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Abstract 33 

Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to 34 

be described in the wavenumber domain by a power law characteristic of scale-independence. 35 

Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale-36 

dependence as a result of systematic variations of the underlying framework geology. The LRD of 37 

framework geology, which influences island geomorphology and its response to storms and sea 38 

level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted 39 

along Padre Island National Seashore (PAIS), Texas, USA, reveal that the EMI apparent 40 

conductivity (σa) signal and, by inference, the framework geology exhibits LRD at scales up to 101 41 

to 102 km. Our study demonstrates the utility of describing EMI σa and LiDAR spatial series by a 42 

fractional auto-regressive integrated moving average (ARIMA) process that specifically models 43 

LRD. This method offers a robust and compact way for quantifying the geological variations along 44 

a barrier island shoreline using three statistical parameters (p,d,q). We discuss how ARIMA  45 

(0,d,0) models that use a single parameter d provide a quantitative measure for determining free 46 

and forced barrier island evolutionary behavior across different scales. Statistical analyses at 47 

regional, intermediate, and local scales suggest that the geologic framework within an area of 48 

paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst 49 

nearshore, beach and dune in areas outside this region are scale-independent, implying that barrier 50 

islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the 51 

island to sea level rise.  52 
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 63 

1 Introduction  64 

Barrier island transgression in response to storms and sea-level rise depends to varying degrees on 65 

pre-existing geologic features. The traditional assumption of uniform sand at depth and alongshore 66 

cannot explain many of observations (e.g., Belknap and Kraft, 1985; Houser, 2012; Lentz and 67 

Hapke, 2011; McNinch, 2004; Riggs et al., 1995). Models of barrier island evolution are required to 68 

ascertain the degree to which the island is either free (such as a large sand body) or forced (i.e. 69 

constrained) by the underlying geology. Despite growing evidence that the underlying geological 70 

structure, otherwise termed framework geology, of barrier islands influences nearshore, beach and 71 

dune morphology (e.g., Belknap and Kraft, 1985; Houser, 2012; Lentz and Hapke, 2011; McNinch, 72 

2004; Riggs et al., 1995), this variable remains largely absent from shoreline change models that 73 

treat the geology as being uniform alongshore (e.g., Dai et al., 2015; Plant and Stockdon, 2012; 74 

Wilson et al,. 2015). In a free system, small-scale undulations in the dune line reinforce natural 75 

random processes that occur within the beach-dune system and are not influenced by the underlying 76 

geologic structure. In a forced system, the underlying geologic structure establishes boundary 77 

constraints that control how the island evolves over time. Spatial variation in the height and position 78 

of the dune line impacts the overall transgression of the island with sea-level rise (Sallenger, 2000). 79 

Transgression is accomplished largely through the transport and deposition of beach and dune 80 

sediments to the backbarrier as washover deposits during storms (Houser, 2012; Morton and 81 

Sallenger Jr., 2003; Stone et al., 2004). 82 

 83 

1.1 Framework geology controls on barrier island evolution 84 

The dynamic geomorphology of a barrier island system is the result of a lengthy, complex and 85 

ongoing history that is characterized by sea level changes and episodes of deposition and erosion 86 

(e.g., Anderson et al., 2015; Belknap and Kraft, 1985; Rodriguez et al., 2001). Previous studies 87 

demonstrate that the underlying geological structure, otherwise termed framework geology 88 

framework geology , of barrier islands plays a considerable role in the evolution of these coastal 89 

landscapes (Belknap and Kraft, 1985; Evans et al., 1985; Kraft et al., 1982; Riggs et al., 1995). For 90 

example, antecedent structures such as paleo-channels, ravinement surfaces, offshore ridge and swale 91 

bathymetry, and relict transgressive features (e.g., overwash deposits) have been suggested to 92 
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influence barrier island geomorphology over a wide range of spatial scales (Hapke et al., 2010; 93 

Hapke et al., 2016; Houser, 2012; Lentz and Hapke, 2011; McNinch, 2004). In this study, the term 94 

“framework geology” is specifically defined as the topographic surface of incised valleys, paleo-95 

channels, and/or the depth to ravinement surface beneath the modern beach.  96 

As noted by Hapke et al. (2013), the framework geology at the regional scale ( > 30 km) 97 

influences the geomorphology of an entire island. Of particular importance are the location and size 98 

of glacial, fluvial, tidal, and/or inlet paleo-valleys and channels (Belknap and Kraft, 1985; Colman et 99 

al., 1990; Demarest and Leatherman, 1985), and paleo-deltaic systems offshore or beneath the 100 

modern barrier system (Coleman and Gagliano, 1964; Frazier, 1967; Miselis et al., 2014; Otvos and 101 

Giardino, 2004; Twichell et al., 2013).  At the regional scale, nonlinear hydrodynamic interactions 102 

between incident wave energy and nearshore ridge and swale bathymetric features can generate 103 

periodic alongshore variations in beach-dune morphology (e.g., Houser, 2012; McNinch, 2004) 104 

that are superimposed on larger-scale topographic variations as a result of transport gradients 105 

(Tebbens, et al., 2002). At the intermediate scale (10 - 30 km), feedbacks between geologic 106 

features and relict sediments of the former littoral system (e.g., Honeycutt and Krantz, 2003; 107 

Riggs et al., 1995; Rodriguez et al., 2001; Schwab et al., 2000) act as an important control on 108 

dune formation (Houser et al., 2008) and offshore bathymetric features (e.g., Browder & 109 

McNinch, 2006; Schwab et al., 2013). Framework geology at the local scale (≤ 10 km),  induces 110 

meso (~101 – 102 m) to micro-scale (< 1 m) sedimentological changes (e.g., Murray and Thieler, 111 

2004; Schupp, et al., 2006), variations in the thickness of shoreface sediments (Brown and 112 

Macon, 1977; Miselis and McNinch, 2006), and spatial variations in sediment transport across 113 

the island (Houser and Mathew, 2011; Houser, 2012; Lentz and Hapke, 2011).  114 

To date, most of what is known regarding barrier island framework geology is based on 115 

studies done at either intermediate or local scales (e.g., Hapke et al., 2010; Lentz and Hapke, 2011; 116 

McNinch, 2004) whereas few studies exist at the regional scale for United States coastlines (Hapke et 117 

al., 2013). The current study focuses on barrier islands in the US and we do not consider work on 118 

barrier islands in other regions. Assessments of framework geology at regional and intermediate 119 

spatial scales for natural and anthropogenically-modified barrier islands are essential for improved 120 

coastal management strategies and risk evaluation since these require a good understanding of the 121 

connections between subsurface geology and surface morphology. For example, studies by Lentz and 122 
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Hapke (2011); Lentz et al., (2013) at Fire Island, New York suggest that the short-term 123 

effectiveness of engineered structures is likely influenced by the framework geology. Extending 124 

their work, Hapke et al. (2016) identified distinct patterns of shoreline change that represent 125 

different responses alongshore to oceanographic and geologic forcing. These authors applied 126 

empirical orthogonal function (EOF) analysis to a time series of shoreline positions to better 127 

understand the complex multi-scale relationships between framework geology and contemporary 128 

morphodynamics. Gutierrez et al. (2015) used a Bayesian network to predict barrier island 129 

geomorphic characteristics and argue that statistical models are useful for refining predictions of 130 

locations where particular hazards may exist. These examples demonstrate the benefit of using 131 

statistical models as quantitative tools for interpreting coastal processes at multiple spatial and 132 

temporal scales (Hapke et al., 2016).  133 

 134 

1.2 Statistical measures of coastline geomorphology 135 

It has long been known that many aspects of landscapes exhibit similar statistical properties 136 

regardless of the length or time scale over which observations are sampled (Burrough, 1981). An 137 

often-cited example is the length 𝐿 of a rugged coastline (Mandelbrot, 1967), which increases 138 

without bound as the length 𝐺 of the ruler used to measure it decreases, in rough accord with the 139 

formula 𝐿(𝐺) ∽ 𝐺1−𝐷, where 𝐷 ≥ 1 is termed the fractal dimension of the coastline. Andrle 140 

(1996), however, has identified limitations of the self-similar coastline concept, suggesting that a 141 

coastline may contain irregularities that are concentrated at certain characteristic length-scales 142 

owing to local processes or structural controls. Recent evidence from South Padre Island, Texas 143 

(Houser and Mathew, 2011), Fire Island, New York (Hapke et al., 2010), and Santa Rosa Island, 144 

Florida (Houser et al., 2008) suggests that the geomorphology of barrier islands is affected to 145 

varying degrees by the underlying framework geology and that this geology varies, often with 146 

periodicities, over multiple length-scales. The self-similarity of the framework geology and its 147 

impact on the geomorphology of these barrier islands was not examined explicitly.   148 

Many lines of evidence suggest that geological formations in general are inherently rough 149 

(i.e., heterogeneous) and contain multi-scale structure (Bailey and Smith, 2005; Everett and 150 

Weiss, 2002; Radliński et al., 1999; Schlager, 2004). Some of the underlying geological factors 151 

that lead to self-similar terrain variations are reviewed by Xu et al. (1993). In essence, competing 152 
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and complex morphodynamic processes, influenced by the underlying geological structure, 153 

operate over different spatiotemporal scales, such that the actual terrain is the result of a complex 154 

superposition of the various effects of these processes (see Lazarus et al., 2011). Although no 155 

landscape is strictly self-similar on all scales, Xu et al. (1993) show that the fractal dimension, as 156 

a global morphometric measure, captures multi-scale aspects of surface roughness that are not 157 

evident in conventional local morphometric measures such as slope gradient and profile 158 

curvature.  159 

With respect to coastal landscapes, it has been suggested that barrier shorelines are scale 160 

independent, such that the wavenumber spectrum of shoreline variation can be approximated by 161 

a power law at alongshore scales from tens of meters to several kilometers  (Lazarus et al., 2011; 162 

