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Abstract 33 

Shorelines exhibit long-range dependence (LRD) and have been shown in some environments to 34 

be described in the wavenumber domain by a power law characteristic of scale-independence. 35 

Recent evidence suggests that the geomorphology of barrier islands can, however, exhibit scale-36 

dependence as a result of systematic variations of the underlying framework geology. The LRD of 37 

framework geology, which influences island geomorphology and its response to storms and sea 38 

level rise, has not been previously examined. Electromagnetic induction (EMI) surveys conducted 39 

along Padre Island National Seashore (PAIS), Texas, USA, reveal that the EMI apparent 40 

conductivity (σa) signal and, by inference, the framework geology exhibits LRD at scales up to 101 41 

to 102 km. Our study demonstrates the utility of describing EMI σa and LiDAR spatial series by a 42 

fractional auto-regressive integrated moving average (ARIMA) process that specifically models 43 

LRD. This method offers a robust and compact way for quantifying the geological variations along 44 

a barrier island shoreline using three statistical parameters (p,d,q). We discuss how ARIMA 45 

models that use a single parameter d provide a quantitative measure for determining free and forced 46 

barrier island evolutionary behavior across different scales. Statistical analyses at regional, 47 

intermediate, and local scales suggest that the geologic framework within an area of paleo-48 

channels exhibits a first-order control on dune height. The exchange of sediment amongst 49 

nearshore, beach and dune in areas outside this region are scale-independent, implying that barrier 50 

islands like PAIS exhibit a combination of free and forced behaviors that affect the response of the 51 

island to sea level rise.  52 
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1 Introduction  63 

Barrier island transgression in response to storms and sea-level rise depends to varying degrees on 64 

pre-existing geologic features. The traditional assumption of uniform sand at depth and alongshore 65 

cannot explain many of observations. Models of barrier island evolution are required to ascertain the 66 

degree to which the island is either free (such as a large sand body) or forced (i.e. constrained) by the 67 

underlying geology. Despite growing evidence that the underlying geological structure, otherwise 68 

termed framework geology, of barrier islands influences nearshore, beach and dune morphology 69 

(e.g., Belknap and Kraft, 1985; Houser, 2012; Lentz and Hapke, 2011; McNinch, 2004; Riggs et al., 70 

1995), this variable remains largely absent from shoreline change models that treat the geology 71 

as being uniform alongshore (e.g., Dai et al., 2015; Plant and Stockdon, 2012; Wilson et al,. 72 

2015). Spatial variation in the height and position of the dune line impacts the overall transgression 73 

of the island with sea-level rise (Sallenger, 2000). Transgression is accomplished largely through 74 

the transport and deposition of beach and dune sediments to the backbarrier as washover deposits 75 

during storms (Houser, 2012; Morton and Sallenger Jr., 2003; Stone et al., 2004). 76 

 77 

1.1 Framework geology controls on barrier island evolution 78 

The dynamic geomorphology of a barrier island system is the result of a lengthy, complex and 79 

ongoing history that is characterized by sea level changes and episodes of deposition and erosion 80 

(e.g., Anderson et al., 2015; Belknap and Kraft, 1985; Rodriguez et al., 2001). Previous studies 81 

demonstrate that the framework geology of barrier islands plays a considerable role in the evolution 82 

of these coastal landscapes (Belknap and Kraft, 1985; Evans et al., 1985; Kraft et al., 1982; Riggs et 83 

al., 1995). For example, antecedent structures such as paleo-channels, ravinement surfaces, offshore 84 

ridge and swale bathymetry, and relict transgressive features (e.g., overwash deposits) have been 85 

suggested to influence barrier island geomorphology over a wide range of spatial scales (Hapke et al., 86 

2010; Hapke et al., 2016; Houser, 2012; Lentz and Hapke, 2011; McNinch, 2004). In this study, the 87 

term “framework geology” is specifically defined as the topographic surface of incised valleys, 88 

paleo-channels, and/or the depth to ravinement surface beneath the modern beach.  89 

As noted by Hapke et al. (2013), the framework geology at the regional scale ( > 30 km) 90 

influences the geomorphology of an entire island. Of particular importance are the location and size 91 

of glacial, fluvial, tidal, and/or inlet paleo-valleys and channels (Belknap and Kraft, 1985; Colman et 92 
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al., 1990; Demarest and Leatherman, 1985), and paleo-deltaic systems offshore or beneath the 93 

modern barrier system (Coleman and Gagliano, 1964; Frazier, 1967; Miselis et al., 2014; Otvos and 94 

Giardino, 2004; Twichell et al., 2013).  At the regional scale, nonlinear hydrodynamic interactions 95 

between incident wave energy and nearshore ridge and swale bathymetric features can generate 96 

periodic alongshore variations in beach-dune morphology (e.g., Houser, 2012; McNinch, 2004) 97 

that are superimposed on larger-scale topographic variations as a result of transport gradients 98 

(Tebbens, et al., 2002). At the intermediate scale (10 - 30 km), feedbacks between geologic 99 

features and relict sediments of the former littoral system (e.g., Honeycutt and Krantz, 2003; 100 

Riggs et al., 1995; Rodriguez et al., 2001; Schwab et al., 2000) act as an important control on 101 

dune formation (Houser et al., 2008) and offshore bathymetric features (e.g., Browder & 102 

McNinch, 2006; Schwab et al., 2013). Framework geology at the local scale (≤ 10 km),  induces 103 

meso (~101 – 102 m) to micro-scale (< 1 m) sedimentological changes (e.g., Murray and Thieler, 104 

2004; Schupp, et al., 2006), variations in the thickness of shoreface sediments (Brown and 105 

Macon, 1977; Miselis and McNinch, 2006), and spatial variations in sediment transport across 106 

the island (Houser and Mathew, 2011; Houser, 2012; Lentz and Hapke, 2011).  107 

To date, most of what is known regarding barrier island framework geology is based on 108 

studies done at either intermediate or local scales (e.g., Hapke et al., 2010; Lentz and Hapke, 2011; 109 

McNinch, 2004) whereas few studies exist at the regional scale for United States coastlines (Hapke et 110 

al., 2013). The current study focuses on barrier islands in the US and we do not consider work on 111 

barrier islands in other regions. Assessments of framework geology at regional and intermediate 112 

spatial scales for natural and anthropogenically-modified barrier islands are essential for improved 113 

coastal management strategies and risk evaluation since these require a good understanding of the 114 

connections between subsurface geology and surface morphology. For example, studies by Lentz and 115 

Hapke (2011); Lentz et al., (2013) at Fire Island, New York suggest that the short-term 116 

effectiveness of engineered structures is likely influenced by the framework geology. Extending 117 

their work, Hapke et al. (2016) identified distinct patterns of shoreline change that represent 118 

different responses alongshore to oceanographic and geologic forcing. These authors applied 119 

empirical orthogonal function (EOF) analysis to a time series of shoreline positions to better 120 

understand the complex multi-scale relationships between framework geology and contemporary 121 

morphodynamics. Gutierrez et al. (2015) used a Bayesian network to predict barrier island 122 
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geomorphic characteristics and argue that statistical models are useful for refining predictions of 123 

locations where particular hazards may exist. These examples demonstrate the benefit of using 124 

statistical models as quantitative tools for interpreting coastal processes at multiple spatial and 125 

temporal scales (Hapke et al., 2016).  126 

 127 

1.2 Statistical measures of coastline geomorphology 128 

It has long been known that many aspects of landscapes exhibit similar statistical properties 129 

regardless of the length or time scale over which observations are sampled (Burrough, 1981). An 130 

often-cited example is the length 𝐿 of a rugged coastline (Mandelbrot, 1967), which increases 131 

without bound as the length 𝐺 of the ruler used to measure it decreases, in rough accord with the 132 

formula 𝐿(𝐺) ∽ 𝐺1−𝐷, where 𝐷 ≥ 1 is termed the fractal dimension of the coastline. Andrle 133 

(1996), however, has identified limitations of the self-similar coastline concept, suggesting that a 134 

coastline may contain irregularities that are concentrated at certain characteristic length-scales 135 

owing to local processes or structural controls. Recent evidence from South Padre Island, Texas 136 

(Houser and Mathew, 2011), Fire Island, New York (Hapke et al., 2010), and Santa Rosa Island, 137 

Florida (Houser et al., 2008) suggests that the geomorphology of barrier islands is affected to 138 

varying degrees by the underlying framework geology and that this geology varies, often with 139 

periodicities, over multiple length-scales. The self-similarity of the framework geology and its 140 

impact on the geomorphology of these barrier islands was not examined explicitly.   141 

Many lines of evidence suggest that geological formations in general are inherently rough 142 

(i.e., heterogeneous) and contain multi-scale structure (Bailey and Smith, 2005; Everett and 143 

