits lie upon
a Pleistocene ravinement surface of fluvial-deltaic sands and muds and relict transgressive
features. A network of buried valleys and paleo-channels in the central segment of the island, as
interpreted by Fisk (1959), exhibits a dendritic, tributary pattern. The depths of the buried valleys
inferred from seismic surveys range from ~ 25 — 40 m (Brown and Macon, 1977). These
channels have been suggested to incise into the Pleistocene paleo-surface and became infilled
with sands from relict Pleistocene dunes and fluvial sediments reworked by alongshore currents
during the Holocene transgression (Weise and White, 1980). However, the location and cross-
sectional area of each valley and paleo-channel alongshore is not well-constrained. It is also
possible that other channels exist other than those identified by Fisk (1959).

As suggestedpresented in Weymer et al. (2015a), minima in the alongshore o, Signal are
spatially correlated with the locations of these previously identified geologic features. This

observation provides an impetus for using EMI to map the known, and any previously

unidentified, geologic features alongshore. FFheuebsewed—beae#d&m&merhelegyaneLether

3 Methods
A combination of geophysical, geomorphological, and statistical methods are used in this study

to quantify the relationships between framework geology and surface geomorphology at PAIS. A
description of the EMI, GPR, geomorphometry and statistical techniques is provided in the

following sections.
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3.1 Field EMI and GPR surveys

Profiles of EMI o4 responses typically are irregular and each datum represents a spatial averaging
of the bulk subsurface electrical conductivity ¢, which in turn is a function of a number of
physical properties (e.g., porosity, lithology, water content, salinity, etc.). The “sensor footprint”,
or subsurface volume over which the spatial averaging is performed, is dependent on the
separation between the TX — RX coils (1.21 m in this study), and the transmitter frequency. The
horizontal extent, or radius, of the footprint can be more or less than the step-size between
subsequent measurements along the profile. The sensor footprint determines the volume of
ground that contributes to o, at each acquisition point, and as will be discussed later, the radius
of the footprint has important implications for analyzing LRD. The footprint radius depends on
frequency and ground conductivity, but is likely to be of the same order as, but slightly larger
than, the intercoil spacing. Two different station-spacings were used to examine the correlation
structure of caas a function of spatial scale. An island-scale alongshore survey of ~ 100 km
length was performed using a 10 m station spacing (station spacing >> footprint radius) such that
each ca measurement was recorded over an independently sampled volume of ground.
Additionally, a sequence of ca readings was collected at 1 m spacing (station spacing < footprint
radius) over a profile length of 10 km within the Fisk (1959) paleo-channel region of the island.
This survey design allows for comparison of the long-range-dependent structure of the
framework geology over several orders of magnitude (10° — 10° m).

The 100-km-long alongshore EMI survey was performed during a series of three field
campaigns, resulting in a total of 21 (each of length ~ 4.5 km) segments that were collected
during October 9 — 12™, 2014, November 15 — 16", 2014, and March 28", 2015. The EMI o
profiles were stitched together by importing GPS coordinates from each measurement into
ArcGIS™ to create a single composite spatial data series. The positional accuracy recorded by a
TDS Recon PDA equipped with a Holux™ WAAS GPS module was found to be accurate within
~ 1.5 m. To reduce the effect of instrument drift caused by temperature, battery and other

systematic variations through the acquisition interval, a drift correction was applied to each

segment, the segments were then stitched together, following which a regional linear trend

removal was applied to the composite dataset. An additional 10 km survey was performed along
a segment of the same 100 km survey line in one day on March 29", 2015}tedete¥minmmhe&her
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The same multi-frequency GSSI Profiler EMP-400™ instrument was used for each
segment. All transects were located in the backbeach environment ~ 25 m inland from the mean
tide level (MTL). [This location was chosen to reduce the effect of changing groundwater

conditions in response to nonlinear tidal forcing_ (see Weymer et al., 2016), which may be
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be shown later, there is not a direct correlation between high tide and high ca values. Thus, we

assume the tidal influence on the EMI signal can be neglected over the spatial scales of interest
in the present study. Nevertheless, the duration and approximate tidal states of each survey was
documented in order to compare with the EMI signal-{see-\Weymeret-al—20616). Tidal data were
accessed from NOAA’s Tides and Currents database (NOAA, 2015b). Padre Island is microtidal
and the mean tidal range within the study area is 0.38 m (NOAA, 2015a). A tidal signature in EMI
signals may become more significant at other barrier islands with larger tidal ranges.

For all surveys, the EMI profiler was used in the same configuration and acquisition

settings as described in Weymer et al. (2016). a-vertical-dipole-orientation-with-TX-and-RX-coils

alighed-in-the(P-mode)-directionparallelto-the profile line (\Weymeret al-2016).The transect

locations were chosen to alse-avoid the large topographic variations (see Santos et al., 2009
fronting the foredune ridge that can reduce the efficiency of data acquisition and influence the
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EMI signal. -Measurements were made at a constant step-size to simplify the data analysis; for

example, ARIMA models require that data are taken at equal intervals (see Cimino et al., 1999).

6 Althouah-the-sensori anable-of recordina-three freguencie multaneod

Geophysical-Survey-Systems;2007)-w\We choose herein to focus on data collected at 3 kHz,

resulting in a depth of investigation (DOI) of ~ 3.5 — 6.4 m over the range of conductivities

found within the study area (Weymer et al., 2016; Table 1.). Because the depth of the modern
beach sands is ~ 2 — 3 m or greater (see Brown and Macon, 1977; page 56, Figure 15), variations
in the depth to shoreface sands and muds is assumed to be within the DOI of the profiler, which
may not be captured at the higher frequencies also recorded by the sensor (i.e., 10, and 15 kHz) .|

An 800 m GPR survey was performed on August 121, 2015 across one of the paleo-
channels previously identified Fisk (1959) located within the 10 km EMI survey for comparison
with the 6, measurements. We used a Sensors and Software PulseEKKO Pro® system for this
purpose. A survey grade GPS with a positional accuracy of 10 cm was used to match the
locations and measurements between the EMI/GPR surveys. Data were acquired in reflection
mode at a nominal frequency of 100 MHz with a standard antenna separation of 1 m and a step-
size of 0.5 m. The instrument settings resulted in a DOI of up to 15 m. Minimal processing was
applied to the data and includes a dewow filter and migration (0.08 m/ns), followed by AGC gain
(see Neal, 2004). Given-The theory and operational principles of GPR are discussed in many
places (e.g. Everett, 2013; Jol, 2008) and will not be reviewed here.

