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Dear Editor Dr. Mudd, 

 

 We thank both the reviewers for a productive peer review process. Changes are made in 

the final manuscript to tone down the language and clarify a number of sections. What follows is 

the combined review comments and responses (Anonymous #1 then Anonymous #2). At the end, 

we include a tracked changes version of the original manuscript compared to the improved, 

which is submitted separately. 
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Responses to Anonymous Referee #1 for manuscript (esurf-2018-51) submission to Earth 

Surface Dynamics: 

Measuring Decadal Vertical Land-level Changes from SRTM-C 

(2000) and TanDEM-X (~2015) in the South-Central Andes  

 

We appreciate the review and the improvements suggested by close reading of the manuscript. 

Highlighted in bold are the reviewer comments followed by our reply. All changes will be made 

to the final manuscript submission following completion of the interactive review period. 

 

Response to Anonymous Referee #1 

The study analyses elevation differences between the SRTM and TanDEM-X DEMs over 

mountain terrain. The processing procedure to reach maximum accuracy and to remove 

various horizontal and vertical shifts is sound, but the geophysical results are more sparse 

than expected. My comments: 

General comments 

(1) The study is mostly a method presentation, the results are less spectacular than the reader 

expects ("novel", "first time"). I strongly recommend to tone done the latter type of 

announcements to make the reader not expect dense measurements over an entire mountain 

region. 

The manuscript primarily focuses on the methods (particularly the SRTM-C correction steps). The 

river and landslide measurements are used as examples of the method in action. We agree that the 

results in both cases are sparse and we have made an effort to tone down the language to reflect 

this. An excerpt of a changed sentence from P1L5-7 in the Abstract: 

Before: For the first time we measure land-level changes at the scale of entire mountain belts in 

the south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected 

from 2010–2015), both spaceborne radar DEMs. 

After: Following careful corrections, we are able to measure land-level changes in gravel-bed 

channels and steep hillslopes in the south-central Andes using the SRTM-C (collected in 2000) 

and the TanDEM-X (collected from 2010-2015) near-global DEMs 
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(2) Perhaps show and analyse (sediment fluxes) the entire river reach covered not only 

a subsection. 

We appreciate this comment and point out that this was our primary (initial) motivation: to 

establish a full-catchment vertical land-level dataset. However, during processing we realized the 

constraints and considered it more useful to elaborate on the methodological processing steps than 

a sediment budget. Specifically, our analysis is limited by SRTM-C resolution and channel width 

in the region. The raw signal of the SRTM-C has approximately 30 m ground resolution, however, 

this degrades to 45-60 m following post-processing in delivered products (see P4L18-20). To avoid 

the inclusion of non-channel regions (e.g., steep hillslopes) we apply a negative 60 m buffer to the 

bank-to-bank digitized channel polygon (see P8L22-25). Thus, only center pixels where the local 

channel width exceeds 120 m are considered in dh mapping. Channel widths further upstream of 

the analyzed reaches, and from their tributaries in the steep catchments that characterize this 

mountain front, have only sparse pixels meeting this requirement and are thus excluded.  

 

(3) Page5Line5, and else: land level changes are measured for instance using medium 

resolution ASTER data. Tome down "for the first time" if it refers to medium resolution. 

Also, are you sure that no landslides etc. have been measured using SRTM and TanDEM-X 

before? Also, TanDEM-X is in my view a high-resolution sensor, not a medium resolution 

one. 

As noted previously, we have toned down the language throughout the manuscript. Low, medium, 

and high-resolution terminology is relative and will change from decade to decade. In Passalacqua 

et al. (2015), the authors define high-resolution topography from sources like lidar and very high-

resolution satellites (e.g., Pleiades and WorldView) as meter to sub-meter resolution. With a raw 

radiometric ground resolution of ~3.3 m, this places the TanDEM-X data outside of this realm. 

However, these terms are always relative and 10 years ago the 90 m SRTM-C data was considered 

“high-resolution”. In general, we dislike these relative terms and they certainly add confusion, 

particularly for future readers. To avoid this, we have carefully gone through the manuscript and 

removed references to coarse, medium, and high-resolution. Instead we spell out the resolution, 
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referring to Pleiades and WorldView as “sub-meter resolution satellites” and only using terms like 

“coarser” or “finer” in relative references between datasets. e.g.:  

P2L13: “Despite recent advances in meter to sub-meter lidar, satellite, and unmanned aerial vehicle 

data availability (Passalacqua et al., 2015), these remain limited in spatial and temporal coverage, 

and sometimes prohibitively expensive. Coarser gridded DEMs from radar and optical spaceborne 

sensors remain the best, and often only, option in large or remote areas.”  

Regarding landslides, we did not find any previous studies that specifically used the SRTM-C and 

newly released TanDEM-X data for mapping or volume estimation. However, recent work (e.g., 

Wessel et al., 2018) has begun examining the effect of land-cover on TanDEM-X, which could be 

useful in volume estimations of biomass and for assessing land-cover changes caused by 

deforestation, urbanization, and agriculture. 

 

(4) P2L6: be less strict. ASTER timeseries detect a few cm/dm per year over 10-20 years 

(=dm-m total change) 

We argue that ASTER requires either (a) many meters of elevation difference to overcome the 

large amount of noise in these low quality DEMs or (b) a long enough time series to identify trends 

in individual pixels. We therefore see no issue with the sentences (P2L4-9): 

“Using DEMs from sources like the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER; Tachikawa et al. (2011)) with higher uncertainties is acceptable for 

monitoring glaciers and ice sheets (e.g., Brun et al., 2017), where dh between even sub-annual 

time-steps can be tens to hundreds of meters over areas of many square kilometers. On the other 

hand, dh of soil, rock, and unconsolidated sediment are often at the centimeter to meter scale and 

far more localized over up to a few hundred to thousand square meters.” 

 

(5) P2L14: what about ArcticDEM, HighMountain Asia DEM, ALOS PRISM AW3D? I 

wouldn’t call them limited spatial coverage. 

Arctic and High Mountain Asia DEMs are non-global datasets. ALOS PRISM is available at 5 m 

resolution for much of the globe, though major holes remain in high mountain regions. 

Furthermore, the quality of this data is suspect (please refer to our previous publication: Purinton 
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and Bookhagen, 2017) and does not match the quality expected from sub-meter sensors like 

WorldView or Pleiades. Furthermore, both the TanDEM-X and SRTM-C MEASURES DEM (the 

SRTM-C version used in this study) have been extensively referenced to ICESat measurements 

(see P6L8) and are referenced to the same geoid. Thus these datasets (in addition to lower quality 

ALOS AW3D and ASTER GDEM2 DEMs) represent unique DEMs, which may be widely applied 

by other scientists in diverse regions around the globe. 

 

 (6) Section 3 (Correction...) is rather part of the methods. 

We agree with the suggestion and have moved this section to the beginning of the methods, thus 

removing Section 3. 

 

 (7) Fig 8 and 9: you also need to show the results outside the masks in order to let the reader 

judge the statistical significance. 

In Figure 9 we are showing the full, un-masked dh map using statistical thresholding in slope-

height-error-consistency bins (please refer to P9L7-12). Only dh values that are in the bottom and 

top 5% of pixels in their respective bins are mapped. For Figure 8 we are only considering the 

channel pixels. By restricting measurement to only the low-slope, vegetation-free, buffered 

channel pixels we ignore increased uncertainties from higher slopes and areas with dense 

vegetation and anthropogenic tampering on banks and nearby farmlands that would hide the 

significantly changing channel pixels within the statistical cutoffs. We argue that the lack of 

statistically significant pixels being mapped on the low-slope, vegetation-free, arid Altiplano-Puna 

Plateau region in Figure 9A is evidence that the method returns primarily true change pixels, while 

ignoring statistically insignificant changes. We hope that the points made in the discussion at 

P20L26-30 clearly point out the caveats of the method regarding this change detection: 

“Given remaining noise in the datasets, change mapping is limited to large areas of coherent 

change (e.g., massive landslides) or specific low-slope, sparsely vegetated areas of interest such 

as wide gravel-bed rivers. In either case, field knowledge or auxiliary data (even in the form of 

GoogleEarthTM) is necessary for accurate assessment of true change signals versus noise. In any 

case, the magnitude of change must be significantly above the expected uncertainty between 
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DEMs, which in the case of SRTM-C and TanDEM-X is as low as ~3 m on flat, partially vegetated 

terrain, and increasing with slope and topographic complexity.” 

 

(8) Fig 8: I guess these magnitudes of changes would also be visible in ASTER time series, or 

ASTER versus SRTM (for instance;Castro et al. 2016 (Nature Comm Art 13585), Brun et al. 

2017 (in your list), Girod et al. 2017 (doi: 10.3390/rs9070704), Wang et al. 2015 (doi: 

10.3390/rs70810117)) 

Actually we have experimented with ASTER DEMs in the area, but scene quality is very low and 

obscured in most cases by heavy cloud cover (this is an orographic barrier experiencing heavy 

precipitation in much of the downstream reaches at the mountain front). We were unable to find a 

good collection of ASTER scenes with which to assess the MICMAC methods of Girod et al. 

(2017) or regressions of Wang et al. (2015). Regarding the magnitudes of change, likely only the 

very large anthropogenic piles would be visible in an ASTER time series, given the > 5 m vertical 

uncertainty typically associated with even carefully hand-clicked ASTER DEMs in high relief 

areas, and worse still in lower quality ASTER DEMs (Purinton and Bookhagen, 2017). We added 

the following sentence at P4L8: 

“Additionally, a dearth of cloud-free, high-quality ASTER imagery covering the study area 

precludes the automated DEM generation of Girod et al. (2017) and regression techniques of Wang 

et al. (2015).” 

 

(9) Fig 9: The landslide dh would also be visible without your processing, I guess. You could 

use this (and the river) to visualize the importance of your processing in more detail (before-

after processing). 

Given the sparse pixels mapped, we have found that visual representation of the pre- and post-

processed dh change maps are not so helpful. However, we think that this has been addressed 

textually in the case of the channels in the discussion at P19L6-10: 

“Downstream of the knickpoint, Río Toro is in a net aggradation state with a corrected dh volume 

of 0.81±0.15×106 m3, whereas, for Río Grande the net state is incision with a volume of -

0.69±0.15×106 m3. In comparison, the pre-correction volume in each case is -1.18±0.12×106 m3 
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and 2.80±0.11×106 m3 for Río Toro and Río Grande, respectively, thus indicating a flip in sign and 

reduction of magnitude following careful corrections applied prior to differencing.” 