Tebbens et al., 2002). However, recent findings by Houser et al. (2015) suggest that the beach-163 

dune morphology of barrier islands in Florida and Texas is scale-dependent and that 164 

morphodynamic  processes operating at swash (0-50 m) and surf-zone (< 1000 m) scales  are 165 

different than the processes operating at larger scales. In this context, scale-dependence implies 166 

that a certain number of different processes are simultaneously operative, each process acting at 167 

its own scale of influence, and it is the superposition of the effects of these multiple processes 168 

that shapes the overall behavior and shoreline morphology. This means that shorelines may have 169 

different patterns of irregularity alongshore with respect to barrier island geomorphology, which 170 

has important implications for analyzing long-term shoreline retreat and island transgression. 171 

Lazarus et al. (2011) point out that deviations from power law scaling at larger spatial scales 172 

(tens of km) emphasizes the need for more studies that investigate large-scale shoreline change. 173 

While coastal terrains might not satisfy the strict definition of self-similarity, it is reasonable to 174 

expect them to exhibit long-range dependence (LRD). LRD pertains to signals in which the 175 

correlation between observations decays like a power law with separation, i.e. much slower than 176 

one would expect from independent observations or those that can be explained by a short-177 

memory process, such as an autoregressive-moving-average (ARMA) with small (p,q) (Beran, 178 

1994; Doukhan et al., 2003).  179 

 180 

1.3 Research objectives 181 
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This study performed at Padre Island National Seashore (PAIS), Texas, USA utilizes 182 

electromagnetic induction (EMI) apparent conductivity σa responses to provide insight into the 183 

relation between spatial variations in framework geology and surface morphology. Two 184 

alongshore EMI surveys at different spatial scales (100 km and 10 km) were conducted to test 185 

the hypothesis that, like barrier island morphology, subsurface framework geology exhibits LRD 186 

characteristic of scale-independence. The σa responses, which are sensitive to parameters such as 187 

porosity and mineral content, are regarded herein as a rough proxy for subsurface framework 188 

geology (Weymer et al., 2015a). This assumes, of course, that alongshore variations in salinity 189 

and water saturation, and other factors that shape the σa response, can be neglected to first order. 190 

A corroborating 800 m ground-penetrating radar (GPR) survey, providing an important check on 191 

the variability observed within the EMI signal, confirms the location of a previously identified 192 

paleo-channel (Fisk, 1959) at ~ 5 – 10 m depth. The overall geophysical survey design allows for 193 

a detailed evaluation of the long-range-dependent structure of the framework geology over a 194 

range of length scales spanning several orders of magnitude. We explore the applicability of 195 

autoregressive integrated moving-average (ARIMA) processes as statistical models that describe 196 

the statistical connections between EMI and Light Detection and Ranging (LiDAR) spatial data 197 

series. This paper utilizesintroduces the use of a generalized fractional ARIMA (0,d,0) process 198 

(Hosking, 1981) that is specifically designed to model LRD for a given data series using a single 199 

differencing non-integer parameter d. The parameter d can be used in the present context to 200 

discriminate between forced, scale-dependent controls by the framework geology; i.e., stronger 201 

LRD (d → 0.5) and free behavior that is scale-independent; i.e., weaker LRD (0 ← d). In other 202 

words, it is the particular statistical characteristics of the framework geology LRD at PAIS that 203 

we are trying to ascertain from the EMI σa signal, with the suggestion that σa measurements can 204 

be used similarly at other sites to reveal the hidden LRD characteristics of the framework 205 

geology. 206 

 207 

2 Background and regional setting 208 

2.1 Utility of electromagnetic methods in coastal environments   209 

Methods to ascertain the alongshore variability of framework geology, and to test long-range 210 

dependence, are difficult to implement and can be costly. Cores provide detailed point-wise 211 
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geologic data; however, they do not provide laterally continuous subsurface information  (Jol et 212 

al., 1996). Alternatively, geophysical techniques including seismic and GPR provide spatially 213 

continuous stratigraphic information (e.g., Buynevich et al., 2004; Neal, 2004; Nummedal and 214 

Swift, 1987; Tamura, 2012), but they are not ideally suited for LRD testing because the data 215 

combine depth and lateral information at a single acquisition point. Moreover, GPR signals 216 

attenuate rapidly in saltwater environments whereas seismic methods are labor-intensive and 217 

cumbersome. On the other hand, terrain conductivity profiling is an easy-to-use alternative that 218 

has been used in coastal environments to investigate fundamental questions involving; 219 

instrument performance characteristics (Delefortrie et al., 2014; Weymer et al., 2016), 220 

groundwater dynamics (Stewart, 1982; Fitterman and Stewart, 1986; Nobes, 1996; Swarzenski, 221 

and Izbicki, 2009), and framework geology (Seijmonsbergen et al. 2004; Weymer et al. 2015). 222 

Previous studies combining EMI with either GPR (Evans and Lizarralde, 2011) or coring 223 

(Seijmonsbergen et al. 2004) demonstrate the validity of EM measurements as a means to 224 

quantify alongshore variations in the framework geology of coastlines.  225 

In the alongshore direction, Seijmonsbergen et al. (2004) used a Geonics EM34™ terrain 226 

conductivity meter oriented in the horizontal dipole mode with intercoil separation and station 227 

spacing both of 20 m. This configuration provides an exploration depth of roughly 15 m. A 14.5 228 

km-length EMI transect was collected along the backbeach crossing a former outlet of the Rhine 229 

River, Netherlands to evaluate alongshore variations in subsurface lithology. The survey was 230 

conducted in an area that was previously characterized by drilling and these data were used to 231 

calibrate the σa measurements. The results from the study suggest that coastal sediments can be 232 

classified according to σa signature and. The range of σa values was categorized into three groups. 233 

The first group of low σa 20 – 45 millisiemens per meter (mS/m) with low-variability amplitudes was 234 

interpreted as beach sands. The second group of medium σa values (20 – 90 mS/m) with large 235 

variability corresponded to clay and peat layers of varying thickness. A third group of high σa values 236 

(60 – 190 mS/m) with large variability was interpreted as clay-rich brackish channel deposits. The 237 

authors suggest that high σa values occur in areas where the underlying conductive layer is thick and 238 

close to the surface. Although Seijmonsbergen et al. (2004) proposesuggest that EMI surveys are a 239 

rapid, inexpensive method to investigate subsurface lithology they also acknowledge that variations 240 

in salinity as a result of changing hydrologic conditions, storm activity and/or tidal influence 241 
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confound the geological interpretation and should be investigated in further detail (see Weymer et al., 242 

2016). 243 

The challenge on many barrier islands and protected National Seashores is obtaining 244 

permission for extracting drill cores to validate geophysical surveys. At PAIS, numerous areas 245 

along the island are protected nesting sites for the endangered Kemp’s ridley sea turtle, 246 

migratory birds, while other areas comprise historic archeological sites with restricted access. 247 

Thus, coring is not allowed and only non-invasive techniques, such as EMI/GPR are permitted.  248 

 249 

2.2 Regional setting 250 

North Padre Island is part of a large arcuate barrier island system located along the Texas Gulf of 251 

Mexico coastline and is the longest undeveloped barrier island in the world. The island is one of 252 

ten national seashores in the United States and is protected and managed by the National Park 253 

Service, a bureau of the Department of the Interior. PAIS is 129 km in length, and is an ideal 254 

setting for performing EMI surveys because there is minimal cultural noise to interfere with the 255 

σa signal, which as stated earlier we regard as a proxy for alongshore variations in framework 256 

geology (Fig. 1). Additionally, there is high-resolution elevation data available from a 2009 257 

aerial LiDAR survey. island is well-covered by high-resolution aerial LiDAR data. The island is 258 

not dissected by inlets or navigation channels (excluding Mansfield Channel separating north and 259 

south Padre Island), or modified by engineered structures (e.g., groynes, jetties, etc.) that often 260 

interfere with natural morphodyamic processes (see Talley et al., 2003). The above 261 

characteristics make the study area an exceptional location for investigating the relationships 262 

between large-scale framework geology and surface morphology. 263 

Relatively little is known about the framework geology at PAIS, especially its alongshore 264 

variability. A notable exception is the information obtained from a series of coring and seismic 265 

surveys conducted by Fisk (1959) in the central region of Padre Island (~ 27º N). As described in 266 

Weymer et al. (2015a; Fig. 3), locations of several paleo-channels were established by Fisk 267 

(1959) based on 3,000 cores and several seismic surveys. More than 100 borings were drilled to 268 

the top of the late Pleistocene surface (tens of m depth) providing sedimentological data for 269 

interpreting the depth and extent of the various paleo-channels. These cores were extracted ~ 60 270 
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years ago, but the remnant Pleistocene and Holocene fluvial/deltaic features described in Fisk's 271 

study likely have not changed over decadal time scales.   272 

Geologic interpretations based on the Fisk (1959) data suggest that the thickness of the 273 

modern beach sands is ~ 2 – 3 m, and they are underlain by Holocene shoreface sands and muds 274 

to a depth of ~ 10 – 15 m (Brown and Macon, 1977; Fisk, 1959). The Holocene deposits lie upon 275 

a Pleistocene ravinement surface of fluvial-deltaic sands and muds and relict transgressive 276 

features. A network of buried valleys and paleo-channels in the central segment of the island, as 277 

interpreted by Fisk (1959), exhibits a dendritic, tributary pattern. The depths of the buried valleys 278 

inferred from seismic surveys range from ~ 25 – 40 m (Brown and Macon, 1977). These 279 

channels have been suggested to incise into the Pleistocene paleo-surface and became infilled 280 

with sands from relict Pleistocene dunes and fluvial sediments reworked by alongshore currents 281 

during the Holocene transgression (Weise and White, 1980). However, the location and cross-282 

sectional area of each valley and paleo-channel alongshore is not well-constrained. It is also 283 

possible that other channels exist other than those identified by Fisk (1959).  284 

As suggestedpresented in Weymer et al. (2015a), minima in the alongshore σa signal are 285 

spatially correlated with the locations of these previously identified geologic features. This 286 

observation provides an impetus for using EMI to map the known, and any previously 287 

unidentified, geologic features alongshore. The observed beach-dune morphology and other 288 

metrics such as island width are highly variable and controlled to an unknown extent by the 289 

framework geology both within and outside the known paleo-channel regions. The fact that 290 

much of the framework geology at PAIS is poorly known provides additional motivation for 291 

integrating subsurface geophysical methods and surface observations to analyze, from a 292 

statistical standpoint, the key geologic controls on island morphology within the study area.  293 