3.2 Geomorphometry

Topographic information was extracted from aerial LiDAR data that were collected by the Army
Corps of Engineers (USACE) in 2009 as part of the West Texas Aerial Survey project to assess
post-hurricane conditions of the beaches and barrier islands along the Texas coastline. This
dataset is the most recent publicly available LIiDAR survey of PAIS and it provides essentially
complete coverage of the island. With the exception of Hurricane Harvey, which made landfall
near Rockport, Texas as a Category 4 storm in late August, 2017, Padre Island has not been

impacted by a hurricane since July 2008, when Hurricane Dolly struck South Padre Island as a
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Category 1 storm (NOAA, 2015a). The timing of the LIDAR and EMI surveys in this study
precede the impacts of Hurricane Harvey, and it is assumed that the surface morphology across
the island at the spatial scales of interest (i.e., 10* — 10% km) did not change appreciably between
2009 and 2015.

LA 1-m resolution DEM was created from 2009 LiDAR point clouds- available from
NOAA’s Digital Coast (NOAA, 2017). The raw point cloud tiles were merged to produce a
combined point cloud of the island within the park boundaries of the-PAIS-Natienal-Seashere.
The point clouds were processed into a continuous DEM using the ordinary kriging algorithm in

SAGA GIS, which is freely available open-source software (www.saga-gis.org/); and subsequent C ted [WB16]: C d [A16]: What was the reason
""""""""""""""""" for not just downloading the 1-m DEM from NOAA? What was
terrain analysis was conducted using an automated approach involving the relative -relief (RR) gained by creating a DEM from point cloud?
H PP H H H Response: The main reason why we created a 1Im DEM is because it
metric (Wernette et al., 2016). Several morphometrics including beach width, dune height, and is muich more accurate (vertically and horizontally) than the 10m
. . . . . ducts. Additionally, ted to be able to pick out fi
island width were extracted from the DEM by averaging the RR values across window sizes of EL(;”;; in bea'c',?_ﬁni_iv:énwdanmf,,pﬁmg;y tﬁaﬁ Z'EOQUDET,T rwomd
) . . . allow. Essentially, we were able to generate a better DEM all around
21 mx 21 m, 23 mx 23 m, and 25 m x 25 m. The choice of window size is based on tacit a (spatial resolution, vertical accuracy, and horizontal accuracy).

priori knowledge and observations of the geomorphology in the study area. A detailed
description of the procedure for extracting each metric is provided in Wernette et al. (2016).
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as-naturat-terrain-irreglarities (\Wernette-et-al2016)-Each DEM series is paired with the ca
profile by matching the GPS coordinates (latitude and longitude) recorded in the field by the
EMI sensor. Cross-sectional glevationBEM ]profiles oriented perpendicular to the shoreline were
analyzed every 10 m (y-coordinate) along the EMI profile to match the same 10 m sampling
interval of the ca measurements. The terrain variations along each cross-shore profile are
summed to calculate beach and island volume based on the elevation thresholds mentioned
above. Dune volume is calculated by summing the pixel elevations starting at the dune toe,
traversing the dune crest, and k)nding at the dune heel. In total, six DEM morphometrics were
extracted as spatial data series to be paired with the EMI data, each having an identical sample

size (n = 9,694), which is sufficiently large for statistical ARIMA modeling.

3.3 Statistical methods

Although the procedures for generating the EMI and LiDAR datasets used in this study
are different, the intended goal is the same; to produce spatial data series that contain similar
numbers of observations for comparative analysis using a combination of signal processing and
statistical modeling techniques. The resulting signals comprising each data series represent the
spatial averaging of a geophysical (EMI) or geomorphological {(BEMjelevation variable that
contains information about the important processes-form relationships between subsurface
geologic features and island geomorphology that can be teased out by means of comparative
analysis (Weymer et al., 2015a). Because we are interested in evaluating these connections at
both small and large spatial scales, our first approach is to determine the autocorrelation function
and Hurst coefficient (self-similarity parameter) H and hence verify whether the data series are
characterized by short and/or long-range memory (Beran, 1992; Taqqu et al., 1995). LRD occurs
when the autocorrelation within a series, at large lags, tend to zero like a power function, and so
slowly that the sums diverge (Doukhan et al., 2003). LRD is often observed in natural time series
and is closely related to self-similarity, which is a special type of LRD.

[The degree of LRD is related to the scaling exponent, H of a self-similar process, where <

increasing H in the range 0.5 < H < 1.0 indicates an increasing tendency towards such an effect
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(Tagqu, 2003). Large correlations at small lags can easily be detected by models with short-
memory (e.g., ARMA, Markov processes) (Beran, 1994). Conversely, when correlations at large
lags slowly tend to zero like a power function, the data contain long-memory effects and either
fractional Gaussian noise (fGn), or ARIMA models may be suitable (Taqqu et al., 1995). The
R/S statistic is the quotient of the range of values in a data series and the standard deviation
(Beran, 1992, 1994; Hurst, 1951; Mandelbrot and Taqqu, 1979). When plotted on a log/log plot,
the resulting slope of the best-fit line gives an estimate of H, which is useful as a diagnostic tool

for estimating the degree of LRD (see Beran, 1994). Fhe-degree of LRD canbe characterized by

kS i

)= il

S\-}"'nl o <
+on %
no=E ES

where-Sp/n-is-the-mean-ofthe-sample-It has been suggested that R/S tends to give biased <
estimates of H, too low for H > 0.72 and too high for H < 0.72 (Bassingthwaigthe and Raymond,

1994), which was later confirmed by Malamud and Turcotte (1999), Empirical trend corrections

Formatted: Default, Left, Indent: First line: 0.5", Space
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to the estimates of H can be made by graphical interpolation, but are not applied here because of
how the regression is done. The R/S analysis in this study was performed using signal analysis
software AutoSignal™ to identify whether a given signal is distinguishable from a random,
white noise process and, if so, whether the given signal contains LRD. The H value is calculated
by an inverse variance-weighted linear least-squares curve fit using the logarithms of the R/S and
the number of observations, which provides greater accuracy than other programs that compute
the Hurst coefficient.