Weiss, 2002; Radliński et al., 1999; Schlager, 2004). Some of the underlying geological factors 144 

that lead to self-similar terrain variations are reviewed by Xu et al. (1993). In essence, competing 145 

and complex morphodynamic processes, influenced by the underlying geological structure, 146 

operate over different spatiotemporal scales, such that the actual terrain is the result of a complex 147 

superposition of the various effects of these processes (see Lazarus et al., 2011). Although no 148 

landscape is strictly self-similar on all scales, Xu et al. (1993) show that the fractal dimension, as 149 

a global morphometric measure, captures multi-scale aspects of surface roughness that are not 150 

evident in conventional local morphometric measures such as slope gradient and profile 151 

curvature.  152 
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With respect to coastal landscapes, it has been suggested that barrier shorelines are scale 153 

independent, such that the wavenumber spectrum of shoreline variation can be approximated by 154 

a power law at alongshore scales from tens of meters to several kilometers  (Lazarus et al., 2011; 155 

Tebbens et al., 2002). However, recent findings by Houser et al. (2015) suggest that the beach-156 

dune morphology of barrier islands in Florida and Texas is scale-dependent and that 157 

morphodynamic  processes operating at swash (0-50 m) and surf-zone (< 1000 m) scales  are 158 

different than the processes operating at larger scales. In this context, scale-dependence implies 159 

that a certain number of different processes are simultaneously operative, each process acting at 160 

its own scale of influence, and it is the superposition of the effects of these multiple processes 161 

that shapes the overall behavior and shoreline morphology. This means that shorelines may have 162 

different patterns of irregularity alongshore with respect to barrier island geomorphology, which 163 

has important implications for analyzing long-term shoreline retreat and island transgression. 164 

Lazarus et al. (2011) point out that deviations from power law scaling at larger spatial scales 165 

(tens of km) emphasizes the need for more studies that investigate large-scale shoreline change. 166 

While coastal terrains might not satisfy the strict definition of self-similarity, it is reasonable to 167 

expect them to exhibit long-range dependence (LRD). LRD pertains to signals in which the 168 

correlation between observations decays like a power law with separation, i.e. much slower than 169 

one would expect from independent observations or those that can be explained by a short-170 

memory process, such as an autoregressive-moving-average (ARMA) with small (p,q) (Beran, 171 

1994; Doukhan et al., 2003).  172 

 173 

1.3 Research objectives 174 

This study performed at Padre Island National Seashore (PAIS), Texas, USA utilizes 175 

electromagnetic induction (EMI) apparent conductivity σa responses to provide insight into the 176 

relation between spatial variations in framework geology and surface morphology. Two 177 

alongshore EMI surveys at different spatial scales (100 km and 10 km) were conducted to test 178 

the hypothesis that, like barrier island morphology, subsurface framework geology exhibits LRD 179 

characteristic of scale-independence. The σa responses, which are sensitive to parameters such as 180 

porosity and mineral content, are regarded herein as a rough proxy for subsurface framework 181 

geology (Weymer et al., 2015a). This assumes, of course, that alongshore variations in salinity 182 
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and water saturation, and other factors that shape the σa response, can be neglected to first order. 183 

A corroborating 800 m ground-penetrating radar (GPR) survey, providing an important check on 184 

the variability observed within the EMI signal, confirms the location of a previously identified 185 

paleo-channel (Fisk, 1959) at ~ 5 – 10 m depth. The overall geophysical survey design allows for 186 

a detailed evaluation of the long-range-dependent structure of the framework geology over a 187 

range of length scales spanning several orders of magnitude. We explore the applicability of 188 

autoregressive integrated moving-average (ARIMA) processes as models that describe the 189 

statistical connections between EMI and Light Detection and Ranging (LiDAR) spatial data 190 

series. This paper utilizes a generalized fractional ARIMA (0,d,0) process (Hosking, 1981) that 191 

is specifically designed to model LRD for a given data series using a single differencing non-192 

integer parameter d. The parameter d can be used in the present context to discriminate between 193 

forced, scale-dependent controls by the framework geology; i.e., stronger LRD (d → 0.5) and 194 

free behavior that is scale-independent; i.e., weaker LRD (0 ← d). In other words, it is the 195 

particular statistical characteristics of the framework geology LRD at PAIS that we are trying to 196 

ascertain from the EMI σa signal, with the suggestion that σa measurements can be used similarly 197 

at other sites to reveal the hidden LRD characteristics of the framework geology. 198 

 199 

2 Background and regional setting 200 

2.1 Utility of electromagnetic methods in coastal environments   201 

Methods to ascertain the alongshore variability of framework geology, and to test long-range 202 

dependence, are difficult to implement and can be costly. Cores provide detailed point-wise 203 

geologic data; however, they do not provide laterally continuous subsurface information  (Jol et 204 

al., 1996). Alternatively, geophysical techniques including seismic and GPR provide spatially 205 

continuous stratigraphic information (e.g., Buynevich et al., 2004; Neal, 2004; Nummedal and 206 

Swift, 1987; Tamura, 2012), but they are not ideally suited for LRD testing because the data 207 

combine depth and lateral information at a single acquisition point. Moreover, GPR signals 208 

attenuate rapidly in saltwater environments whereas seismic methods are labor-intensive and 209 

cumbersome. On the other hand, terrain conductivity profiling is an easy-to-use alternative that 210 

has been used in coastal environments to investigate fundamental questions involving; 211 

instrument performance characteristics (Delefortrie et al., 2014; Weymer et al., 2016), 212 
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groundwater dynamics (Stewart, 1982; Fitterman and Stewart, 1986; Nobes, 1996; Swarzenski, 213 

and Izbicki, 2009), and framework geology (Seijmonsbergen et al. 2004; Weymer et al. 2015). 214 

Previous studies combining EMI with either GPR (Evans and Lizarralde, 2011) or coring 215 

(Seijmonsbergen et al. 2004) demonstrate the validity of EM measurements as a means to 216 

quantify alongshore variations in the framework geology of coastlines.  217 

In the alongshore direction, Seijmonsbergen et al. (2004) used a Geonics EM34™ terrain 218 

conductivity meter crossing a former outlet of the Rhine River, Netherlands to evaluate 219 

alongshore variations in subsurface lithology. The survey was conducted in an area that was 220 

previously characterized by drilling and these data were used to calibrate the σa measurements. 221 

The results from the study suggest that coastal sediments can be classified according to σa signature 222 

and that high σa values occur in areas where the underlying conductive layer is thick and close to the 223 

surface. Although Seijmonsbergen et al. (2004) propose that EMI surveys are a rapid, inexpensive 224 

method to investigate subsurface lithology they also acknowledge that variations in salinity as a 225 

result of changing hydrologic conditions, storm activity and/or tidal influence confound the 226 

geological interpretation and should be investigated in further detail (see Weymer et al., 2016). 227 

The challenge on many barrier islands and protected National Seashores is obtaining 228 

permission for extracting drill cores to validate geophysical surveys. At PAIS, numerous areas 229 

along the island are protected nesting sites for the endangered Kemp’s ridley sea turtle, 230 

migratory birds, while other areas comprise historic archeological sites with restricted access. 231 

Thus, coring is not allowed and only non-invasive techniques, such as EMI/GPR are permitted.  232 

 233 

2.2 Regional setting 234 

North Padre Island is part of a large arcuate barrier island system located along the Texas Gulf of 235 

Mexico coastline. The island is one of ten national seashores in the United States and is protected 236 

and managed by the National Park Service, a bureau of the Department of the Interior. PAIS is 237 

129 km in length, and is an ideal setting for performing EMI surveys because there is minimal 238 

cultural noise to interfere with the σa signal, which as stated earlier we regard as a proxy for 239 

alongshore variations in framework geology (Fig. 1). Additionally, there is high-resolution 240 

elevation data available from a 2009 aerial LiDAR survey. The island is not dissected by inlets 241 

or navigation channels (excluding Mansfield Channel separating north and south Padre Island), 242 
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or modified by engineered structures (e.g., groynes, jetties, etc.) that often interfere with natural 243 

morphodyamic processes (see Talley et al., 2003). The above characteristics make the study area 244 

an exceptional location for investigating the relationships between large-scale framework 245 

geology and surface morphology. 246 

As described in Weymer et al. (2015a; Fig. 3), locations of several paleo-channels were 247 

established by Fisk (1959) based on 3,000 cores and seismic surveys. More than 100 borings 248 

were drilled to the top of the late Pleistocene surface (tens of m depth) providing 249 

sedimentological data for interpreting the depth and extent of the various paleo-channels. These 250 

cores were extracted ~ 60 years ago, but the remnant Pleistocene and Holocene fluvial/deltaic 251 

features described in Fisk's study likely have not changed over decadal time scales.   252 

