

1 **Statistical modeling of the long-range dependent structure of barrier island framework
2 geology and surface geomorphology**

3 Bradley A. Weymer^{1,*}, Phillip Wernette², Mark E. Everett¹, Chris Houser³

4 ¹Texas A&M University, Department of Geology and Geophysics, College Station, Texas
5 77843, USA.

6 ²Texas A&M University, Department of Geography, College Station, Texas 77843, USA.

7 ³University of Windsor, Department of Earth and Environmental Sciences, Windsor, Ontario
8 N9B 3P4, Canada.

9 *Correspondence to:* Bradley A. Weymer (brad.weymer@gmail.com) *now at GEOMAR -
10 Helmholtz Center for Ocean Research Kiel, Wischhofstraße 1-3, D-24148 Kiel, Germany

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 **Abstract**

34 Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to
35 be described in the wavenumber domain by a power law characteristic of scale-independence.
36 Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale-
37 dependence as a result of systematic variations of the underlying framework geology. The LRD of
38 framework geology, which influences island geomorphology and its response to storms and sea
39 level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted
40 along Padre Island National Seashore (PAIS), Texas, USA, reveal that the EMI apparent
41 conductivity (σ_a) signal and, by inference, the framework geology exhibits LRD at scales up to 10^1
42 to 10^2 km. Our study demonstrates the utility of describing EMI σ_a and LiDAR spatial series by a
43 fractional auto-regressive integrated moving average (**ARIMA**) process that specifically models
44 LRD. This method offers a robust and compact way for quantifying the geological variations along
45 a barrier island shoreline using three statistical parameters (p,d,q). We discuss how **ARIMA**
46 (0,d,0)-models that use a single parameter d provide a quantitative measure for determining free
47 and forced barrier island evolutionary behavior across different scales. Statistical analyses at
48 regional, intermediate, and local scales suggest that the geologic framework within an area of
49 paleo-channels exhibits a first-order control on dune height. The exchange of sediment amongst
50 nearshore, beach and dune in areas outside this region are scale-independent, implying that barrier
51 islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the
52 island to sea level rise.

53

54

55

56

57

58

59

60

61

62

Commented [WB1]: Commented [A1]: Appropriate detail for abstract? Readers may be unfamiliar with the statistical approach since it is not common in the coastal community.

Response: Added 'statistical' and deleted '(0,d,0)' for a more general ARIMA case

63

64 1 Introduction

65 Barrier island transgression in response to storms and sea-level rise depends to varying degrees on
66 pre-existing geologic features. The traditional assumption of uniform sand at depth and alongshore
67 cannot explain many of observations (e.g., Belknap and Kraft, 1985; Houser, 2012; Lentz and
68 Hapke, 2011; McNinch, 2004; Riggs et al., 1995). Models of barrier island evolution are required to
69 ascertain the degree to which the island is either *free* (such as a large sand body) or *forced* (i.e.

70 constrained) by the underlying geology. Despite growing evidence that the underlying geological
71 structure, otherwise termed framework geology, of barrier islands influences nearshore, beach and
72 dune morphology (e.g., Belknap and Kraft, 1985; Houser, 2012; Lentz and Hapke, 2011; McNinch,
73 2004; Riggs et al., 1995), this variable remains largely absent from shoreline change models that
74 treat the geology as being uniform alongshore (e.g., Dai et al., 2015; Plant and Stockdon, 2012;
75 Wilson et al., 2015). In a free system, small scale undulations in the dune line reinforce natural
76 random processes that occur within the beach dune system and are not influenced by the underlying
77 geologic structure. In a forced system, the underlying geologic structure establishes boundary
78 constraints that control how the island evolves over time. Spatial variation in the height and position
79 of the dune line impacts the overall transgression of the island with sea-level rise (Sallenger, 2000).

80 Transgression is accomplished largely through the transport and deposition of beach and dune
81 sediments to the backbarrier as washover deposits during storms (Houser, 2012; Morton and
82 Sallenger Jr., 2003; Stone et al., 2004).

83 1.1 Framework geology controls on barrier island evolution

84 The dynamic geomorphology of a barrier island system is the result of a lengthy, complex and
85 ongoing history that is characterized by sea level changes and episodes of deposition and erosion
86 (e.g., Anderson et al., 2015; Belknap and Kraft, 1985; Rodriguez et al., 2001). Previous studies
87 demonstrate that the underlying geological structure, otherwise termed framework geology
88 framework geology, of barrier islands plays a considerable role in the evolution of these coastal
89 landscapes (Belknap and Kraft, 1985; Evans et al., 1985; Kraft et al., 1982; Riggs et al., 1995). For
90 example, antecedent structures such as paleo-channels, ravinement surfaces, offshore ridge and swale
91 bathymetry, and relict transgressive features (e.g., overwash deposits) have been suggested to

Commented [WB2]: Commented [A2]: Why? Are there refs for this or examples?

Response: Added more description of why the framework geology should be included and added appropriate refs

Formatted: Font: Not Italic

Commented [WB3]: Commented [A3]: Are there references for this? It appears that these statements are actually conclusions and don't belong here.

Response: Moved this sentence to the conclusions section

Commented [WB4]: Commented [A4]: Height or position or both?

Response: both

Formatted: Font: Not Bold

93 influence barrier island geomorphology over a wide range of spatial scales (Hapke et al., 2010;
94 Hapke et al., 2016; Houser, 2012; Lentz and Hapke, 2011; McNinch, 2004). In this study, the term
95 “framework geology” is specifically defined as the topographic surface of incised valleys, paleo-
96 channels, and/or the depth to ravinement surface beneath the modern beach.

97 As noted by Hapke et al. (2013), the framework geology at the **regional scale** (> 30 km)
98 influences the geomorphology of an entire island. Of particular importance are the location and size
99 of glacial, fluvial, tidal, and/or inlet paleo-valleys and channels (Belknap and Kraft, 1985; Colman et
100 al., 1990; Demarest and Leatherman, 1985), and paleo-deltaic systems offshore or beneath the
101 modern barrier system (Coleman and Gagliano, 1964; Frazier, 1967; Miselis et al., 2014; Otvos and
102 Giardino, 2004; Twichell et al., 2013). At the regional scale, nonlinear hydrodynamic interactions
103 between incident wave energy and nearshore ridge and swale bathymetric features can generate
104 periodic alongshore variations in beach-dune morphology (e.g., Houser, 2012; McNinch, 2004)
105 that are superimposed on larger-scale topographic variations as a result of transport gradients
106 (Tebbens, et al., 2002). At the **intermediate scale** (10 - 30 km), feedbacks between geologic
107 features and relict sediments of the former littoral system (e.g., Honeycutt and Krantz, 2003;
108 Riggs et al., 1995; Rodriguez et al., 2001; Schwab et al., 2000) act as an important control on
109 dune formation (Houser et al., 2008) and offshore bathymetric features (e.g., Browder &
110 McNinch, 2006; Schwab et al., 2013). Framework geology at the **local scale** (≤ 10 km), induces
111 meso ($\sim 10^1 - 10^2$ m) to micro-scale (< 1 m) sedimentological changes (e.g., Murray and Thieler,
112 2004; Schupp, et al., 2006), variations in the thickness of shoreface sediments (Brown and
113 Macon, 1977; Miselis and McNinch, 2006), and spatial variations in sediment transport across
114 the island (Houser and Mathew, 2011; Houser, 2012; Lentz and Hapke, 2011).

115 To date, most of what is known regarding barrier island framework geology is based on
116 studies done at either intermediate or local scales (e.g., Hapke et al., 2010; Lentz and Hapke, 2011;
117 McNinch, 2004) whereas few studies exist at the regional scale for United States coastlines (Hapke et
118 al., 2013). The current study focuses on barrier islands in the US and we do not consider work on
119 barrier islands in other regions. Assessments of framework geology at regional and intermediate
120 spatial scales for natural and anthropogenically-modified barrier islands are essential for improved
121 coastal management strategies and risk evaluation since these require a good understanding of the
122 connections between subsurface geology and surface morphology. For example, studies by Lentz and

123 Hapke (2011); Lentz et al., (2013) at Fire Island, New York suggest that the short-term
124 effectiveness of engineered structures is likely influenced by the framework geology. Extending
125 their work, Hapke et al. (2016) identified distinct patterns of shoreline change that represent
126 different responses alongshore to oceanographic and geologic forcing. These authors applied
127 empirical orthogonal function (EOF) analysis to a time series of shoreline positions to better
128 understand the complex multi-scale relationships between framework geology and contemporary
129 morphodynamics. Gutierrez et al. (2015) used a Bayesian network to predict barrier island
130 geomorphic characteristics and argue that statistical models are useful for refining predictions of
131 locations where particular hazards may exist. These examples demonstrate the benefit of using
132 statistical models as quantitative tools for interpreting coastal processes at multiple spatial and
133 temporal scales (Hapke et al., 2016).

134

135 1.2 Statistical measures of coastline geomorphology
136 It has long been known that many aspects of landscapes exhibit similar statistical properties
137 regardless of the length or time scale over which observations are sampled (Burrough, 1981). An
138 often-cited example is the length L of a rugged coastline (Mandelbrot, 1967), which increases
139 without bound as the length G of the ruler used to measure it decreases, in rough accord with the
140 formula $L(G) \sim G^{1-D}$, where $D \geq 1$ is termed the fractal dimension of the coastline. Andrle
141 (1996), however, has identified limitations of the self-similar coastline concept, suggesting that a
142 coastline may contain irregularities that are concentrated at certain characteristic length-scales
143 owing to local processes or structural controls. Recent evidence from South Padre Island, Texas
144 (Houser and Mathew, 2011), Fire Island, New York (Hapke et al., 2010), and Santa Rosa Island,
145 Florida (Houser et al., 2008) suggests that the geomorphology of barrier islands is affected to
146 varying degrees by the underlying framework geology and that this geology varies, often with
147 periodicities, over multiple length-scales. The self-similarity of the framework geology and its
148 impact on the geomorphology of these barrier islands was not examined explicitly.

149 Many lines of evidence suggest that geological formations in general are inherently rough
150 (i.e., heterogeneous) and contain multi-scale structure (Bailey and Smith, 2005; Everett and
151 Weiss, 2002; Radliński et al., 1999; Schlager, 2004). Some of the underlying geological factors
152 that lead to self-similar terrain variations are reviewed by Xu et al. (1993). In essence, competing

153 and complex morphodynamic processes, influenced by the underlying geological structure,
154 operate over different spatiotemporal scales, such that the actual terrain is the result of a complex
155 superposition of the various effects of these processes (see Lazarus et al., 2011). Although no
156 landscape is strictly self-similar on all scales, Xu et al. (1993) show that the fractal dimension, as
157 a global morphometric measure, captures multi-scale aspects of surface roughness that are not
158 evident in conventional local morphometric measures such as slope gradient and profile
159 curvature.

160 With respect to coastal landscapes, it has been suggested that barrier shorelines are scale
161 independent, such that the wavenumber spectrum of shoreline variation can be approximated by
162 a power law at alongshore scales from tens of meters to several kilometers (Lazarus et al., 2011;
163 Tebbens et al., 2002). However, recent findings by Houser et al. (2015) suggest that the beach-
164 dune morphology of barrier islands in Florida and Texas is scale-dependent and that
165 morphodynamic processes operating at swash (0-50 m) and surf-zone (< 1000 m) scales are
166 different than the processes operating at larger scales. In this context, scale-dependence implies
167 that a certain number of different processes are simultaneously operative, each process acting at
168 its own scale of influence, and it is the superposition of the effects of these multiple processes
169 that shapes the overall behavior and shoreline morphology. This means that shorelines may have
170 different patterns of irregularity alongshore with respect to barrier island geomorphology, which
171 has important implications for analyzing long-term shoreline retreat and island transgression.
172 Lazarus et al. (2011) point out that deviations from power law scaling at larger spatial scales
173 (tens of km) emphasizes the need for more studies that investigate large-scale shoreline change.
174 While coastal terrains might not satisfy the strict definition of self-similarity, it is reasonable to
175 expect them to exhibit long-range dependence (LRD). LRD pertains to signals in which the
176 correlation between observations decays like a power law with separation, i.e. much slower than
177 one would expect from independent observations or those that can be explained by a short-
178 memory process, such as an autoregressive-moving-average (ARMA) with small (p,q) (Beran,
179 1994; Doukhan et al., 2003).

180
181 1.3 Research objectives

182 This study performed at Padre Island National Seashore (PAIS), Texas, USA utilizes
183 electromagnetic induction (EMI) apparent conductivity σ_a responses to provide insight into the
184 relation between spatial variations in framework geology and surface morphology. Two
185 alongshore EMI surveys at different spatial scales (100 km and 10 km) were conducted to test
186 the hypothesis that, like barrier island morphology, subsurface framework geology exhibits LRD
187 characteristic of scale-independence. The σ_a responses, which are sensitive to parameters such as
188 porosity and mineral content, are regarded herein as a rough proxy for subsurface framework
189 geology (Weymer et al., 2015a). This assumes, of course, that alongshore variations in salinity
190 and water saturation, and other factors that shape the σ_a response, can be neglected to first order.
191 A corroborating 800 m ground-penetrating radar (GPR) survey, providing an important check on
192 the variability observed within the EMI signal, confirms the location of a previously identified
193 paleo-channel (Fisk, 1959) at $\sim 5 - 10$ m depth. The overall geophysical survey design allows for
194 a detailed evaluation of the long-range-dependent structure of the framework geology over a
195 range of length scales spanning several orders of magnitude. We explore the applicability of
196 autoregressive integrated moving-average (ARIMA) processes as statistical models that describe
197 the statistical connections between EMI and Light Detection and Ranging (LiDAR) spatial data
198 series. This paper utilizesintroduces the use of a generalized fractional ARIMA $(0,d,0)$ process
199 (Hosking, 1981) that is specifically designed to model LRD for a given data series using a single
200 differencing non-integer parameter d . The parameter d can be used in the present context to
201 discriminate between *forced*, scale-dependent controls by the framework geology; i.e., stronger
202 LRD ($d \rightarrow 0.5$) and *free* behavior that is scale-independent; i.e., weaker LRD ($0 \leftarrow d$). In other
203 words, it is the particular statistical characteristics of the framework geology LRD at PAIS that
204 we are trying to ascertain from the EMI σ_a signal, with the suggestion that σ_a measurements can
205 be used similarly at other sites to reveal the hidden LRD characteristics of the framework
206 geology.