And for the landslide we have added a clarification to the volume estimation at P20L8: 

“These magnitudes of change show little difference in the pre- and post-corrected mapping, 

indicating (a) this is a localized region of good agreement between SRTM-C and TanDEM-X and 

(b) this large landslide can be identified in uncorrected difference maps.” 

 

(10) P19L7-8: How are uncertainties computed? StDeviation, StError (if StError, how 

computed?). How aggregated and how voids filled? 

Error bars in Figure 7 are the RMSE taken from low-slope (< 5°) stable terrain. This is noted in 

the text and is also used as the level of detection cutoff following statistical outlier identification 

to further remove any suspect pixels well within expected TanDEM-X / SRTM-C noise. The 

uncertainties for volume estimation on P19L7-8 are clarified with the addition of this sentence in 

the methods at P9L5: 

“Volume changes are calculated from the sum of pixel area (900 m2) multiplied by vertical change 

with uncertainties taken as the level of detection RMSE and propagated via equation (15) in Lane 

et al. (2003).” 

 

(11) P30L31: it is not that easy to account for radar penetration! It exceeds often the actual 

elevation change signal, and the correction magnitudes applied here. See above ASTER 

studies, and others.  

Duly noted, we soften this section by changing it to the following: 

“We posit that these correction steps may also be applied to cryospheric studies, however, radar 

penetration would need to be carefully considered first as this may exceed dh signals.” 

 

Detail Comments 

page 1, line 2: rewrite 1st sentence. "Vertical change is measured in the cryosphere...". I 

understand what you mean, but what is "measuring in the cryosphere"? 



7 
 

Before: Vertical change is often measured in the cryosphere via digital elevation model (DEM) 

differencing to assess glacier and ice-sheet mass balances. 

After: It is common to measure vertical changes of ice-sheets and glaciers in the arctic and high 

mountains via digital elevation model (DEM) differencing. 

 

P1L4: typically much smaller (landslides, as the one you show later, are a frequent exception 

with vertical changes on the same order of magnitude as glaciers). 

Before: On the ice-free earth, land-level change is much smaller in magnitude and thus requires 

more accurate DEMs for differencing and identification of change. 

After: Excluding large landslides, on the ice-free earth land-level change is smaller in magnitude 

and thus requires more accurate DEMs for differencing and identification of change. 

 

P18L15: leaves stripes noise at the expense of preserving ... ? Other way round?  

Before: This leaves some stripe noise at the expense of preserving topographic signal. 

After: This conservative approach retains the true topographic signal at the expense of remaining 

stripe noise. 

 

Sincerely, 

For both authors, 

 

Ben Purinton 

Universität Potsdam, Germany 

purinton@uni-potsdam.de 
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Responses to Anonymous Referee #2 for manuscript (esurf-2018-51) submission to Earth 

Surface Dynamics: 

Measuring Decadal Vertical Land-level Changes from SRTM-C 

(2000) and TanDEM-X (~2015) in the South-Central Andes  

 

We appreciate the review and the improvements suggested by close reading of the manuscript. 

Highlighted in bold are the reviewer comments followed by our reply. All changes will be made 

to the final manuscript submission following completion of the interactive review period. 

 

Response to Anonymous Referee #2 

My primary expertise with respect to this manuscirpt lies in the technique, and subsequent 

interpretation, of geomorphic change detection. At the outset, I would therefore like to 

emphasise that my review focuses upon the overall form of the manuscript and the technical 

component of the DEMs of Difference analysis. I do not have the technical expertise to 

scrutinise the detail of the remote sensing data processing; other reviewers should be sought 

for this elements. Overall, this manuscript presents an interesting and novel demonstration 

of how spaceborne radar DEMs can be used to detect vertical change in the Earth’s surface. 

However, in my opinion, for this journal the manuscript needs to be reorganised to present 

a clearer research question/aim at the outset that is focused upon the geomorphological 

problem that is being investigated. There are also elements of the context, methods and 

results that are not organised in a classical research paper order. For the material that is 

presented, I do not see a reason why the context, methods and results can’t be split into 

separate sections. I elaborate on these two items below, in addition to identifying further 

major and minor points. 

We acknowledge the reviewers’ statement regarding their expertise and nonetheless appreciate a 

very thorough and helpful review of the manuscript regarding the geomorphic questions. We do, 

however, disagree that the paper needs significant reorganization to frame the study around a 

geomorphic question, since we intended the work as a primarily methods paper. As mentioned in 

the response to Referee #1 our initial motivation for the study was to establish a full-catchment 
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vertical land-level dataset. However, during processing we realized the constraints and considered 

it more useful to elaborate on the methodological processing steps than a sediment budget. Thus 

the focus has been shifted from the specific geomorphic question to a clear (we think) description 

(including some basic code) that allows other users to perform similar analysis in other terrain. We 

chose to submit the study to Earth Surface Dynamics given a focus on methods (e.g., Grieve et al., 

2016a; Dietze, 2018) and data quality (e.g., Grieve et al., 2016b; Purinton and Bookhagen, 2017) 

in this journal. Therefore, we do not feel that any restructuring or major reframing is in order, but 

we have tried to accommodate the below suggestions.  

 

Major comments 

1) A clear geomorphic research problem needs to be identified at the outset and backed up 

with appropriate context. P2L29 describes what will be included in the paper but there is a 

need for a more explicit geomorphic aim and associated set of objectives. The data processing 

methodology to generate a DEM of Difference is novel and far more could be made to 

contextualise this in the literature review. For example, by critically analysing a greater 

diversity of previous work on DEMs of Difference (P1L25) a stronger case could be made for 

the need to scale-up the typically small-scale topographic surveys that are acquired using 

terrestrial / airborne geomatics techniques to generate DEMs. 

We clarify the manuscript contents at P2L29 to read: 

“In this submission we discuss the errors associated with each of these datasets and the corrections 

applied to mitigate uncertainties in their differencing for dh detection outside of the cryosphere. 

This is primarily a data quality and methods focused study. Geomorphic change detection is 

applied via correction and differencing of the TanDEM-X and SRTM-C over the south-central 

Andes in northwestern Argentina (Fig. 1) to identify and measure areas of dh in gravel-bed 

channels specifically and then across the landscape.” 

Regarding the literature review of dh studies, we feel that the paragraph on P2L3-15 clearly 

contextualizes the research with regards to previous studies of geomorphic change detection 

relying on small-scale or sparse datasets. 
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2) Context, methods and results need to be appropriate separated. For example, P2L20-28 is 

primarily methodological detail but in the introduction section. Much of the material on P4 

is context for the research question (introductory material). Some of the material in section 

3 is discussing methods or presenting results but this section comes before section 4 

(methods). 

As noted in the response to Referee #1, we have removed Section 3 and moved this to the 

beginning of Section 4. It is common in remote sensing studies to briefly introduce the datasets 

used early on, hence the brief description of the TanDEM-X and SRTM-C at P2L16-28, which 

follows well the contextualizing paragraph mentioned in the last reply at P2L3-15. By setting this 

up early on, we avoid any confusion about the datasets we are referring to, since a number of 

TanDEM-X and SRTM-C products exist and are often called the same thing despite different 

processing. Section 2 on P4 is important for contextualizing the correction technique and dataset 

details. We feel that the study is laid out well as is and clearly indicates why we are using the 

specific versions of SRTM-C and TanDEM-X data we mention in the introduction. 

 

3) The description of how “trunk channels” (P8L22) were digitised is confusing. Within the 

braided rivers literature, the term “trunk channels” is not widely used. Do you mean 

primary anabranch or the active width (i.e. Peter Ashmore’s term)? This explanation 

(section 4.2.1) of the methods used to detect channel change needs to be improved (see also 

comments listed below). Fundamentally, it is not clear why a Level of Detection (LoD) 

approach for DEM differencing, rather than the now more widely used approach of 

probabilistic thresholding (see article by Wheaton 2010 that is cited in the manuscript). At 

the very least a clear justification of why a LoD approach was applied is needed. However, a 

stronger analysis could be presented if the DEMs of Difference were regenerated using a 

probabilistic approach. 

We change “trunk channel” on P8L22 to “active width of the primary channel branch (herein, 

trunk channel)”. We apply statistical cutoffs and a final LoD given the coarser (30 m) nature of 

our data, as opposed to the fine (meter to sub-meter) lidar and SfM-MVS data used in other gravel-
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bed river studies. We refer to this as a hybrid of the two techniques. The following is added at 

P8L18 to clarify the above concerns: 

“Previous change mapping over gravel-bed channels has relied on level of detection cutoffs and 

probabilistic thresholding (e.g., Lane et al., 2003; Wheaton et al., 2010). These studies have, 

however, been developed for meter to sub-meter photogrammetric or lidar data. Here we use a 

hybrid approach of statistical outlier detection on the entire distribution of pixels followed by a 

level of detection cutoff for remaining pixels well within the bounds for expected noise between 

the datasets. Remaining uncertainties are primarily caused by speckle noise and terrain 

characteristics, with the biggest impact from slope.” 

 

4) A stronger geomorphic interpretation of the results (e.g. P19L1) could be achieved if there 

was a clearer geomorphic hypothesis to underpin the research at the outset. P19L21 

mentions “field work” undertaken over the last decade. Is there supplementary field data 

that could be used to evaluate the remote sensing results from a more quantitative 

perspective? 

As noted, this is chiefly a data quality and methods study, and we do not wish to over-emphasize 

the geomorphic implications. Rather we intend to point out some applications of the method and 

interesting results that can be attained. We do not have quantitative field data for the entire 

catchment or over the entire time-span (back to February 2000 when the SRTM-C was collected), 

which could aid in this analysis, and the statement is merely intended to emphasize that field 

observations (in addition to GoogleEarth historical imagery), support the growth of these gravel 

piles.  