Geologic interpretations based on the Fisk (1959) data suggest that the thickness of the 253 

modern beach sands is ~ 2 – 3 m, and they are underlain by Holocene shoreface sands and muds 254 

to a depth of ~ 10 – 15 m (Brown and Macon, 1977; Fisk, 1959). The Holocene deposits lie upon 255 

a Pleistocene ravinement surface of fluvial-deltaic sands and muds and relict transgressive 256 

features. A network of buried valleys and paleo-channels in the central segment of the island, as 257 

interpreted by Fisk (1959), exhibits a dendritic, tributary pattern. The depths of the buried valleys 258 

inferred from seismic surveys range from ~ 25 – 40 m (Brown and Macon, 1977). These 259 

channels have been suggested to incise into the Pleistocene paleo-surface and became infilled 260 

with sands from relict Pleistocene dunes and fluvial sediments reworked by alongshore currents 261 

during the Holocene transgression (Weise and White, 1980). However, the location and cross-262 

sectional area of each valley and paleo-channel alongshore is not well-constrained. It is also 263 

possible that other channels exist other than those identified by Fisk (1959). As suggested in 264 

Weymer et al. (2015a), minima in the alongshore σa signal are spatially correlated with the 265 

locations of these previously identified geologic features. This observation provides an impetus 266 

for using EMI to map the known, and any previously unidentified, geologic features alongshore.  267 

 268 

3 Methods 269 

A combination of geophysical, geomorphological, and statistical methods are used in this study 270 

to quantify the relationships between framework geology and surface geomorphology at PAIS. A 271 
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description of the EMI, GPR, geomorphometry and statistical techniques is provided in the 272 

following sections.  273 

 274 

3.1 Field EMI and GPR surveys  275 

Profiles of EMI σa responses typically are irregular and each datum represents a spatial averaging 276 

of the bulk subsurface electrical conductivity σ, which in turn is a function of a number of 277 

physical properties (e.g., porosity, lithology, water content, salinity, etc.). The “sensor footprint”, 278 

or subsurface volume over which the spatial averaging is performed, is dependent on the 279 

separation between the TX – RX coils (1.21 m in this study), and the transmitter frequency. The 280 

horizontal extent, or radius, of the footprint can be more or less than the step-size between 281 

subsequent measurements along the profile. The sensor footprint determines the volume of 282 

ground that contributes to σa at each acquisition point, and as will be discussed later, the radius 283 

of the footprint has important implications for analyzing LRD. The footprint radius depends on 284 

frequency and ground conductivity, but is likely to be of the same order as, but slightly larger 285 

than, the intercoil spacing. Two different station-spacings were used to examine the correlation 286 

structure of σa as a function of spatial scale. An island-scale alongshore survey of ~ 100 km 287 

length was performed using a 10 m station spacing (station spacing >> footprint radius) such that 288 

each σa measurement was recorded over an independently sampled volume of ground. 289 

Additionally, a sequence of σa readings was collected at 1 m spacing (station spacing < footprint 290 

radius) over a profile length of 10 km within the Fisk (1959) paleo-channel region of the island. 291 

This survey design allows for comparison of the long-range-dependent structure of the 292 

framework geology over several orders of magnitude (100 – 105 m).  293 

The 100-km-long alongshore EMI survey was performed during a series of three field 294 

campaigns, resulting in a total of 21 (each of length ~ 4.5 km) segments that were collected 295 

during October 9 – 12th, 2014, November 15 – 16th, 2014, and March 28th, 2015.  The EMI σa 296 

profiles were stitched together by importing GPS coordinates from each measurement into 297 

ArcGIS™ to create a single composite spatial data series. The positional accuracy recorded by a 298 

TDS Recon PDA equipped with a Holux™ WAAS GPS module was found to be accurate within 299 

~ 1.5 m. To reduce the effect of instrument drift caused by temperature, battery and other 300 

systematic variations through the acquisition interval, a drift correction was applied to each 301 
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segment, the segments were then stitched together, following which a regional linear trend 302 

removal was applied to the composite dataset. An additional 10 km survey was performed along 303 

a segment of the same 100 km survey line in one day on March 29th, 2015. This second 304 

composite data series consists of 8 stitched segments.  305 

The same multi-frequency GSSI Profiler EMP-400™ instrument was used for each 306 

segment. All transects were located in the backbeach environment ~ 25 m inland from the mean 307 

tide level (MTL). This location was chosen to reduce the effect of changing groundwater 308 

conditions in response to nonlinear tidal forcing (see Weymer et al., 2016), which may be 309 

significant closer to the shoreline. As will be shown later, there is not a direct correlation 310 

between high tide and high σa values. Thus, we assume the tidal influence on the EMI signal can 311 

be neglected over the spatial scales of interest in the present study. Nevertheless, the duration 312 

and approximate tidal states of each survey was documented in order to compare with the EMI 313 

signal. Tidal data were accessed from NOAA’s Tides and Currents database (NOAA, 2015b). 314 

Padre Island is microtidal and the mean tidal range within the study area is 0.38 m (NOAA, 2015a). 315 

A tidal signature in EMI signals may become more significant at other barrier islands with larger 316 

tidal ranges.  317 

For all surveys, the EMI profiler was used in the same configuration and acquisition 318 

settings as described in Weymer et al. (2016). The transect locations were chosen to avoid the 319 

large topographic variations (see Santos et al., 2009) fronting the foredune ridge that can reduce 320 

the efficiency of data acquisition and influence the EMI signal. Measurements were made at a 321 

constant step-size to simplify the data analysis; for example, ARIMA models require that data 322 

are taken at equal intervals (see Cimino et al., 1999). We choose herein to focus on data collected 323 

at 3 kHz,  resulting in a depth of investigation (DOI) of ~ 3.5 – 6.4 m over the range of 324 

conductivities found within the study area (Weymer et al., 2016; Table 1.). Because the depth of 325 

the modern beach sands is ~ 2 – 3 m or greater (see Brown and Macon, 1977; page 56, Figure 326 

15), variations in the depth to shoreface sands and muds is assumed to be within the DOI of the 327 

profiler, which may not be captured at the higher frequencies also recorded by the sensor (i.e., 328 

10, and 15 kHz) .  329 

An 800 m GPR survey was performed on August 12th, 2015 across one of the paleo-330 

channels previously identified Fisk (1959) located within the 10 km EMI survey for comparison 331 
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with the σa measurements. We used a Sensors and Software PulseEKKO Pro® system for this 332 

purpose. A survey grade GPS with a positional accuracy of 10 cm was used to match the 333 

locations and measurements between the EMI/GPR surveys. Data were acquired in reflection 334 

mode at a nominal frequency of 100 MHz with a standard antenna separation of 1 m and a step-335 

size of 0.5 m. The instrument settings resulted in a DOI of up to 15 m. Minimal processing was 336 

applied to the data and includes a dewow filter and migration (0.08 m/ns), followed by AGC gain 337 

(see Neal, 2004). The theory and operational principles of GPR are discussed in many places 338 

(e.g. Everett, 2013; Jol, 2008) and will not be reviewed here.  339 

 340 

3.2 Geomorphometry 341 

Topographic information was extracted from aerial LiDAR data that were collected by the Army 342 

Corps of Engineers (USACE) in 2009 as part of the West Texas Aerial Survey project to assess 343 

post-hurricane conditions of the beaches and barrier islands along the Texas coastline. This 344 

dataset is the most recent publicly available LiDAR survey of PAIS and it provides essentially 345 

complete coverage of the island. With the exception of Hurricane Harvey, which made landfall 346 

near Rockport, Texas as a Category 4 storm in late August, 2017, Padre Island has not been 347 

impacted by a hurricane since July 2008, when Hurricane Dolly struck South Padre Island as a 348 

Category 1 storm (NOAA, 2015a). The timing of the LiDAR and EMI surveys in this study 349 

precede the impacts of Hurricane Harvey, and it is assumed that the surface morphology across 350 

the island at the spatial scales of interest (i.e., 101 – 102 km) did not change appreciably between 351 

2009 and 2015.  352 

A 1-m resolution DEM was created from 2009 LiDAR point clouds available from 353 

NOAA’s Digital Coast (NOAA, 2017). The raw point cloud tiles were merged to produce a 354 

combined point cloud of the island within the park boundaries of PAIS. The point clouds were 355 

processed into a continuous DEM using the ordinary kriging algorithm in SAGA GIS, which is 356 

freely available open-source software (www.saga-gis.org); and subsequent terrain analysis was 357 

conducted using an automated approach involving the relative relief (RR) metric (Wernette et al., 358 

2016). Several morphometrics including beach width, dune height, and island width were 359 

extracted from the DEM by averaging the RR values across window sizes of 21 m x 21 m, 23 m 360 

x 23 m, and 25 m x 25 m. The choice of window size is based on tacit a priori knowledge and 361 
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observations of the geomorphology in the study area. A detailed description of the procedure for 362 

extracting each metric is provided in Wernette et al. (2016).  363 

Each DEM series is paired with the σa profile by matching the GPS coordinates (latitude 364 

and longitude) recorded in the field by the EMI sensor. Cross-sectional elevation profiles 365 

oriented perpendicular to the shoreline were analyzed every 10 m (y-coordinate) along the EMI 366 

profile to match the same 10 m sampling interval of the σa measurements. The terrain variations 367 

along each cross-shore profile are summed to calculate beach and island volume based on the 368 

elevation thresholds mentioned above. Dune volume is calculated by summing the pixel 369 

elevations starting at the dune toe, traversing the dune crest, and ending at the dune heel. In total, 370 

six DEM morphometrics were extracted as spatial data series to be paired with the EMI data, 371 

each having an identical sample size (n = 9,694), which is sufficiently large for statistical 372 