207

208 2 Background and regional setting

209 2.1 Utility of electromagnetic methods in coastal environments
210 Methods to ascertain the alongshore variability of framework geology, and to test long-range
211 dependence, are difficult to implement and can be costly. Cores provide detailed point-wise

Commented [WB5]: Commented [A5]: Why, specifically, is it important to know this?

Response: We are testing this at different spatial scales to see whether the framework geology is scale-dependent, or scale-independent at all scales or at specific scales. To clarify, we added 'characteristic of scale-independence.'

Commented [WB6]: Commented [A6]: Tell the reader why you are doing this.

Response: fixed

212 geologic data; however, they do not provide laterally continuous subsurface information (Jol et
213 al., 1996). Alternatively, geophysical techniques including seismic and GPR provide spatially
214 continuous stratigraphic information (e.g., Buynevich et al., 2004; Neal, 2004; Nummedal and
215 Swift, 1987; Tamura, 2012), but they are not ideally suited for LRD testing because the data
216 combine depth and lateral information at a single acquisition point. Moreover, GPR signals
217 attenuate rapidly in saltwater environments whereas seismic methods are labor-intensive and
218 cumbersome. On the other hand, terrain conductivity profiling is an easy-to-use alternative that
219 has been used in coastal environments to investigate fundamental questions involving;
220 instrument performance characteristics (Delefortrie et al., 2014; Weymer et al., 2016),
221 groundwater dynamics (Stewart, 1982; Fitterman and Stewart, 1986; Nobes, 1996; Swarzenski,
222 and Izicki, 2009), and framework geology (Seijmonsbergen et al. 2004; Weymer et al. 2015).
223 Previous studies combining EMI with either GPR (Evans and Lizarralde, 2011) or coring
224 (Seijmonsbergen et al. 2004) demonstrate the validity of EM measurements as a means to
225 quantify alongshore variations in the framework geology of coastlines.

226 In the alongshore direction, Seijmonsbergen et al. (2004) used a Geonics EM34™ terrain
227 conductivity meter oriented in the horizontal dipole mode with intercoil separation and station
228 spacing both of 20 m. This configuration provides an exploration depth of roughly 15 m. A 14.5
229 km length EMI transect was collected along the backbeach crossing a former outlet of the Rhine
230 River, Netherlands to evaluate alongshore variations in subsurface lithology. The survey was
231 conducted in an area that was previously characterized by drilling and these data were used to
232 calibrate the σ_a measurements. The results from the study suggest that coastal sediments can be
233 classified according to σ_a signature and. The range of σ_a values was categorized into three groups.
234 The first group of low σ_a 20–45 millisiemens per meter (mS/m) with low variability amplitudes was
235 interpreted as beach sands. The second group of medium σ_a values (20–90 mS/m) with large
236 variability corresponded to clay and peat layers of varying thickness. A third group of high σ_a values
237 (60–190 mS/m) with large variability was interpreted as clay-rich brackish channel deposits. The
238 authors suggest that high σ_a values occur in areas where the underlying conductive layer is thick and
239 close to the surface. Although Seijmonsbergen et al. (2004) propose suggest that EMI surveys are a
240 rapid, inexpensive method to investigate subsurface lithology they also acknowledge that variations
241 in salinity as a result of changing hydrologic conditions, storm activity and/or tidal influence

242 confound the geological interpretation and should be investigated in further detail (see Weymer et al.,
243 2016).

244 The challenge on many barrier islands and protected National Seashores is obtaining
245 permission for extracting drill cores to validate geophysical surveys. At PAIS, numerous areas
246 along the island are protected nesting sites for the endangered Kemp's ridley sea turtle,
247 migratory birds, while other areas comprise historic archeological sites with restricted access.
248 Thus, coring is not allowed and only non-invasive techniques, such as EMI/GPR are permitted.
249

250 2.2 Regional setting

251 North Padre Island is part of a large arcuate barrier island system located along the Texas Gulf of
252 Mexico coastline ~~and is the longest undeveloped barrier island in the world~~. The island is one of
253 ten national seashores in the United States and is protected and managed by the National Park
254 Service, a bureau of the Department of the Interior. PAIS is 129 km in length, and is an ideal
255 setting for performing EMI surveys because there is minimal cultural noise to interfere with the
256 σ_a signal, which as stated earlier we regard as a proxy for alongshore variations in framework
257 geology (Fig. 1). Additionally, the ~~re is high-resolution elevation data available from a 2009~~
258 ~~aerial LiDAR survey, island is well-covered by high resolution aerial LiDAR data~~. The island is
259 not dissected by inlets or navigation channels (excluding Mansfield Channel separating north and
260 south Padre Island), or modified by engineered structures (e.g., groynes, jetties, etc.) that often
261 interfere with natural morphodynamic processes (see Talley et al., 2003). The above
262 characteristics make the study area an exceptional location for investigating the relationships
263 between large-scale framework geology and surface morphology.

264 ~~Relatively little is known about the framework geology at PAIS, especially its alongshore~~
265 ~~variability. A notable exception is the information obtained from a series of coring and seismic~~
266 ~~surveys conducted by Fisk (1959) in the central region of Padre Island (~27° N)~~. As described in
267 Weymer et al. (2015a; Fig. 3), locations of ~~several~~ paleo-channels were established by Fisk
268 (1959) based on 3,000 cores and ~~several~~ seismic surveys. More than 100 borings were drilled to
269 the top of the late Pleistocene surface (tens of m depth) providing sedimentological data for
270 interpreting the depth and extent of the various paleo-channels. These cores were extracted ~ 60

Commented [WB7]: Commented [A7]: The level of detail can be significantly reduced.

Response: fixed

Commented [WB8]: Commented [A8]: The EMI data, the recent pubs by Weymer and Wernette, and the original studies by Fisk contradict this statement.

Response: deleted these statements

Commented [WB9]: Commented [A9]: Figure 2?

Response: No, Figure 3 is correct

271 years ago, but the remnant Pleistocene and Holocene fluvial/deltaic features described in Fisk's
272 study likely have not changed over decadal time scales.

273 Geologic interpretations based on the Fisk (1959) data suggest that the thickness of the
274 modern beach sands is ~ 2 – 3 m, and they are underlain by Holocene shoreface sands and muds
275 to a depth of ~ 10 – 15 m (Brown and Macon, 1977; Fisk, 1959). The Holocene deposits lie upon
276 a Pleistocene ravinement surface of fluvial-deltaic sands and muds and relict transgressive
277 features. A network of buried valleys and paleo-channels in the central segment of the island, as
278 interpreted by Fisk (1959), exhibits a dendritic, tributary pattern. The depths of the buried valleys
279 inferred from seismic surveys range from ~ 25 – 40 m (Brown and Macon, 1977). These
280 channels have been suggested to incise into the Pleistocene paleo-surface and became infilled
281 with sands from relict Pleistocene dunes and fluvial sediments reworked by alongshore currents
282 during the Holocene transgression (Weise and White, 1980). However, the location and cross-
283 sectional area of each valley and paleo-channel alongshore is not well-constrained. It is also
284 possible that other channels exist other than those identified by Fisk (1959).

285 As suggestedpresented in Weymer et al. (2015a), minima in the alongshore σ_a signal are
286 spatially correlated with the locations of these previously identified geologic features. This
287 observation provides an impetus for using EMI to map the known, and any previously
288 unidentified, geologic features alongshore. The observed beach-dune morphology and other
289 metrics such as island width are highly variable and controlled to an unknown extent by the
290 framework geology both within and outside the known paleo-channel regions. The fact that
291 much of the framework geology at PAIS is poorly known provides additional motivation for
292 integrating subsurface geophysical methods and surface observations to analyze, from a
293 statistical standpoint, the key geologic controls on island morphology within the study area.

294

295 3 Methods

296 A combination of geophysical, geomorphological, and statistical methods are used in this study
297 to quantify the relationships between framework geology and surface geomorphology at PAIS. A
298 description of the EMI, GPR, geomorphometry and statistical techniques is provided in the
299 following sections.

300

Commented [WB10]: Commented [A10]: This is one of the paper's conclusions and does not belong here. Otherwise, provide a reference for this statement.

Response: deleted

301 3.1 Field EMI and GPR surveys

302 Profiles of EMI σ_a responses typically are irregular and each datum represents a spatial averaging
303 of the bulk subsurface electrical conductivity σ , which in turn is a function of a number of
304 physical properties (e.g., porosity, lithology, water content, salinity, etc.). The “sensor footprint”,
305 or subsurface volume over which the spatial averaging is performed, is dependent on the
306 separation between the TX – RX coils (1.21 m in this study), and the transmitter frequency. The
307 horizontal extent, or radius, of the footprint can be more or less than the step-size between
308 subsequent measurements along the profile. The sensor footprint determines the volume of
309 ground that contributes to σ_a at each acquisition point, and as will be discussed later, the radius
310 of the footprint has important implications for analyzing LRD. The footprint radius depends on
311 frequency and ground conductivity, but is likely to be of the same order as, but slightly larger
312 than, the intercoil spacing. Two different station-spacings were used to examine the correlation
313 structure of σ_a as a function of spatial scale. An island-scale alongshore survey of ~ 100 km
314 length was performed using a 10 m station spacing (station spacing \gg footprint radius) such that
315 each σ_a measurement was recorded over an independently sampled volume of ground.
316 Additionally, a sequence of σ_a readings was collected at 1 m spacing (station spacing $<$ footprint
317 radius) over a profile length of 10 km within the Fisk (1959) paleo-channel region of the island.
318 This survey design allows for comparison of the long-range-dependent structure of the
319 framework geology over several orders of magnitude ($10^0 – 10^5$ m).

320 The 100-km-long alongshore EMI survey was performed during a series of three field
321 campaigns, resulting in a total of 21 (each of length ~ 4.5 km) segments that were collected
322 during October 9 – 12th, 2014, November 15 – 16th, 2014, and March 28th, 2015. The EMI σ_a
323 profiles were stitched together by importing GPS coordinates from each measurement into
324 ArcGISTM to create a single composite spatial data series. The positional accuracy recorded by a
325 TDS Recon PDA equipped with a HoluxTM WAAS GPS module was found to be accurate within
326 ~ 1.5 m. To reduce the effect of instrument drift caused by temperature, battery and other
327 systematic variations through the acquisition interval, a drift correction was applied to each
328 segment, the segments were then stitched together, following which a regional linear trend
329 removal was applied to the composite dataset. An additional 10 km survey was performed along
330 a segment of the same 100 km survey line in one day on March 29th, 2015, to determine whether

Commented [WB11]: Commented [A11]: This section should be scaled down. The details about the EMI data and collection have been presented in earlier papers by same authors/co-authors.

Response: fixed

331 varying hydrologic conditions in both space and time, which are discussed below, play a
332 deleterious role in resolving the framework geology. This second composite data series consists
333 of 8 stitched segments.

Commented [WB12]: Commented [A12]: Wasn't this the basis of Weymer, 2016?

Response: Yes. Deleted the last part of this sentence

334 The same multi-frequency GSSI Profiler EMP-400™ instrument was used for each
335 segment. All transects were located in the backbeach environment ~ 25 m inland from the mean
336 tide level (MTL). This location was chosen to reduce the effect of changing groundwater
337 conditions in response to nonlinear tidal forcing (see Weymer et al., 2016), which may be
338 significant closer to the shoreline. The sensor has reduced ability to detect lateral changes in the
339 underlying geology during wet conditions such as during or immediately after significant rainfall
340 events, or at high tide near the shoreline, since electrical conductivity increases rapidly with
341 water content. The transect locations also avoid the large topographic variations (see Santos et
342 al., 2009) fronting the foredune ridge that can reduce the efficiency of data acquisition and
343 influence the EMI signal. In a companion study, Weymer et al. (2016) demonstrated that the σ_a
344 signal at the beachfront exhibits a step-like response over the course of a tidal cycle; however,
345 this effect is less pronounced further inland where the surveys in the present study were
346 collected. Their study demonstrates that the difference between high tide and low tide EMI σ_a
347 measurements is as large as 50 mS/m at the backbeach, but this difference is less than 9% of the
348 range of σ_a variations observed (~ 50–600 mS/m) along the entire length of the island. As will
349 be shown later, there is not a direct correlation between high tide and high σ_a values. Thus, we
350 assume the tidal influence on the EMI signal can be neglected over the spatial scales of interest
351 in the present study. Nevertheless, the duration and approximate tidal states of each survey was
352 documented in order to compare with the EMI signal (see Weymer et al., 2016). Tidal data were
353 accessed from NOAA's Tides and Currents database (NOAA, 2015b). Padre Island is microtidal
354 and the mean tidal range within the study area is 0.38 m (NOAA, 2015a). A tidal signature in EMI
355 signals may become more significant at other barrier islands with larger tidal ranges.

