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Abstract.

In the arctic and high mountains it is common to measure vertical changes of ice-sheets and glaciers via digital elevation

model (DEM) differencing. This requires the signal of change to outweigh the noise associated with the datasets. Excluding

large landslides, on the ice-free earth land-level change is smaller in vertical magnitude and thus requires more accurate DEMs

for differencing and identification of change. Previously, this has required meter to sub-meter data at small spatial scales.5

Following careful corrections, we are able to measure land-level changes in gravel-bed channels and steep hillslopes in the

south-central Andes using the SRTM-C (collected in 2000) and the TanDEM-X (collected from 2010–2015) near-global 12–

30 m DEMs. Long-standing errors in the SRTM-C are corrected using the TanDEM-X as a control surface and applying

cosine-fit co-registration to remove ~1/10 pixel (~3 m) shifts, Fast Fourier Transform and filtering to remove SRTM-C short-

and long-wavelength stripes, and blocked shifting to remove remaining complex biases. The datasets are then differenced10

and outlier pixels are identified as potential signal for the case of gravel-bed channels and hillslopes. We are able to identify

signals of incision and aggradation (with magnitudes down to ~3 m in best case) in two > 100 km river reaches, with increased

geomorphic activity downstream of knickpoints. Anthropogenic gravel excavation and piling is prominently measured, with

magnitudes exceeding ±5 m (up to > 10 m for large piles). These values correspond to conservative average rates of 0.2 to >

0.5 m/yr for vertical changes in gravel-bed rivers. For hillslopes, since we require stricter cutoffs for noise, we are only able15

to identify one major landslide in the study area with a deposit volume of 16±0.15×106 m3. Additional signals of change can

be garnered from TanDEM-X auxiliary layers, however, these are more difficult to quantify. The methods presented can be

extended to any region of the world with SRTM-C and TanDEM-X coverage where vertical land-level changes are of interest,

with the caveat that remaining vertical uncertainties in primarily the SRTM-C limit detection in steep and complex topography.

1 Introduction20

Geodynamic and geomorphological processes operating at different time-scales result in vertical change (herein dh) on the

earth’s surface. In the cryosphere, dh studies use repeat surveys or digital elevation model (DEM) differencing on annual to sub-

annual time-steps (e.g., Berthier et al., 2007; Nuimura et al., 2012; Neelmeijer et al., 2017; Brun et al., 2017). Changes to snow

and ice occur most rapidly (aside from landslides), but dhmeasurement outside of the cryosphere also provide aggradation and

incision monitoring for rivers (e.g., Lane et al., 2003; Wheaton et al., 2010; Cook, 2017; Mason and Mohrig, 2018), volumes25
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of landslides and extruded lava (e.g., Bagnardi et al., 2016; Bessette-Kirton et al., 2018), and earthquake displacements (Oskin

et al., 2012). Large scale monitoring of dh on soil, rock, and unconsolidated sediment is an elusive problem requiring signals

that outweigh the noise in collection methods and resulting datasets.

Vertical accuracies for modern gridded spaceborne DEMs are on the order of 2–8 m in mountainous regions, though signif-

icantly worse on steepening slopes (e.g., Rexer and Hirt, 2014; Purinton and Bookhagen, 2017). Using DEMs from sources5

like the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER; Tachikawa et al. (2011)) with higher

uncertainties is acceptable for monitoring glaciers and ice sheets (e.g., Brun et al., 2017), where dh between even sub-annual

time-steps can be tens to hundreds of meters over areas of many square kilometers. On the other hand, dh of soil, rock, and

unconsolidated sediment are often at the centimeter to meter scale and far more localized over up to a few hundred to thousand

square meters. Due to these limitations, previous studies relied on intensive mapping from aerial photos (e.g., Hovius et al.,10

1997), sparse cross-sections with large temporal spans (e.g., Rinaldi and Simon, 1998), or—more recently—meter to sub-meter

topographic data from lidar or photogrammetric point clouds (e.g., Lane et al., 2003; Booth et al., 2009; Perroy et al., 2010;

Cook, 2017) or select optical satellites with sub-meter resolution like Pleiades and WorldView (e.g., Bagnardi et al., 2016;

Bessette-Kirton et al., 2018). Despite recent advances in meter to sub-meter lidar, satellite, and unmanned aerial vehicle data

availability (Passalacqua et al., 2015), these remain limited in spatial and temporal coverage, and sometimes prohibitively ex-15

pensive. Coarser gridded DEMs from radar and optical spaceborne sensors remain the best, and often only, option in large or

remote areas.