ARIMA modeling.    373 

 374 

3.3 Statistical methods 375 

Although the procedures for generating the EMI and LiDAR datasets used in this study 376 

are different, the intended goal is the same; to produce spatial data series that contain similar 377 

numbers of observations for comparative analysis using a combination of signal processing and 378 

statistical modeling techniques. The resulting signals comprising each data series represent the 379 

spatial averaging of a geophysical (EMI) or geomorphological elevation variable that contains 380 

information about the important processes-form relationships between subsurface geologic 381 

features and island geomorphology that can be teased out by means of comparative analysis 382 

(Weymer et al., 2015a). Because we are interested in evaluating these connections at both small 383 

and large spatial scales, our first approach is to determine the autocorrelation function and Hurst 384 

coefficient (self-similarity parameter) H and hence verify whether the data series are 385 

characterized by short and/or long-range memory (Beran, 1992; Taqqu et al., 1995). LRD occurs 386 

when the autocorrelation within a series, at large lags, tend to zero like a power function, and so 387 

slowly that the sums diverge (Doukhan et al., 2003). LRD is often observed in natural time series 388 

and is closely related to self-similarity, which is a special type of LRD.  389 

The degree of LRD is related to the scaling exponent, H of a self-similar process, where 390 

increasing H in the range 0.5 < H ≤ 1.0 indicates an increasing tendency towards such an effect 391 



14 

 

(Taqqu, 2003). Large correlations at small lags can easily be detected by models with short-392 

memory (e.g., ARMA, Markov processes) (Beran, 1994). Conversely, when correlations at large 393 

lags slowly tend to zero like a power function, the data contain long-memory effects and either 394 

fractional Gaussian noise (fGn), or ARIMA models may be suitable (Taqqu et al., 1995). The 395 

R/S statistic is the quotient of the range of values in a data series and the standard deviation 396 

(Beran, 1992, 1994; Hurst, 1951; Mandelbrot and Taqqu, 1979). When plotted on a log/log plot, 397 

the resulting slope of the best-fit line gives an estimate of H, which is useful as a diagnostic tool 398 

for estimating the degree of LRD (see Beran, 1994).  399 

It has been suggested that R/S tends to give biased estimates of H, too low for H > 0.72 400 

and too high for H < 0.72 (Bassingthwaigthe and Raymond, 1994), which was later confirmed by 401 

Malamud and Turcotte (1999). Empirical trend corrections to the estimates of H can be made by 402 

graphical interpolation, but are not applied here because of how the regression is done. The R/S 403 

analysis in this study was performed using signal analysis software AutoSignal™ to identify 404 

whether a given signal is distinguishable from a random, white noise process and, if so, whether 405 

the given signal contains LRD. The H value is calculated by an inverse variance-weighted linear 406 

least-squares curve fit using the logarithms of the R/S and the number of observations, which 407 

provides greater accuracy than other programs that compute the Hurst coefficient.  408 

Two of the simplest statistical time series models that can account for LRD are fGn and 409 

ARIMA. In the former case, fGn and its “parent” fractional Brownian motion (fBm) are used to 410 

evaluate stationary and nonstationary fractal signals, respectively (see Eke et al., 2000; Everett 411 

and Weiss, 2002). Both fGn and fBm are governed by two parameters: variance σ2; and the 412 

scaling parameter, H (Eke et al., 2000). A more comprehensive class of time series models that 413 

has similar capability to detect long-range structure is ARIMA. Because fGn and fBm models 414 

have only two parameters, it is not possible to model the short-range components. Additional 415 

parameters in ARIMA models are designed to handle the short-range component of the signal, as 416 

discussed by Taqqu et al. (1995) and others. Because the EMI data series presumably contain 417 

both short-range and long-range effects, we chose to use ARIMA as the analyzing technique.  418 

ARIMA models are used across a wide range of disciplines in geoscience and have broad 419 

applicability for understanding the statistical structure of a given data series as it is related to 420 

some physical phenomenon (see Beran, 1992, 1994; Box and Jenkins, 1970; Cimino et al., 1999; 421 
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Granger and Joyeux, 1980; Hosking, 1981; Taqqu et al., 1995). For example, Cimino et al. 422 

(1999) apply R/S analysis, ARIMA, and Neural Network analysis to different geological data 423 

sets including; tree ring data, Sr isotope data of Phanerozoic seawater samples, and El Niño 424 

phenomenon. The authors show that their statistical approach enables 1) recognition of 425 

qualitative changes within a given dataset, 2) evaluation of the scale (in)dependency of 426 

increments, 3) characterization of random processes that describe the evolution of the data, and 427 

4) recognition of cycles embedded within the data series. In the soil sciences, Alemi et al. (1988) 428 

use ARIMA and Kriging to model the spatial variation of clay-cover thickness of a 78 km2 area 429 

in northeast Iran and demonstrate that ARIMA modeling can adequately describe the nature of 430 

the spatial variations. ARIMA models have also been used to model periodicity of major 431 

extinction events in the geologic past (Kitchell and Pena, 1984).  432 

In all these studies, the statistical ARIMA model of a given data series is defined by three 433 

terms (p,d,q), where p and q indicate the order of the autoregressive (AR) and moving average 434 

(MA) components, respectively and d represents a differencing, or integration term (I) that is 435 

related to LRD. The AR element, p, represents the effects of adjacent observations and the MA 436 

element, q, represents the effects on the process of nearby random shocks (Cimino et al., 1999; 437 

De Jong and Penzer, 1998). However, in the present study our series are reversible spatial series 438 

that can be generated, and are identical, with either forward or backward acquisition, unlike a 439 

time series. Both p and q parameters are restricted to integer values (e.g., 0, 1, 2), whereas the 440 

integration parameter, d, represents potentially long-range structure in the data. The differencing 441 

term d is normally evaluated before p and q to identify whether the process is stationary (i.e., 442 

constant mean and σ2). If the series is nonstationary, it is differenced to remove either linear (d = 443 

1) or quadratic (d = 2) trends, thereby making the mean of the series stationary and invertible 444 

(Cimino et al., 1999), thus allowing determination of the ARMA p and q parameters. 445 

Here, we adopt the definitions of an ARMA (p,q), and ARIMA (p,d,q) process following 446 

the work of Beran (1994). Let p and q be integers, where the corresponding polynomials are 447 

defined as:  448 

𝜙(𝑥) = 1 − ∑ 𝜙𝑗𝑥𝑗𝑝
𝑗=1 , 449 

                (1) 450 
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𝜓(𝑥) = 1 + ∑ 𝜓𝑗𝑥𝑗𝑞
𝑗=1 . 451 

 452 

It is important to note that all solutions of 𝜙(𝑥0 ) = 0, and 𝜓(𝑥) = 0 are assumed to lie outside 453 

the unit circle. Additionally, let 𝜖𝑡(𝑡 = 1,2, … ) be independent, and identically distributed 454 

normal variables with zero variance 𝜎𝜖
2 such that an ARMA (p,q) process is defined by the 455 

stationary solution of: 456 

  457 

𝜙(𝐵)𝑋𝑡 = 𝜓(𝐵)𝜖𝑡                          (2) 458 

 459 

where, B is the backward shift operator 𝐵𝑋𝑡 = 𝑋𝑡−1, 𝐵2𝑋𝑡 = 𝑋𝑡−1, … and, specifically, the 460 

differences can be expressed in terms of B as; 𝑋𝑡 − 𝑋𝑡−1 = (1 − 𝐵)𝑋𝑡, (𝑋𝑡 − 𝑋𝑡−1) − (𝑋𝑡−1 −461 

𝑋𝑡−2) = (1 − 𝐵)2𝑋𝑡 … Alternatively, an ARIMA (p,d,q) process 𝑋𝑡 is formally defined as:  462 

 463 

𝜙(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜓(𝐵)𝜖𝑡                             (3) 464 

 465 

where, equation (3) holds for a dth difference (1 − 𝐵)𝑑𝑋𝑡.  466 

As mentioned previously, a more general form of ARIMA (p,d,q) is the fractional 467 

ARIMA process, or FARIMA, where the differencing term d is allowed to take on fractional 468 

values. If d is a non-integer value for some -0.5 < d < 0.5 and 𝑋𝑡 is a stationary process as 469 

indicated by equation 3, then the model by definition is called a FARIMA process where d-470 

values in the range 0 < d < 0.5 of are of particular interest herein because geophysically-relevant 471 