Commented [WB13]: Commented [A13]: Condense and cite Weymer et al. 2016

Response: Fixed

356 For all surveys, the EMI profiler was used in the same configuration and acquisition
357 settings as described in Weymer et al. (2016), a vertical dipole orientation with TX and RX coils
358 aligned in the (P mode) direction parallel to the profile line (Weymer et al., 2016). The transect
359 locations were chosen to also avoid the large topographic variations (see Santos et al., 2009)
360 fronting the foredune ridge that can reduce the efficiency of data acquisition and influence the

361 EMI signal. Measurements were made at a constant step-size to simplify the data analysis; for
362 example, ARIMA models require that data are taken at equal intervals (see Cimino et al., 1999).
363 ~~The EMI profiler was carried at a height of 0.7 m above the ground to mitigate noise from the
364 mainly non-metallic debris on the beach that unfortunately is scattered along the island (Weymer
365 et al., 2016). Although the sensor is capable of recording three frequencies simultaneously (see
366 Geophysical Survey Systems, 2007), we~~ choose herein to focus on data collected at 3 kHz,
367 resulting in a depth of investigation (DOI) of ~ 3.5 – 6.4 m over the range of conductivities
368 found within the study area (Weymer et al., 2016; Table 1.). Because the depth of the modern
369 beach sands is ~ 2 – 3 m or greater (see Brown and Macon, 1977; page 56, Figure 15), variations
370 in the depth to shoreface sands and muds is assumed to be within the DOI of the profiler, which
371 may not be captured at the higher frequencies also recorded by the sensor (i.e., 10, and 15 kHz). □

Commented [WB14]: Commented [A14]: Garbage or rack or ??

Response: both, but we decided to delete this sentence as this information is already described in Weymer et al. 2016

372 An 800 m GPR survey was performed on August 12th, 2015 across one of the paleo-
373 channels previously identified Fisk (1959) located within the 10 km EMI survey for comparison
374 with the σ_a measurements. We used a Sensors and Software PulseEKKO Pro® system for this
375 purpose. A survey grade GPS with a positional accuracy of 10 cm was used to match the
376 locations and measurements between the EMI/GPR surveys. Data were acquired in reflection
377 mode at a nominal frequency of 100 MHz with a standard antenna separation of 1 m and a step-
378 size of 0.5 m. The instrument settings resulted in a DOI of up to 15 m. Minimal processing was
379 applied to the data and includes a dewow filter and migration (0.08 m/ns), followed by AGC gain
380 (see Neal, 2004). **Given** The theory and operational principles of GPR are discussed in many
381 places (e.g. Everett, 2013; Jol, 2008) and will not be reviewed here.

Commented [WB15]: Commented [A15]: Condense and cite Weymer et al, 2016

Response: fixed

382
383 3.2 Geomorphometry
384 Topographic information was extracted from aerial LiDAR data that were collected by the Army
385 Corps of Engineers (USACE) in 2009 as part of the West Texas Aerial Survey project to assess
386 post-hurricane conditions of the beaches and barrier islands along the Texas coastline. This
387 dataset is the most recent publicly available LiDAR survey of PAIS and it provides essentially
388 complete coverage of the island. With the exception of Hurricane Harvey, which made landfall
389 near Rockport, Texas as a Category 4 storm in late August, 2017, Padre Island has not been
390 impacted by a hurricane since July 2008, when Hurricane Dolly struck South Padre Island as a

391 Category 1 storm (NOAA, 2015a). The timing of the LiDAR and EMI surveys in this study
392 precede the impacts of Hurricane Harvey, and it is assumed that the surface morphology across
393 the island at the spatial scales of interest (i.e., $10^1 - 10^2$ km) did not change appreciably between
394 2009 and 2015.

395 A 1-m resolution DEM was created from 2009 LiDAR point clouds available from
396 NOAA's Digital Coast (NOAA, 2017). The raw point cloud tiles were merged to produce a
397 combined point cloud of the island within the park boundaries of the PAIS National Seashore.
398 The point clouds were processed into a continuous DEM using the ordinary kriging algorithm in
399 SAGA GIS, which is freely available open-source software (www.saga-gis.org/); and subsequent
400 terrain analysis was conducted using an automated approach involving the relative relief (RR)
401 metric (Wernette et al., 2016). Several morphometrics including beach width, dune height, and
402 island width were extracted from the DEM by averaging the RR values across window sizes of
403 21 m x 21 m, 23 m x 23 m, and 25 m x 25 m. The choice of window size is based on tacit a
404 *priori* knowledge and observations of the geomorphology in the study area. A detailed
405 description of the procedure for extracting each metric is provided in Wernette et al. (2016).

406 Relative relief is a measure of topographic position of the center pixel compared to the
407 minimum and maximum pixel elevations within a given computational window. Several other
408 morphometrics including beach width, dune height, and island width were extracted from the
409 DEM using a recently developed automated multi-scale approach (see Wernette et al., 2016).
410 This technique extracts the open water shoreline (in this case the Gulf of Mexico shoreline) and
411 backbarrier shoreline based on elevation thresholds and uses them to calculate beach and island
412 width referenced to mean sea level (MSL). Dune metrics including dune crest, dune heel, and
413 dune toe elevations are calculated based on the average relative relief (RR) to determine where
414 the dune begins, crests, and ends along every shore normal profile in a DEM. This process is
415 repeated for all such profiles at a 1 m spacing along the entire length of PAIS to generate a
416 continuous dataset of alongshore dune height and volume. A detailed description of the
417 procedure for extracting each metric is provided in Wernette et al. (2016).

418 Each morphometric feature was extracted by averaging the RR values across window
419 sizes of 21 m x 21 m, 23 m x 23 m, and 25 m x 25 m. The choice of window size is based on
420 tacit *a priori* knowledge and observations of the geomorphology in the study area. Larger

Commented [WB16]: Commented [A16]: What was the reason for not just downloading the 1-m DEM from NOAA? What was gained by creating a DEM from point cloud?

Response: The main reason why we created a 1m DEM is because it is much more accurate (vertically and horizontally) than the 10m products. Additionally, we wanted to be able to pick out finer changes in beach-dune-island morphology than a 10m DEM would allow. Essentially, we were able to generate a better DEM all around (spatial resolution, vertical accuracy, and horizontal accuracy).

421 window sizes will better capture smoother beach and dune features by reducing sensitivity to the
422 fine scale variability induced by measurement error inherent in LiDAR-derived DEMs, as well
423 as natural terrain irregularities (Wernette et al., 2016). Each DEM series is paired with the σ_a
424 profile by matching the GPS coordinates (latitude and longitude) recorded in the field by the
425 EMI sensor. Cross-sectional elevationDEM profiles oriented perpendicular to the shoreline were
426 analyzed every 10 m (y-coordinate) along the EMI profile to match the same 10 m sampling
427 interval of the σ_a measurements. The terrain variations along each cross-shore profile are
428 summed to calculate beach and island volume based on the elevation thresholds mentioned
429 above. Dune volume is calculated by summing the pixel elevations starting at the dune toe,
430 traversing the dune crest, and ending at the dune heel. In total, six DEM morphometrics were
431 extracted as spatial data series to be paired with the EMI data, each having an identical sample
432 size ($n = 9,694$), which is sufficiently large for statistical ARIMA modeling.

433

434 3.3 Statistical methods

435 Although the procedures for generating the EMI and LiDAR datasets used in this study
436 are different, the intended goal is the same; to produce spatial data series that contain similar
437 numbers of observations for comparative analysis using a combination of signal processing and
438 statistical modeling techniques. The resulting signals comprising each data series represent the
439 spatial averaging of a geophysical (EMI) or geomorphological (DEM)elevation variable that
440 contains information about the important processes-form relationships between subsurface
441 geologic features and island geomorphology that can be teased out by means of comparative
442 analysis (Weymer et al., 2015a). Because we are interested in evaluating these connections at
443 both small and large spatial scales, our first approach is to determine the autocorrelation function
444 and Hurst coefficient (self-similarity parameter) H and hence verify whether the data series are
445 characterized by short and/or long-range memory (Beran, 1992; Taqqu et al., 1995). LRD occurs
446 when the autocorrelation within a series, at large lags, tend to zero like a power function, and so
447 slowly that the sums diverge (Doukhan et al., 2003). LRD is often observed in natural time series
448 and is closely related to self-similarity, which is a special type of LRD.

449 The degree of LRD is related to the scaling exponent, H of a self-similar process, where
450 increasing H in the range $0.5 < H \leq 1.0$ indicates an increasing tendency towards such an effect

Commented [WB17]: Commented [A17]: The DEM is the grid. The profile is elevation extracted from the grid.

Response: fixed

Commented [WB18]: Commented [A18]: Condense and state that you are using the topographic dataset generated by Wernette

Response: fixed

Commented [WB19]: Commented [A19]: It would be very helpful for readers not familiar with the fairly complex statistical approach to provide examples of their application in earth science and perhaps not present a full lesson ARIMA on the stats.

Response: We agree and added some examples in the paragraph below (new lines 420-433). Please also refer to our response to this comment in the rebuttal letter.

Formatted: Default, Indent: First line: 0.5"

451 (Taqqu, 2003). Large correlations at small lags can easily be detected by models with short-
 452 memory (e.g., ARMA, Markov processes) (Beran, 1994). Conversely, when correlations at large
 453 lags slowly tend to zero like a power function, the data contain long-memory effects and either
 454 fractional Gaussian noise (fGn), or ARIMA models may be suitable (Taqqu et al., 1995). The
 455 R/S statistic is the quotient of the range of values in a data series and the standard deviation
 456 (Beran, 1992, 1994; Hurst, 1951; Mandelbrot and Taqqu, 1979). When plotted on a log/log plot,
 457 the resulting slope of the best-fit line gives an estimate of H , which is useful as a diagnostic tool
 458 for estimating the degree of LRD (see Beran, 1994). The degree of LRD can be characterized by
 459 evaluating the scaling exponent H (or Hurst coefficient) of a self-similar process. When plotted
 460 on a log/log plot, the resulting slope of the best fit line gives an estimate of H , where values
 461 approaching 1.0 indicate dominant long range effects (see Beran, 1994).

462 For a given number of observations X_1, X_2, \dots, X_n , a partial sum sequence is defined by

463 $S_m = X_1 + \dots + X_m$, for $m = 0, 1, \dots$ and $m < n$ (with $S_0 = 0$). The R/S statistic is then calculated by
 464 (see Samorodnitsky, 2007):

$$465 \frac{R}{S} (X_1, \dots, X_n) = \frac{\max_{0 \leq i \leq n} (S_i - \frac{i}{n} S_n) - \min_{0 \leq i \leq n} (S_i - \frac{i}{n} S_n)}{\sqrt{\left(\frac{1}{n} \sum_{i=1}^n (X_i - \frac{i}{n} S_n)^2 \right)}}$$

Formatted: Default, Left, Indent: First line: 0.5", Space Before: 0 pt, After: 0 pt

466

467 where, S_n/n is the mean of the sample. It has been suggested that R/S tends to give biased

468 estimates of H , too low for $H > 0.72$ and too high for $H < 0.72$ (Bassingthwaigthe and Raymond,
 469 1994), which was later confirmed by Malamud and Turcotte (1999). Empirical trend corrections
 470 to the estimates of H can be made by graphical interpolation, but are not applied here because of
 471 how the regression is done. The R/S analysis in this study was performed using signal analysis
 472 software AutoSignal™ to identify whether a given signal is distinguishable from a random,
 473 white noise process and, if so, whether the given signal contains LRD. The H value is calculated
 474 by an inverse variance-weighted linear least-squares curve fit using the logarithms of the R/S and
 475 the number of observations, which provides greater accuracy than other programs that compute
 476 the Hurst coefficient.

Formatted: Default, Indent: First line: 0.5"

Commented [WB20]: commented [A20]: How has this been used in the earth sciences? Provide real world examples to help reader fully understand the application

Response: This comment is similar to the previous comment about including some real world examples and has already been addressed. We deleted equation 1 and the more detailed description of the R/S analysis as this is described in many places and this level of detail is not central to the main discussion on the ARIMA statistical approach. For completeness, we choose to leave the detailed explanation of the ARIMA statistics and equations in the paper, so the reader can see the mathematics described here without having to search the literature.

477 Two of the simplest statistical time series models that can account for LRD are fGn and
 478 ARIMA. In the former case, fGn and its "parent" fractional Brownian motion (fBm) are used to
 479 evaluate stationary and nonstationary fractal signals, respectively (see Eke et al., 2000; Everett

Commented [WB21]: commented [A21]: What does fBm stand for?

Response: Fixed... fractional Brownian motion

480 and Weiss, 2002). Both fGn and fBm are governed by two parameters: variance σ^2 ; and the
481 scaling parameter, H (Eke et al., 2000). A more comprehensive class of time series models that
482 has similar capability to detect long-range structure is ARIMA. Because fGn and fBm models
483 have only two parameters, it is not possible to model the short-range components. Additional
484 parameters in ARIMA models are designed to handle the short-range component of the signal, as
485 discussed by Taqqu et al. (1995) and others. Because the EMI data series presumably contain
486 both short-range and long-range effects, we chose to use ARIMA as the analyzing technique.

487 ARIMA models are used across a wide range of disciplines [in geoscience](#) and have broad
488 applicability for understanding the statistical structure of a given data series as it is related to
489 some physical phenomenon (see Beran, 1992, 1994; Box and Jenkins, 1970; Cimino et al., 1999;
490 Granger and Joyeux, 1980; Hosking, 1981; Taqqu et al., 1995). [For example, Cimino et al.](#)
491 [\(1999\) apply R/S analysis, ARIMA, and Neural Network analysis to different geological data](#)
492 [sets including: tree ring data, Sr isotope data of Phanerozoic seawater samples, and El Niño](#)
493 [phenomenon. The authors show that -their statistical approach enables 1\) recognition of](#)
494 [qualitative changes within a given dataset, 2\) evaluation of the scale \(in\)dependency of](#)
495 [increments, 3\) characterization of random processes that describe the evolution of the data, and](#)
496 [4\) recognition of cycles embedded within the data series. In the soil sciences, Alemi et al. \(1988\)](#)
497 [use ARIMA and Kriging to model the spatial variation of clay-cover thickness of a 78 km² area](#)
498 [in northeast Iran and demonstrate that ARIMA modeling can adequately describe the nature of](#)
499 [the spatial variations. ARIMA models have also been used to model periodicity of major](#)
500 [extinction events in the geologic past \(Kitchell and Pena, 1984\).](#)

Formatted: Font: Not Bold, Not Italic

Formatted: Font color: Auto

Formatted: Superscript

Formatted: Font color: Auto

501 [In all these studies, t](#)**T**he statistical ARIMA model of a given data series is defined by
502 three terms (p,d,q) , where p and q indicate the order of the autoregressive (AR) and moving
503 average (MA) components, respectively and d represents a differencing, or integration term (I)
504 that is related to LRD. The AR element, p , represents the effects of adjacent observations and the
505 MA element, q , represents the effects on the process of nearby random shocks (Cimino et al.,
506 1999; De Jong and Penzer, 1998). However, in the present study our series are reversible spatial
507 series that can be generated, and are identical, with either forward or backward acquisition,
508 unlike a time series. Both p and q parameters are restricted to integer values (e.g., 0, 1, 2),
509 whereas the integration parameter, d , represents potentially long-range structure in the data. The

510 differencing term d is normally evaluated before p and q to identify whether the process is
511 stationary (i.e., constant mean and σ^2). If the series is nonstationary, it is differenced to remove
512 either linear ($d = 1$) or quadratic ($d = 2$) trends, thereby making the mean of the series stationary
513 and invertible (Cimino et al., 1999), thus allowing determination of the ARMA p and q
514 parameters.