Two of the simplest statistical time series models that can account for LRD are fGn and
ARIMA. In the former case, fGn and its “parent” fractional Brownian motion (fBm) are used to
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evaluate stationary and nonstationary fractal signals, respectively (see Eke et al., 2000; Everett
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and Weiss, 2002). Both fGn and fBm are governed by two parameters: variance ¢°; and the
scaling parameter, H (Eke et al., 2000). A more comprehensive class of time series models that
has similar capability to detect long-range structure is ARIMA. Because fGn and fBm models
have only two parameters, it is not possible to model the short-range components. Additional
parameters in ARIMA models are designed to handle the short-range component of the signal, as
discussed by Taqqu et al. (1995) and others. Because the EMI data series presumably contain
both short-range and long-range effects, we chose to use ARIMA as the analyzing technique.
ARIMA models are used across a wide range of disciplines_in geoscience and have broad
applicability for understanding the statistical structure of a given data series as it is related to
some physical phenomenon (see Beran, 1992, 1994; Box and Jenkins, 1970; Cimino et al., 1999;
Granger and Joyeux, 1980; Hosking, 1981; Taqqu et al., 1995). For example, Cimino et al.

(1999) apply R/S analysis, ARIMA, and Neural Network analysis to different geological data

sets including; tree ring data, Sr isotope data of Phanerozoic seawater samples, and El Nifio

[ Formatted: Font: Not Bold, Not Italic

phenomenon. The authors show that -their statistical approach enables 1) recognition of

gualitative changes within a given dataset, 2) evaluation of the scale (in)dependency of

increments, 3) characterization of random processes that describe the evolution of the data, and

4) recognition of cycles embedded within the data series. In the soil sciences, Alemi et al. (1988)

[ Formatted: Font color: Auto

use ARIMA and Kriging to model the spatial variation of clay-cover thickness of a 78 km? area

[ Formatted: Superscript

in northeast Iran and demonstrate that ARIMA modeling can adequately describe the nature of

the spatial variations. ARIMA models have also been used to model periodicity of major

extinction events in the geologic past (Kitchell and Pena, 1984).

[ Formatted: Font color: Auto

In all these studies, tFhe statistical ARIMA model of a given data series is defined by

three terms (p,d,q), where p and q indicate the order of the autoregressive (AR) and moving
average (MA) components, respectively and d represents a differencing, or integration term (1)
that is related to LRD. The AR element, p, represents the effects of adjacent observations and the
MA element, q, represents the effects on the process of nearby random shocks (Cimino et al.,
1999; De Jong and Penzer, 1998). However, in the present study our series are reversible spatial
series that can be generated, and are identical, with either forward or backward acquisition,
unlike a time series. Both p and g parameters are restricted to integer values (e.g., 0, 1, 2),

whereas the integration parameter, d, represents potentially long-range structure in the data. The
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differencing term d is normally evaluated before p and g to identify whether the process is
stationary (i.e., constant mean and c?). If the series is nonstationary, it is differenced to remove
either linear (d = 1) or quadratic (d = 2) trends, thereby making the mean of the series stationary
and invertible (Cimino et al., 1999), thus allowing determination of the ARMA p and q

parameters., ( Formatted: Font color: Red

Here, we adopt the definitions of an ARMA (p,q), and ARIMA (p,d,q) process following
the work of Beran (1994). Let p and g be integers, where the corresponding polynomials are

defined as:

$00 =1- 30, ),

(12)
Y =1+37 x).

It is important to note that all solutions of ¢(x,) = 0, and ¥(x) = 0 are assumed to lie outside
the unit circle. Additionally, let e.(t = 1,2, ...) be independent, and identically distributed
normal variables with zero variance 62 such that an ARMA (p,q) process is defined by the

stationary solution of:

d(B)X, = P(B)e; (23)

where, B is the backward shift operator BX, = X,_,, B>X, = X,_4, ... and, specifically, the
differences can be expressed in terms of B as; X; — X;_1 = (1 — B)Xy, (X; — X¢—1) — (Xeo1 —
Xi—2) = (1 — B)%X, ... Alternatively, an ARIMA (p,d,q) process X, is formally defined as:

(B - B)*X, = Y(B)e, (34)

where, equation (3) holds for a dth difference (1 — B)%X,.
As mentioned previously, a more general form of ARIMA (p,d,q) is the fractional

ARIMA process, or FARIMA, where the differencing term d is allowed to take on fractional
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values. If d is a non-integer value for some -0.5 < d < 0.5 and X, is a stationary process as
indicated by equation 34, then the model by definition is called a FARIMA process where d-
values in the range 0 < d < 0.5 of are of particular interest herein because geophysically-relevant
LRD occurs for 0 < d < 0.5, whereas d > 0.5 means that the process is nonstationary, but
nonintegrable (Beran, 1994; Hosking, 1981). A special case of a FARIMA process explored in
the current study is ARIMA (0d0), also known as fractionally-differenced white noise (Hosking,
1981), which is defined by Beran (1994) and others as:

X, = (1—B) %,.
(45)

For 0 <d < 0.5, the ARIMA (0d0) process is a stationary process with long-range structure and
is useful for modeling LRD. As shown later, different values of the d parameter provide further
insight into the type of causative physical processes that generate each data series. When d < 0.5,
the series X, is stationary, which has an infinite moving average MA representation that
highlights long-range trends or cycles in the data. Conversely, when d > - 0.5, the series X, is
invertible and has an infinite autoregressive AR representation (see Hosking, 1981). When -0.5 <
d <0, the stationary, and invertible, ARIMA (0d0) process is dominated by short-range effects
and is antipersistent. When d = 0, the ARIMA (000) process is white noise, having zero

correlations and a constant spectral density.

[Formatted: Indent: First line: 0"




-Identification of an appropriate model is accomplished by finding small values of elements p,d,q
(usually between 0 — 2) that accurately fit the most significant patterns in the data series. When a
value of an element is 0, that element is not needed. For example, if d = 0 the series does not
contain a significant long-range component, whereas if p = q = 0, the model does not exhibit
significant short-range effects. If p,d,q # 0, the model contains a combination of both short and
long-memory effects.