 294 

3 Methods 295 

A combination of geophysical, geomorphological, and statistical methods are used in this study 296 

to quantify the relationships between framework geology and surface geomorphology at PAIS. A 297 

description of the EMI, GPR, geomorphometry and statistical techniques is provided in the 298 

following sections.  299 

 300 
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3.1 Field EMI and GPR surveys  301 

Profiles of EMI σa responses typically are irregular and each datum represents a spatial averaging 302 

of the bulk subsurface electrical conductivity σ, which in turn is a function of a number of 303 

physical properties (e.g., porosity, lithology, water content, salinity, etc.). The “sensor footprint”, 304 

or subsurface volume over which the spatial averaging is performed, is dependent on the 305 

separation between the TX – RX coils (1.21 m in this study), and the transmitter frequency. The 306 

horizontal extent, or radius, of the footprint can be more or less than the step-size between 307 

subsequent measurements along the profile. The sensor footprint determines the volume of 308 

ground that contributes to σa at each acquisition point, and as will be discussed later, the radius 309 

of the footprint has important implications for analyzing LRD. The footprint radius depends on 310 

frequency and ground conductivity, but is likely to be of the same order as, but slightly larger 311 

than, the intercoil spacing. Two different station-spacings were used to examine the correlation 312 

structure of σa as a function of spatial scale. An island-scale alongshore survey of ~ 100 km 313 

length was performed using a 10 m station spacing (station spacing >> footprint radius) such that 314 

each σa measurement was recorded over an independently sampled volume of ground. 315 

Additionally, a sequence of σa readings was collected at 1 m spacing (station spacing < footprint 316 

radius) over a profile length of 10 km within the Fisk (1959) paleo-channel region of the island. 317 

This survey design allows for comparison of the long-range-dependent structure of the 318 

framework geology over several orders of magnitude (100 – 105 m).  319 

The 100-km-long alongshore EMI survey was performed during a series of three field 320 

campaigns, resulting in a total of 21 (each of length ~ 4.5 km) segments that were collected 321 

during October 9 – 12th, 2014, November 15 – 16th, 2014, and March 28th, 2015.  The EMI σa 322 

profiles were stitched together by importing GPS coordinates from each measurement into 323 

ArcGIS™ to create a single composite spatial data series. The positional accuracy recorded by a 324 

TDS Recon PDA equipped with a Holux™ WAAS GPS module was found to be accurate within 325 

~ 1.5 m. To reduce the effect of instrument drift caused by temperature, battery and other 326 

systematic variations through the acquisition interval, a drift correction was applied to each 327 

segment, the segments were then stitched together, following which a regional linear trend 328 

removal was applied to the composite dataset. An additional 10 km survey was performed along 329 

a segment of the same 100 km survey line in one day on March 29th, 2015, to determine whether 330 
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varying hydrologic conditions in both space and time, which are discussed below, play a 331 

deleterious role in resolving the framework geology. This second composite data series consists 332 

of 8 stitched segments.  333 

The same multi-frequency GSSI Profiler EMP-400™ instrument was used for each 334 

segment. All transects were located in the backbeach environment ~ 25 m inland from the mean 335 

tide level (MTL). This location was chosen to reduce the effect of changing groundwater 336 

conditions in response to nonlinear tidal forcing (see Weymer et al., 2016), which may be 337 

significant closer to the shoreline. The sensor has reduced ability to detect lateral changes in the 338 

underlying geology during wet conditions such as during or immediately after significant rainfall 339 

events, or at high tide near the shoreline, since electrical conductivity increases rapidly with 340 

water content. The transect locations also avoid the large topographic variations (see Santos et 341 

al., 2009) fronting the foredune ridge that can reduce the efficiency of data acquisition and 342 

influence the EMI signal. In a companion study, Weymer et al. (2016) demonstrated  that the σa 343 

signal at the beachfront exhibits a step-like response over the course of a tidal cycle; however, 344 

this effect is less pronounced further inland where the surveys in the present study were 345 

collected. Their study demonstrates that the difference between high-tide and low-tide EMI σa 346 

measurements is as large as 50 mS/m at the backbeach, but this difference is less than 9% of the 347 

range of σa variations observed (~ 50 – 600 mS/m) along the entire length of the island. As will 348 

be shown later, there is not a direct correlation between high tide and high σa values. Thus, we 349 

assume the tidal influence on the EMI signal can be neglected over the spatial scales of interest 350 

in the present study. Nevertheless, the duration and approximate tidal states of each survey was 351 

documented in order to compare with the EMI signal (see Weymer et al., 2016). Tidal data were 352 

accessed from NOAA’s Tides and Currents database (NOAA, 2015b). Padre Island is microtidal 353 

and the mean tidal range within the study area is 0.38 m (NOAA, 2015a). A tidal signature in EMI 354 

signals may become more significant at other barrier islands with larger tidal ranges.  355 

For all surveys, the EMI profiler was used in the same configuration and acquisition 356 

settings as described in Weymer et al. (2016). a vertical dipole orientation with TX and RX coils 357 

aligned in the (P-mode) direction parallel to the profile line (Weymer et al., 2016).The transect 358 

locations were chosen to also avoid the large topographic variations (see Santos et al., 2009) 359 

fronting the foredune ridge that can reduce the efficiency of data acquisition and influence the 360 
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EMI signal.  Measurements were made at a constant step-size to simplify the data analysis; for 361 

example, ARIMA models require that data are taken at equal intervals (see Cimino et al., 1999). 362 

The EMI profiler was carried at a height of 0.7 m above the ground to mitigate noise from the 363 

mainly non-metallic debris on the beach that unfortunately is scattered along the island (Weymer 364 

et al., 2016). Although the sensor is capable of recording three frequencies simultaneously (see 365 

Geophysical Survey Systems, 2007), wWe choose herein to focus on data collected at 3 kHz,  366 

resulting in a depth of investigation (DOI) of ~ 3.5 – 6.4 m over the range of conductivities 367 

found within the study area (Weymer et al., 2016; Table 1.). Because the depth of the modern 368 

beach sands is ~ 2 – 3 m or greater (see Brown and Macon, 1977; page 56, Figure 15), variations 369 

in the depth to shoreface sands and muds is assumed to be within the DOI of the profiler, which 370 

may not be captured at the higher frequencies also recorded by the sensor (i.e., 10, and 15 kHz) .  371 

An 800 m GPR survey was performed on August 12th, 2015 across one of the paleo-372 

channels previously identified Fisk (1959) located within the 10 km EMI survey for comparison 373 

with the σa measurements. We used a Sensors and Software PulseEKKO Pro® system for this 374 

purpose. A survey grade GPS with a positional accuracy of 10 cm was used to match the 375 

locations and measurements between the EMI/GPR surveys. Data were acquired in reflection 376 

mode at a nominal frequency of 100 MHz with a standard antenna separation of 1 m and a step-377 

size of 0.5 m. The instrument settings resulted in a DOI of up to 15 m. Minimal processing was 378 

applied to the data and includes a dewow filter and migration (0.08 m/ns), followed by AGC gain 379 

(see Neal, 2004). Given The theory and operational principles of GPR are discussed in many 380 

places (e.g. Everett, 2013; Jol, 2008) and will not be reviewed here.  381 

 382 

3.2 Geomorphometry 383 

Topographic information was extracted from aerial LiDAR data that were collected by the Army 384 

Corps of Engineers (USACE) in 2009 as part of the West Texas Aerial Survey project to assess 385 

post-hurricane conditions of the beaches and barrier islands along the Texas coastline. This 386 

dataset is the most recent publicly available LiDAR survey of PAIS and it provides essentially 387 

complete coverage of the island. With the exception of Hurricane Harvey, which made landfall 388 

near Rockport, Texas as a Category 4 storm in late August, 2017, Padre Island has not been 389 

impacted by a hurricane since July 2008, when Hurricane Dolly struck South Padre Island as a 390 
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Category 1 storm (NOAA, 2015a). The timing of the LiDAR and EMI surveys in this study 391 

precede the impacts of Hurricane Harvey, and it is assumed that the surface morphology across 392 

the island at the spatial scales of interest (i.e., 101 – 102 km) did not change appreciably between 393 

2009 and 2015.  394 

A 1-m resolution DEM was created from 2009 LiDAR point clouds  available from 395 

NOAA’s Digital Coast (NOAA, 2017). The raw point cloud tiles were merged to produce a 396 

combined point cloud of the island within the park boundaries of the PAIS National Seashore. 397 

The point clouds were processed into a continuous DEM using the ordinary kriging algorithm in 398 

SAGA GIS, which is freely available open-source software (www.saga-gis.org/); and subsequent 399 

terrain analysis was conducted using an automated approach involving the relative -relief (RR) 400 

metric (Wernette et al., 2016). Several morphometrics including beach width, dune height, and 401 

island width were extracted from the DEM by averaging the RR values across window sizes of 402 

21 m x 21 m, 23 m x 23 m, and 25 m x 25 m. The choice of window size is based on tacit a 403 

priori knowledge and observations of the geomorphology in the study area. A detailed 404 

description of the procedure for extracting each metric is provided in Wernette et al. (2016).  405 

Relative relief is a measure of topographic position of the center pixel compared to the 406 

minimum and maximum pixel elevations within a given computational window. Several other 407 

morphometrics including beach width, dune height, and island width were extracted from the 408 

DEM using a recently developed automated multi-scale approach (see Wernette et al., 2016). 409 