Formatted: Font color: Red

515 Here, we adopt the definitions of an ARMA (p,q) , and ARIMA (p,d,q) process following
516 the work of Beran (1994). Let p and q be integers, where the corresponding polynomials are
517 defined as:

$$518 \quad \phi(x) = 1 - \sum_{j=1}^p \phi_j x^j,$$

519

$$520 \quad \psi(x) = 1 + \sum_{j=1}^q \psi_j x^j. \quad (12)$$

$$521$$

522 It is important to note that all solutions of $\phi(x_0) = 0$, and $\psi(x) = 0$ are assumed to lie outside
523 the unit circle. Additionally, let ϵ_t ($t = 1, 2, \dots$) be independent, and identically distributed
524 normal variables with zero variance σ_ϵ^2 such that an ARMA (p,q) process is defined by the
525 stationary solution of:

$$527 \quad \phi(B)X_t = \psi(B)\epsilon_t \quad (23)$$

529 where, B is the backward shift operator $BX_t = X_{t-1}, B^2X_t = X_{t-2}, \dots$ and, specifically, the
530 differences can be expressed in terms of B as; $X_t - X_{t-1} = (1 - B)X_t, (X_t - X_{t-1}) - (X_{t-1} -$
531 $X_{t-2}) = (1 - B)^2X_t \dots$ Alternatively, an ARIMA (p,d,q) process X_t is formally defined as:

$$533 \quad \phi(B)(1 - B)^d X_t = \psi(B)\epsilon_t \quad (34)$$

535 where, equation (3) holds for a d th difference $(1 - B)^d X_t$.
536 As mentioned previously, a more general form of ARIMA (p,d,q) is the fractional
537 ARIMA process, or FARIMA, where the differencing term d is allowed to take on fractional

539 values. If d is a non-integer value for some $-0.5 < d < 0.5$ and X_t is a stationary process as
540 indicated by equation 34, then the model by definition is called a FARIMA process where d -
541 values in the range $0 < d < 0.5$ of are of particular interest herein because geophysically-relevant
542 LRD occurs for $0 < d < 0.5$, whereas $d > 0.5$ means that the process is nonstationary, but
543 nonintegrable (Beran, 1994; Hosking, 1981). A special case of a FARIMA process explored in
544 the current study is ARIMA (0d0), also known as fractionally-differenced white noise (Hosking,
545 1981), which is defined by Beran (1994) and others as:

546

547
$$X_t = (1 - B)^{-d} \epsilon_t.$$

548 (45)

549

550 For $0 < d < 0.5$, the ARIMA (0d0) process is a stationary process with long-range structure and
551 is useful for modeling LRD. As shown later, different values of the d parameter provide further
552 insight into the type of causative physical processes that generate each data series. When $d < 0.5$,
553 the series X_t is stationary, which has an infinite moving average MA representation that
554 highlights long-range trends or cycles in the data. Conversely, when $d > -0.5$, the series X_t is
555 invertible and has an infinite autoregressive AR representation (see Hosking, 1981). When $-0.5 <$
556 $d < 0$, the stationary, and invertible, ARIMA (0d0) process is dominated by short-range effects
557 and is antipersistent. When $d = 0$, the ARIMA (000) process is white noise, having zero
558 correlations and a constant spectral density.

559 Following the methodology proposed by Box and Jenkins (1970), there are three phases that
560 characterize ARIMA modeling: *identification, estimation, and diagnostic testing*. The primary
561 task of the first phase is to identify the autocorrelation function(s) and any patterns in the data
562 (e.g., autocorrelation function, R/S analysis), and to manipulate the data (if necessary) to achieve
563 stationarity before an appropriate model is chosen (Linden et al., 2003). After an appropriate
564 model is selected (e.g., ARMA, ARIMA, etc.), statistical software is used in the second phase to
565 generate estimates of each model parameter (p, d, q) in order to achieve a good model fit. Tasks
566 included in the third phase involve examining the residual score, or root mean square error
567 (RMSE), to determine if there are patterns remaining in the data that are not accounted for.
568 Residual scores, or the mismatch between the values predicted by the model and the actual

← Formatted: Indent: First line: 0"

569 values of the data series, should show that there are no significant autocorrelations among the
570 residuals (Linden et al., 2003). The best model fit is determined by the smallest residual score,
571 which is the sum of the squares of the residuals (i.e., RMSE).

572 -Identification of an appropriate model is accomplished by finding small values of elements p,d,q
573 (usually between 0 – 2) that accurately fit the most significant patterns in the data series. When a
574 value of an element is 0, that element is not needed. For example, if $d = 0$ the series does not
575 contain a significant long-range component, whereas if $p = q = 0$, the model does not exhibit
576 significant short-range effects. If $p,d,q \neq 0$, the model contains a combination of both short and
577 long-memory effects.

578 Time series modeling is traditionally used for either forecasting future values or assigning
579 missing values within the data series. In this study, we are interested in determining the orders of
580 p,d,q not for forecasting or filling in missing data, but rather for gaining physical insight into the
581 structure of EMI σ_a responses, and since it is a proxy, the structure of the framework geology.
582 Different combinations of (p,d,q) provide insights into the degree or strength of LRD within a
583 data series and, in the present context in which EMI and elevation DEM are jointly analyzed, the
584 best fit (p,d,q) values can be used to discern how the various length scales within the framework
585 geology and island morphology are related.

586

587 4 Results

588 4.1 Spatial data series

589 4.1.1 EMI and GPR surveys

590 The 100 km EMI survey (Fig. 2a) represents (to our knowledge) the longest continuous ground-
591 based survey using a terrain conductivity meter ever performed. The unprocessed (raw) EMI σ_a
592 responses show a high degree of variability along the island. To reduce the effect of instrument
593 drift caused by temperature, battery and other systematic variations through the acquisition
594 interval, a drift correction was applied to each segment, the segments were then stitched together,
595 following which a regional linear trend removal was applied to the composite dataset. High-
596 amplitude responses within the EMI signal generally exhibit a higher degree of variability
597 (multiplicative noise) compared to the low-amplitude responses. Higher σ_a readings correspond
598 to a small sensor footprint and have enhanced sensitivity to small-scale near-surface

Commented [WB22]: Commented [A22]: Superfluous, and the data are not new to this study.

Response: Fixed

Commented [WB23]: Commented [A23]: This is Methods, not Results.

Response: Fixed... moved to the Methods section (new lines 301–304).

599 heterogeneities (see Guillemoteau and Troncke, 2015). Low σ_a readings suggest the sensor is
600 probing greater depths and averaging over a larger footprint. In that case, the effect of fine-scale
601 heterogeneities that contribute to signal variability is suppressed.

602 The 10 km alongshore survey is located within an inferred paleo-channel region (Fisk,
603 1959), providing some *a priori* geologic constraints for understanding the variability within the
604 EMI signal (Fig. 2b). Here, the sample size is $n = 10,176$, permitting a quantitative comparison
605 with the 100-km-long data series since they contain a similar number of observations. Unlike the
606 100 km survey, successive footprints of the sensor at each subsequent measurement point
607 overlap along the 10 km survey. The overlap enables a fine-scale characterization of the
608 underlying geological structure because the separation between the TX – RX coils (1.21 m), a
609 good lower-bound approximation of the footprint, is greater than the step-size (1 m).

610 The overall trend in σ_a for the 10 km survey is comparable to that of the 100 km survey,
611 where regions characterized by high and low amplitude signals correspond to regions of high and
612 low variability, respectively, implying that multiplicative noise persists independently of station
613 spacing. The decrease in σ_a that persists between $\sim 2.5 – 6$ km along the profile (Fig. 2b)
614 coincides in location with two paleo-channels, whereas a sharp reduction in σ_a is observed at \sim
615 8.2 km in close proximity to a smaller channel. Most of the known paleo-channels are located
616 within the 10 km transect and likely contain resistive infill sands that should generate lower and
617 relatively consistent σ_a readings (Weymer et al., 2015a). The low σ_a signal caused by the sand
618 indirectly indicates valley incision, since it is diagnostic of a thicker sand section, relatively
619 unaffected by the underlying conductive layers. Thus, it is reasonable to assume that reduced
620 variability in the signal is related to the framework geology within the paleo-channels, which we
621 now compare with a GPR profile.

622 To corroborate the capability of the EMI data to respond to the variable subsurface
623 geology, an 800 m GPR survey confirms the location of a previously identified paleo-channel
624 (Fisk, 1959) at $\sim 5 – 10$ m depth (Fig. 3). A continuous undulating reflector from $\sim 150 – 800$ m
625 along the profile is interpreted to be the surface mapped by Fisk (1959) who documented a
626 paleo-channel at this location with a depth of ~ 8 m. Although the paleo-surface is within the
627 detection limits of the GPR, it is likely that the DOI of the EMI data ($\sim 3 – 6$ m) is not large
628 enough to probe continuously along the contact between the more conductive ravinement surface

Commented [WB24]: Commented [A24]: Draw this interpretation on the GPR data in Fig 3.

Response: Fixed (see revised Figure 3 in the rebuttal letter).

629 and the moreless resistive infill sands. Along the transect at shallower depths highlighted by the
630 red box in the lower radargram (Fig. 3), low EMI σ_a values correspond to fine stratifications in
631 the GPR section, which is common for beach sands with little clay content that are not saline-
632 saturated. The EMI highs between $\sim 450 - 530$ m coincide with parts of the GPR section that do
633 not have the fine stratification and this may indicate the presence of clay or saline water. Here,
634 the high conductivity zone for both the GPR and EMI is located within a recovering washover
635 channel overlying the paleo-channel that is evident in the satellite imagery in the upper-left panel
636 of Fig. 3. The overwash deposits consisting of a mix of sand and finer-grained backbarrier
637 sediments likely mask the EMI sensors' ability to probe greater depths. Nonetheless, the high
638 conductivity zone represents a smaller ~ 100 m segment within the ~ 500 -m-wide paleo-channel,
639 suggesting that variations in the EMI responses outside this zone are directly related to variations
640 in the framework geology imaged by GPR.

641

642 4.1.2 LiDAR-derived DEM morphometrics

643 The LiDAR-derived elevation DEM spatial-data series along the 100 km transect are presented in
644 Fig. 4. Each data series is shown with respect to the areal DEM of the study area where the
645 approximate locations of each closely-spaced paleo-channel are highlighted in gray. This
646 visualization allows a qualitative analysis of the spatial relationships between paleo-channels,
647 subsurface information encoded in the σ_a signal, and surface morphology over the entire length
648 of the barrier island.

649 The morphology of the beach-dune system, as well as island width, changes substantially
650 from north to south. In the paleo-channel region, beach width decreases considerably in the
651 central channel ($\sim 37 - 42$ km) and is more variable outside this region. Beach width generally
652 increases towards the northern section of the island. The volume of the beach tends to be lowest
653 in the northern zone, varies considerably in the central part of the island, then stabilizes and
654 gradually decreases towards the south. These zones correspond to the southern (0 – 30 km),
655 central (30 – 60 km), and northern (60 – 100 km) sections of the island. Alongshore dune heights
656 generally are greater in the south, become slightly more variable in the paleo-channel region, and
657 decrease in the north except for the area adjacent to Baffin Bay. Dune volume is lowest in the
658 northern section, intermittently increases in the central zone and slightly decreases towards the

Commented [WB25]: Commented [A25]: This is very subtle and may be only true for the central channel.

Response: Fixed

Commented [WB26]: Commented [A26]: Again, this appears to be very subtle

Response: Fixed

659 south. The island is considerably narrower between Mansfield Channel and Baffin Bay (see Fig.
660 2a), increasing in width **significantly** in the northern zone; island volume follows a similar trend.
661 Overall, σ_a values are lower northward of the paleo-channel region compared to the southern
662 zone where σ_a increases substantially. However, the lowest σ_a values are located within the
663 region of paleo-channels inferred by Fisk (1959) supporting previous findings in the study area
664 by [Weymer et al. \(2015a\)](#) [and Wernette et al. \(2018\)](#) that suggest a potential geologic control on
665 alongshore geomorphic features.

Commented [WB27]: Commented [A27]: This is statistically significant?

Response: No, not statistically significant. Deleted 'significantly' to avoid confusion.

666 Each spatial data series (Fig. 4a – 4g) represents a different superposition of effects
667 caused by physical processes operating across a wide range of temporal and length scales
668 (Weymer et al., 2015a). Short-range fluctuations represent small-scale heterogeneities, whereas
669 long-range components capture variations in each metric at broader length scales. There is a high
670 degree of variability within each signal that is directly related to the **complex** geological and
671 geomorphological structure along the island. Within and outside the paleo-channel region,
672 general associations between **the** EMI σ_a responses and DEM metrics **are visually subtle** **can be**
673 **made**, **motivating the statistics as** we now show by ARIMA modeling. To conduct the ARIMA
674 analysis, we chose to divide the island into three zones based on the location of the known paleo-
675 channels. As will be discussed later, the tripartite zonation allows for a quantitative analysis of
676 LRD at three spatial scales (regional, intermediate, local) within and outside the area containing
677 paleo-channels. It is important to note, however, that the framework geology is likely to exhibit
678 LRD regardless of the length-scale over which it is observed.