4 Results
4.1 Spatial data series
4.1.1 EMI and GPR surveys

based—suweyu&mg—artewmneendaewny%mepeveppeﬁepmed—ﬁhe unprocessed (raw) EMI ca

responses show a high degree of variability along the island. FF&FedHeﬁhee#eepef—ms&Fument

amplitude responses within the EMI signal generally exhibit a higher degree of variability

(multiplicative noise) compared to the low-amplitude responses. Higher o, readings correspond
to a small sensor footprint and have enhanced sensitivity to small-scale near-surface
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heterogeneities (see Guillemoteau and Tronicke, 2015). Low oa readings suggest the sensor is
probing greater depths and averaging over a larger footprint. In that case, the effect of fine-scale
heterogeneities that contribute to signal variability is suppressed.

The 10 km alongshore survey is located within an inferred paleo-channel region (Fisk,
1959), providing some a priori geologic constraints for understanding the variability within the
EMI signal (Fig. 2b). Here, the sample size is n = 10,176, permitting a quantitative comparison
with the 100-km-long data series since they contain a similar number of observations. Unlike the
100 km survey, successive footprints of the sensor at each subsequent measurement point
overlap along the 10 km survey. The overlap enables a fine-scale characterization of the
underlying geological structure because the separation between the TX — RX coils (1.21 m), a
good lower-bound approximation of the footprint, is greater than the step-size (1 m).

The overall trend in o4 for the 10 km survey is comparable to that of the 100 km survey,
where regions characterized by high and low amplitude signals correspond to regions of high and
low variability, respectively, implying that multiplicative noise persists independently of station
spacing. The decrease in oq that persists between ~ 2.5 — 6 km along the profile (Fig. 2b)
coincides in location with two paleo-channels, whereas a sharp reduction in ca is observed at ~
8.2 km in close proximity to a smaller channel. Most of the known paleo-channels are located
within the 10 km transect and likely contain resistive infill sands that should generate lower and
relatively consistent o, readings (Weymer et al., 2015a). The low o, signal caused by the sand
indirectly indicates valley incision, since it is diagnostic of a thicker sand section, relatively
unaffected by the underlying conductive layers. Thus, it is reasonable to assume that reduced
variability in the signal is related to the framework geology within the paleo-channels, which we
now compare with a GPR profile.

To corroborate the capability of the EMI data to respond to the variable subsurface
geology, an 800 m GPR survey confirms the location of a previously identified paleo-channel
(Fisk, 1959) at ~ 5— 10 m depth (Fig. 3). /A continuous undulating reflector from ~ 150 — 800 m

along the profile fis interpreted to be the surface mapped by Fisk (1959) who documented a c ted [WB24]: C d [A24]: Draw this
interpretation on the GPR data in Fig 3.

paleo-channel at this location with a depth of ~ 8 m. Although the paleo-surface is within the ' - :
Response: Fixed (see revised Figure 3 in the rebuttal letter).

detection limits of the GPR, it is likely that the DOI of the EMI data (~ 3 — 6 m) is not large

enough to probe continuously along the contact between the more conductive ravinement surface

21



’629
630
631
632
633
634
635
636
637
638
639
640
641
642
’643
644
645
646
647
648
649

50

51
652
653
654
655
’656
657
658

and the moreless resistive infill sands. Along the transect at shallower depths highlighted by the
red box in the lower radargram (Fig. 3), low EMI 62 values correspond to fine stratifications in
the GPR section, which is common for beach sands with little clay content that are not saline-
saturated. The EMI highs between ~ 450 — 530 m coincide with parts of the GPR section that do
not have the fine stratification and this may indicate the presence of clay or saline water. Here,
the high conductivity zone for both the GPR and EMI is located within a recovering washover
channel overlying the paleo-channel that is evident in the satellite imagery in the upper-left panel
of Fig. 3. The overwash deposits consisting of a mix of sand and finer-grained backbarrier
sediments likely mask the EMI sensors’ ability to probe greater depths. Nonetheless, the high
conductivity zone represents a smaller ~ 100 m segment within the ~ 500-m-wide paleo-channel,
suggesting that variations in the EMI responses outside this zone are directly related to variations

in the framework geology imaged by GPR.

4.1.2 LiDAR-derived DEM morphometrics
The LiDAR-derived elevation BEM-spatial-data series along the 100 km transect are presented in
Fig. 4. Each data series is shown with respect to the areal DEM of the study area where the
approximate locations of each closely-spaced paleo-channel are highlighted in gray. This
visualization allows a qualitative analysis of the spatial relationships between paleo-channels,
subsurface information encoded in the ca Signal, and surface morphology over the entire length
of the barrier island.

The morphology of the beach-dune system, as well as island width, changes substantially
from north to south. In the paleo-channel region, beach width decreases-censiderably in the
central channel (~ 37 — 42 km) and is more variable outside this region. Beach width generally

increases towards the northern section of the island. The volume of the beach tends to be lowest

in the northern zone, varies considerably in the central part of the island, then stabilizes and
gradually decreases towards the south. These zones correspond to the southern (0 — 30 km),
central (30 — 60 km), and northern (60 — 100 km) sections of the island. Alongshore dune heights
generally are greater in the south, [become slightly more variable ]in the paleo-channel region, and
decrease in the north except for the area adjacent to Baffin Bay. Dune volume is lowest in the

northern section, intermittently increases in the central zone and slightly decreases towards the
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south. The island is considerably narrower between Mansfield Channel and Baffin Bay (see Fig.
2a), increasing in width k«igﬂiﬁeanﬁ%in the northern zone; island volume follows a similar trend.
Overall, o, values are lower northward of the paleo-channel region compared to the southern
zone where o, increases substantially. However, the lowest o, values are located within the

region of paleo-channels inferred by Fisk (1959) supporting previous findings in the study area

by h/\/eymer et al. (2015a) and Wernette et al. (2018) that suggest a potential geologic control on
alongshore geomorphic features. I

Each spatial data series (Fig. 4a — 4qg) represents a different superposition of effects
caused by physical processes operating across a wide range of temporal and length scales
(Weymer et al., 2015a). Short-range fluctuations represent small-scale heterogeneities, whereas
long-range components capture variations in each metric at broader length scales. There is a high
degree of variability within each signal that is directly related to the gemplex-geological and
geomorphological structure along the island. Within and outside the paleo-channel region,
general associations between the-EMI o, responses and DEM metrics are visually subtlecan-be
pade, motivating the statistics as-we now show by ARIMA modeling. To conduct the ARIMA

analysis, we chose to divide the island into three zones based on the location of the known paleo-
channels. As will be discussed later, the tripartite zonation allows for a quantitative analysis of
LRD at three spatial scales (regional, intermediate, local) within and outside the area containing
paleo-channels. It is important to note, however, that the framework geology is likely to exhibit

LRD regardless of the length-scale over which it is observed.