This technique extracts the open-water shoreline (in this case the Gulf of Mexico shoreline) and 410 

backbarrier shoreline based on elevation thresholds and uses them to calculate beach and island 411 

width referenced to mean sea-level (MSL). Dune metrics including dune crest, dune heel, and 412 

dune toe elevations are calculated based on the average relative relief (RR) to determine where 413 

the dune begins, crests, and ends along every shore-normal profile in a DEM. This process is 414 

repeated for all such profiles at a 1 m spacing along the entire length of PAIS to generate a 415 

continuous dataset of alongshore dune height and volume. A detailed description of the 416 

procedure for extracting each metric is provided in Wernette et al. (2016).  417 

Each morphometric feature was extracted by averaging the RR values across window 418 

sizes of 21 m x 21 m, 23 m x 23 m, and 25 m x 25 m. The choice of window size is based on 419 

tacit a priori knowledge and observations of the geomorphology in the study area. Larger 420 
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window sizes will better capture smoother beach and dune features by reducing sensitivity to the 421 

fine-scale variability induced by measurement error inherent in LiDAR-derived DEMs, as well 422 

as natural terrain irregularities (Wernette et al., 2016). Each DEM series is paired with the σa 423 

profile by matching the GPS coordinates (latitude and longitude) recorded in the field by the 424 

EMI sensor. Cross-sectional elevationDEM profiles oriented perpendicular to the shoreline were 425 

analyzed every 10 m (y-coordinate) along the EMI profile to match the same 10 m sampling 426 

interval of the σa measurements. The terrain variations along each cross-shore profile are 427 

summed to calculate beach and island volume based on the elevation thresholds mentioned 428 

above. Dune volume is calculated by summing the pixel elevations starting at the dune toe, 429 

traversing the dune crest, and ending at the dune heel. In total, six DEM morphometrics were 430 

extracted as spatial data series to be paired with the EMI data, each having an identical sample 431 

size (n = 9,694), which is sufficiently large for statistical ARIMA modeling.    432 

 433 

3.3 Statistical methods 434 

Although the procedures for generating the EMI and LiDAR datasets used in this study 435 

are different, the intended goal is the same; to produce spatial data series that contain similar 436 

numbers of observations for comparative analysis using a combination of signal processing and 437 

statistical modeling techniques. The resulting signals comprising each data series represent the 438 

spatial averaging of a geophysical (EMI) or geomorphological (DEM)elevation variable that 439 

contains information about the important processes-form relationships between subsurface 440 

geologic features and island geomorphology that can be teased out by means of comparative 441 

analysis (Weymer et al., 2015a). Because we are interested in evaluating these connections at 442 

both small and large spatial scales, our first approach is to determine the autocorrelation function 443 

and Hurst coefficient (self-similarity parameter) H and hence verify whether the data series are 444 

characterized by short and/or long-range memory (Beran, 1992; Taqqu et al., 1995). LRD occurs 445 

when the autocorrelation within a series, at large lags, tend to zero like a power function, and so 446 

slowly that the sums diverge (Doukhan et al., 2003). LRD is often observed in natural time series 447 

and is closely related to self-similarity, which is a special type of LRD.  448 

The degree of LRD is related to the scaling exponent, H of a self-similar process, where 449 

increasing H in the range 0.5 < H ≤ 1.0 indicates an increasing tendency towards such an effect 450 
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(Taqqu, 2003). Large correlations at small lags can easily be detected by models with short-451 

memory (e.g., ARMA, Markov processes) (Beran, 1994). Conversely, when correlations at large 452 

lags slowly tend to zero like a power function, the data contain long-memory effects and either 453 

fractional Gaussian noise (fGn), or ARIMA models may be suitable (Taqqu et al., 1995). The 454 

R/S statistic is the quotient of the range of values in a data series and the standard deviation 455 

(Beran, 1992, 1994; Hurst, 1951; Mandelbrot and Taqqu, 1979). When plotted on a log/log plot, 456 

the resulting slope of the best-fit line gives an estimate of H, which is useful as a diagnostic tool 457 

for estimating the degree of LRD (see Beran, 1994). The degree of LRD can be characterized by 458 

evaluating the scaling exponent H (or Hurst coefficient) of a self-similar process. When plotted 459 

on a log/log plot, the resulting slope of the best-fit line gives an estimate of H, where values 460 

approaching 1.0 indicate dominant long-range effects (see Beran, 1994). 461 

For a given number of observations Xi, X2, … Xn, a partial sum sequence is defined by 462 

Sm = X1 + … + Xm, for m = 0,1,… and m<n (with S0 = 0). The R/S statistic is then calculated by 463 

(see Samorodnitsky, 2007): 464 

𝑅

𝑆
(𝑋1, … , 𝑋𝑛) =

𝑚𝑎𝑥0≤𝑖≤𝑛(𝑆𝑖−
1

𝑛
𝑆𝑛)−𝑚𝑖𝑛0≤𝑖≤𝑛(𝑆𝑖−

𝑖

𝑛
𝑆𝑛)

√(
1

𝑛
∑ (𝑥𝑖−

1

𝑛
𝑆𝑛)

2
𝑛
𝑖=1 )

                      465 

(1) 466 

where, Sn/n is the mean of the sample. It has been suggested that R/S tends to give biased 467 

estimates of H, too low for H > 0.72 and too high for H < 0.72 (Bassingthwaigthe and Raymond, 468 

1994), which was later confirmed by Malamud and Turcotte (1999). Empirical trend corrections 469 

to the estimates of H can be made by graphical interpolation, but are not applied here because of 470 

how the regression is done. The R/S analysis in this study was performed using signal analysis 471 

software AutoSignal™ to identify whether a given signal is distinguishable from a random, 472 

white noise process and, if so, whether the given signal contains LRD. The H value is calculated 473 

by an inverse variance-weighted linear least-squares curve fit using the logarithms of the R/S and 474 

the number of observations, which provides greater accuracy than other programs that compute 475 

the Hurst coefficient.  476 

Two of the simplest statistical time series models that can account for LRD are fGn and 477 

ARIMA. In the former case, fGn and its “parent” fractional Brownian motion (fBm) are used to 478 

evaluate stationary and nonstationary fractal signals, respectively (see Eke et al., 2000; Everett 479 
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and Weiss, 2002). Both fGn and fBm are governed by two parameters: variance σ2; and the 480 

scaling parameter, H (Eke et al., 2000). A more comprehensive class of time series models that 481 

has similar capability to detect long-range structure is ARIMA. Because fGn and fBm models 482 

have only two parameters, it is not possible to model the short-range components. Additional 483 

parameters in ARIMA models are designed to handle the short-range component of the signal, as 484 

discussed by Taqqu et al. (1995) and others. Because the EMI data series presumably contain 485 

both short-range and long-range effects, we chose to use ARIMA as the analyzing technique.  486 

ARIMA models are used across a wide range of disciplines in geoscience and have broad 487 

applicability for understanding the statistical structure of a given data series as it is related to 488 

some physical phenomenon (see Beran, 1992, 1994; Box and Jenkins, 1970; Cimino et al., 1999; 489 

Granger and Joyeux, 1980; Hosking, 1981; Taqqu et al., 1995). For example, Cimino et al. 490 

(1999) apply R/S analysis, ARIMA, and Neural Network analysis to different geological data 491 

sets including; tree ring data, Sr isotope data of Phanerozoic seawater samples, and El Niño 492 

phenomenon. The authors show that  their statistical approach enables 1) recognition of 493 

qualitative changes within a given dataset, 2) evaluation of the scale (in)dependency of 494 

increments, 3) characterization of random processes that describe the evolution of the data, and 495 

4) recognition of cycles embedded within the data series. In the soil sciences, Alemi et al. (1988) 496 

use ARIMA and Kriging to model the spatial variation of clay-cover thickness of a 78 km2 area 497 

in northeast Iran and demonstrate that ARIMA modeling can adequately describe the nature of 498 

the spatial variations. ARIMA models have also been used to model periodicity of major 499 

extinction events in the geologic past (Kitchell and Pena, 1984).  500 

In all these studies, tThe statistical ARIMA model of a given data series is defined by 501 

three terms (p,d,q), where p and q indicate the order of the autoregressive (AR) and moving 502 

average (MA) components, respectively and d represents a differencing, or integration term (I) 503 

that is related to LRD. The AR element, p, represents the effects of adjacent observations and the 504 

MA element, q, represents the effects on the process of nearby random shocks (Cimino et al., 505 

1999; De Jong and Penzer, 1998). However, in the present study our series are reversible spatial 506 

series that can be generated, and are identical, with either forward or backward acquisition, 507 

unlike a time series. Both p and q parameters are restricted to integer values (e.g., 0, 1, 2), 508 

whereas the integration parameter, d, represents potentially long-range structure in the data. The 509 
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differencing term d is normally evaluated before p and q to identify whether the process is 510 

stationary (i.e., constant mean and σ2). If the series is nonstationary, it is differenced to remove 511 

either linear (d = 1) or quadratic (d = 2) trends, thereby making the mean of the series stationary 512 

and invertible (Cimino et al., 1999), thus allowing determination of the ARMA p and q 513 

parameters. 514 

Here, we adopt the definitions of an ARMA (p,q), and ARIMA (p,d,q) process following 515 

the work of Beran (1994). Let p and q be integers, where the corresponding polynomials are 516 

defined as:  517 

𝜙(𝑥) = 1 − ∑ 𝜙𝑗𝑥𝑗𝑝
𝑗=1 , 518 

                519 

(12) 520 

𝜓(𝑥) = 1 + ∑ 𝜓𝑗𝑥𝑗𝑞
𝑗=1 . 521 

 522 

It is important to note that all solutions of 𝜙(𝑥0 ) = 0, and 𝜓(𝑥) = 0 are assumed to lie outside 523 

the unit circle. Additionally, let 𝜖𝑡(𝑡 = 1,2, … ) be independent, and identically distributed 524 

normal variables with zero variance 𝜎𝜖
2 such that an ARMA (p,q) process is defined by the 525 

stationary solution of: 526 

  527 

𝜙(𝐵)𝑋𝑡 = 𝜓(𝐵)𝜖𝑡                          (23) 528 

 529 

where, B is the backward shift operator 𝐵𝑋𝑡 = 𝑋𝑡−1, 𝐵2𝑋𝑡 = 𝑋𝑡−1, … and, specifically, the 530 

differences can be expressed in terms of B as; 𝑋𝑡 − 𝑋𝑡−1 = (1 − 𝐵)𝑋𝑡, (𝑋𝑡 − 𝑋𝑡−1) − (𝑋𝑡−1 −531 