 

5) The conclusion argues that “previous” measurements are constrained by high signal to 

noise ratios to detect vertical change. However, the noise magnitude reported from the 

satellite radar approach is significant. In my opinion contemporary approaches to DEM 

differencing are all challenged by difficulties separating geomorphic signals from noise when 

the vertical magnitude of change is relatively small compared to the elevation variations 

typically associated with particular geomorphic units that are under investigation. The 
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conclusion would also benefit from a clearer summary of the actual method presented; the 

statement on P21L19 require more context within this section. 

Previous measurements refer mostly to those using ASTER DEMs, which had much higher noise 

compared with TanDEM-X. In fact, there is very little noise in the TanDEM-X data, and it is 

emphasized in the study that the remaining signal to noise ratio in the measurements is primarily 

diluted by the lower quality SRTM-C data (see also our earlier publication: Purinton and 

Bookhagen, 2017). We modify P21L3-6 to read: 

“Previous measurement of land-level changes at the scale of entire mountain belts has been 

restricted to the cryosphere, where the signal of snow and ice change outweighs the noise 

associated with DEMs used for differencing (typically ASTER or single TerraSAR-X / TanDEM-

X CoSSC DEMs). On the other hand, studies outside of the cryosphere have relied on high-

accuracy meter to sub-meter data at much smaller scales to measure height changes in rivers and 

hillslopes.” 

Furthermore, we add the following sentence to the end of the first paragraph of the conclusion: 

“Noise from imperfect datasets continues to hinder signal detection in low magnitude geomorphic 

change detection, however, this study continues to push the envelope of the potential for change 

mapping using the data currently available to many scientists.” 

We feel that aside from these clarifications the conclusion is appropriately concise, without 

providing a detailed method summary aside from mentioning the correction of SRTM-C orbital 

biases followed by differencing and statistical avoidance of noise. 

Additionally, we would like to point out that published DEM uncertainty values are typically an 

average over many land-cover types and terrain characteristics (slope, curvature, aspect). These 

values are usually not representative of individual situations, and we’ve tried to do this justice by 

separating change detection and analysis between steep and vegetated (hillslopes) and flat and 

vegetation-free (gravel-bed channels). 

 

Minor comments 

P1L3. The first sentence is focused on the cryosphere yet the paper is primarily focused with 

changes in terrain (rock / sediment). A more appropriate initial sentence is required. 
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We disagree and wish to contextualize the method in terms of the cryosphere, where most of the 

remote sensing change detection is carried out. Essentially we are presenting a snow and ice 

technique to the rock and sediment community. 

 

P1L25. A greater diversity of refs is required for the rivers and earthquake examples. 

The earthquake example is unique, but we have added to the rivers the citation for Lane et al. 

(2003), Wheaton et al. (2010), and Cook (2017). 

 

P8L22. I think “hand picked” should say “digitised” 

Changed. 

 

P8L29. Was there no vegetation at all? This is context dependent for gravel-bed rivers. 

The channels were vegetation free aside from a few sparse bushes of about 1-2 m height occurring 

in the furthest upstream reaches. This is a semi-arid environment and the climatic and hydrologic 

regime has been characterized in previous publications (Castino et al., 2017; Bookhagen and 

Strecker, 2012). 

 

P8L24. “Error factors” need to be explained. 

These are elucidated as the binning values on P8L31-P9L3, but a change is made to clarify this 

line earlier: 

Before: Change mapping was done by separating the in-channel dh values into bins of contributing 

error factors and applying 5th and 95th percentile cutoffs to each bin, thus only taking the top 

(positive=aggradation) and bottom (negative=incision) 5% of outliers. 

After: Change mapping was done by separating the in-channel dh values into bins of contributing 

error factors (local relief and TanDEM-X individual scene consistency) and applying 5th and 95th 

percentile cutoffs to each bin, thus only taking the top (positive=aggradation) and bottom 

(negative=incision) 5% of outliers. 
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P19L23. A comment is required about the 0.2m/yr average rate to state that this assumes 

geomorphic work is constant each year. 

Added the sentence: 

“This rate represents an average for the entire measurement period and assumes constant 

geomorphic change, whereas the true rates are more stochastic, following rainfall and 

anthropogenic activity variation.” 

 

P20L27. A clearer explanation of how field / auxiliary data could be used is needed. 

Before: In either case, field knowledge or auxiliary data (even in the form of GoogleEarthTM) is 

necessary for accurate assessment of true change signals versus noise. 

After: In either case, field data (e.g., repeat total station or GPS surveys), field knowledge (e.g., 

via observations of incising reaches or roads damaged by aggrading channels), and/or auxiliary 

data (e.g., GoogleEarthTM historical imagery change mapping) are necessary for accurate 

assessment of the location of true change signals versus noise. 

 

 

Sincerely, 

For both authors, 

 

Ben Purinton 

Universität Potsdam, Germany 

purinton@uni-potsdam.de 
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Abstract.

Vertical change is often measured in the cryosphere
:
In

::::
the

:::::
arctic

:::
and

:::::
high

:::::::::
mountains

::
it

::
is

:::::::
common

:::
to

:::::::
measure

:::::::
vertical

::::::
changes

:::
of

::::::::
ice-sheets

:::
and

:::::::
glaciers via digital elevation model (DEM) differencingto assess glacier and ice-sheet mass balances.

This requires the signal of change to outweigh the noise associated with the datasets. On
::::::::
Excluding

:::::
large

:::::::::
landslides,

:::
on the

ice-free earth , land-level change is much smaller in
::::::
smaller

::
in
:::::::
vertical magnitude and thus requires more accurate DEMs for5

differencing and identification of change. Previously, this has required high-resolution
:::::
meter

::
to

::::::::
sub-meter

:
data at small scales.

For the first time we
::::::
spatial

::::::
scales.

::::::::
Following

::::::
careful

::::::::::
corrections,

:::
we

::::
are

::::
able

::
to measure land-level changes at the scale of

entire mountain belts in
:
in
:::::::::
gravel-bed

::::::::
channels

::::
and

::::
steep

::::::::
hillslopes

:::
in the south-central Andes using the SRTM-C (collected

in 2000) and the TanDEM-X (collected from 2010–2015) , both spaceborne radar
:::::::::
near-global

:::::
12–30

::
m

:
DEMs. Long-standing

errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying cosine-fit co-registration to remove10

~1/10 pixel (~3 m) shifts, Fast Fourier Transform and filtering to remove SRTM-C short- and long-wavelength stripes, and

blocked shifting to remove remaining complex biases. The datasets are then differenced and outlier pixels are identified as

potential signal for the case of gravel-bed channels and hillslopes. We are able to identify signals of incision and aggradation

(with magnitudes down to ~3 m in best case) in two > 100 km river reaches, with increased geomorphic activity downstream

of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with magnitudes exceeding ±5 m (up15

to > 10 m for large piles). These values correspond to conservative
::::::
average

:
rates of 0.2 to > 0.5 m/yr for vertical changes in

gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able to identify one major landslide

::
in

:::
the

::::
study

::::
area

:
with a deposit volume of 16±0.15×106 m3. Additional signals of change can be garnered from TanDEM-X

auxiliary layers, however, these are more difficult to quantify. The methods presented can be extended to any region of the

world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest, with the caveat that remaining20

vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography.

1 Introduction

Geodynamic and geomorphological processes operating at different time-scales result in vertical change (herein dh) on the

earth’s surface. In the cryosphere, dh studies use repeat surveys or digital elevation model (DEM) differencing on annual to sub-

annual time-steps (e.g., Berthier et al., 2007; Nuimura et al., 2012; Neelmeijer et al., 2017; Brun et al., 2017). Changes to snow25
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and ice occur most rapidly
::::
(aside

:::::
from

:::::::::
landslides), but dh measurement outside of the cryosphere provides

::::
also

::::::
provide

:
aggra-

dation and incision monitoring for rivers (e.g., Mason and Mohrig, 2018)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Lane et al., 2003; Wheaton et al., 2010; Cook, 2017; Mason and Mohrig, 2018)

, volumes of landslides and extruded lava (e.g., Bagnardi et al., 2016; Bessette-Kirton et al., 2018), and earthquake displace-

ments (Oskin et al., 2012). Large scale monitoring of dh on soil, rock, and unconsolidated sediment is an elusive problem

requiring signals that outweigh the noise in collection methods and resulting datasets.5

Vertical accuracies for modern gridded spaceborne DEMs are on the order of 2–8 m in mountainous regions, though signif-

icantly worse on steepening slopes (e.g., Rexer and Hirt, 2014; Purinton and Bookhagen, 2017). Using DEMs from sources

like the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER; Tachikawa et al. (2011)) with higher

uncertainties is acceptable for monitoring glaciers and ice sheets (e.g., Brun et al., 2017), where dh between even sub-annual

time-steps can be tens to hundreds of meters over areas of many square kilometers. On the other hand, dh of soil, rock, and10

unconsolidated sediment are often at the centimeter to meter scale and far more localized over up to a few hundred to thousand

square meters. Due to these limitations, previous studies relied on intensive mapping from aerial photos (e.g., Hovius et al.,

1997), sparse cross-sections with large temporal spans (e.g., Rinaldi and Simon, 1998), or—more recently—high-resolution

:::::::::::::
recently—meter

::
to

:::::::::
sub-meter

:
topographic data from lidar or photogrammetric point clouds (e.g., Lane et al., 2003; Booth

et al., 2009; Perroy et al., 2010; Cook, 2017) or very high-resolution optical satellites
::::
select

::::::
optical

::::::::
satellites

::::
with

:::::::::
sub-meter15

::::::::
resolution

:
like Pleiades and WorldView (e.g., Bagnardi et al., 2016; Bessette-Kirton et al., 2018). Despite recent advances

in lidar, high-resolution
::::
meter

:::
to

::::::::
sub-meter

:::::
lidar, satellite, and unmanned aerial vehicle data availability (Passalacqua et al.,

2015), these remain limited in spatial and temporal coverage, and sometimes prohibitively expensive. Coarser gridded DEMs

from radar and optical spaceborne sensors remain the best, and often only, option in large or remote areas.