4.2 Tests for LRD

4.2.1 Tests for LRD in EMI data series

Both EMI spatial data series appear to be nonstationary since the mean and variance of the data
fluctuate along the profile. /A closer visual inspection reveals however that cyclicity is present at
nearly all spatial frequencies_(Fig. 6), with the cycles superimposed in random sequence and
added to a constant variance and mean (see Beran, 1994). This behavior is typical for stationary
processes with LRD, and is often observed in various types of geophysical time series (Beran,
1992), for example records of Nile River stage minima (Hurst, 1951). A common first-order

approach for determining whether a data series contains LRD is through inspection of the
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autocorrelation function, which we have computed in AutoSignal™ signal analysis software
using a fast Fourier transform (FFT) algorithm (Fig. 5a, 5d). Both EMI signals exhibit large

correlations at large lags (at km and higher scales), suggesting the o, responses contain LRD, or

"long-memory effects" in time-series language. +

range R/S analysis (Fig. 5b, 5e) indeed show high H-values of 0.85 (r> = 0.98) and 0.95 (r*> =
0.99) for the 100 km and 10 km surveys, indicating a strong presence of LRD at both regional
and local spatial scales.

The manner in which different spatial frequency (i.e. wavenumber) components are
superposed to constitute an observed EMI o2 signal has been suggested to reveal information
about the causative multi-scale geologic structure (Everett and Weiss, 2002; Weymer et al.,
2015a). For example, the lowest-wavenumber contributions are associated with spatially
coherent geologic features that span the longest length scales probed. The relative contributions
of the various wavenumber components can be examined by plotting the oa signal power spectral
density (PSD). A power-law of the form |ca(f)? ~ f P over several decades in spatial wavenumber
is evident (Fig. 5¢, 5f). The slope S of a power-law-shaped spectral density provides a
quantitative measure of the LRD embedded in a data series and characterizes the heterogeneity,
or “roughness” of the signal. A value of | p | > 1 indicates a series that is influenced more by
long-range correlations and less by small-scale fluctuations (Everett and Weiss, 2002). For
comparison, a pure white noise process would have a slope of exactly = 0, whereas a slope of
~ 0.5 indicates fractional Gaussian noise, i.e., a stationary signal with no significant long-range
correlations (Everett and Weiss, 2002). The g-values for the 100 km and 10 km surveys are 8 = -
0.97, and B = -1.06, respectively. These results suggest that both the 100 km and 10 km EMI
signals contain long-range correlations. However, there is a slightly stronger presence of LRD
within the 10 km segment of the paleo-channel region compared to that within the segment that
spans the entire length of the island. This indicates that long-range spatial variations in the
framework geology are more important, albeit marginally so, at the 10-km scale than at the 100-

km scale. It is possible that the variability within the signal and the degree of long-range
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correlation is also a function of the sensor footprint, relative to station spacing. This is critically
examined in section 4.3.

4.2.2 Tests for LRD in surface morphometrics

Following the same procedure as applied to the EMI data, we performed the R/S analysis for
each beach, dune, and island metric. The calculated H-values for the DEM morphometrics range
between 0.80 — 0.95 with large values of r>~ 1, indicating varying, but relatively strong
tendencies towards LRD. Beach width and beach volume data series have H-values of 0.82 and
0.86, respectively. Dune height and dune volume H-values are 0.83 and 0.80, whereas island
width and island volume have higher H-values of 0.95 and 0.92, respectively. Because each data
series shows moderate to strong evidence of LRD, the relative contributions of short and long-
range structure contained within each signal can be further investigated by fitting ARIMA

models to each data set.

4.3 ARIMA statistical modeling of EMI
The results of the tests described in section 4.2.1 for estimating the self-similarity parameter H

and the slope of the PSD function suggest that both EMI data series, and by inference the

underlying framework geology, exhibit LRD. [Fhereforewe suggest that an- ARHVA process
mg#mb&arkappmpﬁa%emedel-\-['rhe goal of our analysis using ARIMA is to estimate the p, d,

and q terms representing the order, respectively, of autoregressive (AR), integrated (1) and
moving-average (MA) contributions to the signal (Box and Jenkins, 1970) to quantify free vs.

forced behavior along the iSIand.‘ For the analysis, the ‘arfima’ and ‘forecast’ statistical packages

in R were used to fit a family of ARIMA (p,d,q) models to the EMI o, data and island
morphometrics (Hyndman, 2015; Hyndman and Khandakar, 2007; Veenstra, 2012). Results of
ten realizations drawn from a family of ARIMA (p,d,q) models and their residuals (RMSE) are
presented in Table 1. The worst fit (ARIMA 001) models are shown for the 100 km and 10 km
(Fig. 6a, 6¢) surveys. The best fit (ARIMA 0d0) models for both the 100 and 10 km surveys are
shown in Fig. 6b and 6d, respectively. For this analysis, the tests include different combinations
of p,d,q that model either short-range: ARIMA (100; 001; 101; 202; 303; 404; 505), long-range:
ARIMA (010; 0d0), or composite short- and long-range processes: ARIMA (111). It is important
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to note that AR and MA are only appropriate for “short-memory” processes since they involve
only near-neighbor values to explain the current value, whereas the integration (the "I" term in
ARIMA) models “long-memory” effects because it involves distant values. Note that ARIMA
was developed for one-way time series, in which the arrow of time advances in only one
direction, but in the current study we are using it for spatial series that are reversible. Different
realizations of each ARIMA (p,d,q) data series were evaluated, enabling physical interpretations
of LRD at regional, intermediate, and local spatial scales. Determining the best-fitting model is
achieved by comparing the residual score, or RMSE, of each predicted data series relative to the
observed data series, where lower RMSE values indicate a better fit (Table 1).