LRD occurs for 0 < d < 0.5, whereas d > 0.5 means that the process is nonstationary, but 472 

nonintegrable (Beran, 1994; Hosking, 1981). A special case of a FARIMA process explored in 473 

the current study is ARIMA (0d0), also known as fractionally-differenced white noise (Hosking, 474 

1981), which is defined by Beran (1994) and others as: 475 

 476 

𝑋𝑡 = (1 − 𝐵)−𝑑𝜖𝑡.                           (4) 477 

 478 

For 0 < d < 0.5, the ARIMA (0d0) process is a stationary process with long-range structure and 479 

is useful for modeling LRD. As shown later, different values of the d parameter provide further 480 
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insight into the type of causative physical processes that generate each data series. When d < 0.5, 481 

the series 𝑋𝑡 is stationary, which has an infinite moving average MA representation that 482 

highlights long-range trends or cycles in the data. Conversely, when d > - 0.5, the series 𝑋𝑡 is 483 

invertible and has an infinite autoregressive AR representation (see Hosking, 1981). When -0.5 < 484 

d < 0, the stationary, and invertible, ARIMA (0d0) process is dominated by short-range effects 485 

and is antipersistent. When d = 0, the ARIMA (000) process is white noise, having zero 486 

correlations and a constant spectral density. Identification of an appropriate model is 487 

accomplished by finding small values of elements p,d,q (usually between 0 – 2) that accurately 488 

fit the most significant patterns in the data series. When a value of an element is 0, that element 489 

is not needed. For example, if d = 0 the series does not contain a significant long-range 490 

component, whereas if p = q = 0, the model does not exhibit significant short-range effects. If 491 

p,d,q ≠ 0, the model contains a combination of both short and long-memory effects.  492 

 493 

4 Results 494 

4.1 Spatial data series 495 

4.1.1 EMI and GPR surveys  496 

The unprocessed (raw) EMI σa responses show a high degree of variability along the island. 497 

High-amplitude responses within the EMI signal generally exhibit a higher degree of variability 498 

(multiplicative noise) compared to the low-amplitude responses. Higher σa readings correspond 499 

to a small sensor footprint and have enhanced sensitivity to small-scale near-surface 500 

heterogeneities (see Guillemoteau and Tronicke, 2015). Low σa readings suggest the sensor is 501 

probing greater depths and averaging over a larger footprint. In that case, the effect of fine-scale 502 

heterogeneities that contribute to signal variability is suppressed. 503 

The 10 km alongshore survey is located within an inferred paleo-channel region (Fisk, 504 

1959), providing some a priori geologic constraints for understanding the variability within the 505 

EMI signal (Fig. 2b). Here, the sample size is n = 10,176, permitting a quantitative comparison 506 

with the 100-km-long data series since they contain a similar number of observations. Unlike the 507 

100 km survey, successive footprints of the sensor at each subsequent measurement point 508 

overlap along the 10 km survey. The overlap enables a fine-scale characterization of the 509 
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underlying geological structure because the separation between the TX – RX coils (1.21 m), a 510 

good lower-bound approximation of the footprint, is greater than the step-size (1 m).  511 

The overall trend in σa for the 10 km survey is comparable to that of the 100 km survey, 512 

where regions characterized by high and low amplitude signals correspond to regions of high and 513 

low variability, respectively, implying that multiplicative noise persists independently of station 514 

spacing. The decrease in σa that persists between ~ 2.5 – 6 km along the profile (Fig. 2b) 515 

coincides in location with two paleo-channels, whereas a sharp reduction in σa is observed at ~ 516 

8.2 km in close proximity to a smaller channel. Most of the known paleo-channels are located 517 

within the 10 km transect and likely contain resistive infill sands that should generate lower and 518 

relatively consistent σa readings (Weymer et al., 2015a). The low σa signal caused by the sand 519 

indirectly indicates valley incision, since it is diagnostic of a thicker sand section, relatively 520 

unaffected by the underlying conductive layers. Thus, it is reasonable to assume that reduced 521 

variability in the signal is related to the framework geology within the paleo-channels, which we 522 

now compare with a GPR profile.   523 

To corroborate the capability of the EMI data to respond to the variable subsurface 524 

geology, an 800 m GPR survey confirms the location of a previously identified paleo-channel 525 

(Fisk, 1959) at ~ 5 – 10 m depth (Fig. 3). A continuous undulating reflector from ~ 150 – 800 m 526 

along the profile is interpreted to be the surface mapped by Fisk (1959) who documented a 527 

paleo-channel at this location with a depth of ~ 8 m. Although the paleo-surface is within the 528 

detection limits of the GPR, it is likely that the DOI of the EMI data (~ 3 – 6 m) is not large 529 

enough to probe continuously along the contact between the more conductive ravinement surface 530 

and the more resistive infill sands. Along the transect at shallower depths highlighted by the red 531 

box in the lower radargram (Fig. 3), low EMI σa values correspond to fine stratifications in the 532 

GPR section, which is common for beach sands with little clay content that are not saline-533 

saturated. The EMI highs between ~ 450 – 530 m coincide with parts of the GPR section that do 534 

not have the fine stratification and this may indicate the presence of clay or saline water. Here, 535 

the high conductivity zone for both the GPR and EMI is located within a recovering washover 536 

channel overlying the paleo-channel that is evident in the satellite imagery in the upper-left panel 537 

of Fig. 3. The overwash deposits consisting of a mix of sand and finer-grained backbarrier 538 

sediments likely mask the EMI sensors’ ability to probe greater depths. Nonetheless, the high 539 
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conductivity zone represents a smaller ~ 100 m segment within the ~ 500-m-wide paleo-channel, 540 

suggesting that variations in the EMI responses outside this zone are directly related to variations 541 

in the framework geology imaged by GPR.    542 

 543 

4.1.2 LiDAR-derived DEM morphometrics 544 

The LiDAR-derived elevation data series along the 100 km transect are presented in Fig. 4. Each 545 

data series is shown with respect to the areal DEM of the study area where the approximate 546 

locations of each closely-spaced paleo-channel are highlighted in gray. This visualization allows 547 

a qualitative analysis of the spatial relationships between paleo-channels, subsurface information 548 

encoded in the σa signal, and surface morphology over the entire length of the barrier island.  549 

The morphology of the beach-dune system, as well as island width, changes substantially 550 

from north to south. In the paleo-channel region, beach width decreases in the central channel (~ 551 

37 – 42 km) and is more variable outside this region. Beach width generally increases towards 552 

the northern section of the island. The volume of the beach tends to be lowest in the northern 553 

zone, varies considerably in the central part of the island, then stabilizes and gradually decreases 554 

towards the south. These zones correspond to the southern (0 – 30 km), central (30 – 60 km), and 555 

northern (60 – 100 km) sections of the island. Alongshore dune heights generally are greater in 556 

the south, become slightly more variable in the paleo-channel region, and decrease in the north 557 

except for the area adjacent to Baffin Bay. Dune volume is lowest in the northern section, 558 

intermittently increases in the central zone and slightly decreases towards the south. The island is 559 

considerably narrower between Mansfield Channel and Baffin Bay (see Fig. 2a), increasing in 560 

width in the northern zone; island volume follows a similar trend. Overall, σa values are lower 561 

northward of the paleo-channel region compared to the southern zone where σa increases 562 

substantially. However, the lowest σa values are located within the region of paleo-channels 563 

inferred by Fisk (1959) supporting previous findings in the study area by Weymer et al. (2015a) 564 

and Wernette et al. (2018) that suggest a potential geologic control on alongshore geomorphic 565 

features.  566 

Each spatial data series (Fig. 4a – 4g) represents a different superposition of effects 567 

caused by physical processes operating across a wide range of temporal and length scales 568 

(Weymer et al., 2015a). Short-range fluctuations represent small-scale heterogeneities, whereas 569 
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long-range components capture variations in each metric at broader length scales. There is a high 570 

degree of variability within each signal that is directly related to the geological and 571 

geomorphological structure along the island. Within and outside the paleo-channel region, 572 

general associations between EMI σa responses and DEM metrics are visually subtle, motivating 573 

the statistics we now show by ARIMA modeling. To conduct the ARIMA analysis, we chose to 574 

divide the island into three zones based on the location of the known paleo-channels. As will be 575 

discussed later, the tripartite zonation allows for a quantitative analysis of LRD at three spatial 576 

scales (regional, intermediate, local) within and outside the area containing paleo-channels. It is 577 

important to note, however, that the framework geology is likely to exhibit LRD regardless of 578 

the length-scale over which it is observed.  579 

 580 

4.2 Tests for LRD 581 

4.2.1 Tests for LRD in EMI data series 582 

Both EMI spatial data series appear to be nonstationary since the mean and variance of the data 583 

fluctuate along the profile. A closer visual inspection reveals however that cyclicity is present at 584 

nearly all spatial frequencies (Fig. 6), with the cycles superimposed in random sequence and 585 

added to a constant variance and mean (see Beran, 1994). This behavior is typical for stationary 586 

processes with LRD, and is often observed in various types of geophysical time series (Beran, 587 