𝑋𝑡−2) = (1 − 𝐵)2𝑋𝑡 … Alternatively, an ARIMA (p,d,q) process 𝑋𝑡 is formally defined as:  532 

 533 

𝜙(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜓(𝐵)𝜖𝑡                             (34) 534 

 535 

where, equation (3) holds for a dth difference (1 − 𝐵)𝑑𝑋𝑡.  536 

As mentioned previously, a more general form of ARIMA (p,d,q) is the fractional 537 

ARIMA process, or FARIMA, where the differencing term d is allowed to take on fractional 538 
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values. If d is a non-integer value for some -0.5 < d < 0.5 and 𝑋𝑡 is a stationary process as 539 

indicated by equation 34, then the model by definition is called a FARIMA process where d-540 

values in the range 0 < d < 0.5 of are of particular interest herein because geophysically-relevant 541 

LRD occurs for 0 < d < 0.5, whereas d > 0.5 means that the process is nonstationary, but 542 

nonintegrable (Beran, 1994; Hosking, 1981). A special case of a FARIMA process explored in 543 

the current study is ARIMA (0d0), also known as fractionally-differenced white noise (Hosking, 544 

1981), which is defined by Beran (1994) and others as: 545 

 546 

𝑋𝑡 = (1 − 𝐵)−𝑑𝜖𝑡.                           547 

(45) 548 

 549 

For 0 < d < 0.5, the ARIMA (0d0) process is a stationary process with long-range structure and 550 

is useful for modeling LRD. As shown later, different values of the d parameter provide further 551 

insight into the type of causative physical processes that generate each data series. When d < 0.5, 552 

the series 𝑋𝑡 is stationary, which has an infinite moving average MA representation that 553 

highlights long-range trends or cycles in the data. Conversely, when d > - 0.5, the series 𝑋𝑡 is 554 

invertible and has an infinite autoregressive AR representation (see Hosking, 1981). When -0.5 < 555 

d < 0, the stationary, and invertible, ARIMA (0d0) process is dominated by short-range effects 556 

and is antipersistent. When d = 0, the ARIMA (000) process is white noise, having zero 557 

correlations and a constant spectral density.  558 

Following the methodology proposed by Box and Jenkins (1970), there are three phases that 559 

characterize ARIMA modeling: identification, estimation, and diagnostic testing. The primary 560 

task of the first phase is to identify the autocorrelation function(s) and any patterns in the data 561 

(e.g., autocorrelation function, R/S analysis), and to manipulate the data (if necessary) to achieve 562 

stationarity before an appropriate model is chosen (Linden et al., 2003). After an appropriate 563 

model is selected (e.g., ARMA, ARIMA, etc.), statistical software is used in the second phase to 564 

generate estimates of each model parameter (p,d,q) in order to achieve a good model fit. Tasks 565 

included in the third phase involve examining the residual score, or root-mean-square error 566 

(RMSE), to determine if there are patterns remaining in the data that are not accounted for. 567 

Residual scores, or the mismatch between the values predicted by the model and the actual 568 
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values of the data series, should show that there are no significant autocorrelations among the 569 

residuals (Linden et al., 2003). The best model fit is determined by the smallest residual score, 570 

which is the sum of the squares of the residuals (i.e., RMSE).  571 

 Identification of an appropriate model is accomplished by finding small values of elements p,d,q 572 

(usually between 0 – 2) that accurately fit the most significant patterns in the data series. When a 573 

value of an element is 0, that element is not needed. For example, if d = 0 the series does not 574 

contain a significant long-range component, whereas if p = q = 0, the model does not exhibit 575 

significant short-range effects. If p,d,q ≠ 0, the model contains a combination of both short and 576 

long-memory effects.  577 

Time series modeling is traditionally used for either forecasting future values or assigning 578 

missing values within the data series. In this study, we are interested in determining the orders of 579 

p,d,q not for forecasting or filling in missing data, but rather for gaining physical insight into the 580 

structure of EMI σa responses, and since it is a proxy, the structure of the framework geology. 581 

Different combinations of (p,d,q) provide insights into the degree or strength of LRD within a 582 

data series and, in the present context in which EMI and elevationDEM are jointly analyzed, the 583 

best-fit (p,d,q) values can be used to discern how the various length-scales within the framework 584 

geology and island morphology are related.  585 

 586 

4 Results 587 

4.1 Spatial data series 588 

4.1.1 EMI and GPR surveys  589 

The 100 km EMI survey (Fig. 2a) represents (to our knowledge) the longest continuous ground-590 

based survey using a terrain conductivity meter ever performed. The unprocessed (raw) EMI σa 591 

responses show a high degree of variability along the island. To reduce the effect of instrument 592 

drift caused by temperature, battery and other systematic variations through the acquisition 593 

interval, a drift correction was applied to each segment, the segments were then stitched together, 594 

following which a regional linear trend removal was applied to the composite dataset. High-595 

amplitude responses within the EMI signal generally exhibit a higher degree of variability 596 

(multiplicative noise) compared to the low-amplitude responses. Higher σa readings correspond 597 

to a small sensor footprint and have enhanced sensitivity to small-scale near-surface 598 
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heterogeneities (see Guillemoteau and Tronicke, 2015). Low σa readings suggest the sensor is 599 

probing greater depths and averaging over a larger footprint. In that case, the effect of fine-scale 600 

heterogeneities that contribute to signal variability is suppressed. 601 

The 10 km alongshore survey is located within an inferred paleo-channel region (Fisk, 602 

1959), providing some a priori geologic constraints for understanding the variability within the 603 

EMI signal (Fig. 2b). Here, the sample size is n = 10,176, permitting a quantitative comparison 604 

with the 100-km-long data series since they contain a similar number of observations. Unlike the 605 

100 km survey, successive footprints of the sensor at each subsequent measurement point 606 

overlap along the 10 km survey. The overlap enables a fine-scale characterization of the 607 

underlying geological structure because the separation between the TX – RX coils (1.21 m), a 608 

good lower-bound approximation of the footprint, is greater than the step-size (1 m).  609 

The overall trend in σa for the 10 km survey is comparable to that of the 100 km survey, 610 

where regions characterized by high and low amplitude signals correspond to regions of high and 611 

low variability, respectively, implying that multiplicative noise persists independently of station 612 

spacing. The decrease in σa that persists between ~ 2.5 – 6 km along the profile (Fig. 2b) 613 

coincides in location with two paleo-channels, whereas a sharp reduction in σa is observed at ~ 614 

8.2 km in close proximity to a smaller channel. Most of the known paleo-channels are located 615 

within the 10 km transect and likely contain resistive infill sands that should generate lower and 616 

relatively consistent σa readings (Weymer et al., 2015a). The low σa signal caused by the sand 617 

indirectly indicates valley incision, since it is diagnostic of a thicker sand section, relatively 618 

unaffected by the underlying conductive layers. Thus, it is reasonable to assume that reduced 619 

variability in the signal is related to the framework geology within the paleo-channels, which we 620 

now compare with a GPR profile.   621 

To corroborate the capability of the EMI data to respond to the variable subsurface 622 

geology, an 800 m GPR survey confirms the location of a previously identified paleo-channel 623 

(Fisk, 1959) at ~ 5 – 10 m depth (Fig. 3). A continuous undulating reflector from ~ 150 – 800 m 624 

along the profile is interpreted to be the surface mapped by Fisk (1959) who documented a 625 

paleo-channel at this location with a depth of ~ 8 m. Although the paleo-surface is within the 626 

detection limits of the GPR, it is likely that the DOI of the EMI data (~ 3 – 6 m) is not large 627 

enough to probe continuously along the contact between the more conductive ravinement surface 628 
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and the moreless resistive infill sands. Along the transect at shallower depths highlighted by the 629 

red box in the lower radargram (Fig. 3), low EMI σa values correspond to fine stratifications in 630 

the GPR section, which is common for beach sands with little clay content that are not saline-631 

saturated. The EMI highs between ~ 450 – 530 m coincide with parts of the GPR section that do 632 

not have the fine stratification and this may indicate the presence of clay or saline water. Here, 633 

the high conductivity zone for both the GPR and EMI is located within a recovering washover 634 

channel overlying the paleo-channel that is evident in the satellite imagery in the upper-left panel 635 

of Fig. 3. The overwash deposits consisting of a mix of sand and finer-grained backbarrier 636 

sediments likely mask the EMI sensors’ ability to probe greater depths. Nonetheless, the high 637 

conductivity zone represents a smaller ~ 100 m segment within the ~ 500-m-wide paleo-channel, 638 

suggesting that variations in the EMI responses outside this zone are directly related to variations 639 

in the framework geology imaged by GPR.    640 

 641 

4.1.2 LiDAR-derived DEM morphometrics 642 

The LiDAR-derived elevation DEM spatial data series along the 100 km transect are presented in 643 

Fig. 4. Each data series is shown with respect to the areal DEM of the study area where the 644 

approximate locations of each closely-spaced paleo-channel are highlighted in gray. This 645 

visualization allows a qualitative analysis of the spatial relationships between paleo-channels, 646 

subsurface information encoded in the σa signal, and surface morphology over the entire length 647 

of the barrier island.  648 

The morphology of the beach-dune system, as well as island width, changes substantially 649 

from north to south. In the paleo-channel region, beach width decreases considerably in the 650 

central channel (~ 37 – 42 km) and is more variable outside this region. Beach width generally 651 

increases towards the northern section of the island. The volume of the beach tends to be lowest 652 

in the northern zone, varies considerably in the central part of the island, then stabilizes and 653 

gradually decreases towards the south. These zones correspond to the southern (0 – 30 km), 654 

central (30 – 60 km), and northern (60 – 100 km) sections of the island. Alongshore dune heights 655 

generally are greater in the south, become slightly more variable in the paleo-channel region, and 656 

decrease in the north except for the area adjacent to Baffin Bay. Dune volume is lowest in the 657 

northern section, intermittently increases in the central zone and slightly decreases towards the 658 
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south. The island is considerably narrower between Mansfield Channel and Baffin Bay (see Fig. 659 