Based on the residuals and visual inspection of each realization _(Fig. 6), two observations
are apparent: 1) both EMI data series are most accurately modeled by an ARIMA (0d0) process
with non-integer d, and 2) the mismatch between the data and their model fit is considerably
lower for the 10 km survey compared to the 100 km survey. The first observation suggests that
the data are most appropriately modeled by a FARIMA process; i.e., a fractional integration that
is stationary (0 < d < 0.5) and has long-range dependence (see Hosking, 1981). This implies that
spatial variations in framework geology at the broadest scales dominate the EMI signal and that
small-scale fluctuations in ca caused, for example, by changing hydrological conditions over
brief time intervals less than the overall data acquisition interval, or fine-scale lithological
variations less than a few station spacings, are not as statistically significant. Regarding the
second observation, the results suggest that a small station spacing (i.e., 1 m) is preferred to
accurately model both short and long-range contributions within the signal because large station
spacings cannot capture short-range information. The model for the 10 km survey fits better
because both p (AR) and g (MA) components increase with a smaller step-size since successive
volumes of sampled subsurface overlap. On the contrary, the sensor footprint is considerably
smaller than the station spacing (10 m) for the 100 km survey. Each 62 measurement in that case
records an independent volume of ground, yet the dataset still exhibits LRD, albeit not to the

same degree as in the 10 km survey.

4.4 ARIMA statistical modeling of island metrics compared with EMI
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A sequence of ARIMA (p,d,q) models was also evaluated for the elevationBEM morphometrics
series to find best fits to the data. The analysis comprised a total of 36 model tests (Table 2). The
RMSE values reveal that: 1) all data series are best fit by an ARIMA (0d0) process with
fractional d, i.e. a FARIMA process; ZD the ARIMA models, in general, more accurately fit the
EMI data than the DEM morphometric data likely because the morphology is controlled by more

than the framework geology alone; and 3) in all cases, the poorest fit to each series is the

ARIMA (001), or MA process. This, in turn, means that the differencing parameter d is the most
significant parameter amongst p, d and g. It is important to note that different values of d were
computed based on the best fit of each FARIMA model to the real data. A graphical
representation of the FARIMA-modeled data series for each DEM metric is shown in Fig. 7,
allowing a visual inspection of how well the models fit the observed data. Because each data
series has its own characteristic amplitude and variability, it is not possible to compare RMSE
between tests without normalization. The variance within each data series can differ by several
orders of magnitude.

Instead of normalizing the data, a fundamentally different approach is to compare the
EMI 6. d-values with respect to each metric at regional, intermediate, and local scales (Table 3).
Higher positive d-values indicate of a stronger tendency towards LRD. According to Hosking
(1981), {x} is called an ARIMA (0d0) process and is of particular interest in modelling LRD as
d approaches 0.5 because in such cases the correlations and partial correlations of {xi} are all
positive and decay slowly towards zero as the lag increases, while the spectral density of {x:} is
concentrated at low frequencies. It is reasonable to assume that the degree of LRD may change
over smaller intermediate and/or local scales, which implies a breakdown of self-similarity. For a
self-similar signal, d is a global parameter that does not depend on which segment of the series is
analyzed. In other words, the d-values should be the same at all scales for a self-similar structure.

The results of the FARIMA analysis at the intermediate scale vary considerably within
each zone of the barrier island (north, central, south) and for each spatial data series (Table 3). In
the southern zone (0 — 30 km), EMI o2 and beach volume have the strongest LRD (d = 0.44),
whereas the other metrics exhibit weak LRD (ranging from d ~ 0 — 0.2), which may be
characterized approximately as a white noise process. Within the paleo-channel region (30 — 60

km), all of the island metrics show a moderate to strong tendency towards LRD (0.3 <d <4.2),
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however, the EMI signal does not (d = 0.11). In the northern zone (60 — 100 km) all data series
contain moderate to strong LRD with the exception of beach and island width.

A FARIMA analysis was also conducted at the local scale by dividing the island into 10-
km-segments, starting at the southern zone (0 — 10 km) and ending at the northern zone of the
island (90 — 100 km). A total of 70 FARIMA model realizations were evaluated and the resulting
d-values demonstrate that the EMI data segments show a stronger presence of LRD (d > 0.4)
within the paleo-channels (30 — 60 km) and further to the north (60 — 80 km) in close proximity
to the ancestral outlet of Baffin Bay. These findings indicate that there may be local and/or
intermediate geologic controls along different parts of the island, but that the framework geology

dominates island metrics at the regional scale.

5 Discussion

Although it has long been known that processes acting across multiple temporal and length
scales permit the shape of coastlines to be described by mathematical constructs such as power
law spectra and fractal dimension (Lazarus et al., 2011; Mandelbrot, 1967; Tebbens et al., 2002),
analogous studies of the subsurface framework geology of a barrier island have not been carried
out. Fer-the-first-timeitis-This research supports previous studies demonstrating eé-that near-
surface EMI geophysical methods are useful for mapping barrier island framework geology and

that \FARIMA data series analysis is aseft-a compact statistical tool for illuminating the long

and/or short-range spatial correlationsnreetions between subsurface geology and
geomorphologyl The results of the FARIMA analysis and comparisons of the best-fitting d-

parameters show that beach and dune metrics closely match EMI o, responses regionally along
the entire length of PAIS, suggesting that the long-range dependent structure of these data series
is similar at large spatial scales. However, further evaluation of the d-parameters over smaller
data segments reveals that there are additional intermediate-and-localized framework geology
controls on island geomorphology that are not present at the regional scale.

At the intermediate scale, a low EMI d-value (d = 0.11) suggests there is only a weak
framework-geologic control on barrier island morphometrics. /A possible explanation is that the
paleo-channels, located within a ~ 30 km segment of the island, are not regularly spaced and on

average are less than a few km wide. [This implies that the framework geology controls are
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Iocalized[ (i.e., effective in shaping island geomorphology only at smaller spatial scales). At the
local scale, relationships between the long-range-dependence of EMI and each metric vary
considerably, but there is a significant geologic control on dune height within the paleo-channel
region (d > 0.4). It is hypothesized that the alongshore projection of the geometry of each
channel is directly related to a corresponding variation in the EMI signal, such that large, gradual
minima in o, are indicative of large, deep channel cross-sections and small, abrupt minima in ca
represent smaller, shallow channel cross-sections. At shallower depths within the DOI probed by
the EMI sensor, variability in the 6a Signal may correspond to changes in sediment characteristics
as imaged by GPR (Fig. 3). Located beneath a washover channel, a zone of high conductivity
EMI ca responses between ~ 450 — 530 m coincides with a segment of the GPR section where
the signal is more attenuated and lacks the fine stratification that correlates much better with the

lower ca zones. The contrasts in lithology between the overwash deposits and stratified infilled

sands was detected by both EMI and GPR measurements},—saggesﬁag%hat—%%is&useﬁ#—teeﬁer
- - - - - - I ﬁ I I ] ‘