Commented [WB29]: Commented [A29]: Why is a barrier island with 3 paleochannels complex?

Response: deleted 'complex'

Commented [WB30]: Commented [A30]: Better to call out that the associations are visibly subtle so you're going to apply statistics to demonstrate it.

Response: Fixed

679
680 4.2 Tests for LRD
681 4.2.1 Tests for LRD in EMI data series
682 Both EMI spatial data series appear to be nonstationary since the mean and variance of the data
683 fluctuate along the profile. **A closer visual inspection reveals however that cyclicity is present at**
684 **nearly all spatial frequencies (Fig. 6)**, with the cycles superimposed in random sequence and
685 **added to a constant variance and mean (see Beran, 1994)**. **This behavior is typical for stationary**
686 **processes with LRD, and is often observed in various types of geophysical time series (Beran,**
687 **1992), for example records of Nile River stage minima (Hurst, 1951)**. A common first-order
688 approach for determining whether a data series contains LRD is through inspection of the

Commented [WB31]: Commented [A31]: Can the reader see this? Figure?

Response: Fixed. Added a ref to Fig. 6

689 autocorrelation function, which we have computed in AutoSignal™ signal analysis software
690 using a fast Fourier transform (FFT) algorithm (Fig. 5a, 5d). Both EMI signals exhibit large
691 correlations at large lags (at km and higher scales), suggesting the σ_a responses contain LRD, or
692 "long-memory effects" in time-series language. ~~The degree of LRD can be characterized by~~
693 ~~evaluating the scaling exponent H (or Hurst coefficient) of a self similar process. When plotted~~
694 ~~on a log/log plot, the resulting slope of the best fit line gives an estimate of H , where values~~
695 ~~approaching 1.0 indicate dominant long range effects (see Beran, 1994).~~ Results from a rescaled
696 range R/S analysis (Fig. 5b, 5e) indeed show high H -values of 0.85 ($r^2 = 0.98$) and 0.95 ($r^2 =$
697 0.99) for the 100 km and 10 km surveys, indicating a strong presence of LRD at both regional
698 and local spatial scales.

699 The manner in which different spatial frequency (i.e. wavenumber) components are
700 superposed to constitute an observed EMI σ_a signal has been suggested to reveal information
701 about the causative multi-scale geologic structure (Everett and Weiss, 2002; Weymer et al.,
702 2015a). For example, the lowest-wavenumber contributions are associated with spatially
703 coherent geologic features that span the longest length scales probed. The relative contributions
704 of the various wavenumber components can be examined by plotting the σ_a signal power spectral
705 density (PSD). A power-law of the form $|\sigma_a(f)|^2 \sim f^\beta$ over several decades in spatial wavenumber
706 is evident (Fig. 5c, 5f). The slope β of a power-law-shaped spectral density provides a
707 quantitative measure of the LRD embedded in a data series and characterizes the heterogeneity,
708 or "roughness" of the signal. A value of $|\beta| > 1$ indicates a series that is influenced more by
709 long-range correlations and less by small-scale fluctuations (Everett and Weiss, 2002). For
710 comparison, a pure white noise process would have a slope of exactly $\beta = 0$, whereas a slope of β
711 ~ 0.5 indicates fractional Gaussian noise, i.e., a stationary signal with no significant long-range
712 correlations (Everett and Weiss, 2002). The β -values for the 100 km and 10 km surveys are $\beta = -$
713 0.97, and $\beta = -1.06$, respectively. These results suggest that both the 100 km and 10 km EMI
714 signals contain long-range correlations. However, there is a slightly stronger presence of LRD
715 within the 10 km segment of the paleo-channel region compared to that within the segment that
716 spans the entire length of the island. This indicates that long-range spatial variations in the
717 framework geology are more important, albeit marginally so, at the 10-km scale than at the 100-
718 km scale. It is possible that the variability within the signal and the degree of long-range

719 correlation is also a function of the sensor footprint, relative to station spacing. This is critically
720 examined in section 4.3.

721

722 4.2.2 Tests for LRD in surface morphometrics

723 Following the same procedure as applied to the EMI data, we performed the R/S analysis for
724 each beach, dune, and island metric. The calculated H -values for the DEM morphometrics range
725 between $0.80 - 0.95$ with large values of $r^2 \sim 1$, indicating varying, but relatively strong
726 tendencies towards LRD. Beach width and beach volume data series have H -values of 0.82 and
727 0.86, respectively. Dune height and dune volume H -values are 0.83 and 0.80, whereas island
728 width and island volume have higher H -values of 0.95 and 0.92, respectively. Because each data
729 series shows moderate to strong evidence of LRD, the relative contributions of short and long-
730 range structure contained within each signal can be further investigated by fitting ARIMA
731 models to each data set.

732

733 4.3 ARIMA statistical modeling of EMI

734 The results of the tests described in section 4.2.1 for estimating the self-similarity parameter H
735 and the slope of the PSD function suggest that both EMI data series, and by inference the
736 underlying framework geology, exhibit LRD. ~~Therefore, we suggest that an ARIMA process~~
737 ~~might be an appropriate model.~~ The goal of our analysis ~~using ARIMA~~ is to estimate the p , d ,
738 and q terms representing the order, respectively, of autoregressive (AR), integrated (I) and
739 moving-average (MA) contributions to the signal (Box and Jenkins, 1970) ~~to quantify free vs.~~
740 ~~forced behavior along the island.~~ For the analysis, the ‘arfima’ and ‘forecast’ statistical packages
741 in R were used to fit a family of ARIMA (p,d,q) models to the EMI σ_a data and island
742 morphometrics (Hyndman, 2015; Hyndman and Khandakar, 2007; Veenstra, 2012). Results of
743 ten realizations drawn from a family of ARIMA (p,d,q) models and their residuals (RMSE) are
744 presented in Table 1. The worst fit (ARIMA 001) models are shown for the 100 km and 10 km
745 (Fig. 6a, 6c) surveys. The best fit (ARIMA 0d0) models for both the 100 and 10 km surveys are
746 shown in Fig. 6b and 6d, respectively. For this analysis, the tests include different combinations
747 of p,d,q that model either short-range: ARIMA (100; 001; 101; 202; 303; 404; 505), long-range:
748 ARIMA (010; 0d0), or composite short- and long-range processes: ARIMA (111). It is important

Commented [WB32]: Commented [A32]: Why, more explicitly? The justification should be in the Methods or Intro sections, not here.

Response: We agree and deleted this sentence as we already discuss this in the Methods section

Commented [WB33]: Commented [A33]: In order to do what?

Response: We are doing this to quantify free vs. forced behavior and added this statement for clarification.

749 to note that AR and MA are only appropriate for “short-memory” processes since they involve
750 only near-neighbor values to explain the current value, whereas the integration (the “I” term in
751 ARIMA) models “long-memory” effects because it involves distant values. Note that ARIMA
752 was developed for one-way time series, in which the arrow of time advances in only one
753 direction, but in the current study we are using it for spatial series that are reversible. Different
754 realizations of each ARIMA (p,d,q) data series were evaluated, enabling physical interpretations
755 of LRD at regional, intermediate, and local spatial scales. Determining the best-fitting model is
756 achieved by comparing the residual score, or RMSE, of each predicted data series relative to the
757 observed data series, where lower RMSE values indicate a better fit (Table 1).

758 Based on the residuals and visual inspection of each realization ([Fig. 6](#)), two observations
759 are apparent: 1) both EMI data series are most accurately modeled by an ARIMA $(0,d,0)$ process
760 with non-integer d , and 2) the mismatch between the data and their model fit is considerably
761 lower for the 10 km survey compared to the 100 km survey. The first observation suggests that
762 the data are most appropriately modeled by a FARIMA process; i.e., a fractional integration that
763 is stationary ($0 < d < 0.5$) and has long-range dependence (see Hosking, 1981). This implies that
764 spatial variations in framework geology at the broadest scales dominate the EMI signal and that
765 small-scale fluctuations in σ_a caused, for example, by changing hydrological conditions over
766 brief time intervals less than the overall data acquisition interval, or fine-scale lithological
767 variations less than a few station spacings, are not as statistically significant. Regarding the
768 second observation, the results suggest that a small station spacing (i.e., 1 m) is preferred to
769 accurately model both short and long-range contributions within the signal because large station
770 spacings cannot capture short-range information. The model for the 10 km survey fits better
771 because both p (AR) and q (MA) components increase with a smaller step-size since successive
772 volumes of sampled subsurface overlap. On the contrary, the sensor footprint is considerably
773 smaller than the station spacing (10 m) for the 100 km survey. Each σ_a measurement in that case
774 records an independent volume of ground, yet the dataset still exhibits LRD, albeit not to the
775 same degree as in the 10 km survey.

776
777 4.4 ARIMA statistical modeling of island metrics compared with EMI

778 A sequence of ARIMA (p,d,q) models was also evaluated for the elevationDEM morphometrics
779 series to find best fits to the data. The analysis comprised a total of 36 model tests (Table 2). The
780 RMSE values reveal that: 1) all data series are best fit by an ARIMA (0d0) process with
781 fractional d , i.e. a FARIMA process; 2) the ARIMA models, in general, more accurately fit the
782 EMI data than the DEM morphometric data likely because the morphology is controlled by more
783 than the framework geology alone; and 3) in all cases, the poorest fit to each series is the
784 ARIMA (001), or MA process. This, in turn, means that the differencing parameter d is the most
785 significant parameter amongst p , d and q . It is important to note that different values of d were
786 computed based on the best fit of each FARIMA model to the real data. A graphical
787 representation of the FARIMA-modeled data series for each DEM metric is shown in Fig. 7,
788 allowing a visual inspection of how well the models fit the observed data. Because each data
789 series has its own characteristic amplitude and variability, it is not possible to compare RMSE
790 between tests without normalization. The variance within each data series can differ by several
791 orders of magnitude.

792 Instead of normalizing the data, a fundamentally different approach is to compare the
793 EMI σ_a d -values with respect to each metric at regional, intermediate, and local scales (Table 3).
794 Higher positive d -values indicate of a stronger tendency towards LRD. According to Hosking
795 (1981), $\{x_t\}$ is called an ARIMA (0d0) process and is of particular interest in modelling LRD as
796 d approaches 0.5 because in such cases the correlations and partial correlations of $\{x_t\}$ are all
797 positive and decay slowly towards zero as the lag increases, while the spectral density of $\{x_t\}$ is
798 concentrated at low frequencies. It is reasonable to assume that the degree of LRD may change
799 over smaller intermediate and/or local scales, which implies a breakdown of self-similarity. For a
800 self-similar signal, d is a global parameter that does not depend on which segment of the series is
801 analyzed. In other words, the d -values should be the same at all scales for a self-similar structure.

802 The results of the FARIMA analysis at the intermediate scale vary considerably within
803 each zone of the barrier island (north, central, south) and for each spatial data series (Table 3). In
804 the southern zone (0 – 30 km), EMI σ_a and beach volume have the strongest LRD ($d = 0.44$),
805 whereas the other metrics exhibit weak LRD (ranging from $d \sim 0 – 0.2$), which may be
806 characterized approximately as a white noise process. Within the paleo-channel region (30 – 60
807 km), all of the island metrics show a moderate to strong tendency towards LRD ($0.3 \leq d \leq 4.2$),

Commented [WB34]: Commented [A34]: Likely because the morphology is controlled by more than framework geology.

Response: We agree and added this statement to the sentence as suggested by the Reviewer.

808 however, the EMI signal does not ($d = 0.11$). In the northern zone (60 – 100 km) all data series
809 contain moderate to strong LRD with the exception of beach and island width.

810 A FARIMA analysis was also conducted at the local scale by dividing the island into 10-
811 km-segments, starting at the southern zone (0 – 10 km) and ending at the northern zone of the
812 island (90 – 100 km). A total of 70 FARIMA model realizations were evaluated and the resulting
813 d -values demonstrate that the EMI data segments show a stronger presence of LRD ($d > 0.4$)
814 within the paleo-channels (30 – 60 km) and further to the north (60 – 80 km) in close proximity
815 to the ancestral outlet of Baffin Bay. These findings indicate that there may be local and/or
816 intermediate geologic controls along different parts of the island, but that the framework geology
817 dominates island metrics at the regional scale.

818

819 **5 Discussion**

820 Although it has long been known that processes acting across multiple temporal and length
821 scales permit the shape of coastlines to be described by mathematical constructs such as power
822 law spectra and fractal dimension (Lazarus et al., 2011; Mandelbrot, 1967; Tebbens et al., 2002),
823 analogous studies of the subsurface framework geology of a barrier island have not been carried
824 out. For the first time, it is This research supports previous studies demonstrating ~~ed~~ that near-
825 surface EMI geophysical methods are useful for mapping barrier island framework geology and
826 that FARIMA data series analysis is useful-a compact statistical tool for illuminating the long
827 and/or short-range spatial correlations ~~meetings~~ between subsurface geology and
828 geomorphology. The results of the FARIMA analysis and comparisons of the best-fitting d -
829 parameters show that beach and dune metrics closely match EMI σ_a responses *regionally* along
830 the entire length of PAIS, suggesting that the long-range dependent structure of these data series
831 is similar at large spatial scales. However, further evaluation of the d -parameters over smaller
832 data segments reveals that there are additional intermediate and localized framework geology
833 controls on island geomorphology that are not present at the regional scale.