1992), for example records of Nile River stage minima (Hurst, 1951). A common first-order 588 

approach for determining whether a data series contains LRD is through inspection of the 589 

autocorrelation function, which we have computed in AutoSignal™ signal analysis software 590 

using a fast Fourier transform (FFT) algorithm (Fig. 5a, 5d). Both EMI signals exhibit large 591 

correlations at large lags (at km and higher scales), suggesting the σa responses contain LRD, or 592 

"long-memory effects" in time-series language. Results from a rescaled range R/S analysis (Fig. 593 

5b, 5e) indeed show high H-values of 0.85 (r2 = 0.98) and 0.95 (r2 = 0.99) for the 100 km and 10 594 

km surveys, indicating a strong presence of LRD at both regional and local spatial scales. 595 

The manner in which different spatial frequency (i.e. wavenumber) components are 596 

superposed to constitute an observed EMI σa signal has been suggested to reveal information 597 

about the causative multi-scale geologic structure (Everett and Weiss, 2002; Weymer et al., 598 

2015a).  For example, the lowest-wavenumber contributions are associated with spatially 599 
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coherent geologic features that span the longest length scales probed. The relative contributions 600 

of the various wavenumber components can be examined by plotting the σa signal power spectral 601 

density (PSD). A power-law of the form |σa(f)|
2 ~  f β over several decades in spatial wavenumber 602 

is evident (Fig. 5c, 5f). The slope β of a power-law-shaped spectral density provides a 603 

quantitative measure of the LRD embedded in a data series and characterizes the heterogeneity, 604 

or “roughness” of the signal. A value of │β│> 1 indicates a series that is influenced more by 605 

long-range correlations and less by small-scale fluctuations (Everett and Weiss, 2002). For 606 

comparison, a pure white noise process would have a slope of exactly β = 0, whereas a slope of β 607 

~ 0.5 indicates fractional Gaussian noise, i.e., a stationary signal with no significant long-range 608 

correlations (Everett and Weiss, 2002). The β-values for the 100 km and 10 km surveys are β = -609 

0.97, and β = -1.06, respectively. These results suggest that both the 100 km and 10 km EMI 610 

signals contain long-range correlations. However, there is a slightly stronger presence of LRD 611 

within the 10 km segment of the paleo-channel region compared to that within the segment that 612 

spans the entire length of the island. This indicates that long-range spatial variations in the 613 

framework geology are more important, albeit marginally so, at the 10-km scale than at the 100-614 

km scale. It is possible that the variability within the signal and the degree of long-range 615 

correlation is also a function of the sensor footprint, relative to station spacing. This is critically 616 

examined in section 4.3. 617 

 618 

4.2.2 Tests for LRD in surface morphometrics  619 

Following the same procedure as applied to the EMI data, we performed the R/S analysis for 620 

each beach, dune, and island metric. The calculated H-values for the DEM morphometrics range 621 

between 0.80 – 0.95 with large values of r2 ~ 1, indicating varying, but relatively strong 622 

tendencies towards LRD. Beach width and beach volume data series have H-values of 0.82 and 623 

0.86, respectively. Dune height and dune volume H-values are 0.83 and 0.80, whereas island 624 

width and island volume have higher H-values of 0.95 and 0.92, respectively. Because each data 625 

series shows moderate to strong evidence of LRD, the relative contributions of short and long-626 

range structure contained within each signal can be further investigated by fitting ARIMA 627 

models to each data set. 628 

 629 
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4.3 ARIMA statistical modeling of EMI  630 

The results of the tests described in section 4.2.1 for estimating the self-similarity parameter H 631 

and the slope of the PSD function suggest that both EMI data series, and by inference the 632 

underlying framework geology, exhibit LRD. The goal of our analysis using ARIMA is to 633 

estimate the p, d, and q terms representing the order, respectively, of autoregressive (AR), 634 

integrated (I) and moving-average (MA) contributions to the signal (Box and Jenkins, 1970) to 635 

quantify free vs. forced behavior along the island. For the analysis, the ‘arfima’ and ‘forecast’ 636 

statistical packages in R were used to fit a family of ARIMA (p,d,q) models to the EMI σa data 637 

and island morphometrics (Hyndman, 2015; Hyndman and Khandakar, 2007; Veenstra, 2012). 638 

Results of ten realizations drawn from a family of ARIMA (p,d,q) models and their residuals 639 

(RMSE) are presented in Table 1. The worst fit (ARIMA 001) models are shown for the 100 km 640 

and 10 km (Fig.  6a, 6c) surveys. The best fit (ARIMA 0d0) models for both the 100 and 10 km 641 

surveys are shown in Fig. 6b and 6d, respectively. For this analysis, the tests include different 642 

combinations of p,d,q that model either short-range: ARIMA (100; 001; 101; 202; 303; 404; 643 

505), long-range: ARIMA (010; 0d0), or composite short- and long-range processes: ARIMA 644 

(111). It is important to note that AR and MA are only appropriate for “short-memory” processes 645 

since they involve only near-neighbor values to explain the current value, whereas the integration 646 

(the "I" term in ARIMA) models “long-memory” effects because it involves distant values.  Note 647 

that ARIMA was developed for one-way time series, in which the arrow of time advances in 648 

only one direction, but in the current study we are using it for spatial series that are reversible. 649 

Different realizations of each ARIMA (p,d,q) data series were evaluated, enabling physical 650 

interpretations of LRD at regional, intermediate, and local spatial scales. Determining the best-651 

fitting model is achieved by comparing the residual score, or RMSE, of each predicted data 652 

series relative to the observed data series, where lower RMSE values indicate a better fit (Table 653 

1). 654 

Based on the residuals and visual inspection of each realization (Fig. 6), two observations 655 

are apparent: 1) both EMI data series are most accurately modeled by an ARIMA (0d0) process 656 

with non-integer d, and 2) the mismatch between the data and their model fit is considerably 657 

lower for the 10 km survey compared to the 100 km survey. The first observation suggests that 658 

the data are most appropriately modeled by a FARIMA process; i.e., a fractional integration that 659 
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is stationary (0 < d < 0.5) and has long-range dependence (see Hosking, 1981). This implies that 660 

spatial variations in framework geology at the broadest scales dominate the EMI signal and that 661 

small-scale fluctuations in σa caused, for example, by changing hydrological conditions over 662 

brief time intervals less than the overall data acquisition interval, or fine-scale lithological 663 

variations less than a few station spacings, are not as statistically significant. Regarding the 664 

second observation, the results suggest that a small station spacing (i.e., 1 m) is preferred to 665 

accurately model both short and long-range contributions within the signal because large station 666 

spacings cannot capture short-range information. The model for the 10 km survey fits better 667 

because both p (AR) and q (MA) components increase with a smaller step-size since successive 668 

volumes of sampled subsurface overlap. On the contrary, the sensor footprint is considerably 669 

smaller than the station spacing (10 m) for the 100 km survey. Each σa measurement in that case 670 

records an independent volume of ground, yet the dataset still exhibits LRD, albeit not to the 671 

same degree as in the 10 km survey.  672 

 673 

4.4 ARIMA statistical modeling of island metrics compared with EMI 674 

A sequence of ARIMA (p,d,q) models was also evaluated for the elevation morphometrics series 675 

to find best fits to the data. The analysis comprised a total of 36 model tests (Table 2). The 676 

RMSE values reveal that: 1) all data series are best fit by an ARIMA (0d0) process with 677 

fractional d, i.e. a FARIMA process; 2) the ARIMA models, in general, more accurately fit the 678 

EMI data than the DEM morphometric data likely because the morphology is controlled by more 679 

than the framework geology alone; and 3) in all cases, the poorest fit to each series is the 680 

ARIMA (001), or MA process. This, in turn, means that the differencing parameter d is the most 681 

significant parameter amongst p, d and q. It is important to note that different values of d were 682 

computed based on the best fit of each FARIMA model to the real data. A graphical 683 

representation of the FARIMA-modeled data series for each DEM metric is shown in Fig. 7, 684 

allowing a visual inspection of how well the models fit the observed data. Because each data 685 

series has its own characteristic amplitude and variability, it is not possible to compare RMSE 686 

between tests without normalization. The variance within each data series can differ by several 687 

orders of magnitude.  688 
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Instead of normalizing the data, a fundamentally different approach is to compare the 689 

EMI σa d-values with respect to each metric at regional, intermediate, and local scales (Table 3). 690 

Higher positive d-values indicate of a stronger tendency towards LRD. According to Hosking 691 

(1981), {xt} is called an ARIMA (0d0) process and is of particular interest in modelling LRD as 692 

d approaches 0.5 because in such cases the correlations and partial correlations of {xt} are all 693 

positive and decay slowly towards zero as the lag increases, while the spectral density of {xt} is 694 

concentrated at low frequencies. It is reasonable to assume that the degree of LRD may change 695 

over smaller intermediate and/or local scales, which implies a breakdown of self-similarity. For a 696 

self-similar signal, d is a global parameter that does not depend on which segment of the series is 697 

analyzed. In other words, the d-values should be the same at all scales for a self-similar structure.  698 