The publicly available Shuttle Radar Topography Mission (SRTM) DEM is an earth snapshot from its 10 day collection20

aboard the Endeavour Shuttle in February 2000. The mission produced an Interferometric Synthetic Aperture Radar (InSAR)

DEM from C-band (5.6 cm wavelength) radar for 80% of earth’s landmasses from typically 2–3 ascending and descending

swaths (Farr et al., 2007). The SRTM-C has seen numerous succeeding releases and void filling (e.g., Jarvis et al., 2008). We

use the most recent floating point re-processed 1 arcsec (~30 m) NASADEM, taking only the non-void filled original SRTM-C

tiles (herein SRTM-C; Crippen et al. (2016); found in the "srtmOnly" directories under: https://e4ftl01.cr.usgs.gov/provisional/25

MEaSUREs/NASADEM/).

The TanDEM-X 0.4
::
and

::
1 arcsec (~12

:::
and

:::
~30

:
m) DEM released in 2016—here received through scientific DLR proposals,

though now available strictly commercially—is the next generation of radar-derived global topography following the SRTM.

This DEM
:::
The

::::::::::
TanDEM-X,

:
covering 97% of earth’s landmasses

:
, was generated by semi-automated processing and stacking of

> 470,000 ascending and descending X-band (3.1 cm wavelength) TerraSAR-X / TanDEM-X satellite bistatic scenes collected30

from December 2010 to January 2015 (Krieger et al., 2013; Rizzoli et al., 2017). As elevations are averaged between scenes, we

take the date of the TanDEM-X as January 2015, thus providing a 15 year time step of dh between SRTM-C and TanDEM-X.

Using the latest possible date for TanDEM-X elevations means that rates of change are conservative minimum values.

In this submission we discuss the errors associated with each of these datasets and the corrections applied to mitigate

uncertainties in their differencing for dh detection outside of the cryosphere. We then difference
:::
This

::
is

::::::::
therefore

:
a
::::
data

::::::
quality35

2
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:::
and

:::::::
methods

:::::::
focused

::::::
study.

::::::::::
Geomorphic

::::::
change

::::::::
detection

::
is
:::::::

applied
:::
via

:::::::::
correction

:::
and

:::::::::::
differencing

::
of

:
the TanDEM-X and

SRTM-C over the south-central Andes in northwestern Argentina (Fig. 1) to identify and measure areas of dh in gravel-bed

channels specifically and then across the landscape. Here, steep gradients in elevation (~1–4 km), rainfall (~0.1–1 m/yr), and

vegetation (sub-tropical forests and croplands to arid, succulent-covered slopes) cause high rates of mass transfer (Bookhagen

and Strecker, 2012; Savi et al., 2016; Schildgen et al., 2016), further influenced by climate change (Castino et al., 2016a,5

b, 2017) and anthropogenic modification (gravel mining and weirs). To conclude, we discuss caveats driven by remaining

uncertainties prevalent in spaceborne DEMs collected over complex topography.

2 Spaceborne DEM Errors

Yamazaki et al. (2017) classify spaceborne DEM errors into speckle noise, stripe noise, absolute bias, and tree height bias. We

divide this further for the case of SRTM-C and TanDEM-X (both radar DEMs) into: (i) sensor specific related to radar and10

spacecraft collection, and (ii) terrain specific related to land-surface cover and topographic complexity. We do not consider

DEMs from optical sensors such as ASTER (Tachikawa et al., 2011) and the Advanced Land Observing Satellite (ALOS;

Tadono et al. (2014)), which have well documented errors (e.g., Racoviteanu et al., 2007; Nuth and Kääb, 2011; Fisher et al.,

2013; Yamazaki et al., 2017) and perform worse than radar, with vertical accuracies > 5 m (1-σ) and persistent high-frequency

artifacts (Purinton and Bookhagen, 2017).
::::::::::
Additionally,

:
a
::::::
dearth

::
of

:::::::::
cloud-free,

::::::::::
high-quality

:::::::
ASTER

:::::::
imagery

:::::::
covering

:::
the

:::::
study15

:::
area

:::::::::
precludes

::
the

:::::::::
automated

:::::
DEM

:::::::::
generation

::
of

::::::::::::::::
Girod et al. (2017)

:::
and

:::::::::
regression

:::::::::
techniques

::
of

:::::::::::::::::::
Wang and Kääb (2015)

:
. On

the other hand, within the study area, the SRTM-C and TanDEM-X both exhibit vertical uncertainties < 3.5 m (Purinton and

Bookhagen, 2017) and also have an appropriately long time difference for vertical land-level change detection. Auxiliary rasters

including the water indication mask (WAM), height error mask (HEM), consistency mask (COM), and coverage map (COV)

delivered with TanDEM-X (Wessel, 2016) allow enhanced understanding of DEM quality (cf. Supplement Section 1).20

Random, or speckle, error caused by instrument thermal noise and localized de-correlation is the primary sensor bias for

radar (Rodríguez et al., 2006). These localized, small magnitude errors reduce with increasing looks used in the final mosaic.

Speckle presents a greater issue in SRTM-C given the maximum three swaths at lower latitudes (Farr et al., 2007). Such noise is

expected to be minimal in the TanDEM-X, with average coverage in our study area of seven ascending and descending scenes,

and up to 14 in many steep areas (Fig. S1). Smoothing data prior to and after phase unwrapping (e.g., multi-looking, adaptive25

filters, or down-sampling) can further reduce speckle. The SRTM-C raw resolution of ~30 m is similar to the final 1 arcsec

product, though, due to interferogram smoothing to reduce noise, the estimated true ground resolution of the final product is

45–60 m (Sun et al., 2003; Farr et al., 2007; Tachikawa et al., 2011). This may be improved in the newly released data (Crippen

et al., 2016), but this remains to be tested. Multi-looking of 4×5 pixels of raw radar returns (resolution ~3.3 m) was used in the

case of TanDEM-X to generate a final 0.4 arcsec (~12 m) product, thus significantly smoothing and reducing speckle (Rizzoli30

et al., 2017).

Besides a small geolocation error expected in both DEMs from instrument uncertainties, the SRTM-C has a number of

spacecraft specific biases, manifested in short- and long-wavelength striping (Rodríguez et al., 2006; Yamazaki et al., 2017).
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Figure 1. Overview of study area in NW Argentina with (A) elevation, (B) rainfall (Tropical Rainfall Measurement Mission 12 year average;

TRMM2B31; Bookhagen and Strecker (2008)), and (C) vegetation (MODIS product 13C1 Enhanced Vegetation Index 14 year average;

MODIS EVI; Huete et al. (1994)), where lower, brown (higher, green) values represent sparse (dense) vegetation. Note strong east-west

gradients in all three maps. The white watershed boundary delineates the internally drained Altiplano-Puna Plateau. The gray line in (B)

and (C) indicates the 2000 m contour line. The yellow patches in (C) are areas identified in the TanDEM-X water indication mask (WAM)

as having low amplitude and/or low coherence. These patches correspond to salt flat (salar) regions on the plateau, water bodies (e.g.,

reservoirs in the low-elevation areas), steep and vegetated areas (DEM error), and other zones of coherence loss, such as the dunes identified.

Inset boxes in (C) indicate locations of dh map-view Figures 8–9, with TanDEM-X tile boundary in green. Note anthropogenic tampering

of natural gravel-bed channels (Río Grande and Río Toro) with downstream flow diversion (weirs) and gravel mining activity nearby the

populous cities of Salta and Jujuy.

The short wavelength (~0.5–1 km, magnitudes typically < 0.5 m) stripes are related to jitter in the antenna mast caused by the

periodic firing of shuttle attitude thrusters (Farr et al., 2007). Longer wavelength errors with magnitudes > 1 m are caused by

individual swath tilts and form complex undulating patterns over ~100 km distances (Crippen et al., 2016; Yamazaki et al.,

2017). TanDEM-X satellite biases can be found in slight tilting of individual TerraSAR-X / TanDEM-X scenes (e.g., Neelmeijer

et al., 2017), though these tilts were removed during stacking in the end product (Rizzoli et al., 2017). The careful monitoring5
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and control maintained over flight geometry, in addition to post-processing to remove tilts using ICESat (Ice, Cloud and land

Elevation Satellite; Schutz et al. (2005)), restricts most of the TanDEM-X uncertainty to the second category of terrain specific

error (Rizzoli et al., 2017).

Land-surface cover plays a key role in modulating radar returns. TanDEM X-band and SRTM C-band radar have different

penetration depths in dense vegetation (Carabajal and Harding, 2006; Hofton et al., 2006; Wessel et al., 2018) and snow and ice5

(Rignot et al., 2001; Rossi et al., 2016), leading to different height returns. We note this important caveat, but are able to ignore

it for our particular study question (land-level change of bare material) and area (only partial vegetation and no permanent

snow and ice). Sub-tropical vegetation in our study area does allow some exploration of the effect on dh, however, we find no

clear relation (cf. Supplement Section 2). In any case, vegetation differences are expected to be less significant than for optical

data, which returns only the canopy heights (e.g., Yamazaki et al., 2017). Both DEMs have major inconsistencies and speckle10

over water bodies, wet salt flats, and deserts caused by de-correlation, variable reflectance, and/or weak backscatter of the radar

signal (Rodríguez et al., 2006; Farr et al., 2007; Wendleder et al., 2013; Rizzoli et al., 2017). For the SRTM-C, these areas are

largely voids anyway, and for TanDEM-X the WAM raster provides information on coherence and amplitude for each pixel to

identify these untrustworthy measurements (Fig. 1C).

Remaining errors in the SRTM-C and TanDEM-X are related to terrain characteristics (cf. Supplement Section 2). This is15

the result of topographic complexity below the resolution of the sensor, radar geometry considerations (layover, foreshort-

ening, and shadowing), and interferometric phase unwrapping errors, all most pronounced in steep mountains. Such terrain

biases are demonstrated in the SRTM-C with elevation (Berthier et al., 2006; Paul, 2008), slope and aspect (Gorokhovich and

Voustianiouk, 2006; Van Niel et al., 2008; Peduzzi et al., 2010; Shortridge and Messina, 2011), and resolution (manifested

in curvature) (Gardelle et al., 2012), and in the TanDEM-X with only slope (Purinton and Bookhagen, 2017; Wessel et al.,20

2018). Terrain slope—also related to relief (Fig. S7)—is the primary cause of error in any DEM, demonstrated in the division

of vertical uncertainties for most DEMs into slope bins (e.g., Wessel et al., 2018). Slope dependent errors may be reduced with

higher
:::
finer

:
resolution data and increased look angles for mosaicking, as in the case of TanDEM-X, but these uncertainties are

expected to remain as the most prevalent cause of error in any spaceborne DEM.