It is argued herein that differences in the d parameter between EMI o5 readings (our
assumed proxy for framework geology) and LiDAR-derived surface morphometrics provide a
new metric that is useful for quantifying the causative physical processes that govern island
transgression across multiple spatial scales. All of the calculated d-values in this study are
derived from ARIMA (0d0) models that fit the observations, and lie within the range of 0 < d <
0.5, suggesting that each data series is stationary but does contain long-range structure that
represents randomly-placed cyclicities in the data. For all models in our study, the d-values range
between (~ 0 — 0.50), which enables a geomorphological interpretation of the degree of LRD and

self-similarity at different spatial scales. In other words, the d-parameter not only provides an

indication of the scale dependencies within the data,
the statistical connections between free-{weakerd~0)-orforced (stronger d ~ 0.5) and free

(weaker d ~ 0) behavior that may be more influenced by morphodynamic processes operating at

smaller spatial scalesgeomerphological-evelution-along-the-island. ]

Alongshore variations in beach width and dune height are not uniform atin PAIS and exhibit <

but also offers a compact way for analyzing

different spatial structure within and outside the paleo-channel region (Fig. 5). These
dissimilarities may be forced by the framework geology within the central zone of the island but
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are influenced more by contemporary morphodynamic processes outside the paleo-channel

regionl. cethe-dunes e medn s b e vele soe ee st izie

effect could be represented by higher-wavenumber components embedded within the spatial data
series. Beach and dune morphology in areas that are not controlled by framework geology (e.g.,
the northern and southern zones) exhibit more small-scale fluctuations representing a free system
primarily controlled by contemporary morphodynamics (e.g., wave action, storm surge, wind,
etc.).

Because variations in dune height exert an important control on storm impacts (Sallenger, «
2000) and ultimately large-scale island transgression (Houser, 2012), fit is argued here that the

framework geology (or lack thereof) bf PAIS acts as an important control on island response to

storms and sea-level rise. This study supports recent work by Wernette et al. (2018) suggesting

that framework geology can influence barrier island geomorphology by creating alongshore

variations in either oceanographic forcing and/or sediment supply and texture that controls

smaller-scale processes responsible for beach-dune interaction at the local scale. The forced

behavior within the paleo-channel region challenges existirgshoreline change studies -edels

that consider only small-scale undulations in the dune line that are caused by natural randomness

within the system. LRather, we propose that dune growth is forced by the framework geology,

whose depth is related to the thickness of the modern shoreface sands beneath the beach. This
depth is the primary quantity that is detected by the EMI sensor. With respect to shoreline

change investigations, improving model performance requires further study of how the

framework geology influences beach-dune morphology through variations in wave energy,
texture, and sediment supply (e.q., Houser, 2012; McNinch, 2004; Schwab et al., 2013).

Our findings extend previous framework geology studies from the Outer Banks, NC (e.g.,
Browder and McNinch, 2006; McNinch, 2004; Riggs et al., 1995; Schupp et al., 2006), Fire
Island, NY (e.g., Hapke et al., 2010; Lentz and Hapke, 2011), and Pensacola, FL (e.g., Houser,
2012) where feedbacks between geologic features and relict sediments within the littoral system

have been shown to act as an important control on dune growth and evolution. Nonetheless, most
of these studies focus on offshore controls on shoreface and/or beach-dune dynamics at either

local or intermediate scales because few islands worldwide exist that are as long and/or
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continuous as North Padre Island. To our knowledge, few framework geology studies have

specifically used statistical testing to analyze correlations between subsurface geologic features

and surface morphology. Two notable exceptions include Browder and McNinch (2006), and

Schupp et al. (2006), both of which used chi-squared testing and cross-correlation analysis to

guantify the spatial relationships between offshore bars, gravel beds, and/or paleo-channels at the

Outer Banks, NC. Although these techniques are useful for determining spatial correlations

between different data sets, they do not provide information about the scale (in)dependencies

between the framework geology and surface geomorphology that FARIMA models are better

designed to handle. The current study augments the existing literature in that 1) it outlines a

quantitative method for determining free and forced evolution of barrier island geomorphology at
multiple length scales, and 2) it demonstrates that there is a first-order control on dune height at
the local scale within an area of known paleo-channels, suggesting that framework geology
controls are localized within certain zones of PAIS.

Further study is required to determine how this combination of free- and forced-behavior
resulting from the variable and localized framework geology affects island transgression.
Methods of data analysis that would complement the techniques presented in this paper might
include; spatietemporal-medeling;-power spectral analysis, wavelet decomposition, and shoreline

change analysis that implicitly includes variable framework qeoloqy.{bieehe;eneehanalysis,—and

v cheohorenss f‘l’hese approaches would provide important information regarding: 1)

4———Coherence and phase relationships between subsurface structure and island <
geomorphology, and 2) -

2———Non-linear interactions of coastal processes across large and small spatiotemporal
scales.

Quantifying and interpreting the significance of framework geology as a driver of barrier «
island formation and evolution and its interaction with contemporary morphodynamic processes
is essential for designing and sustainably managing resilient coastal communities and habitats.

6 Conclusions
This study demonstrates the utility of EMI geophysical profiling as a new tool for mapping the

length-scale dependence of barrier island framework geology and introduces the
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potentialimpertance of -
series-by-FARIMA analysis to better understand the geologic controls on large-scale barrier

island transgression, The EMI and morphometric data series exhibit LRD to varying degrees, and

each can be accurately modeled using a non-integral parameter d. The value of this parameter
diagnoses the spatial relationship between the framework geology and surface geomorphology.
At the regional scale (~100 km), small differences in d between the EMI and morphometrics
series suggest that the long-range-dependent structure of each data series with respect to EMI ca
is statistically similar. At the intermediate scale (~ 30 km), there is a greater difference between
the d-values of the EMI and island metrics within the known paleo-channel region, suggesting a
more localized geologic control with less contributions from broader-scale geological structures.
At the local scale (10 km), there is a considerable degree of variability between the d-values of

the EMI and each metric. These results all point toward a forced barrier-island evolutionary
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the underlying geologic structure establishes boundary constraints that control how the island evolves
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transportgradients-overlong timeseales{The exchange of sediment amongst nearshore, beach

and dune in areas outside the paleo-channel region is scale independent, meaning that barrier
islands like PAIS exhibit a combination of free and forced behaviors that will affect the response

of the island to sea level rise and storms. We propose that our analysis is not limited to PAIS but
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can be applied to other barrier islands and potentially in different geomorphic environments, both
coastal and inland.
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Tables

Table 1. Comparison of residuals (RMSE) of each ARIMA model for the 100 km and 10 km

EMI surveys.