The results of the FARIMA analysis at the intermediate scale vary considerably within 699 

each zone of the barrier island (north, central, south) and for each spatial data series (Table 3). In 700 

the southern zone (0 – 30 km), EMI σa and beach volume have the strongest LRD (d = 0.44), 701 

whereas the other metrics exhibit weak LRD (ranging from d ~ 0 – 0.2), which may be 702 

characterized approximately as a white noise process. Within the paleo-channel region (30 – 60 703 

km), all of the island metrics show a moderate to strong tendency towards LRD (0.3 ≤ d ≤ 4.2), 704 

however, the EMI signal does not (d = 0.11). In the northern zone (60 – 100 km) all data series 705 

contain moderate to strong LRD with the exception of beach and island width.  706 

A FARIMA analysis was also conducted at the local scale by dividing the island into 10-707 

km-segments, starting at the southern zone (0 – 10 km) and ending at the northern zone of the 708 

island (90 – 100 km). A total of 70 FARIMA model realizations were evaluated and the resulting 709 

d-values demonstrate that the EMI data segments show a stronger presence of LRD (d > 0.4) 710 

within the paleo-channels (30 – 60 km) and further to the north (60 – 80 km) in close proximity 711 

to the ancestral outlet of Baffin Bay. These findings indicate that there may be local and/or 712 

intermediate geologic controls along different parts of the island, but that the framework geology 713 

dominates island metrics at the regional scale.  714 

 715 

5 Discussion 716 

Although it has long been known that processes acting across multiple temporal and length 717 

scales permit the shape of coastlines to be described by mathematical constructs such as power 718 
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law spectra and fractal dimension (Lazarus et al., 2011; Mandelbrot, 1967; Tebbens et al., 2002), 719 

analogous studies of the subsurface framework geology of a barrier island have not been carried 720 

out. This research supports previous studies demonstrating that near-surface EMI geophysical 721 

methods are useful for mapping barrier island framework geology and that FARIMA data series 722 

analysis is a compact statistical tool for illuminating the long and/or short-range spatial 723 

correlations between subsurface geology and geomorphology. The results of the FARIMA 724 

analysis and comparisons of the best-fitting d-parameters show that beach and dune metrics 725 

closely match EMI σa responses regionally along the entire length of PAIS, suggesting that the 726 

long-range dependent structure of these data series is similar at large spatial scales. However, 727 

further evaluation of the d-parameters over smaller data segments reveals that there are 728 

additional localized framework geology controls on island geomorphology that are not present at 729 

the regional scale.  730 

At the intermediate scale, a low EMI d-value (d = 0.11) suggests there is only a weak 731 

framework-geologic control on barrier island morphometrics. A possible explanation is that the 732 

paleo-channels, located within a ~ 30 km segment of the island, are not regularly spaced and on 733 

average are less than a few km wide. This implies that the framework geology controls are 734 

localized (i.e., effective in shaping island geomorphology only at smaller spatial scales). At the 735 

local scale, relationships between the long-range-dependence of EMI and each metric vary 736 

considerably, but there is a significant geologic control on dune height within the paleo-channel 737 

region (d > 0.4). It is hypothesized that the alongshore projection of the geometry of each 738 

channel is directly related to a corresponding variation in the EMI signal, such that large, gradual 739 

minima in σa are indicative of large, deep channel cross-sections and small, abrupt minima in σa 740 

represent smaller, shallow channel cross-sections. At shallower depths within the DOI probed by 741 

the EMI sensor, variability in the σa signal may correspond to changes in sediment characteristics 742 

as imaged by GPR (Fig. 3). Located beneath a washover channel, a zone of high conductivity 743 

EMI σa responses between ~ 450 – 530 m coincides with a segment of the GPR section where 744 

the signal is more attenuated and lacks the fine stratification that correlates much better with the 745 

lower σa zones. The contrasts in lithology between the overwash deposits and stratified infilled 746 

sands was detected by both EMI and GPR measurements.     747 
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It is argued herein that differences in the d parameter between EMI σa readings (our 748 

assumed proxy for framework geology) and LiDAR-derived surface morphometrics provide a 749 

new metric that is useful for quantifying the causative physical processes that govern island 750 

transgression across multiple spatial scales. All of the calculated d-values in this study are 751 

derived from ARIMA (0d0) models that fit the observations, and lie within the range of 0 < d < 752 

0.5, suggesting that each data series is stationary but does contain long-range structure that 753 

represents randomly-placed cyclicities in the data. For all models in our study, the d-values range 754 

between (~ 0 – 0.50), which enables a geomorphological interpretation of the degree of LRD and 755 

self-similarity at different spatial scales. In other words, the d-parameter not only provides an 756 

indication of the scale dependencies within the data, but also offers a compact way for analyzing 757 

the statistical connections between forced (stronger d ~ 0.5) and free (weaker d ~ 0) behavior that 758 

may be more influenced by morphodynamic processes operating at smaller spatial scales.  759 

Alongshore variations in beach width and dune height are not uniform at PAIS and exhibit 760 

different spatial structure within and outside the paleo-channel region (Fig. 5). These 761 

dissimilarities may be forced by the framework geology within the central zone of the island but 762 

are influenced more by contemporary morphodynamic processes outside the paleo-channel 763 

region. This effect could be represented by higher-wavenumber components embedded within 764 

the spatial data series. Beach and dune morphology in areas that are not controlled by framework 765 

geology (e.g., the northern and southern zones) exhibit more small-scale fluctuations 766 

representing a free system primarily controlled by contemporary morphodynamics (e.g., wave 767 

action, storm surge, wind, etc.).  768 

Because variations in dune height exert an important control on storm impacts (Sallenger, 769 

2000) and ultimately large-scale island transgression (Houser, 2012), it is argued here that the 770 

framework geology (or lack thereof) of PAIS acts as an important control on island response to 771 

storms and sea-level rise. This study supports recent work by Wernette et al. (2018) suggesting 772 

that framework geology can influence barrier island geomorphology by creating alongshore 773 

variations in either oceanographic forcing and/or sediment supply and texture that controls 774 

smaller-scale processes responsible for beach-dune interaction at the local scale. The forced 775 

behavior within the paleo-channel region challenges shoreline change studies that consider only 776 

small-scale undulations in the dune line that are caused by natural randomness within the system.  777 
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Rather, we propose that dune growth is forced by the framework geology, whose depth is related 778 

to the thickness of the modern shoreface sands beneath the beach. This depth is the primary 779 

quantity that is detected by the EMI sensor. With respect to shoreline change investigations, 780 

improving model performance requires further study of how the framework geology influences 781 

beach-dune morphology through variations in wave energy, texture, and sediment supply (e.g., 782 

Houser, 2012; McNinch, 2004; Schwab et al., 2013). 783 

Our findings extend previous framework geology studies from the Outer Banks, NC (e.g., 784 

Browder and McNinch, 2006; McNinch, 2004; Riggs et al., 1995; Schupp et al., 2006), Fire 785 

Island, NY (e.g., Hapke et al., 2010; Lentz and Hapke, 2011), and Pensacola, FL (e.g., Houser, 786 

2012) where feedbacks between geologic features and relict sediments within the littoral system 787 

have been shown to act as an important control on dune growth and evolution. Nonetheless, most 788 

of these studies focus on offshore controls on shoreface and/or beach-dune dynamics at either 789 

local or intermediate scales because few islands worldwide exist that are as long and/or 790 

continuous as North Padre Island. To our knowledge, few framework geology studies have 791 

specifically used statistical testing to analyze correlations between subsurface geologic features 792 

and surface morphology. Two notable exceptions include Browder and McNinch (2006), and 793 

Schupp et al. (2006), both of which used chi-squared testing and cross-correlation analysis to 794 

quantify the spatial relationships between offshore bars, gravel beds, and/or paleo-channels at the 795 

Outer Banks, NC. Although these techniques are useful for determining spatial correlations 796 

between different data sets, they do not provide information about the scale (in)dependencies 797 

between the framework geology and surface geomorphology that FARIMA models are better 798 

designed to handle. The current study augments the existing literature in that 1) it outlines a 799 

quantitative method for determining free and forced evolution of barrier island geomorphology at 800 

multiple length scales, and 2) it demonstrates that there is a first-order control on dune height at 801 

the local scale within an area of known paleo-channels, suggesting that framework geology 802 

controls are localized within certain zones of PAIS.  803 

Further study is required to determine how this combination of free- and forced-behavior 804 

resulting from the variable and localized framework geology affects island transgression. 805 