2a), increasing in width significantly in the northern zone; island volume follows a similar trend. 660 

Overall, σa values are lower northward of the paleo-channel region compared to the southern 661 

zone where σa increases substantially. However, the lowest σa values are located within the 662 

region of paleo-channels inferred by Fisk (1959) supporting previous findings in the study area 663 

by Weymer et al. (2015a) and Wernette et al. (2018) that suggest a potential geologic control on 664 

alongshore geomorphic features.  665 

Each spatial data series (Fig. 4a – 4g) represents a different superposition of effects 666 

caused by physical processes operating across a wide range of temporal and length scales 667 

(Weymer et al., 2015a). Short-range fluctuations represent small-scale heterogeneities, whereas 668 

long-range components capture variations in each metric at broader length scales. There is a high 669 

degree of variability within each signal that is directly related to the complex geological and 670 

geomorphological structure along the island. Within and outside the paleo-channel region, 671 

general associations between the EMI σa responses and DEM metrics are visually subtle can be 672 

made, motivating the statistics as we now show by ARIMA modeling. To conduct the ARIMA 673 

analysis, we chose to divide the island into three zones based on the location of the known paleo-674 

channels. As will be discussed later, the tripartite zonation allows for a quantitative analysis of 675 

LRD at three spatial scales (regional, intermediate, local) within and outside the area containing 676 

paleo-channels. It is important to note, however, that the framework geology is likely to exhibit 677 

LRD regardless of the length-scale over which it is observed.  678 

 679 

4.2 Tests for LRD 680 

4.2.1 Tests for LRD in EMI data series 681 

Both EMI spatial data series appear to be nonstationary since the mean and variance of the data 682 

fluctuate along the profile. A closer visual inspection reveals however that cyclicity is present at 683 

nearly all spatial frequencies (Fig. 6), with the cycles superimposed in random sequence and 684 

added to a constant variance and mean (see Beran, 1994). This behavior is typical for stationary 685 

processes with LRD, and is often observed in various types of geophysical time series (Beran, 686 

1992), for example records of Nile River stage minima (Hurst, 1951). A common first-order 687 

approach for determining whether a data series contains LRD is through inspection of the 688 
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autocorrelation function, which we have computed in AutoSignal™ signal analysis software 689 

using a fast Fourier transform (FFT) algorithm (Fig. 5a, 5d). Both EMI signals exhibit large 690 

correlations at large lags (at km and higher scales), suggesting the σa responses contain LRD, or 691 

"long-memory effects" in time-series language. The degree of LRD can be characterized by 692 

evaluating the scaling exponent H (or Hurst coefficient) of a self-similar process. When plotted 693 

on a log/log plot, the resulting slope of the best-fit line gives an estimate of H, where values 694 

approaching 1.0 indicate dominant long-range effects (see Beran, 1994). Results from a rescaled 695 

range R/S analysis (Fig. 5b, 5e) indeed show high H-values of 0.85 (r2 = 0.98) and 0.95 (r2 = 696 

0.99) for the 100 km and 10 km surveys, indicating a strong presence of LRD at both regional 697 

and local spatial scales. 698 

The manner in which different spatial frequency (i.e. wavenumber) components are 699 

superposed to constitute an observed EMI σa signal has been suggested to reveal information 700 

about the causative multi-scale geologic structure (Everett and Weiss, 2002; Weymer et al., 701 

2015a).  For example, the lowest-wavenumber contributions are associated with spatially 702 

coherent geologic features that span the longest length scales probed. The relative contributions 703 

of the various wavenumber components can be examined by plotting the σa signal power spectral 704 

density (PSD). A power-law of the form |σa(f)|
2 ~  f β over several decades in spatial wavenumber 705 

is evident (Fig. 5c, 5f). The slope β of a power-law-shaped spectral density provides a 706 

quantitative measure of the LRD embedded in a data series and characterizes the heterogeneity, 707 

or “roughness” of the signal. A value of │β│> 1 indicates a series that is influenced more by 708 

long-range correlations and less by small-scale fluctuations (Everett and Weiss, 2002). For 709 

comparison, a pure white noise process would have a slope of exactly β = 0, whereas a slope of β 710 

~ 0.5 indicates fractional Gaussian noise, i.e., a stationary signal with no significant long-range 711 

correlations (Everett and Weiss, 2002). The β-values for the 100 km and 10 km surveys are β = -712 

0.97, and β = -1.06, respectively. These results suggest that both the 100 km and 10 km EMI 713 

signals contain long-range correlations. However, there is a slightly stronger presence of LRD 714 

within the 10 km segment of the paleo-channel region compared to that within the segment that 715 

spans the entire length of the island. This indicates that long-range spatial variations in the 716 

framework geology are more important, albeit marginally so, at the 10-km scale than at the 100-717 

km scale. It is possible that the variability within the signal and the degree of long-range 718 



25 

 

correlation is also a function of the sensor footprint, relative to station spacing. This is critically 719 

examined in section 4.3. 720 

 721 

4.2.2 Tests for LRD in surface morphometrics  722 

Following the same procedure as applied to the EMI data, we performed the R/S analysis for 723 

each beach, dune, and island metric. The calculated H-values for the DEM morphometrics range 724 

between 0.80 – 0.95 with large values of r2 ~ 1, indicating varying, but relatively strong 725 

tendencies towards LRD. Beach width and beach volume data series have H-values of 0.82 and 726 

0.86, respectively. Dune height and dune volume H-values are 0.83 and 0.80, whereas island 727 

width and island volume have higher H-values of 0.95 and 0.92, respectively. Because each data 728 

series shows moderate to strong evidence of LRD, the relative contributions of short and long-729 

range structure contained within each signal can be further investigated by fitting ARIMA 730 

models to each data set. 731 

 732 

4.3 ARIMA statistical modeling of EMI  733 

The results of the tests described in section 4.2.1 for estimating the self-similarity parameter H 734 

and the slope of the PSD function suggest that both EMI data series, and by inference the 735 

underlying framework geology, exhibit LRD. Therefore, we suggest that an ARIMA process 736 

might be an appropriate model. The goal of our analysis using ARIMA is to estimate the p, d, 737 

and q terms representing the order, respectively, of autoregressive (AR), integrated (I) and 738 

moving-average (MA) contributions to the signal (Box and Jenkins, 1970) to quantify free vs. 739 

forced behavior along the island. For the analysis, the ‘arfima’ and ‘forecast’ statistical packages 740 

in R were used to fit a family of ARIMA (p,d,q) models to the EMI σa data and island 741 

morphometrics (Hyndman, 2015; Hyndman and Khandakar, 2007; Veenstra, 2012). Results of 742 

ten realizations drawn from a family of ARIMA (p,d,q) models and their residuals (RMSE) are 743 

presented in Table 1. The worst fit (ARIMA 001) models are shown for the 100 km and 10 km 744 

(Fig.  6a, 6c) surveys. The best fit (ARIMA 0d0) models for both the 100 and 10 km surveys are 745 

shown in Fig. 6b and 6d, respectively. For this analysis, the tests include different combinations 746 

of p,d,q that model either short-range: ARIMA (100; 001; 101; 202; 303; 404; 505), long-range: 747 

ARIMA (010; 0d0), or composite short- and long-range processes: ARIMA (111). It is important 748 
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to note that AR and MA are only appropriate for “short-memory” processes since they involve 749 

only near-neighbor values to explain the current value, whereas the integration (the "I" term in 750 

ARIMA) models “long-memory” effects because it involves distant values.  Note that ARIMA 751 

was developed for one-way time series, in which the arrow of time advances in only one 752 

direction, but in the current study we are using it for spatial series that are reversible. Different 753 

realizations of each ARIMA (p,d,q) data series were evaluated, enabling physical interpretations 754 

of LRD at regional, intermediate, and local spatial scales. Determining the best-fitting model is 755 

achieved by comparing the residual score, or RMSE, of each predicted data series relative to the 756 

observed data series, where lower RMSE values indicate a better fit (Table 1). 757 

Based on the residuals and visual inspection of each realization (Fig. 6), two observations 758 

are apparent: 1) both EMI data series are most accurately modeled by an ARIMA (0d0) process 759 

with non-integer d, and 2) the mismatch between the data and their model fit is considerably 760 

lower for the 10 km survey compared to the 100 km survey. The first observation suggests that 761 

the data are most appropriately modeled by a FARIMA process; i.e., a fractional integration that 762 

is stationary (0 < d < 0.5) and has long-range dependence (see Hosking, 1981). This implies that 763 

spatial variations in framework geology at the broadest scales dominate the EMI signal and that 764 

small-scale fluctuations in σa caused, for example, by changing hydrological conditions over 765 

brief time intervals less than the overall data acquisition interval, or fine-scale lithological 766 

variations less than a few station spacings, are not as statistically significant. Regarding the 767 

second observation, the results suggest that a small station spacing (i.e., 1 m) is preferred to 768 

accurately model both short and long-range contributions within the signal because large station 769 

spacings cannot capture short-range information. The model for the 10 km survey fits better 770 

because both p (AR) and q (MA) components increase with a smaller step-size since successive 771 

volumes of sampled subsurface overlap. On the contrary, the sensor footprint is considerably 772 

smaller than the station spacing (10 m) for the 100 km survey. Each σa measurement in that case 773 

records an independent volume of ground, yet the dataset still exhibits LRD, albeit not to the 774 

same degree as in the 10 km survey.  775 

 776 

4.4 ARIMA statistical modeling of island metrics compared with EMI 777 
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A sequence of ARIMA (p,d,q) models was also evaluated for the elevationDEM morphometrics 778 

series to find best fits to the data. The analysis comprised a total of 36 model tests (Table 2). The 779 

RMSE values reveal that: 1) all data series are best fit by an ARIMA (0d0) process with 780 

fractional d, i.e. a FARIMA process; 2) the ARIMA models, in general, more accurately fit the 781 

EMI data than the DEM morphometric data likely because the morphology is controlled by more 782 

than the framework geology alone; and 3) in all cases, the poorest fit to each series is the 783 