834 At the *intermediate* scale, a low EMI d -value ($d = 0.11$) suggests there is only a weak
835 framework-geologic control on barrier island morphometrics. A possible explanation is that the
836 paleo-channels, located within a ~ 30 km segment of the island, are not regularly spaced and on
837 average are less than a few km wide. This implies that the framework geology controls are

Commented [WB35]: **Commented [A35]:** There are a number of recent papers that have already demonstrated this. This research supports previous papers but has been shown already in recent papers.

Response: Yes, we agree with the Reviewer and changed this sentence to state that the current study supports our previous research.

Commented [WB36]: **Commented [A36]:** Seems like a fair amount of complex statistics to just be useful; why are the methods chosen the best for testing the hypothesis?

Response: We deleted ‘useful’ and changed to state that FARIMA is a compact statistical tool that is designed to handle both short and long-range correlations that other statistical models do not account for.

Commented [WB37]: **Commented [A37]:** It’s possible that at smaller scales, processes driving change are more important

Response: Changed this statement to focus on the ‘localized’ framework geology controls.

Commented [WB38]: **Commented [A38]:** The 2 sentences appear contradictory

Response: We changed the previous sentence to avoid any contradictory statements regarding the possible local framework geology controls.

838 localized (i.e., effective in shaping island geomorphology only at smaller spatial scales). At the
839 *local* scale, relationships between the long-range-dependence of EMI and each metric vary
840 considerably, but there is a significant geologic control on dune height within the paleo-channel
841 region ($d > 0.4$). It is hypothesized that the alongshore projection of the geometry of each
842 channel is directly related to a corresponding variation in the EMI signal, such that large, gradual
843 minima in σ_a are indicative of large, deep channel cross-sections and small, abrupt minima in σ_a
844 represent smaller, shallow channel cross-sections. At shallower depths within the DOI probed by
845 the EMI sensor, variability in the σ_a signal may correspond to changes in sediment characteristics
846 as imaged by GPR (Fig. 3). Located beneath a washover channel, a zone of high conductivity
847 EMI σ_a responses between $\sim 450 - 530$ m coincides with a segment of the GPR section where
848 the signal is more attenuated and lacks the fine stratification that correlates much better with the
849 lower σ_a zones. The contrasts in lithology between the overwash deposits and stratified infilled
850 sands was detected by both EMI and GPR measurements suggering that EMI is a useful tool for
851 mapping variations in barrier island framework geology.

Commented [WB39]: Commented [A39]: It's not clear why? Does it instead imply that framework geo doesn't have any control at this scale?

Response: Yes, what we mean here is that there no framework geology controls at the intermediate scale, and that instead they are more localized within the paleo-channels.

852 It is argued herein that differences in the d parameter between EMI σ_a readings (our
853 assumed proxy for framework geology) and LiDAR-derived surface morphometrics provide a
854 new metric that is useful for quantifying the causative physical processes that govern island
855 transgression across multiple spatial scales. All of the calculated d -values in this study are
856 derived from ARIMA ($0d0$) models that fit the observations, and lie within the range of $0 < d <$
857 0.5 , suggesting that each data series is stationary but does contain long-range structure that
858 represents randomly-placed cyclicalities in the data. For all models in our study, the d -values range
859 between ($\sim 0 - 0.50$), which enables a geomorphological interpretation of the degree of LRD and
860 self-similarity at different spatial scales. In other words, the d -parameter not only provides an
861 indication of the scale dependencies within the data, but also offers a compact way for analyzing
862 the statistical connections between free (weaker $d = 0$) or forced (stronger $d \sim 0.5$) and free
863 (weaker $d \sim 0$) behavior that may be more influenced by morphodynamic processes operating at
864 smaller spatial scalesgeomorphological evolution along the island.

865 Alongshore variations in beach width and dune height are not uniform at PAIS and exhibit
866 different spatial structure within and outside the paleo-channel region (Fig. 5). These
867 dissimilarities may be forced by the framework geology within the central zone of the island but

Commented [WB40]: Commented [A40]: This has already been shown in previous publications and does not need to be repeated herein.

Response: Fixed... deleted.

Commented [WB41]: Commented [A41]: What if the geomorphology is more influenced by hydrodynamics at this scale?

Response: Fixed. We added this comment by the Reviewer for clarification.

Formatted: Line spacing: 1.5 lines

868 are influenced more by contemporary morphodynamic processes outside the paleo-channel
869 region. ~~Once the dunes are initialized in part by the framework geology, stabilizing vegetation~~
870 ~~may act as another important control on beach-dune evolution alongshore (Hesp, 1988).~~ This
871 effect could be represented by higher-wavenumber components embedded within the spatial data
872 series. Beach and dune morphology in areas that are not controlled by framework geology (e.g.,
873 the northern and southern zones) exhibit more small-scale fluctuations representing a free system
874 primarily controlled by contemporary morphodynamics (e.g., wave action, storm surge, wind,
875 etc.).

876 Because variations in dune height exert an important control on storm impacts (Sallenger,
877 2000) and ultimately large-scale island transgression (Houser, 2012), ~~it is argued here that the~~
878 ~~framework geology (or lack thereof) of PAIS acts as an important control on island response to~~
879 ~~storms and sea-level rise. This study supports recent work by Wernette et al. (2018) suggesting~~
880 ~~that framework geology can influence barrier island geomorphology by creating alongshore~~
881 ~~variations in either oceanographic forcing and/or sediment supply and texture that controls~~
882 ~~smaller-scale processes responsible for beach-dune interaction at the local scale.~~ The forced
883 behavior within the paleo-channel region challenges ~~existing shoreline change studies -models~~
884 that consider only small-scale undulations in the dune line that are caused by natural randomness
885 within the system. ~~Rather, we propose that dune growth is forced by the framework geology,~~
886 whose depth is related to the thickness of the modern shoreface sands beneath the beach. This
887 depth is the primary quantity that is detected by the EMI sensor. With respect to shoreline
888 change investigations, improving model performance requires further study of how the
889 framework geology influences beach-dune morphology through variations in wave energy,
890 texture, and sediment supply (e.g., Houser, 2012; McNinch, 2004; Schwab et al., 2013).

891 Our findings extend previous framework geology studies from the Outer Banks, NC (e.g.,
892 Browder and McNinch, 2006; McNinch, 2004; Riggs et al., 1995; Schupp et al., 2006), Fire
893 Island, NY (e.g., Hapke et al., 2010; Lentz and Hapke, 2011), and Pensacola, FL (e.g., Houser,
894 2012) where feedbacks between geologic features and relict sediments within the littoral system
895 have been shown to act as an important control on dune growth and evolution. Nonetheless, most
896 of these studies focus on offshore controls on shoreface and/or beach-dune dynamics at either
897 local or intermediate scales because few islands worldwide exist that are as long and/or

Commented [WB42]: Commented [A42]: Not convinced this has been demonstrated by the analysis.

Response: We agree with the Reviewer and deleted this statement as this is a concept better explained in Houser et al. (2018) and Wernette et al. (2018).

Formatted: Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

Commented [WB43]: Commented [A43]: Or lack of framework geo

Response: Fixed. Added (or lack thereof)...

Commented [WB44]: Commented [A45]: Which existing models?

Response: We are referring to shoreline change studies that do not include the variable framework geology. For clarification, we added a sentence suggesting that the framework geology needs to be included to improve model performance and added few citations as examples.

Commented [WB45]: Commented [A44]: This needs to be better developed. A discussion on how the framework geology interacts with the processes driving change that will result in differing responses would be helpful.

Response: We agree with the reviewer and added the following discussion citing Wernette et al. (2018) that describes this concept in greater detail.

continuous as North Padre Island. To our knowledge, few framework geology studies have specifically used statistical testing to analyze correlations between subsurface geologic features and surface morphology. Two notable exceptions include Browder and McNinch (2006), and Schupp et al. (2006), both of which used chi-squared testing and cross-correlation analysis to quantify the spatial relationships between offshore bars, gravel beds, and/or paleo-channels at the Outer Banks, NC. Although these techniques are useful for determining spatial correlations between different data sets, they do not provide information about the scale (in)dependencies between the framework geology and surface geomorphology that FARIMA models are better designed to handle. The current study augments the existing literature in that 1) it outlines a quantitative method for determining *free* and *forced* evolution of barrier island geomorphology at multiple length scales, and 2) it demonstrates that there is a first-order control on dune height at the local scale within an area of known paleo-channels, suggesting that framework geology controls are localized within certain zones of PAIS.

Further study is required to determine how this combination of free- and forced-behavior resulting from the variable and localized framework geology affects island transgression.

Methods of data analysis that would complement the techniques presented in this paper might include; spatiotemporal modeling, power spectral analysis, wavelet decomposition, and shoreline change analysis that implicitly includes variable framework geology, bicoherence analysis, and wavelet coherence. These approaches would provide important information regarding: 1)

1. Coherence and phase relationships between subsurface structure and island

geomorphology, and 2).

2. Non-linear interactions of coastal processes across large and small spatiotemporal scales.

Quantifying and interpreting the significance of framework geology as a driver of barrier island formation and evolution and its interaction with contemporary morphodynamic processes is essential for designing and sustainably managing resilient coastal communities and habitats.

6 Conclusions

This study demonstrates the utility of EMI geophysical profiling as a new tool for mapping the length-scale dependence of barrier island framework geology and introduces the

Commented [WB46]: Commented [A46]: This was done by Wernette et al, 2018

Response: Ok, deleted and added a statement suggesting that future work is needed to model shoreline change that includes the variable framework geology.

Formatted: Normal, Indent: First line: 0.5", No bullets or numbering

Formatted: Indent: First line: 0.5"

928 potential importance of statistical modeling of geophysical and geomorphological spatial data
929 series by FARIMA analysis to better understand the geologic controls on large-scale barrier
930 island transgression. The EMI and morphometric data series exhibit LRD to varying degrees, and
931 each can be accurately modeled using a non-integral parameter d . The value of this parameter
932 diagnoses the spatial relationship between the framework geology and surface geomorphology.
933 At the *regional scale* (~100 km), small differences in d between the EMI and morphometrics
934 series suggest that the long-range-dependent structure of each data series with respect to EMI σ_a
935 is statistically similar. At the *intermediate scale* (~30 km), there is a greater difference between
936 the d -values of the EMI and island metrics within the known paleo-channel region, suggesting a
937 more localized geologic control with less contributions from broader-scale geological structures.
938 At the *local scale* (10 km), there is a considerable degree of variability between the d -values of
939 the EMI and each metric. These results all point toward a *forced* barrier-island evolutionary
940 behavior within the paleo-channel region transitioning into a *free*, or scale-independent behavior
941 dominated by contemporary morphodynamics outside the paleo-channel region. In a free system,
942 small-scale undulations in the dune line reinforce natural random processes that occur within the
943 beach-dune system and are not influenced by the underlying geologic structure. In a forced system,
944 the underlying geologic structure establishes boundary constraints that control how the island evolves
945 over time. The results from this study suggest that the framework geology initially controls the
946 development of the dunes at the local scale within the paleo channel region. This means that
947 barrier island geomorphology at PAIS is forced and scale-dependent, unlike shorelines which
948 have been shown at other barrier islands to be scale-independent (Tebbens et al., 2002; Lazarus
949 et al., 2011). Our findings reveal that shorelines may have different irregularity than island
950 geomorphology, which suggests an alongshore redistribution of sediment that shapes the
951 shoreline toward a more dissipative state over time. Without local variations in the framework
952 geology alongshore, small scale variations in the shoreline will be masked by the large scale
953 transport gradients over long timescales. The exchange of sediment amongst nearshore, beach
954 and dune in areas outside the paleo-channel region is scale independent, meaning that barrier
955 islands like PAIS exhibit a combination of free and forced behaviors that will affect the response
956 of the island to sea level rise and storms. We propose that our analysis is not limited to PAIS but

Commented [WB47]: Commented [A47]: Is it the importance of FARIMA or does it demonstrate the potential to use FARIMA for some applications?

Response: Fixed. We are suggesting the potential of using FARIMA to understand the statistical connections between surface geomorphology and framework geology.

Commented [WB48]: Commented [A48]: The paper would benefit from a discussion of other methods to resolve geologic controls and why FARIMA was best, was chosen.

Response: We added a short discussion towards the end of the Discussion section that summarizes the use of other statistical methods to analyze the correlations between framework geology and geomorphology, namely two companion studies by Browder and McNinch, 2006 and Schupp et al., 2006. Please refer to new lines (796-804).

Formatted: Font: Italic

Formatted: Font: Italic

Commented [WB49]: As mentioned previously, this sentence was moved from the introduction.

Commented [WB50]: Commented [A49]: I disagree that it can be stated what initially controlled the formation of dunes from a single elevation model

Response: We agree and removed this statement as this is a topic that is explored in more detail by Houser et al. (2018).

Commented [WB51]:
Commented [A50]: You didn't study shorelines, correct?

Response: Not explicitly, but we were basing this on studies by Lazarus and Tebbens. We deleted this sentence as it is a key argument discussed in Houser et al. 2018 and Wernette et al. (2018) and not explored in the current study.

Commented [WB52]: Commented [A51]: This is not a conclusion. It would be appropriate for the Discussion but this analysis did not look at shorelines or sediment transport gradients over time.

Response: Fixed. Deleted.

957 can be applied to other barrier islands and potentially in different geomorphic environments, both
958 coastal and inland.

959

960 **Competing interests.** The authors declare that they have no conflict of interest.

961

962 **Acknowledgments**

963 We are grateful to Patrick Barrineau, Andy Evans, Brianna Hammond Williams, Alex van
964 Plantinga, and Michael Schwind for their assistance in the field. We thank two anonymous
965 reviewers for their constructive comments during the open discussion. All data in this study are
966 available by contacting the corresponding author: brad.weymer@gmail.com. The field data
967 presented in this manuscript was collected under the National Park Service research permit:
968 #PAIS-2013-SCI-0005. This research was funded in part by a Grants-in-Aid of Graduate Student
969 Research Award by the Texas Sea Grant College Program to BW, and through a grant to CH
970 from the Natural Science and Engineering Research Council of Canada (NSERC).