With this framework for understanding the potential error sources in the SRTM-C and TanDEM-X, it is possible to correct25

one dataset to another in a multi-step processing chain (e.g., Yamazaki et al., 2017) allowing dh identification and measurement

with greater certainty.

3 Correction of SRTM-C to TanDEM-X
::::::::
Methods

Given the excellent agreement with differential GPS globally (Wessel et al., 2018) and in the study area (Purinton and Bookha-

gen, 2017) along with the minimal errors associated with orbital characteristics, we consider the TanDEM-X DEM as our30

reference surface in order to correct the more problematic SRTM-C. During correction, we do not apply any speckle reduction

(e.g., via an adaptive filter as in Yamazaki et al. (2017)), as we are interested in raw elevation values and not a smoothed DEM.

For the SRTM-C we select the non-void filled NASADEM data so as not to include any auxiliary elevation measurements
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from, for instance, ASTER (Crippen et al., 2016). Importantly, both DEMs are referenced to the WGS84 ellipsoid vertical

datum, whereas previous SRTM-C releases have been referenced to the EGM96 geoid (Farr et al., 2007), thus requiring a

geoid-adjustment step introducing additional uncertainties prior to comparison.

For correction and differencing we use the 0.4 arcsec TanDEM-X that we bilinearly resampled to 1 arcsec to match the raw

resolution of the SRTM-C. Wessel (2016) note that the delivered TanDEM-X 1 arcsec tiles, which we also have a number of,5

were generated with average resampling of the 0.4 arcsec tiles by DLR and not by any increase in multi-looks or interferogram

smoothing. We tested a number of resampling schemes including average, bilinear, cubic, and cubic spline on the original

0.4 arcsec tiles and found better results (lower vertical uncertainty compared with differential GPS) from the commonly used

bilinear resampling, whereas the un-edited 1 arcsec tiles delivered by the DLR—generated by average resampling—had higher

vertical uncertainties.10

The TanDEM-X and recently updated SRTM-C were both referenced to high-accuracy ICESat (Schutz et al., 2005; Zwally

et al., 2009) measurements (collected between 2003–2009) during final block adjustments (Crippen et al., 2016; Rizzoli et al.,

2017). While this removes the complete independence of these datasets, the relative sparsity of these points (170 m along track

and up to 80 km across track) does not provide a continuous adjustment surface, but rather acts to improve local elevations

and overall DEM quality with respect to remaining tilts (Rizzoli et al., 2017). Throughout the study dh refers to the TanDEM-15

X−SRTM-C 15 year differences (including both real change and vertical uncertainties).

4 Methods

3.1 SRTM-C Correction Steps

Our correction chain was applied using the previous SRTM-C output at each stage as input in the following step. All steps were

carried out on a 1◦×1◦ tile-by-tile basis (unprojected WGS84 vertical and horizontal datums), however, merging tiles and then20

processing produced identical results. We also found comparable results using Universal Transverse Mercator (UTM) equal

area projected tiles. The correction steps served to correct SRTM-C orbital biases and did not attempt to correct for terrain

characteristics. We assumed that actual vertical change in our study area represented an extremely small fraction of pixels in

the ~13 million pixel dh raster for each tile. This ensures that the corrections only rectified SRTM-C biases on stable terrain

and were not influenced by smaller areas of true vertical land-level changes. Comparison of correction steps was done using25

normalized percentage difference histograms and quantile-quantile (QQ) plots.
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3.1.1 Co-registration

We corrected for sub-pixel offsets known to affect DEM comparisons (Van Niel et al., 2008; Berthier et al., 2007) using the

universal co-registration of Nuth and Kääb (2011). This rigid translation is based on a cosine function fit to the relationship

between terrain aspect and dh normalized by terrain slope:

dh

tan(α)
= a · cos(b−ψ) + c (1)

where α is slope, ψ is aspect, and the variables a, b, and c are the magnitude, direction, and mean bias, respectively. The5

shifts were applied to the SRTM-C by bilinear resampling with the dx= a · cos(b) and dy = a · sin(b) vectors used to weight

the neighboring cells, and the mean shift dz = c · tan(ᾱ) added at the end.

We fit equation (1) to only slopes > 5◦ and, if necessary based on goodness of fit parameters, continued iteration of the fitting,

shift vector solving, and interpolation until the magnitude of the shift vector (a) was < 0.5 m or the reduction in normalized

median absolute difference (NMAD; Höhle and Höhle (2009)) on stable terrain was < 5% (Nuth and Kääb, 2011).10

Our co-registration did not correct for slope and curvature using polynomial fitting (e.g., Kääb, 2005; Gardelle et al., 2012)

as this introduces empirical models and additional uncertainties. We did not note
::::::
observe a linear positive or negative trend

between slope and dh (Fig. S7). Curvature versus dh demonstrates the difference in actual resolution of raw sensor data between

the SRTM-C and TanDEM-X (Fig. S10), however, correction of this intrinsic measurement limit introduces artificial elevations

and are thus inappropriate for dh mapping between DEMs from different data sources and time-steps (cf. Supplement Section15

2).

Iterative shifting and bilinear resampling of one DEM to another by decimeter steps had the same effect on rectifying aspect

biases (same shift vectors leading to minimization of bias) as the empirical fitting of the cosine relationship and calculation

of shift vectors (cf. Supplementary Iterative Shifting Video). This indicates the robust nature of the method of Nuth and Kääb

(2011), assuming a sufficient distribution of high-slope, multi-aspect-facing topography is available for cosine fitting. The20

minimization of the sum of errors and cross-correlation methods (e.g., Kääb, 2005) were unsuccessful at removing shifts in

our study region.

3.1.2 Destriping

For removal of long- and short-wavelength striping patterns in the SRTM-C, we followed previous work using frequency

analysis techniques to identify striping artifacts (e.g., Arrell et al., 2008) and noise (e.g., Purinton and Bookhagen, 2017) in25

DEMs. We took particular inspiration from Yamazaki et al. (2017) and used fast fourier transforms (FFTs) to filter the dh.

In a first step, we removed all pixels identified as having low coherence in the TanDEM-X WAM. This filtered large water

bodies and other areas that may show artifact noise affecting FFT analysis. Following this, any void pixels (including the low-

coherence areas) were set to dh= 0 and an FFT was run. The power spectral density (PSD) was calculated as the magnitude

of the FFT squared and a mean 5×5 filter was passed over it. The ratio of original and smoothed PSD was then taken to30
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identify regions of the spectrum with high outliers (high ratio) representing cyclic, tile-spanning stripe bias. We used the 97.5th

percentile of the ratio as the cutoff value. The remaining top 2.5% high- and low-frequency outliers received an inverse FFT,

which produced a map of the long- and short-wavelength stripes. These stripes were then removed from the SRTM-C and the

process was repeated iteratively until the improvement in root mean squared error (RMSE) was < 5%.

We refer to the above parameters as non-aggressive destriping, since we are just "shaving off" the top of the distribution. In5

aggressive tests, we experimented with lower percentile cutoff values (e.g., 95th) and lower tolerance for RMSE convergence

(e.g., < 2% improvement). While these more aggressive destriping schemes did successfully eliminate the SRTM-C orbital

biases, we also found that the true topography was often filtered following the > 5 iterations needed to meet the RMSE

convergence requirements (Fig. S11). Therefore, we chose to use the non-aggressive cutoffs and ran additional blocked shifting

discussed in the following section.10

3.1.3 Blocked Shifting

Patchy positive and negative regions in the co-registered, destriped dh map were solved by breaking the 1◦ × 1◦ tile into

square blocks and shifting each block by the median value. These areas likely correspond to remaining orbital biases that

were not removed in our non-aggressive destriping technique. There may be local correspondence between these patches

and atmospheric water vapor conditions at the time of SRTM-C collection in February 2000, however, such data at the fine15

:::::::::::
sub-kilometer

:
scale necessary for analysis is unavailable. Furthermore, local adjustment of the SRTM-C and TanDEM-X to

ICESat measurements could contribute to these shifts, though the contribution is difficult to quantify.

We began by masking the low-coherence pixels (again from the WAM) since these would disproportionately contribute to

local median shifts. Using a variety of block sizes with edge lengths ranging from 1.35–7.2 km, we found the median dh and

median slope in each block. We used the median slope to normalize the median dh values, since we expect areas of higher slope20

to have greater uncertainties and biases (Fig. S7) unrelated to SRTM-C orbital biases. Furthermore, we allowed a maximum

shift per block of ±1 m, thus ensuring that this step did not cause unreasonably large shifts due to outliers contained in a given

block.

3.2 Differencing for Change Detection

Following orbital SRTM-C bias corrections, it is possible to merge corrected tiles and create maps of dh to measure areas25

of actual change.
:::::::
Previous

::::::
change

::::::::
mapping

::::
over

:::::::::
gravel-bed

:::::::
channels

::::
has

:::::
relied

::
on

:::::
level

::
of

::::::::
detection

::::::
cutoffs

:::
and

:::::::::::
probabilistic

::::::::::
thresholding

:::::::::::::::::::::::::::::::::::::
(e.g., Lane et al., 2003; Wheaton et al., 2010).

:::::
These

::::::
studies

:::::
have,

:::::::
however,

:::::
been

::::::::
developed

:::
for

:::::
meter

::
to

::::::::
sub-meter

::::::::::::::
photogrammetric

::
or

::::
lidar

::::
data.

:::::
Here

:::
we

:::
use

:
a
::::::
hybrid

::::::::
approach

::
of

::::::::
statistical

:::::
outlier

::::::::
detection

:::
on

:::
the

:::::
entire

:::::::::
distribution

::
of
::::::
pixels

:::::::
followed

:::
by

:
a
:::::
level

::
of

::::::::
detection

:::::
cutoff

:::
for

:::::::::
remaining

:::::
pixels

::::
well

::::::
within

:::
the

::::::
bounds

:::
for

::::::::
expected

:::::
noise

:::::::
between

:::
the

::::::::
datasets.