ARIMA (001), or MA process. This, in turn, means that the differencing parameter d is the most 784 

significant parameter amongst p, d and q. It is important to note that different values of d were 785 

computed based on the best fit of each FARIMA model to the real data. A graphical 786 

representation of the FARIMA-modeled data series for each DEM metric is shown in Fig. 7, 787 

allowing a visual inspection of how well the models fit the observed data. Because each data 788 

series has its own characteristic amplitude and variability, it is not possible to compare RMSE 789 

between tests without normalization. The variance within each data series can differ by several 790 

orders of magnitude.  791 

Instead of normalizing the data, a fundamentally different approach is to compare the 792 

EMI σa d-values with respect to each metric at regional, intermediate, and local scales (Table 3). 793 

Higher positive d-values indicate of a stronger tendency towards LRD. According to Hosking 794 

(1981), {xt} is called an ARIMA (0d0) process and is of particular interest in modelling LRD as 795 

d approaches 0.5 because in such cases the correlations and partial correlations of {xt} are all 796 

positive and decay slowly towards zero as the lag increases, while the spectral density of {xt} is 797 

concentrated at low frequencies. It is reasonable to assume that the degree of LRD may change 798 

over smaller intermediate and/or local scales, which implies a breakdown of self-similarity. For a 799 

self-similar signal, d is a global parameter that does not depend on which segment of the series is 800 

analyzed. In other words, the d-values should be the same at all scales for a self-similar structure.  801 

The results of the FARIMA analysis at the intermediate scale vary considerably within 802 

each zone of the barrier island (north, central, south) and for each spatial data series (Table 3). In 803 

the southern zone (0 – 30 km), EMI σa and beach volume have the strongest LRD (d = 0.44), 804 

whereas the other metrics exhibit weak LRD (ranging from d ~ 0 – 0.2), which may be 805 

characterized approximately as a white noise process. Within the paleo-channel region (30 – 60 806 

km), all of the island metrics show a moderate to strong tendency towards LRD (0.3 ≤ d ≤ 4.2), 807 
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however, the EMI signal does not (d = 0.11). In the northern zone (60 – 100 km) all data series 808 

contain moderate to strong LRD with the exception of beach and island width.  809 

A FARIMA analysis was also conducted at the local scale by dividing the island into 10-810 

km-segments, starting at the southern zone (0 – 10 km) and ending at the northern zone of the 811 

island (90 – 100 km). A total of 70 FARIMA model realizations were evaluated and the resulting 812 

d-values demonstrate that the EMI data segments show a stronger presence of LRD (d > 0.4) 813 

within the paleo-channels (30 – 60 km) and further to the north (60 – 80 km) in close proximity 814 

to the ancestral outlet of Baffin Bay. These findings indicate that there may be local and/or 815 

intermediate geologic controls along different parts of the island, but that the framework geology 816 

dominates island metrics at the regional scale.  817 

 818 

5 Discussion 819 

Although it has long been known that processes acting across multiple temporal and length 820 

scales permit the shape of coastlines to be described by mathematical constructs such as power 821 

law spectra and fractal dimension (Lazarus et al., 2011; Mandelbrot, 1967; Tebbens et al., 2002), 822 

analogous studies of the subsurface framework geology of a barrier island have not been carried 823 

out. For the first time, it is This research supports previous studies demonstrating ed that near-824 

surface EMI geophysical methods are useful for mapping barrier island framework geology and 825 

that FARIMA data series analysis is useful a compact statistical tool for illuminating the long 826 

and/or short-range spatial correlationsnnections between subsurface geology and 827 

geomorphology. The results of the FARIMA analysis and comparisons of the best-fitting d-828 

parameters show that beach and dune metrics closely match EMI σa responses regionally along 829 

the entire length of PAIS, suggesting that the long-range dependent structure of these data series 830 

is similar at large spatial scales. However, further evaluation of the d-parameters over smaller 831 

data segments reveals that there are additional intermediate and localized framework geology 832 

controls on island geomorphology that are not present at the regional scale.  833 

At the intermediate scale, a low EMI d-value (d = 0.11) suggests there is only a weak 834 

framework-geologic control on barrier island morphometrics. A possible explanation is that the 835 

paleo-channels, located within a ~ 30 km segment of the island, are not regularly spaced and on 836 

average are less than a few km wide. This implies that the framework geology controls are 837 
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localized (i.e., effective in shaping island geomorphology only at smaller spatial scales). At the 838 

local scale, relationships between the long-range-dependence of EMI and each metric vary 839 

considerably, but there is a significant geologic control on dune height within the paleo-channel 840 

region (d > 0.4). It is hypothesized that the alongshore projection of the geometry of each 841 

channel is directly related to a corresponding variation in the EMI signal, such that large, gradual 842 

minima in σa are indicative of large, deep channel cross-sections and small, abrupt minima in σa 843 

represent smaller, shallow channel cross-sections. At shallower depths within the DOI probed by 844 

the EMI sensor, variability in the σa signal may correspond to changes in sediment characteristics 845 

as imaged by GPR (Fig. 3). Located beneath a washover channel, a zone of high conductivity 846 

EMI σa responses between ~ 450 – 530 m coincides with a segment of the GPR section where 847 

the signal is more attenuated and lacks the fine stratification that correlates much better with the 848 

lower σa zones. The contrasts in lithology between the overwash deposits and stratified infilled 849 

sands was detected by both EMI and GPR measurements, suggesting that EMI is a useful tool for 850 

mapping variations in barrier island framework geology.     851 

It is argued herein that differences in the d parameter between EMI σa readings (our 852 

assumed proxy for framework geology) and LiDAR-derived surface morphometrics provide a 853 

new metric that is useful for quantifying the causative physical processes that govern island 854 

transgression across multiple spatial scales. All of the calculated d-values in this study are 855 

derived from ARIMA (0d0) models that fit the observations, and lie within the range of 0 < d < 856 

0.5, suggesting that each data series is stationary but does contain long-range structure that 857 

represents randomly-placed cyclicities in the data. For all models in our study, the d-values range 858 

between (~ 0 – 0.50), which enables a geomorphological interpretation of the degree of LRD and 859 

self-similarity at different spatial scales. In other words, the d-parameter not only provides an 860 

indication of the scale dependencies within the data, but also offers a compact way for analyzing 861 

the statistical connections between free (weaker d ~ 0) or forced (stronger d ~ 0.5) and free 862 

(weaker d ~ 0) behavior that may be more influenced by morphodynamic processes operating at 863 

smaller spatial scalesgeomorphological evolution along the island.  864 

Alongshore variations in beach width and dune height are not uniform atin PAIS and exhibit 865 

different spatial structure within and outside the paleo-channel region (Fig. 5). These 866 

dissimilarities may be forced by the framework geology within the central zone of the island but 867 
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are influenced more by contemporary morphodynamic processes outside the paleo-channel 868 

region. Once the dunes are initialized in part by the framework geology, stabilizing vegetation 869 

may act as another important control on beach-dune evolution alongshore (Hesp, 1988). This 870 

effect could be represented by higher-wavenumber components embedded within the spatial data 871 

series. Beach and dune morphology in areas that are not controlled by framework geology (e.g., 872 

the northern and southern zones) exhibit more small-scale fluctuations representing a free system 873 

primarily controlled by contemporary morphodynamics (e.g., wave action, storm surge, wind, 874 

etc.).  875 

Because variations in dune height exert an important control on storm impacts (Sallenger, 876 

2000) and ultimately large-scale island transgression (Houser, 2012), it is argued here that the 877 

framework geology (or lack thereof) of PAIS acts as an important control on island response to 878 

storms and sea-level rise. This study supports recent work by Wernette et al. (2018) suggesting 879 

that framework geology can influence barrier island geomorphology by creating alongshore 880 

variations in either oceanographic forcing and/or sediment supply and texture that controls 881 

smaller-scale processes responsible for beach-dune interaction at the local scale. The forced 882 

behavior within the paleo-channel region challenges existingshoreline change studies  models 883 

that consider only small-scale undulations in the dune line that are caused by natural randomness 884 

within the system.  Rather, we propose that dune growth is forced by the framework geology, 885 

whose depth is related to the thickness of the modern shoreface sands beneath the beach. This 886 

depth is the primary quantity that is detected by the EMI sensor. With respect to shoreline 887 

change investigations, improving model performance requires further study of how the 888 

framework geology influences beach-dune morphology through variations in wave energy, 889 

texture, and sediment supply (e.g., Houser, 2012; McNinch, 2004; Schwab et al., 2013). 890 

Our findings extend previous framework geology studies from the Outer Banks, NC (e.g., 891 

Browder and McNinch, 2006; McNinch, 2004; Riggs et al., 1995; Schupp et al., 2006), Fire 892 

Island, NY (e.g., Hapke et al., 2010; Lentz and Hapke, 2011), and Pensacola, FL (e.g., Houser, 893 

2012) where feedbacks between geologic features and relict sediments within the littoral system 894 

have been shown to act as an important control on dune growth and evolution. Nonetheless, most 895 

of these studies focus on offshore controls on shoreface and/or beach-dune dynamics at either 896 

local or intermediate scales because few islands worldwide exist that are as long and/or 897 
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continuous as North Padre Island. To our knowledge, few framework geology studies have 898 

specifically used statistical testing to analyze correlations between subsurface geologic features 899 

and surface morphology. Two notable exceptions include Browder and McNinch (2006), and 900 

Schupp et al. (2006), both of which used chi-squared testing and cross-correlation analysis to 901 

quantify the spatial relationships between offshore bars, gravel beds, and/or paleo-channels at the 902 

Outer Banks, NC. Although these techniques are useful for determining spatial correlations 903 

between different data sets, they do not provide information about the scale (in)dependencies 904 

between the framework geology and surface geomorphology that FARIMA models are better 905 

designed to handle. The current study augments the existing literature in that 1) it outlines a 906 

quantitative method for determining free and forced evolution of barrier island geomorphology at 907 

multiple length scales, and 2) it demonstrates that there is a first-order control on dune height at 908 

the local scale within an area of known paleo-channels, suggesting that framework geology 909 

controls are localized within certain zones of PAIS.  910 

Further study is required to determine how this combination of free- and forced-behavior 911 

resulting from the variable and localized framework geology affects island transgression. 912 