Formatted: Font color: Text 1

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

1002 **References**

1003

1004 Alemi, M. H., Azari, A. S., and Nielsen, D. R., 1988. Kriging and univariate modeling of a spatially
1005 correlated data. Soil technology, 1(2), 133-147.

1006 Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R. W., and Taha, Z. P.,
1007 2015. Recycling sediments between source and sink during a eustatic cycle: Systems of
1008 late Quaternary northwestern Gulf of Mexico Basin. Earth-Science Reviews 153, 111-138.

1009 Andrle, R., 1996. The west coast of Britain: Statistical self-similarity vs. characteristic scales in
1010 the landscape. Earth Surface Processes and Landforms, 21(10), 955-962.

1011 Bailey, R. J., and Smith, D. G., 2005. Quantitative evidence for the fractal nature of the
1012 stratigraphic record: results and implications. Proceedings of the Geologists' Association,
1013 116(2), 129-138.

1014 Bassingthwaighte, J. B., and Raymond, G. M., 1994. Evaluating rescaled range analysis for time
1015 series. Annals of biomedical engineering, 22(4), 432-444.

Formatted: English (United States)
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic
Formatted: Font: (Default) Times New Roman, 12 pt

1016 Belknap, D. F., and Kraft, J. C., 1985. Influence of antecedent geology on stratigraphic
 1017 preservation potential and evolution of Delaware's barrier systems. *Marine geology*, 63(1),
 1018 235-262.

1019 Beran, J., 1992. Statistical methods for data with long-range dependence. *Statistical Science*, 7(4),
 1020 404-427.

1021 Beran, J., 1994. *Statistics for long-memory processes* (Vol. 61): CRC Press.

1022 Box, G. E., and Jenkins, G. M., 1970. *Time series analysis: forecasting and control* Holden-Day,
 1023 San Francisco, CA.

1024 Browder, A. G., and McNinch, J. E., 2006. Linking framework geology and nearshore morphology:
 1025 correlation of paleo-channels with shore-oblique sandbars and gravel outcrops. *Marine
 1026 geology*, 231(1), 141-162.

1027 Brown, L. F., and Macon, J., 1977. Environmental geologic atlas of the Texas coastal zone:
 1028 Kingsville area: Bureau of Economic Geology, University of Texas at Austin.

1029 Burrough, P., 1981. Fractal dimensions of landscapes and other environmental data. *Nature*,
 1030 294(5838), 240-242.

1031 Buynevich, I. V., FitzGerald, D. M., and van Heteren, S., 2004. Sedimentary records of intense
 1032 storms in Holocene barrier sequences, Maine, USA. *Marine Geology*, 210(1), 135-148.

1033 Cimino, G., Del Duce, G., Kadonaga, L., Rotundo, G., Sisani, A., Stabile, G., . . . Whiticar, M.,
 1034 1999. Time series analysis of geological data. *Chemical Geology*, 161(1), 253-270.

1035 Coleman, J. M., and Gagliano, S. M., 1964. Cyclic sedimentation in the Mississippi River deltaic
 1036 plain.

1037 Colman, S. M., Halka, J. P., Hobbs, C., Mixon, R. B., and Foster, D. S., 1990. Ancient channels
 1038 of the Susquehanna River beneath Chesapeake Bay and the Delmarva Peninsula.
 1039 Geological Society of America Bulletin, 102(9), 1268-1279.

1040 Dai, H., Ye, M., & Niedoroda, A. W., 2014, A Model for Simulating Barrier Island
 1041 Geomorphologic Responses to Future Storm and Sea-Level Rise Impacts. *Journal of
 1042 Coastal Research*, 31(5), 1091-1102,

1043 De Jong, P., and Penzer, J., 1998. Diagnosing shocks in time series. *Journal of the American
 1044 Statistical Association*, 93(442), 796-806.

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: 16 pt

1045 Delefortrie, S., Saey, T., Van De Vijver, E., De Smedt, P., Missiaen, T., Demerre, I., and Van
1046 Meirvenne, M., 2014. Frequency domain electromagnetic induction survey in the
1047 intertidal zone: Limitations of low-induction-number and depth of exploration. *Journal of*
1048 *Applied Geophysics*, 100, 14-22.

1049 Demarest, J. M., and Leatherman, S. P., 1985. Mainland influence on coastal transgression:
1050 Delmarva Peninsula. *Marine geology*, 63(1), 19-33.

1051 Doukhan, P., Oppenheim, G., and Taqqu, M. S., 2003. Theory and applications of long-range
1052 dependence: Birkhauser.

1053 Eke, A., Herman, P., Bassingthwaite, J., Raymond, G., Percival, D., Cannon, M., . . . Ikrényi,
1054 C., 2000. Physiological time series: distinguishing fractal noises from motions. *Pflügers*
1055 *Archiv*, 439(4), 403-415.

1056 Evans, M., W, Hine, A., C, Belknap, D., F, and Davis, R., A., 1985. Bedrock controls on barrier
1057 island development: west-central Florida coast. *Marine geology*, 63(1-4), 263-283.

1058 Evans, R. L., and Lizarralde, D., 2011. The competing impacts of geology and groundwater on
1059 electrical resistivity around Wrightsville Beach, NC. *Continental Shelf Research*, 31(7),
1060 841-848.

1061 Everett, M. E., and Weiss, C. J., 2002. Geological noise in near-surface electromagnetic induction
1062 data. *Geophysical Research Letters*, 29(1), 10-11-10-14.

1063 Everett, M. E., 2013. Near-surface applied geophysics. Cambridge University Press.

1064 Fisk, H. N., 1959. Padre Island and Laguna Madre Flats, coastal south Texas. *Proceedings 2nd*
1065 *Coastal Geography Conference*, Louisiana State University, Baton Rouge, LA, 103-151.

1066 Fitterman, D. V., and Stewart, M. T., 1986. Transient electromagnetic sounding for groundwater.
1067 *Geophysics*, 51(4), 995-1005.

1068 Frazier, D. E., 1967. Recent deltaic deposits of the Mississippi River: their development and
1069 chronology.

1070 *Geophysical Survey Systems, I. G., 2007. Profiler EMP 400 user's manual, Geophysical Survey*
1071 *Systems, Incorporated, User's Manual.*

1072 Granger, C. W., and Joyeux, R., 1980. An introduction to long-memory time series models and
1073 fractional differencing. *Journal of time series analysis*, 1(1), 15-29.

1074 Guillemoteau, J., and Tronicke, J., 2015. Non-standard electromagnetic induction sensor
1075 configurations: Evaluating sensitivities and applicability. *Journal of Applied Geophysics*,
1076 118, 15-23.

1077 Gutierrez, B. T., Plant, N. G., Thieler, E. R., and Turecek, A., 2015. Using a Bayesian network to
1078 predict barrier island geomorphologic characteristics. *Journal of Geophysical Research: Earth Surface*, 120(12), 2452-2475.

1080 Hapke, C. J., Kratzmann, M. G., and Himmelstoss, E. A., 2013. Geomorphic and human influence
1081 on large-scale coastal change. *Geomorphology*, 199, 160-170.

1082 Hapke, C. J., Lentz, E. E., Gayes, P. T., McCoy, C. A., Hehre, R., Schwab, W. C., and Williams,
1083 S. J., 2010. A review of sediment budget imbalances along Fire Island, New York: can
1084 nearshore geologic framework and patterns of shoreline change explain the deficit? *Journal*
1085 *of Coastal Research*, 510-522.

1086 Hapke, C. J., Plant, N. G., Henderson, R. E., Schwab, W. C., and Nelson, T. R., 2016. Decoupling
1087 processes and scales of shoreline morphodynamics. *Marine geology*, 381, 42-53.

1088 ~~Hesp, P., 1988. Morphology, dynamics and internal stratification of some established foredunes in
1089 southeast Australia. *Sedimentary Geology*, 55(1-2), 17-41.~~

1090 Honeycutt, M. G., and Krantz, D. E., 2003. Influence of the geologic framework on spatial
1091 variability in long-term shoreline change, Cape Henlopen to Rehoboth Beach, Delaware.
1092 *Journal of Coastal Research*, 147-167.

1093 Hosking, J. R., 1981. Fractional differencing. *Biometrika*, 68(1), 165-176.

1094 Houser, C., Hapke, C., and Hamilton, S., 2008. Controls on coastal dune morphology, shoreline
1095 erosion and barrier island response to extreme storms. *Geomorphology*, 100(3), 223-240.

1096 Houser, and Mathew, S., 2011. Alongshore variation in foredune height in response to transport
1097 potential and sediment supply: South Padre Island, Texas. *Geomorphology*, 125(1), 62-72.

1098 Houser, C., 2012. Feedback between ridge and swale bathymetry and barrier island storm response
1099 and transgression. *Geomorphology*, 173, 1-16.

1100 Houser, C., 2013. Alongshore variation in the morphology of coastal dunes: Implications for storm
1101 response. *Geomorphology*, 199, 48-61.

1102 Houser, C., Wernette, P., Rentschlar, E., Jones, H., Hammond, B., and Trimble, S., 2015. Post-
1103 storm beach and dune recovery: Implications for barrier island resilience.
1104 *Geomorphology*, 234, 54-63.

1105 Hurst, H. E., 1951. Long-term storage capacity of reservoirs. *Trans. Amer. Soc. Civil Eng.*, 116,
1106 770-808.

1107 Hyndman, R. J., 2015. Forecasting functions for time series and linear models. R package version
1108 5.9., URL:<http://github.com/robjhyndman/forecast>.

1109 Hyndman, R. J., and Khandakar, Y., 2007. Automatic time series for forecasting: the forecast
1110 package for R. Retrieved from

1111 Jol, H. M., Smith, D. G., and Meyers, R. A., 1996. Digital ground penetrating radar (GPR): a new
1112 geophysical tool for coastal barrier research (Examples from the Atlantic, Gulf and Pacific
1113 coasts, USA). *Journal of Coastal Research*, 960-968.

1114 Jol, H. M. (Ed.), 2008. *Ground penetrating radar theory and applications*. Elsevier.

1115 Kitchell, J. A., and Pena, D., 1984. Periodicity of extinctions in the geologic past: deterministic
1116 versus stochastic explanations. *Science*, 226(4675), 689-692.

1117 Kraft, J., Belknap, D., McDonald, K., Maley, K., and Marx, P., 1982. Models of a shoreface-
1118 nearshore marine transgression over estuarine and barrier systems and antecedent
1119 topography of the Atlantic coast. Paper presented at the Geol. Soc. Am., Abstr. With
1120 Programs.

1121 Lazarus, E., Ashton, A., Murray, A. B., Tebbens, S., and Burroughs, S., 2011. Cumulative versus
1122 transient shoreline change: Dependencies on temporal and spatial scale. *Journal of*
1123 *Geophysical Research: Earth Surface* (2003–2012), 116(F2).

1124 Lentz, E. E., and Hapke, C. J., 2011. Geologic framework influences on the geomorphology of an
1125 anthropogenically modified barrier island: Assessment of dune/beach changes at Fire
1126 Island, New York. *Geomorphology*, 126(1), 82-96.

1127 Lentz, E. E., Hapke, C. J., Stockdon, H. F., and Hehre, R. E., 2013. Improving understanding of
1128 near-term barrier island evolution through multi-decadal assessment of morphologic
1129 change. *Marine geology*, 337, 125-139.

1130 Linden, A., Adams, J. L., and Roberts, N., 2003. Evaluating disease management program
1131 effectiveness: an introduction to time-series analysis. *Disease Management*, 6(4), 243-255.

Formatted: English (United States)

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Not Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: 16 pt, English (United States)

Formatted: English (United States)

1132 Malamud, B. D., and Turcotte, D. L., 1999. Self-affine time series: I. Generation and
1133 analyses. *Advances in Geophysics*, 40, 1-90.

1134 Mandelbrot, B. B., 1967. How long is the coast of Britain. *Science*, 156(3775), 636-638.

1135 Mandelbrot, B. B., and Taqqu, M. S., 1979. Robust R/S analysis of long run serial correlation:
1136 IBM Thomas J. Watson Research Division.

1137 McNinch, J. E., 2004. Geologic control in the nearshore: shore-oblique sandbars and shoreline
1138 erosional hotspots, Mid-Atlantic Bight, USA. *Marine geology*, 211(1), 121-141.

1139 Miselis, J. L., Buster, N. A., and Kindinger, J. L., 2014. Refining the link between the Holocene
1140 development of the Mississippi River Delta and the geologic evolution of Cat Island, MS:
1141 implications for delta-associated barrier islands. *Marine geology*, 355, 274-290.

1142 Miselis, J. L., and McNinch, J. E., 2006. Calculating shoreline erosion potential using nearshore
1143 stratigraphy and sediment volume: Outer Banks, North Carolina. *Journal of Geophysical
1144 Research: Earth Surface*, 111(F2).

1145 Morton, R. A., and Sallenger Jr, A. H., 2003. Morphological impacts of extreme storms on sandy
1146 beaches and barriers. *Journal of Coastal Research*, 560-573.

1147 Murray, A. B., and Thieler, E. R., 2004. A new hypothesis and exploratory model for the formation
1148 of large-scale inner-shelf sediment sorting and “rippled scour depressions”. *Continental
1149 Shelf Research*, 24(3), 295-315.

1150 Neal, A., 2004. Ground-penetrating radar and its use in sedimentology: principles, problems and
1151 progress. *Earth-science reviews*, 66(3), 261-330.

1152 Nobes, D. C., 1996. Troubled waters: Environmental applications of electrical and
1153 electromagnetic methods. *Surveys in Geophysics*, 17(4), 393-454.

1154 NOAA., 2015a. National Hurricane Center. Data set accessed 29 April 2015 at
1155 <http://www.nhc.noaa.gov/data/>.

1156 NOAA., 2015b. Tides and Currents. <https://tidesandcurrents.noaa.gov>, accessed 18 October, 2015.

1157 NOAA., 2017. Digital Coast. <https://coast.noaa.gov/digitalcoast/>, accessed 31 October, 2017.

1158 Nummedal, D., and Swift, D. J., 1987. Transgressive stratigraphy at sequence-bounding
1159 unconformities: some principles derived from Holocene and Cretaceous examples.