Remaining uncertainties are primarily caused by
::::::
speckle

:::::
noise

::::
and terrain characteristics, with the biggest impact from slope.30

:::
The

::::::::
following

:::::::
sections

:::::::
provide

:
a
:::::::
detailed

:::::::::
description

:::
of

:::
the

::::::
change

::::::::
detection

::::::
method

:::
for

:::::::
channels

::::
and

::::::::
hillslopes.

:
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3.2.1 Channels

We know from field observations that large braided gravel-bed channels in the study area (Fig. 1B) change rapidly with

local incision and aggradation (natural and anthropogenic in the form of gravel mining) on the order of meters during the

past decade. Trunk channel
:::::::
Outlines

:::
of

:::
the

:
bank-to-bank outlines were hand-clicked

:::::
active

:::::
width

::
of

::::
the

:::::::
primary

:::::::
channel

:::::
branch

:::::
were

:::::::
digitized

:
from open-source satellite imagery from BingTM and GoogleEarthTMin QGIS. We buffered the resulting5

channels by −60 m (upper limit of gridded SRTM-C resolution). This means we only use the wide (> 120 m), non-vegetated

channel reaches from Río Toro and Río Grande where there has been recent aggradation and incision.

Change mapping was done by separating the in-channel dh values into bins of contributing error factors and
:::::
(local

:::::
relief

:::
and

::::::::::
TanDEM-X

:::::::::
individual

:::::
scene

::::::::::
consistency)

::::
and applying 5th and 95th percentile cutoffs to each bin, thus only taking the

top (positive=aggradation) and bottom (negative=incision) 5% of outliers. We first used the TanDEM-X WAM to remove the10

untrustworthy dh pixels where coherence was lost three or more times (Wessel, 2016). Because gravel-bed channels represent a

low-slope environment with no vegetation and we are only measuring wide valleys, we assumed that DEM error from SRTM-C

and TanDEM-X were restricted to random speckle noise. Nonetheless, to account for steeper areas with potentially more error

from phase unwrapping, we separated dh into relief bins using the pixels’ 500-m radius relief values. We also separated dh

by the TanDEM-X consistency (COM) and height error (HEM) masks (Fig. S2–S3). Taken together, dh pixels in high-relief,15

high-height error, and low-consistency bins required greater magnitudes to avoid noise cutoffs than vice versa. A minimum

level of detection
::::::::
approach (Lane et al., 2003) was taken as the RMSE of the entire dh map on low-slope (similar to channel

slope) areas. In a final step, all remaining in-channel dh values below this RMSE cutoff were removed as likely noise.
::::::
Volume

::::::
changes

:::
are

:::::::::
calculated

::::
from

:::
the

::::
sum

::
of

:::::
pixel

::::
area

::::
(900

:::
m2)

:::::::::
multiplied

:::
by

::::::
vertical

:::::::
change,

::::
with

:::::::::::
uncertainties

::::
taken

::
as
:::
the

:::::
level

::
of

:::::::
detection

::::::
RMSE

::::
and

:::::::::
propagated

:::
via

::::::::
equation

:::
(15)

::
in
:::::::::::::::
Lane et al. (2003)

:
.20

3.2.2 Entire Landscape

When considering dh over the entire landscape, we include far more uncertainties related chiefly to steeper terrain. Thus, the

error must be handled differently than for strictly low-slope pixels (in-channel). First, a corrected dh map for the entire study

area was generated. Similar to channel mapping, low-coherence pixels were removed with the WAM and dh was separated

into bins of slope, height error, and consistency to retrieve only the top and bottom 5% of outliers in each bin set. The level of25

detection cutoff was taken as the RMSE across the entire landscape, which was almost entirely stable terrain, and remaining

dh values below this cutoff were eliminated.

At this stage, a great many lone and patchy dh values remained. Given this, it was not possible to automatically identify

areas of change that were only a small number of pixels in size. Interested in large-scale changes, likely not associated with a

single pixel, we sought connected pixels showing all up or all down vertical motion. To winnow the potential change pixels,30

we applied binary opening with a 1-pixel radius circular kernel, thus removing many unconnected outliers and small patches.

Next, we took the summed dh of each separate patch. It was assumed that the majority of patches, and thus majority of summed

values, were remaining noise in the difference map, whereas signal should be spatially coherent and largely positive or negative.
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Therefore, by applying a standard deviation cutoff over summed patches (here we used 1-σ, though this can be easily set for

testing), we removed a vast majority of remaining pixels, and only kept the largest outliers. This limited the method to only

assessing the largest coherent vertical changes in the landscape, but eliminated the possibility of mis-identifying change that

was in fact noise. These remaining patches can be explored in map-view and compared with satellite or historical imagery for

further confirmation and analysis.5

4 Results

4.1 Correction Steps

Co-registration of SRTM-C to TanDEM-X revealed X-Y shifts of ~1/10 of a pixel (~3.7 m). Although minor Z shifts (~1

m) were also determined and corrected during co-registration, these were not unique across entire tiles, but rather related to

long-wavelength SRTM-C biases. The cosine fitting to dh normalized by terrain slope can be seen in Figure 2, whereas, in10

map-view the change is more subtle and difficult to discern.

In Figure 3, we demonstrate one iteration of destriping for a single SRTM-C tile (S 24◦, W 66◦). It is apparent in the co-

registered dh map that a number of long- and short-wavelength shifts are affecting the tile. Using our FFT, statistical cutoffs,

inverse transform, and stripe removal, the resulting dh map has a much more uniform appearance and the median and RMSE

are both reduced. This process was typically repeated 2–4 times per tile, until the RMSE began to converge. While topographic15

uncertainties remain in steep and high-relief regions, the overprinting biases are reduced.

Since we do not use an aggressive FFT filtering scheme, a number of patchy outliers remain. We attempted to correct these

regions using blocked shifting (Fig. 4), shown in this case over three tiles covering the foreland and Altiplano-Puna Plateau

Region (S 24–26◦, W 66◦). After testing multiple block sizes, we preferred blocks with edge length of 3.6 km, since these

provide a small enough area to correct highly localized inconsistencies, while also being far greater in size than the largest20

vertical changes we would expect in the landscape.

4.1.1 Comparison of Correction Steps

Since stacked histograms are difficult to interpret and larger magnitude outliers are fewer in number and thus obscured, we

plotted the normalized bin percentage difference of dh in each step of correction (Fig. 5). Co-registration mostly caused a

mean shift in the distribution. Moving to destriping, the number of pixels at high outlier values went down significantly (>25

20% drop in ±15–20 m bins) and there was some (~10%) increase in bins ±5 m, whereas the number of values close to

zero dh decreased. This represents an overall re-distribution of error from the SRTM-C orbital biased patterns (Fig. 3) to a

more uniform spatial pattern (Fig. 4). The final blocked shifting caused very little overall change in the distribution, which

was mostly in the form of another mean shift (this time directed the other way from co-registration). These effects can also

be seen in a QQ plot of each subsequent correction step (Fig. 6), where co-registration caused a mean shift and some outlier30

reduction, de-striping had a large effect on narrowing the distribution at the tails, and blocked shifting again had a minimal

10



Figure 2. Relationship of dh (normalized by tangent of slope) to aspect (A) before and (B) after co-registration and bilinear resampling of

SRTM-C. We fit to equation (1) on all raw data. Note the close match between equation fit and median values. The cosine relationship in (A)

is caused by overestimation of the SRTM-C on NE facing aspects (peaking at ~60◦) and underestimation on SW facing aspects (peaking at

~220◦). The resulting (dx, dy) shift vector is directed SW.

Figure 3. One iteration of FFT destriping from one tile (S 24◦, W 66◦). Both median and RMSE improve from (A) the co-registered map to

(C) the destriped map. Stripes removed by FFT are shown in (B). Note that (C) is not the final corrected map as iteration was run twice more

before RMSE began to converge at 5% tolerance level. Voids (white space) are untrustworthy pixels removed by TanDEM-X WAM cutoff

prior to destriping.
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Figure 4. Blocked shifting on three destriped and merged tiles (S 24–26◦, W 66◦). Blocks are 3.6 km in height and width. The (A) destriped

median and RMSE both improve slightly in (D) the final shifted dh map. Note that the original blocked medians (B) show a slight pattern

resembling the long-wavelength stripe bias from SRTM-C. In (C) we have normalized the median shifts by the median slope values, so as

not to over-correct the steeper regions with higher uncertainties. The color scheme is changed for (B) and (C), and the scale of (C) is half

the width of (B) since it only extends to the maximum allowable shift of ±1 m. Scales and color scheme in (A) and (D) are identical. Voids

(white space) are untrustworthy pixels removed by TanDEM-X WAM cutoff prior to median calculation.

effect on narrowing the distribution at the most extreme outliers. In all cases, the median value (0.5 quantile) moved closer to

zero. Overall, these plots indicate the importance of SRTM-C correction and of the destriping step in particular prior to using

TanDEM-X−SRTM-C dh maps for change mapping.

4.2 Areas of Change

As discussed in the methods, we separated potential change identification and measurement from corrected (co-registered,5

destriped, block shifted) dh maps between the in-channel pixels and the entire landscape.
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Figure 5. Stacked histograms
::::::::::
Characteristic

:
(A)

:::::
stacked

::::::::
histograms

:
and

:::
(B) normalized percentage bin difference

:::
from

::::
three

::::
tiles

::::::
merged

:::
and

:::::::
processed

:
(B

:
S
:::::::

24–26◦,
::
W

:::
66◦). Though it is difficult to interpret the histograms, plotting their difference (normalized by bin count) as

percentage change between successive steps demonstrates the shifting of the median to near-zero and the reduction in outliers.

4.2.1 Channels

Binning corrected in-channel dh and cutting off any remaining outliers within the low-slope RMSE of ~3 m reduced the

data density significantly by cutting out any pixels within expected noise. The potential signal pixels were then plotted atop

longitudinal profiles from the Río Toro and Río Grande (Fig. 7). The point clouds of dh values were colored with a Gaussian

kernel density estimate (KDE) to demonstrate the denser (warmer colors) versus sparser (cooler colors) zones of measurement.5

The density is displayed as percentiles of the full distribution of the 2D KDE of dh from both channels. Turning to map-view,
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Figure 6. Quantile-quantile (QQ) plots showing difference between each successive correction step :
:::
from

::::
three

::::
tiles

:::::
merged

:::
and

::::::::
processed (

:
S

::::::
24–26◦,

::
W

::::
66◦).