EMI (100km)  EMI (10 km)
ARIMA (100) 184 8.14
ARIMA (001) 49.7 411
ARIMA (101) 156 6.65
ARIMA (202) 40.6 731
ARIMA (303) 405 7.22
ARIMA (404) 40.3 7.22
ARIMA (505) 40.2 7.29
ARIMA (111) 158 5.72
ARIMA (010) 185 8.15
ARIMA (0d0) 15.5 5.55
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1270
1271
1272
1273  Table 2. Comparison of residuals (RMSE) of each ARIMA model for all spatial data series.

1274 Note that the residuals for each DEM metric correspond to the analysis performed at the regional
1275  scale (i.e., 100 km).

ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA

(100) (001) (101) (112) (010) (0d0)
Beach width 134 14.9 13.0 13.1 14.8 13.0
Beach volume 44.8 50.5 43.1 43.1 49.1 42.7
Dune height 0.7 0.8 0.7 0.7 0.8 0.7
Dune volume 60.6 63.9 59.7 59.2 69.03 58.9
Island width 138.4 253.2 121.3 121.1 140.8 120.9
Island volume 271.3 611.4 244.3 244.1 273.9 243.3
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1294  Table 3. Summary table showing the computed d parameters that most appropriately model each
1295  ARIMA (0dO) iteration (i.e., lowest RMSE).

Alongshore  Beach Beach Dune Dune Island Island EMI oq
distance width volume height volume  width volume

“Regional”
0-100 km 0.38 0.42 0.34 0.32 0.13 ~0.00 0.35
“Intermediate”
0-30 km ~0.00 0.44 0.13 0.20 0.03 0.18 0.44
30-60 km 0.37 0.30 0.36 0.31 0.30 0.42 0.11
60-100 km 0.26 0.41 0.35 0.46 ~0.00 0.50 0.49
“Local”
0-10 km 0.41 0.39 0.20 0.21 0.09 0.18 0.36
10-20 km 0.30 0.42 0.20 0.26 0.37 ~0.00 0.36
20-30 km 0.26 040 ~0.00 ~0.00 0.49 ~0.00 ~0.00
30-40 km 047 ~000 041 0.25 0.29 0.28 ~0.00
40-50 km 0.28 0.21 0.21 0.19 0.30 0.02 0.44
50-60 km 0.03 0.31 0.23 0.32 ~0.00 0.33 0.48
60-70 km 0.16 0.37 0.29 0.34 ~0.00 0.30 0.40
70-80 km 0.47 0.34 0.43 0.26 ~0.00 0.42 0.49
80-90 km 0.27 0.19 0.42 0.39 0.01 0.02 ~0.00
90-100 km 0.13 0.13 ~0.00 0.06 0.44 0.47 0.41
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Figure Captions:

Figure 1. Location map and DEM of the study area at Padre Island National Seashore (PAIS),
Texas, USA. Elevations for the DEM are reported as meters above sea level (masl). Approximate
locations of fField images (red dots) from the northern (N), central (C), and southern (S) regions
of the island showing alongshore differences in beach-dune morphology. Note: views are facing
southnerth for the centralnerthern and southern locations, and the northerneentral location view
is to the northseuth. Images taken in October, 2014.

Figure 2. 100 km (&) and 10 km (b) alongshore EMI surveys showing DEM’s of study area and
previously identified paleo-channel region by Fisk (1959). Channels are highlighted in red and
green, where the green region indicates the location of the 10 km survey. 25 ft (7.6 m) contour
intervals are highlighted with depths increasing from yellow to red and the center of the channels
are represented by the black-dotted lines. For each survey, raw o, and zero-mean drift-corrected
EMI responses are shown in grey and black, respectively. Tidal conditions during each EMI
acquisition segment are shown below each panel. Low (It) and falling tides (ft) are indicated by
blue and light blue shades, respectively. High (ht) and rising tides (rt) are highlighted in red and
light red, respectively.

Figure 3. Comparison of EMI 6, responses from the 100 km survey with 100 MHz GPR data
within one of the Fisk (1959) paleo-channels. The 800 m segment (A — A’) crosses a smaller
stream within the network of paleo-channels in the central zone of PAIS. The DOI of the 3 kHz
EMI responses is outlined by the red box on the lower GPR radargram_and the interpretation of
the channel base (ravinement surface) is highlighted in yellow.

Figure 4. DEM metrics extracted from aerial LIDAR data. The sampling interval (step-size) for

each data series is 10 m and the coordinates are matched with each EMI acquisition point. Each

panel corresponds to a) beach width, b) beach volume, ¢) dune height, d) dune volume, e) island
width, f) island volume, and g) EMI ca. The island is divided into three zones (red vertical lines)
roughly indicating the locations within and outside the known paleo-channel region. A Savitzky-
Golay smoothing filter was applied to all data series (LiDAR and EMI) using a moving window

of n = 250 to highlight the large-scale patterns in each signal.

Figure 5. Autocorrelations of o, for the 100 km (a) and 10 km EMI surveys (d). R/S analysis for
the 100 km (b) and 10 km surveys (e). PSD plots for the 100 km (c) and 10 km surveys (f).

Figure 6. Examples of the worst (6a, 6¢) and best (6b, 6d) fit ARIMA models for the 100 and 10
km EMI surveys. Model results are shown for the processed (drift-corrected) oa data. Residuals
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(RMSE) listed for each model gives the standard deviation of the model prediction error. For
each plot, original data is in red and fitted (model) data is in blue.

Figure 7. Example of the best fit ARIMA (0d0) models for each LiDAR-derived DEM metric: a)
beach width, b) beach volume, c) dune height, d) dune volume, e) island width, f) island volume.
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