Methods of data analysis that would complement the techniques presented in this paper might 806 

include; power spectral analysis, wavelet decomposition, and shoreline change analysis that 807 
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implicitly includes variable framework geology. These approaches would provide important 808 

information regarding: 1) Coherence and phase relationships between subsurface structure and 809 

island geomorphology, and 2) Non-linear interactions of coastal processes across large and small 810 

spatiotemporal scales.  Quantifying and interpreting the significance of framework geology as a 811 

driver of barrier island formation and evolution and its interaction with contemporary 812 

morphodynamic processes is essential for designing and sustainably managing resilient coastal 813 

communities and habitats.  814 

 815 

6 Conclusions 816 

This study demonstrates the utility of EMI geophysical profiling as a new tool for mapping the 817 

length-scale dependence of barrier island framework geology and introduces the potential of 818 

FARIMA analysis to better understand the geologic controls on large-scale barrier island 819 

transgression. The EMI and morphometric data series exhibit LRD to varying degrees, and each 820 

can be accurately modeled using a non-integral parameter d. The value of this parameter 821 

diagnoses the spatial relationship between the framework geology and surface geomorphology. 822 

At the regional scale (~100 km), small differences in d between the EMI and morphometrics 823 

series suggest that the long-range-dependent structure of each data series with respect to EMI σa 824 

is statistically similar. At the intermediate scale (~ 30 km), there is a greater difference between 825 

the d-values of the EMI and island metrics within the known paleo-channel region, suggesting a 826 

more localized geologic control with less contributions from broader-scale geological structures. 827 

At the local scale (10 km), there is a considerable degree of variability between the d-values of 828 

the EMI and each metric. These results all point toward a forced barrier-island evolutionary 829 

behavior within the paleo-channel region transitioning into a free, or scale-independent behavior 830 

dominated by contemporary morphodynamics outside the paleo-channel region. In a free system, 831 

small-scale undulations in the dune line reinforce natural random processes that occur within the 832 

beach-dune system and are not influenced by the underlying geologic structure. In a forced system, 833 

the underlying geologic structure establishes boundary constraints that control how the island evolves 834 

over time. This means that barrier island geomorphology at PAIS is forced and scale-dependent, 835 

unlike shorelines which have been shown at other barrier islands to be scale-independent 836 

(Tebbens et al., 2002; Lazarus et al., 2011). The exchange of sediment amongst nearshore, beach 837 
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and dune in areas outside the paleo-channel region is scale independent, meaning that barrier 838 

islands like PAIS exhibit a combination of free and forced behaviors that will affect the response 839 

of the island to sea level rise and storms. We propose that our analysis is not limited to PAIS but 840 

can be applied to other barrier islands and potentially in different geomorphic environments, both 841 

coastal and inland.  842 
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Tables 1106 

Table 1. Comparison of residuals (RMSE) of each ARIMA model for the 100 km and 10 km 1107 

EMI surveys.  1108 

 EMI (100 km) EMI (10 km) 

ARIMA (100) 18.4 8.14 

ARIMA (001) 49.7 41.1 

ARIMA (101) 15.6 6.65 

ARIMA (202) 40.6 7.31 

ARIMA (303) 40.5 7.22 

ARIMA (404) 40.3 7.22 

ARIMA (505) 40.2 7.29 

ARIMA (111) 15.8 5.72 

ARIMA (010) 18.5 8.15 

ARIMA (0d0) 15.5 5.55 
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Table 2. Comparison of residuals (RMSE) of each ARIMA model for all spatial data series. 1125 

Note that the residuals for each DEM metric correspond to the analysis performed at the regional 1126 

scale (i.e., 100 km).  1127 

 ARIMA 

(100) 
ARIMA 

(001) 
ARIMA 

(101) 
ARIMA 

(111) 
ARIMA 

(010) 
ARIMA 

(0d0) 

Beach width  13.4 14.9 13.0 13.1 14.8 13.0 

Beach volume  44.8 50.5 43.1 43.1 49.1 42.7 

Dune height  0.7 0.8 0.7 0.7 0.8 0.7 

Dune volume  60.6 63.9 59.7 59.2 69.03 58.9 

Island width  138.4 253.2 121.3 121.1 140.8 120.9 

Island volume  271.3 611.4 244.3 244.1 273.9 243.3 
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Table 3. Summary table showing the computed d parameters that most appropriately model each 1146 

ARIMA (0d0) iteration (i.e., lowest RMSE).   1147 

Alongshore 

distance 

Beach 

width 

Beach 

volume 

Dune 

height 

Dune 

volume 

Island 

width 

Island 

volume 

EMI σa  

“Regional”        

0-100 km 0.38 0.42 0.34 0.32 0.13 ~0.00 0.35 

        

“Intermediate”        

0-30 km ~0.00 0.44 0.13 0.20 0.03 0.18 0.44 

30-60 km 0.37 0.30 0.36 0.31 0.30 0.42 0.11 

60-100 km 0.26 0.41 0.35 0.46 ~0.00 0.50 0.49 

        

“Local”        

0-10 km 0.41 0.39 0.20 0.21 0.09 0.18 0.36 

10-20 km 0.30 0.42 0.20 0.26 0.37 ~ 0.00 0.36 

20-30 km 0.26 0.40 ~ 0.00 ~ 0.00 0.49 ~ 0.00 ~ 0.00 

30-40 km 0.47 ~ 0.00 0.41 0.25 0.29 0.28 ~ 0.00 

40-50 km 0.28 0.21 0.21 0.19 0.30 0.02 0.44 

50-60 km 0.03 0.31 0.23 0.32 ~ 0.00 0.33 0.48 

60-70 km 0.16 0.37 0.29 0.34 ~ 0.00 0.30 0.40 

70-80 km 0.47 0.34 0.43 0.26 ~ 0.00 0.42 0.49 

80-90 km 0.27 0.19 0.42 0.39 0.01 0.02 ~ 0.00 

90-100 km 0.13 0.13 ~ 0.00 0.06 0.44 0.47 0.41 
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 1155 
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Figure Captions: 1161 

 1162 
Figure 1. Location map and DEM of the study area at Padre Island National Seashore (PAIS), 1163 

Texas, USA. Elevations for the DEM are reported as meters above sea level (masl). Approximate 1164 

locations of field images (red dots) from the northern (N), central (C), and southern (S) regions 1165 

of the island showing alongshore differences in beach-dune morphology. Note: views are facing 1166 

south for the central and southern locations, and the northern location view is to the north. 1167 

Images taken in October, 2014.  1168 

 1169 
Figure 2. 100 km (a) and 10 km (b) alongshore EMI surveys showing DEM’s of study area and 1170 

previously identified paleo-channel region by Fisk (1959). Channels are highlighted in red and 1171 

green, where the green region indicates the location of the 10 km survey. 25 ft (7.6 m) contour 1172 

intervals are highlighted with depths increasing from yellow to red and the center of the channels 1173 

are represented by the black-dotted lines. For each survey, raw σa and zero-mean drift-corrected 1174 

EMI responses are shown in grey and black, respectively. Tidal conditions during each EMI 1175 

acquisition segment are shown below each panel. Low (lt) and falling tides (ft) are indicated by 1176 

blue and light blue shades, respectively. High (ht) and rising tides (rt) are highlighted in red and 1177 

light red, respectively. 1178 

 1179 

Figure 3. Comparison of EMI σa responses from the 100 km survey with 100 MHz GPR data 1180 

within one of the Fisk (1959) paleo-channels. The 800 m segment (A – A’) crosses a smaller 1181 

stream within the network of paleo-channels in the central zone of PAIS. The DOI of the 3 kHz 1182 

EMI responses is outlined by the red box on the lower GPR radargram and the interpretation of 1183 

the channel base (ravinement surface) is highlighted in yellow. 1184 

 1185 

Figure 4. DEM metrics extracted from aerial LiDAR data. The sampling interval (step-size) for 1186 

each data series is 10 m and the coordinates are matched with each EMI acquisition point. Each 1187 

panel corresponds to a) beach width, b) beach volume, c) dune height, d) dune volume, e) island 1188 

width, f) island volume, and g) EMI σa. The island is divided into three zones (red vertical lines) 1189 

roughly indicating the locations within and outside the known paleo-channel region. A Savitzky-1190 

Golay smoothing filter was applied to all data series (LiDAR and EMI) using a moving window 1191 

of n = 250 to highlight the large-scale patterns in each signal. 1192 

 1193 

Figure 5. Autocorrelations of σa for the 100 km (a) and 10 km EMI surveys (d). R/S analysis for 1194 

the 100 km (b) and 10 km surveys (e). PSD plots for the 100 km (c) and 10 km surveys (f). 1195 

 1196 

Figure 6. Examples of the worst (6a, 6c) and best (6b, 6d) fit ARIMA models for the 100 and 10 1197 

km EMI surveys. Model results are shown for the processed (drift-corrected) σa data. Residuals 1198 

(RMSE) listed for each model gives the standard deviation of the model prediction error. For 1199 

each plot, original data is in red and fitted (model) data is in blue. 1200 

 1201 

Figure 7. Example of the best fit ARIMA (0d0) models for each LiDAR-derived DEM metric: a) 1202 

beach width, b) beach volume, c) dune height, d) dune volume, e) island width, f) island volume.  1203 
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