:
(A) original to co-registered, (B) co-registered to destriped, and (C) destriped to block shifted. We note that co-registration

and destriping have the greatest effect on zero-median-shifting and narrowing the outliers. The quantiles (0.01, 0.05, 0.5, 0.95, and 0.99) and

their respective values are indicated on each axis to highlight this effect.

we can observe the location of these pixels in the channel and their relation to local characteristics, upstream factors, and

anthropogenic tampering (Fig. 8).
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Figure 7. Longitudinal profiles of (A) Río Grande and (B) Río Toro overlain with point cloud of potential dh signal (pixels outside of the

range of expected noise). Error bars are RMSE from low-slope (< 5◦) terrain outside of the channel area. Each dh point cloud is colored

by probability density from a Gaussian 2D KDE to show the denser (warmer) versus sparser (cooler) reaches. The KDE is scaled over all

measurements from both channels and relative percentiles of the full distribution are used to highlight denser zones, particularly in (B) Río

Toro. Note the x-axis range is 100 km greater for the longer Río Grande, despite the same axis scaling. Color scheme for elevation profiles

on right axes match map-view color of each channel in Figure 1B. The knickpoint in Río Grande is caused by the large Del Medio fan (Savi

et al., 2016), whereas the origin in Río Toro is tectonic, caused by the Gólgota Fault (Marrett et al., 1994; Hilley and Strecker, 2005). In both

cases, the majority of the dh signal appears downstream of the knickpoint. Map-view of green highlighted regions is shown in Figure 8.
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Figure 8. Map-views of the in-channel dh measurements for Río Grande (A) and Río Toro (C) highlighted in the longitudinal profiles in

Figure 7. For location of each map refer to Figure 1C. More details are shown in zoom-ins of the in-channel dh measurements in (B) and

(D). The solid outline is the hand-clicked
::::::
digitized

:
bank-to-bank channel and the stippled line is the −60 m buffer area of measurement. We

note large areas of incision related to the steep and narrow channel downstream of the Del Medio fan and knickpoint in Río Grande (A),

immediately followed by a zone of aggradation with levee structures to direct gravels (B). For Río Toro (C) we highlight the anthropogenic

influence of gravel mining generating large piles and also causing incision due to local excavation (D).

4.2.2 Entire Landscape

To be mapped as true vertical change, an area in the greater landscape must be significantly large and coherently positive or

negative since many of the pure noise patches are > 10 pixels in size (> 0.01 km2). Furthermore, the individual pixels must show

significant height changes above the overall RMSE of ~6 m and outlier cutoffs in each bin, which in steeper bins may be > 10 m.

Examining results in map-view (Fig. 9) allows assessment of the potential true signal versus noise. At this stage it is necessary5
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to include auxiliary data from field knowledge or remote sources like aerial or satellite imagery (e.g., GoogleEarthTM). Our

method was able to identify one major landslide
::
in

::
the

:::::
study

::::
area

:
(Fig. 9D), however, most other measurements are remaining

large artifacts attributable to both the SRTM-C and TanDEM-X. Low-coherence zones that may represent change between

TerraSAR-X / TanDEM-X contributing scene collection (Fig. 9B–C) are necessarily removed in the WAM cutoff prior to

binning.5

Figure 9. (A) Map-view of landscape-wide dh identification. For location refer to Figure 1C. Our method returns little change on the low-

erosion Altiplano-Puna. The dunes (B–C) are not identified since they are masked out using the TanDEM-X auxiliary WAM as low-coherence

zones. This indicates their rapid displacement between TerraSAR-X / TanDEM-X scene collection. Our method is able to identify one major

landslide (D) in the Del Medio catchment (Savi et al., 2016), however, there are many erroneous results in steep and vegetated zones to the

east, shown in (E) over the TanDEM-X hillshade.
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5 Discussion

5.1 Necessity of Correction Steps

The original SRTM-C is plagued by numerous terrain and sensor specific errors and biases (e.g., Carabajal and Harding,

2006; Gorokhovich and Voustianiouk, 2006; Van Niel et al., 2008; Gallant and Read, 2009; Yamazaki et al., 2017). Despite

re-processing of the original data in the new NASADEM product, many of these errors remain (Crippen et al., 2016). On the5

other hand, the newer TanDEM-X apparently has far fewer biases related to satellite geometry, and most error is restricted to

terrain characteristics like slope and vegetation, though results are still nascent (e.g., Baade and Schmullius, 2016; Purinton

and Bookhagen, 2017; Wessel et al., 2018). Our correction steps do not seek to eliminate bias related to terrain characteristics

at the scale of a few hundred meters, but rather to correct large scale biases related to primarily the SRTM-C at scales of

several hundred meters to kilometers. Perhaps this reduction in bias is most obvious in map-view of the subsequent dh patterns10

between processing steps (Fig. 3A to Fig. 4A to Fig. 4D), but we also show statistically that these steps lead to a narrowing

of the distribution and centering of the differences on zero-median (Fig. 5–6). We assume that the vast majority of the pixels

(outside of the cryosphere) should be unchanged over 15 years, and thus median shifts between the datasets at large scales are

biases in need of correction.

Co-registration indicates NE facing aspects are overestimated by the SRTM-C causing a negative excursion in the cosine fit,15

whereas SW facing aspects are underestimated and thus the dh compared to TanDEM-X is positive. This error mostly affects

higher slopes (Nuth and Kääb, 2011), which is the reason for normalization of dh by the tangent of slope. The directions of bias

correspond to the look direction orthogonal to the SRTM-C descending path and parallel to the ascending path. This indicates

that the source of this bias is the SRTM-C, as reported by previous authors (Bourgine and Baghdadi, 2005; Gorokhovich and

Voustianiouk, 2006; Shortridge and Messina, 2011), and not TanDEM-X. A shift—accompanied by bilinear resampling—of20

just ~3.7 m (magnitude a of equation (1) fit) to the SW rectifies this aspect bias.

As opposed to Yamazaki et al. (2017), we do not set a user defined ratio for FFT destriping, but rather use statistical "shaving

off" of only the outlier stripe noise until the data converges. This leaves some stripe noise
::::::::
converge.

::::
This

::::::::::
conservative

::::::::
approach

:::::
retains

:::
the

::::
true

::::::::::
topographic

:::::
signal

:
at the expense of preserving topographic signal

::::::::
remaining

:::::
stripe

:::::
noise. In the case of more

aggressive FFT filtering, using lower percentiles for the ratio cutoff and more strict RMSE convergence requirements, the25

actual topography began to filter out of the dh maps (Fig. S11), which, as stated, is not the aim of our orbital bias correction

steps and would lead to the inclusion of artificial (i.e., FFT generated) dh measurements.

Remaining stripe noise is apparent in Figure 4B, where the blocked medians resemble the original long-wavelength stripe

pattern, though discontinuous. Despite the appearance in some areas of more negative values in the western parts of tiles

(higher elevation, Altiplano-Puna Plateau), we do not find any clear relation between block medians and elevation at any block30

size or in any tile (cf. Supplement Section 3). Block shifting removes the remaining noise, but again we avoid correcting for

strongly overprinting topographic biases related to slope by normalizing the block median dh by median slope. Overall, these

steps provide a more trustworthy dh map, while respecting the inherent and difficult to account for biases in radar derived

spaceborne DEMs.
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5.2 Potential Change Mapping

For lower slope regions (i.e., channels), the potential for change mapping is greater than in steeper areas. This is caused by

the better agreement and lower vertical uncertainty of the two datasets in flatter, vegetation free areas. In both channels, the

largest density of measurements is found below the respective knickpoints. This corresponds to an order of magnitude increase

in the 2D KDE shown by the warm colored patches in Figure 7. In terms of the actual number of measurements (number of5

dh pixels) per binned channel reach, Figure S13 demonstrates this approximately five to ten fold increase in the downstream

reaches with a simple histogram. This result partially has to do with a narrower channel and thus less measurements available

above the knickpoints (hence the numerous gaps in measurement in the upstream reaches), however, these results also appear

to indicate that the most geomorphic work is happening downstream of the oversteepening point. This also coincides with a

transition to a wetter environment in both cases.10

The Río Toro has a particularly dense zone of measurements at the mountain front where naturally high rates of aggradation

are enhanced by human gravel excavation and piling. On the other hand, in the Río Grande the downstream measurements

are spread over a greater channel reach and thus appear less dense in the 2D KDE (the measured Río Grande is ~100 km

greater in length than the Río Toro). Downstream of the knickpoint, Río Toro is in a net aggradation state with a corrected

dh volume of 0.81±0.15×106 m3, whereas, for Río Grande the net state is incision with a volume of −0.69±0.15×106 m3.15

In comparison, the pre-correction volume in each case is −1.18±0.12×106 m3 and 2.80±0.11×106 m3 for Río Toro and Río

Grande, respectively, thus indicating a flip in sign and reduction of magnitude following careful corrections applied prior to

differencing.

Locally, the aggrading and incising patches may be related to braided channel avulsion and subsequent rapid incision into

the unconsolidated bed material during frequent high-discharge events brought by convective rainfall in the summer monsoon20

(Castino et al., 2016a, b, 2017). In map-view (Fig. 8), we see that these automated measurements can be correlated with

additional sources. For Río Grande, the steep knickpoint at the Del Medio fan (Savi et al., 2016; Schildgen et al., 2016) causes

a major zone of incision immediately followed by aggradation where the material is deposited. Fieldwork has indicated that

some of this incision is man-made, caused by attempted removal of aggrading material coming from the productive (e.g.,

debris flows cf. Savi et al. (2016)) Del Medio catchment. Levee structures (Fig. 8B) are a testament to this tendency towards25

aggradation downstream of this extremely erosive fan. The cause of aggradation in the Río Toro is clearly enormous gravel

piles being created just at and downstream of the mountain front. The volume of the large gravel pile indicated in Figure 8D

directly at the mountain front in Río Toro is 0.78±0.06×106 m3, with this growth between SRTM-C and TanDEM-X observed

during field work over the past decade and from GoogleEarthTM historical imagery back to 2003. This is coupled with incision

in the active channel upstream of the piles where gravel is being removed to prevent widespread aggradation.30

In terms of rates of change, our minimum measurable dh of ±3 m corresponds to a rate of ±0.2 m/yr, given the conservative

15 year time difference between DEMs.
:::
This

::::
rate

::::::::
represents

:::
an

::::::
average

:::
for

:::
the

:::::
entire

:::::::::::
measurement

:::::
period

::::
and

:::::::
assumes

:::::::
constant

::::::::::
geomorphic

::::::
change,

::::::::
whereas

:::
the

:::
true

:::::
rates

:::
are

:::::
more

:::::::::
stochastic,

::::::::
following

:::::::
rainfall

:::
and

::::::::::::
anthropogenic

:::::::
activity

::::::::
variation.