Methods of data analysis that would complement the techniques presented in this paper might 913 

include; spatiotemporal modeling, power spectral analysis, wavelet decomposition, and shoreline 914 

change analysis that implicitly includes variable framework geology., bicoherence analysis, and 915 

wavelet coherence. These approaches would provide important information regarding: 1)  916 

1. Coherence and phase relationships between subsurface structure and island 917 

geomorphology, and 2) . 918 

2. Non-linear interactions of coastal processes across large and small spatiotemporal 919 

scales.   920 

Quantifying and interpreting the significance of framework geology as a driver of barrier 921 

island formation and evolution and its interaction with contemporary morphodynamic processes 922 

is essential for designing and sustainably managing resilient coastal communities and habitats.  923 

 924 

6 Conclusions 925 

This study demonstrates the utility of EMI geophysical profiling as a new tool for mapping the 926 

length-scale dependence of barrier island framework geology and introduces the 927 
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potentialimportance of  statistical modeling of geophysical and geomorphological spatial data 928 

series by FARIMA analysis to better understand the geologic controls on large-scale barrier 929 

island transgression. The EMI and morphometric data series exhibit LRD to varying degrees, and 930 

each can be accurately modeled using a non-integral parameter d. The value of this parameter 931 

diagnoses the spatial relationship between the framework geology and surface geomorphology. 932 

At the regional scale (~100 km), small differences in d between the EMI and morphometrics 933 

series suggest that the long-range-dependent structure of each data series with respect to EMI σa 934 

is statistically similar. At the intermediate scale (~ 30 km), there is a greater difference between 935 

the d-values of the EMI and island metrics within the known paleo-channel region, suggesting a 936 

more localized geologic control with less contributions from broader-scale geological structures. 937 

At the local scale (10 km), there is a considerable degree of variability between the d-values of 938 

the EMI and each metric. These results all point toward a forced barrier-island evolutionary 939 

behavior within the paleo-channel region transitioning into a free, or scale-independent behavior 940 

dominated by contemporary morphodynamics outside the paleo-channel region. In a free system, 941 

small-scale undulations in the dune line reinforce natural random processes that occur within the 942 

beach-dune system and are not influenced by the underlying geologic structure. In a forced system, 943 

the underlying geologic structure establishes boundary constraints that control how the island evolves 944 

over time. The results from this study suggest that the framework geology initially controls the 945 

development of the dunes at the local scale within the paleo-channel region. This means that 946 

barrier island geomorphology at PAIS is forced and scale-dependent, unlike shorelines which 947 

have been shown at other barrier islands to be scale-independent (Tebbens et al., 2002; Lazarus 948 

et al., 2011). Our findings reveal that shorelines may have different irregularity than island 949 

geomorphology, which suggests an alongshore redistribution of sediment that shapes the 950 

shoreline toward a more dissipative state over time. Without local variations in the framework 951 

geology alongshore, small-scale variations in the shoreline will be masked by the large-scale 952 

transport gradients over long timescales. The exchange of sediment amongst nearshore, beach 953 

and dune in areas outside the paleo-channel region is scale independent, meaning that barrier 954 

islands like PAIS exhibit a combination of free and forced behaviors that will affect the response 955 

of the island to sea level rise and storms. We propose that our analysis is not limited to PAIS but 956 
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can be applied to other barrier islands and potentially in different geomorphic environments, both 957 

coastal and inland.  958 
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 1253 

Tables 1254 

Table 1. Comparison of residuals (RMSE) of each ARIMA model for the 100 km and 10 km 1255 

EMI surveys.  1256 

 EMI (100 km) EMI (10 km) 

ARIMA (100) 18.4 8.14 

ARIMA (001) 49.7 41.1 

ARIMA (101) 15.6 6.65 

ARIMA (202) 40.6 7.31 

ARIMA (303) 40.5 7.22 

ARIMA (404) 40.3 7.22 

ARIMA (505) 40.2 7.29 

ARIMA (111) 15.8 5.72 

ARIMA (010) 18.5 8.15 

ARIMA (0d0) 15.5 5.55 
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 1270 

 1271 

 1272 

Table 2. Comparison of residuals (RMSE) of each ARIMA model for all spatial data series. 1273 

Note that the residuals for each DEM metric correspond to the analysis performed at the regional 1274 

scale (i.e., 100 km).  1275 

 ARIMA 

(100) 
ARIMA 

(001) 
ARIMA 

(101) 
ARIMA 

(111) 
ARIMA 

(010) 
ARIMA 

(0d0) 

Beach width  13.4 14.9 13.0 13.1 14.8 13.0 

Beach volume  44.8 50.5 43.1 43.1 49.1 42.7 

Dune height  0.7 0.8 0.7 0.7 0.8 0.7 

Dune volume  60.6 63.9 59.7 59.2 69.03 58.9 

Island width  138.4 253.2 121.3 121.1 140.8 120.9 

Island volume  271.3 611.4 244.3 244.1 273.9 243.3 
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 1291 

 1292 

 1293 

Table 3. Summary table showing the computed d parameters that most appropriately model each 1294 

ARIMA (0d0) iteration (i.e., lowest RMSE).   1295 

Alongshore 

distance 

Beach 

width 

Beach 

volume 

Dune 

height 

Dune 

volume 

Island 

width 

Island 

volume 

EMI σa  

“Regional”        

0-100 km 0.38 0.42 0.34 0.32 0.13 ~0.00 0.35 

        

“Intermediate”        

0-30 km ~0.00 0.44 0.13 0.20 0.03 0.18 0.44 

30-60 km 0.37 0.30 0.36 0.31 0.30 0.42 0.11 

60-100 km 0.26 0.41 0.35 0.46 ~0.00 0.50 0.49 

        

“Local”        

0-10 km 0.41 0.39 0.20 0.21 0.09 0.18 0.36 

10-20 km 0.30 0.42 0.20 0.26 0.37 ~ 0.00 0.36 

20-30 km 0.26 0.40 ~ 0.00 ~ 0.00 0.49 ~ 0.00 ~ 0.00 

30-40 km 0.47 ~ 0.00 0.41 0.25 0.29 0.28 ~ 0.00 

40-50 km 0.28 0.21 0.21 0.19 0.30 0.02 0.44 

50-60 km 0.03 0.31 0.23 0.32 ~ 0.00 0.33 0.48 

60-70 km 0.16 0.37 0.29 0.34 ~ 0.00 0.30 0.40 

70-80 km 0.47 0.34 0.43 0.26 ~ 0.00 0.42 0.49 

80-90 km 0.27 0.19 0.42 0.39 0.01 0.02 ~ 0.00 

90-100 km 0.13 0.13 ~ 0.00 0.06 0.44 0.47 0.41 
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 1305 

 1306 

 1307 

 1308 

Figure Captions: 1309 

 1310 
Figure 1. Location map and DEM of the study area at Padre Island National Seashore (PAIS), 1311 

Texas, USA. Elevations for the DEM are reported as meters above sea level (masl). Approximate 1312 

locations of fField images (red dots) from the northern (N), central (C), and southern (S) regions 1313 

of the island showing alongshore differences in beach-dune morphology. Note: views are facing 1314 

southnorth for the centralnorthern and southern locations, and the northerncentral location view 1315 

is to the northsouth. Images taken in October, 2014.  1316 

 1317 
Figure 2. 100 km (a) and 10 km (b) alongshore EMI surveys showing DEM’s of study area and 1318 

previously identified paleo-channel region by Fisk (1959). Channels are highlighted in red and 1319 

green, where the green region indicates the location of the 10 km survey. 25 ft (7.6 m) contour 1320 

intervals are highlighted with depths increasing from yellow to red and the center of the channels 1321 

are represented by the black-dotted lines. For each survey, raw σa and zero-mean drift-corrected 1322 

EMI responses are shown in grey and black, respectively. Tidal conditions during each EMI 1323 

acquisition segment are shown below each panel. Low (lt) and falling tides (ft) are indicated by 1324 

blue and light blue shades, respectively. High (ht) and rising tides (rt) are highlighted in red and 1325 

light red, respectively. 1326 

 1327 

Figure 3. Comparison of EMI σa responses from the 100 km survey with 100 MHz GPR data 1328 

within one of the Fisk (1959) paleo-channels. The 800 m segment (A – A’) crosses a smaller 1329 

stream within the network of paleo-channels in the central zone of PAIS. The DOI of the 3 kHz 1330 

EMI responses is outlined by the red box on the lower GPR radargram and the interpretation of 1331 

the channel base (ravinement surface) is highlighted in yellow. 1332 

 1333 

Figure 4. DEM metrics extracted from aerial LiDAR data. The sampling interval (step-size) for 1334 

each data series is 10 m and the coordinates are matched with each EMI acquisition point. Each 1335 

panel corresponds to a) beach width, b) beach volume, c) dune height, d) dune volume, e) island 1336 

width, f) island volume, and g) EMI σa. The island is divided into three zones (red vertical lines) 1337 

roughly indicating the locations within and outside the known paleo-channel region. A Savitzky-1338 

Golay smoothing filter was applied to all data series (LiDAR and EMI) using a moving window 1339 

of n = 250 to highlight the large-scale patterns in each signal. 1340 

 1341 

Figure 5. Autocorrelations of σa for the 100 km (a) and 10 km EMI surveys (d). R/S analysis for 1342 

the 100 km (b) and 10 km surveys (e). PSD plots for the 100 km (c) and 10 km surveys (f). 1343 

 1344 

Figure 6. Examples of the worst (6a, 6c) and best (6b, 6d) fit ARIMA models for the 100 and 10 1345 

km EMI surveys. Model results are shown for the processed (drift-corrected) σa data. Residuals 1346 
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(RMSE) listed for each model gives the standard deviation of the model prediction error. For 1347 

each plot, original data is in red and fitted (model) data is in blue. 1348 

 1349 

Figure 7. Example of the best fit ARIMA (0d0) models for each LiDAR-derived DEM metric: a) 1350 

beach width, b) beach volume, c) dune height, d) dune volume, e) island width, f) island volume.  1351 