1160 Otvos, E. G., and Giardino, M. J., 2004. Interlinked barrier chain and delta lobe development,
1161 northern Gulf of Mexico. *Sedimentary Geology*, 169(1), 47-73.

1162 Plant, N. G., and Stockdon, H. F., 2012. Probabilistic prediction of barrier - island response to
1163 hurricanes. *Journal of Geophysical Research: Earth Surface*, 117, F03015.

1164 Radliński, A., Radlińska, E., Agamalian, M., Wignall, G., Lindner, P., and Randl, O., 1999. Fractal
1165 geometry of rocks. *Physical Review Letters*, 82(15), 3078.

1166 Riggs, S. R., Cleary, W. J., and Snyder, S. W., 1995. Influence of inherited geologic framework
1167 on barrier shoreface morphology and dynamics *Marine geology* (Vol. 126, pp. 213-234).

1168 Rodriguez, A. B., Fassell, M. L., and Anderson, J. B., 2001. Variations in shoreface progradation
1169 and ravinement along the Texas coast, Gulf of Mexico. *Sedimentology*, 48(4), 837-853.

1170 Sallenger Jr, A. H., 2000. Storm impact scale for barrier islands. *Journal of Coastal Research*, 16(3),
1171 890-895.

1172 Samorodnitsky, G., 2007. Long range dependence. *Foundations and Trends in Stochastic Systems*,
1173 1(3), 163-257.

1174 Santos, V. R., Porsani, J. L., Mendonça, C. A., Rodrigues, S. I., and DeBlasis, P. D., 2009.
1175 Reduction of topography effect in inductive electromagnetic profiles: application on
1176 coastal sambaqui (shell mound) archaeological site in Santa Catarina state, Brazil.
1177 *Journal of Archaeological Science*, 36(10), 2089-2095.

1178 Schlager, W., 2004. Fractal nature of stratigraphic sequences. *Geology*, 32(3), 185-188.

1179 Schupp, C. A., McNinch, J. E., and List, J. H., 2006. Nearshore shore-oblique bars, gravel outcrops,
1180 and their correlation to shoreline change. *Marine geology*, 233(1), 63-79.

1181 Schwab, W. C., Baldwin, W. E., Hapke, C. J., Lentz, E. E., Gayes, P. T., Denny, J. F., . . . Warner,
1182 J. C., 2013. Geologic evidence for onshore sediment transport from the inner continental
1183 shelf: Fire Island, New York. *Journal of Coastal Research*, 29(3), 526-544.

1184 Schwab, W. C., Thieler, E. R., Allen, J. R., Foster, D. S., Swift, B. A., and Denny, J. F., 2000.
1185 Influence of inner-continental shelf geologic framework on the evolution and behavior of
1186 the barrier-island system between Fire Island Inlet and Shinnecock Inlet, Long Island, New
1187 York. *Journal of Coastal Research*, 408-422.

1188 Seijmonsbergen, A. C., Biewinga, D. T., and Pruijssers, A. P., 2004. A geophysical profile at the
1189 foot of the Dutch coastal dunes near the former outlet of the 'Old Rhine'. *Netherlands*
1190 *Journal of Geosciences*, 83(4), 287-291.

Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Not
Italic
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: (Default) Times New Roman, 12 pt, Not
Italic
Formatted: Font: (Default) Times New Roman, 12 pt
Formatted: Font: 16 pt

1191 Stewart, M. T., 1982. Evaluation of electromagnetic methods for rapid mapping of salt-water
1192 interfaces in coastal aquifers. *Groundwater*, 20(5), 538-545.

1193 Stone, G. W., Liu, B., Pepper, D. A., and Wang, P., 2004. The importance of extratropical and
1194 tropical cyclones on the short-term evolution of barrier islands along the northern Gulf of
1195 Mexico, USA. *Marine Geology*, 210(1), 63-78.

1196 Swarzenski, P. W., and Izbicki, J. A., 2009. Coastal groundwater dynamics off Santa Barbara,
1197 California: Combining geochemical tracers, electromagnetic seepmeters, and electrical
1198 resistivity. *Estuarine, Coastal and Shelf Science*, 83(1), 77-89.

1199 Talley, D. M., North, E. W., Juhl, A. R., Timothy, D. A., Conde, D., Jody, F., . . . Hall, C. J., 2003.
1200 Research challenges at the land-sea interface. *Estuarine, Coastal and Shelf Science*, 58(4),
1201 699-702.

1202 Tamura, T., 2012. Beach ridges and prograded beach deposits as palaeoenvironment
1203 records. *Earth-Science Reviews*, 114(3), 279-297.

1204 Taqqu, M. S., 2003. Fractional Brownian motion and long-range dependence. Theory and
1205 applications of long-range dependence, 5-38.

1206 Taqqu, M. S., Teverovsky, V., and Willinger, W., 1995. Estimators for long-range dependence: an
1207 empirical study. *Fractals*, 3(04), 785-798.

1208 Tebbens, S. F., Burroughs, S. M., and Nelson, E. E., 2002. Wavelet analysis of shoreline change
1209 on the Outer Banks of North Carolina: An example of complexity in the marine sciences.
1210 *Proceedings of the National Academy of Sciences*, 99(suppl 1), 2554-2560.

1211 Twichell, D. C., Flocks, J. G., Pendleton, E. A., and Baldwin, W. E., 2013. Geologic controls on
1212 regional and local erosion rates of three northern Gulf of Mexico barrier-island systems.
1213 *Journal of Coastal Research*, 63(sp1), 32-45.

1214 Veenstra, J., 2012. Persistence and Anti-persistence: Theory and Software. Ph.D. Thesis, Western
1215 University.

1216 Weise, B. R., and White, W. A., 1980. Padre Island National Seashore: A guide to the geology,
1217 natural environments, and history of a Texas barrier island (Vol. 17). Bureau of Economic
1218 Geology, University of Texas at Austin.

1219 Wernette, P., Houser, C., and Bishop, M. P., 2016. An automated approach for extracting Barrier
1220 Island morphology from digital elevation models. *Geomorphology*, 262, 1-7.

1221 Wernette, P., Houser, C., Weymer, B. A., Everett, M. E., Bishop, M. P., and Reece, B., 2018,
1222 Influence of a spatially complex framework geology on barrier island
1223 geomorphology. Marine Geology, 398, 151-162.

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

1224 Weymer, B. A., Everett, M. E., de Smet, T. S., and Houser, C., 2015a. Review of electromagnetic
1225 induction for mapping barrier island framework geology. *Sedimentary Geology*, 321, 11-
1226 24.

Formatted: Font: (Default) Times New Roman, 12 pt, Not
Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Not
Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: 16 pt

1227 Weymer, B. A., Everett, M. E., Houser, C., Wernette, P., and Barrineau, P., 2016. Differentiating
1228 tidal and groundwater dynamics from barrier island framework geology: Testing the utility
1229 of portable multi-frequency EMI profilers. *Geophysics*, 81, E347-E361.

1230 Weymer, B. A., Houser, C., and Giardino, J. R., 2015b. Poststorm Evolution of Beach-Dune
1231 Morphology: Padre Island National Seashore, Texas. *Journal of Coastal Research*, 31(3),
1232 634 – 644.

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Not
Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt, Not
Italic

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: 16 pt

1233 Wilson, K. E., Adams, P. N., Hapke, C. J., Lentz, E. E., and Brenner, O., 2015, Application of
1234 Bayesian Networks to hindcast barrier island morphodynamics. Coastal Engineering, 102,
1235 30-43,

1236 Xu, T., Moore, I. D., and Gallant, J. C., 1993. Fractals, fractal dimensions and landscapes—a
1237 review. *Geomorphology*, 8(4), 245-262.

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251
1252
1253
1254

Tables

1255 **Table 1.** Comparison of residuals (RMSE) of each ARIMA model for the 100 km and 10 km
1256 EMI surveys.

	EMI (100 km)	EMI (10 km)
ARIMA (100)	18.4	8.14
ARIMA (001)	49.7	41.1
ARIMA (101)	15.6	6.65
ARIMA (202)	40.6	7.31
ARIMA (303)	40.5	7.22
ARIMA (404)	40.3	7.22
ARIMA (505)	40.2	7.29
ARIMA (111)	15.8	5.72
ARIMA (010)	18.5	8.15
ARIMA (0d0)	15.5	5.55

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

← Formatted: Indent: Left: 0", First line: 0"

1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

Table 2. Comparison of residuals (RMSE) of each ARIMA model for all spatial data series.
Note that the residuals for each DEM metric correspond to the analysis performed at the regional scale (i.e., 100 km).

	ARIMA (100)	ARIMA (001)	ARIMA (101)	ARIMA (111)	ARIMA (010)	ARIMA (0d0)
Beach width	13.4	14.9	13.0	13.1	14.8	13.0
Beach volume	44.8	50.5	43.1	43.1	49.1	42.7
Dune height	0.7	0.8	0.7	0.7	0.8	0.7
Dune volume	60.6	63.9	59.7	59.2	69.03	58.9
Island width	138.4	253.2	121.3	121.1	140.8	120.9
Island volume	271.3	611.4	244.3	244.1	273.9	243.3

1291

1292

1293

1294

1295 **Table 3.** Summary table showing the computed d parameters that most appropriately model each ARIMA (0,0,0) iteration (i.e., lowest RMSE).

Alongshore distance	Beach width	Beach volume	Dune height	Dune volume	Island width	Island volume	EMI σ_a
“Regional”							
0-100 km	0.38	0.42	0.34	0.32	0.13	~0.00	0.35
“Intermediate”							
0-30 km	~0.00	0.44	0.13	0.20	0.03	0.18	0.44
30-60 km	0.37	0.30	0.36	0.31	0.30	0.42	0.11
60-100 km	0.26	0.41	0.35	0.46	~0.00	0.50	0.49
“Local”							
0-10 km	0.41	0.39	0.20	0.21	0.09	0.18	0.36
10-20 km	0.30	0.42	0.20	0.26	0.37	~0.00	0.36
20-30 km	0.26	0.40	~0.00	~0.00	0.49	~0.00	~0.00
30-40 km	0.47	~0.00	0.41	0.25	0.29	0.28	~0.00
40-50 km	0.28	0.21	0.21	0.19	0.30	0.02	0.44
50-60 km	0.03	0.31	0.23	0.32	~0.00	0.33	0.48
60-70 km	0.16	0.37	0.29	0.34	~0.00	0.30	0.40
70-80 km	0.47	0.34	0.43	0.26	~0.00	0.42	0.49
80-90 km	0.27	0.19	0.42	0.39	0.01	0.02	~0.00
90-100 km	0.13	0.13	~0.00	0.06	0.44	0.47	0.41

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305
1306
1307
1308

1309 **Figure Captions:**

1310
1311
1312
1313
1314
1315
1316
1317

Figure 1. Location map and DEM of the study area at Padre Island National Seashore (PAIS), Texas, USA. Elevations for the DEM are reported as meters above sea level (masl). Approximate locations of field images (red dots) from the northern (N), central (C), and southern (S) regions of the island showing alongshore differences in beach-dune morphology. Note: views are facing south for the central and southern locations, and the north location view is to the south. Images taken in October, 2014.

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

Figure 2. 100 km (a) and 10 km (b) alongshore EMI surveys showing DEM's of study area and previously identified paleo-channel region by Fisk (1959). Channels are highlighted in red and green, where the green region indicates the location of the 10 km survey. 25 ft (7.6 m) contour intervals are highlighted with depths increasing from yellow to red and the center of the channels are represented by the black-dotted lines. For each survey, raw σ_a and zero-mean drift-corrected EMI responses are shown in grey and black, respectively. Tidal conditions during each EMI acquisition segment are shown below each panel. Low (lt) and falling tides (ft) are indicated by blue and light blue shades, respectively. High (ht) and rising tides (rt) are highlighted in red and light red, respectively.

1328
1329
1330
1331
1332
1333

Figure 3. Comparison of EMI σ_a responses from the 100 km survey with 100 MHz GPR data within one of the Fisk (1959) paleo-channels. The 800 m segment (A – A') crosses a smaller stream within the network of paleo-channels in the central zone of PAIS. The DOI of the 3 kHz EMI responses is outlined by the red box on the lower GPR radargram and the interpretation of the channel base (ravinement surface) is highlighted in yellow.

1334
1335
1336
1337
1338
1339
1340

Figure 4. DEM metrics extracted from aerial LiDAR data. The sampling interval (step-size) for each data series is 10 m and the coordinates are matched with each EMI acquisition point. Each panel corresponds to a) beach width, b) beach volume, c) dune height, d) dune volume, e) island width, f) island volume, and g) EMI σ_a . The island is divided into three zones (red vertical lines) roughly indicating the locations within and outside the known paleo-channel region. A Savitzky-Golay smoothing filter was applied to all data series (LiDAR and EMI) using a moving window of $n = 250$ to highlight the large-scale patterns in each signal.

1341
1342
1343
1344

Figure 5. Autocorrelations of σ_a for the 100 km (a) and 10 km EMI surveys (d). R/S analysis for the 100 km (b) and 10 km surveys (e). PSD plots for the 100 km (c) and 10 km surveys (f).

1345
1346

Figure 6. Examples of the worst (6a, 6c) and best (6b, 6d) fit ARIMA models for the 100 and 10 km EMI surveys. Model results are shown for the processed (drift-corrected) σ_a data. Residuals

1347 (RMSE) listed for each model gives the standard deviation of the model prediction error. For
1348 each plot, original data is in red and fitted (model) data is in blue.
1349

1350 **Figure 7.** Example of the best fit ARIMA (0d0) models for each LiDAR-derived DEM metric: a)
1351 beach width, b) beach volume, c) dune height, d) dune volume, e) island width, f) island volume.