:
The

area of greatest point density in the longitudinal profiles in Figure 7 is centered at ±5 m, corresponding to a rate of ±0.33 m/yr,
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with maximum rates of incision and aggradation, occurring at anthropogenic gravel piles and excavation sites, in excess of ±0.5

m/yr. Human tampering is known to cause significant excursions from natural river dynamics (Kondolf, 1997; Grant, 2012),

and we have shown that signals of excavation and piling are highlighted as above-the-noise outliers. Previous studies have

demonstrated similar rates over longer time-scales (tens to hundreds of years) using more sparse measurements (e.g., Rinaldi

and Simon, 1998; Rovira et al., 2005; Walter and Merritts, 2008; Comiti et al., 2011) and at shorter time-scales (< 5 years)5

from high-resolution
:::::::::
meter-scale lidar data (Lane et al., 2003; Wheaton et al., 2010). The identification and quantification

of incision and aggradation has important implications for infrastructure and agriculture given that 60% of global sediment

delivery to coasts originates in high mountain regions (Syvitski et al., 2005).

Mapping dh signals across the entire landscape presents a greater challenge given the higher uncertainties on steeper more

complex topography. Nevertheless, using the binning method, binary operations, and outlier selection removes a large portion10

of the noise from the corrected data. Our method displays very little change on the low-relief, low-slope Altiplano-Puna besides

some salt flat areas that were not removed by the coherence masking from the TanDEM-X WAM. Remaining noise mapped

as potential change is clear at the mountain front where steep slopes and heavy vegetation causes complication of accurate

radar measurement. In many locations these erroneous patches correspond with low-amplitude or low-coherence zones also

identified in the WAM. We were able to automatically map one landslide, previously reported on by Savi et al. (2016), in the15

Del Medio sub-catchment of the Humahuaca Basin using this method. This material likely contributes to the aggradation we

see occurring downstream of the fan in the longitudinal profile (Fig. 7A) and in map-view (Fig. 8A). The calculated detachment

and deposit volumes from this massive earth movement are −10.5±0.12×106 m3 and 16±0.15×106 m3, respectively, with

vertical land-level changes greater than ±50 m associated with the break-off and lobe (Fig. 9D).
:::::
These

:::::::::
magnitudes

:::
of

::::::
change

::::
show

::::
little

:::::::::
difference

::
in

::
the

::::
pre-

:::
and

::::::::::::
post-corrected

::::::::
mapping,

::::::::
indicating

:::
(a)

:::
this

::
is

:
a
::::::::
localized

:::::
region

:::
of

::::
good

:::::::::
agreement

:::::::
between20

:::::::
SRTM-C

::::
and

::::::::::
TanDEM-X

:::
and

:::
(b)

:::
this

:::::
large

::::::::
landslide

:::
can

::
be

::::::::
identified

::
in

::::::::::
uncorrected

:::::::::
difference

:::::
maps.

:

The area of sand dunes, clearly visible as a low-coherence region from the TanDEM-X WAM in Figure 1C and Figure

9B–C, is not mapped as potential change since the coherence masking prior to binning eliminates this area from consideration.

Examination of dh in this region is very noisy since the TanDEM-X contains measurements spanning 5 years, thus causing

completely different height inputs for the same pixel in many scenes. This indicates the potential of the WAM alone for mapping25

change on shorter time-scales outside of very steep areas.

5.3 Caveats of Data and Method

Spaceborne DEMs present significant challenges for accurate height measurements, though until lidar or very high-resolution

::::::::
sub-meter

:
satellite data becomes more widespread and cheaper (Passalacqua et al., 2015), it is the only option in many study

areas. On the other hand, unmanned aerial vehicles and point clouds generated using structure from motion technology could30

already provide a viable alternative (Javernick et al., 2014; Cook, 2017), but applying these methods at the scale of entire catch-

ments or over tens-of-kilometers of river reaches is not feasible. Previously, dh measurement from space has been primarily

focused on the cryosphere (e.g., Berthier et al., 2006; Nuth and Kääb, 2011; Neelmeijer et al., 2017) due to limitations in data

accuracy. Certainly radar data are more adequate than optical data (e.g., Fisher et al., 2013; Purinton and Bookhagen, 2017) for
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the case of unconsolidated sediment, particularly since different penetration depths do not affect measurement (Rignot et al.,

2001; Rossi et al., 2016), assuming limited vegetation.

Here we have demonstrated the potential of new high-accuracy datasets such as TanDEM-X to correct outstanding biases

in the SRTM-C and potentially contribute to land-level change mapping and measurement over previously unattainable scales.

Given remaining noise in the datasets, change mapping is limited to large areas of coherent change (e.g., massive landslides)5

or specific low-slope areas of interest such as wide gravel-bed rivers. In either
:::
any

:
case, field knowledge

::::
data

::::
(e.g.,

::::::
repeat

::::
total

:::::
station

:::
or

::::
GPS

:::::::
surveys),

::::
field

::::::::::
knowledge

::::
(e.g.,

:::
via

:::::::::::
observations

::
of

:::::::
incising

::::::
reaches

::
or
:::::
roads

::::::::
damaged

:::
by

::::::::
aggrading

:::::::::
channels),

:::
and/or auxiliary data (even in the form of GoogleEarthTM ) is

::::
e.g.,

:::::::::::::
GoogleEarthTM

::::::::
historical

:::::::
imagery

::::::
change

:::::::::
mapping)

:::
are

necessary for accurate assessment of
::
the

:::::::
location

::
of
:

true change signals versus noise. In any case
::::::
Further, the magnitude of

change must be significantly above the expected uncertainty between DEMs, which in the case of SRTM-C and TanDEM-X is10

as low as ~3 m on flat, partially
:::::::
sparsely vegetated terrain, and increasing with slope and topographic complexity. We posit that

these correction steps may also be applied to cryospheric studies, though additional considerations for radar penetration depths

must be accounted for
:::::::
however,

:::::
radar

:::::::::
penetration

:::::
would

:::::
need

::
to

::
be

::::::::
carefully

:::::::::
considered

::::
first

::
as

:::
this

::::
may

::::::
exceed

:::
dh

::::::
signals.

6 Conclusions

In this study we have presented a novel use of two near-global spaceborne DEMs (SRTM-C and TanDEM-X) separated by15

~15 years to measure land-level changes in the south-central Andes in northwestern Argentina. Previous measurement of

land-level changes at the scale of entire mountain belts has been restricted to the cryosphere,
:
where the signal of snow and ice

change outweighs the noise associated with DEMs used for differencing
::::::::
(typically

:::::::
ASTER

::
or

:::::
single

:::::::::::
TerraSAR-X

:
/
::::::::::
TanDEM-X

::::::
CoSSC

::::::
DEMs). On the other hand,

:::::
studies

:
outside of the cryosphere , studies have relied on higher resolution and higher

accuracy
:::::::::::
high-accuracy

:::::
meter

:::
to

::::::::
sub-meter

:
data at much smaller scales to measure height changes in rivers and hillslopes.20

Using the TanDEM-X DEM as a control surface, we corrected long-standing SRTM-C errors related to orbital biases. We then

successfully differenced the two datasets to identify and quantify land-level changes outside of expected noise caused by radar

DEM speckle and other terrain dependent errors, increasing with steep and complex topography.
:::::
Noise

::::
from

::::::::
imperfect

:::::::
datasets

::::::::
continues

::
to

:::::
hinder

::::::
signal

:::::::
detection

::
in
::::
low

:::::::::
magnitude

::::::::::
geomorphic

::::::
change

::::::::
detection,

::::::::
however,

:::
this

:::::
study

::::::::
continues

:::
to

::::
push

:::
the

:::::::
envelope

::
of

:::
the

::::::::
potential

:::
for

::::::
change

:::::::
mapping

:::::
using

:::
the

::::
data

::::::::
currently

:::::::
available

::
to

:::::
many

::::::::
scientists.

:
25

Our method is useful for the case of large gravel-bed rivers where the width far exceeds SRTM-C 1 arcsec resolution

considerations. In such flat, vegetation free environments it is useful to analyze the river alone and not include additional

uncertainties brought by increasing slopes
:::
and

:::::
dense

::::::::
vegetation. For these steeper regions, the use of greater outlier cutoffs and

the necessity for large and coherent patches of land-level change, both to remove the majority of noise, limits the method to

only very large earth movements. In either case, only signals outside of expected noise can be confidently identified, which in30

the case of gravel-bed rivers typically fall in the realm of human tampering. From the TanDEM-X auxiliary data alone it is also

possible to identify regions that changed during TanDEM-X collection (2010–2015) using the water indication mask, however,

this does not provide quantifiable change.

21



Overall, the use of relatively coarse (1 arcsec) spaceborne DEMs to derive land-level changes benefit from higher accuracy

radar-derived data, whereas the use of optical data is limited to very high-resolution
::::::::
sub-meter

:::::::::
resolution satellites. The appli-

cation of this method to other regions around the world could indicate previously unmapped vertical changes. In the future,

both the SRTM-C and TanDEM-X will continue to be used as snapshots of the earth’s surface separated by over a decade, and

thus useful for differencing against newer datasets yet to be developed to continue measuring vertical change outside of the5

cryosphere.

Code and data availability. Python codes for co-registration, FFT destriping, blocked shifting, and potential change mapping are available

on GitHub at https://github.com/UP-RS-ESP/SRTM-TanDEM-correction-dh.git. The SRTM-C updated NASADEM tiles can be found at:

https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/. TanDEM-X data is only available from DLR commercially for the time

being.10
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