The publicly available Shuttle Radar Topography Mission (SRTM) DEM is an earth snapshot from its 10 day collection

aboard the Endeavour Shuttle in February 2000. The mission produced an Interferometric Synthetic Aperture Radar (InSAR)

DEM from C-band (5.6 cm wavelength) radar for 80% of earth’s landmasses from typically 2–3 ascending and descending20

swaths (Farr et al., 2007). The SRTM-C has seen numerous succeeding releases and void filling (e.g., Jarvis et al., 2008). We

use the most recent floating point re-processed 1 arcsec (~30 m) NASADEM, taking only the non-void filled original SRTM-C

tiles (herein SRTM-C; Crippen et al. (2016); found in the "srtmOnly" directories under: https://e4ftl01.cr.usgs.gov/provisional/

MEaSUREs/NASADEM/).

The TanDEM-X 0.4 and 1 arcsec (~12 and ~30 m) DEM released in 2016—here received through scientific DLR proposals,25

though now available strictly commercially—is the next generation of radar-derived global topography following the SRTM.

The TanDEM-X, covering 97% of earth’s landmasses, was generated by semi-automated processing and stacking of > 470,000

ascending and descending X-band (3.1 cm wavelength) TerraSAR-X / TanDEM-X satellite bistatic scenes collected from

December 2010 to January 2015 (Krieger et al., 2013; Rizzoli et al., 2017). As elevations are averaged between scenes, we

take the date of the TanDEM-X as January 2015, thus providing a 15 year time step of dh between SRTM-C and TanDEM-X.30

Using the latest possible date for TanDEM-X elevations means that rates of change are conservative minimum values.

In this submission we discuss the errors associated with each of these datasets and the corrections applied to mitigate

uncertainties in their differencing for dh detection outside of the cryosphere. This is therefore a data quality and methods

focused study. Geomorphic change detection is applied via correction and differencing of the TanDEM-X and SRTM-C over the

south-central Andes in northwestern Argentina (Fig. 1) to identify and measure areas of dh in gravel-bed channels specifically35
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and then across the landscape. Here, steep gradients in elevation (~1–4 km), rainfall (~0.1–1 m/yr), and vegetation (sub-

tropical forests and croplands to arid, succulent-covered slopes) cause high rates of mass transfer (Bookhagen and Strecker,

2012; Savi et al., 2016; Schildgen et al., 2016), further influenced by climate change (Castino et al., 2016a, b, 2017) and

anthropogenic modification (gravel mining and weirs). To conclude, we discuss caveats driven by remaining uncertainties

prevalent in spaceborne DEMs collected over complex topography.5

Figure 1. Overview of study area in NW Argentina with (A) elevation, (B) rainfall (Tropical Rainfall Measurement Mission 12 year average;

TRMM2B31; Bookhagen and Strecker (2008)), and (C) vegetation (MODIS product 13C1 Enhanced Vegetation Index 14 year average;

MODIS EVI; Huete et al. (1994)), where lower, brown (higher, green) values represent sparse (dense) vegetation. Note strong east-west

gradients in all three maps. The white watershed boundary delineates the internally drained Altiplano-Puna Plateau. The gray line in (B)

and (C) indicates the 2000 m contour line. The yellow patches in (C) are areas identified in the TanDEM-X water indication mask (WAM)

as having low amplitude and/or low coherence. These patches correspond to salt flat (salar) regions on the plateau, water bodies (e.g.,

reservoirs in the low-elevation areas), steep and vegetated areas (DEM error), and other zones of coherence loss, such as the dunes identified.

Inset boxes in (C) indicate locations of dh map-view Figures 8–9, with TanDEM-X tile boundary in green. Note anthropogenic tampering

of natural gravel-bed channels (Río Grande and Río Toro) with downstream flow diversion (weirs) and gravel mining activity nearby the

populous cities of Salta and Jujuy.
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2 Spaceborne DEM Errors

Yamazaki et al. (2017) classify spaceborne DEM errors into speckle noise, stripe noise, absolute bias, and tree height bias. We

divide this further for the case of SRTM-C and TanDEM-X (both radar DEMs) into: (i) sensor specific related to radar and

spacecraft collection, and (ii) terrain specific related to land-surface cover and topographic complexity. We do not consider

DEMs from optical sensors such as ASTER (Tachikawa et al., 2011) and the Advanced Land Observing Satellite (ALOS;5

Tadono et al. (2014)), which have well documented errors (e.g., Racoviteanu et al., 2007; Nuth and Kääb, 2011; Fisher et al.,

2013; Yamazaki et al., 2017) and perform worse than radar, with vertical accuracies > 5 m (1-σ) and persistent high-frequency

artifacts (Purinton and Bookhagen, 2017). Additionally, a dearth of cloud-free, high-quality ASTER imagery covering the study

area precludes the automated DEM generation of Girod et al. (2017) and regression techniques of Wang and Kääb (2015). On

the other hand, within the study area, the SRTM-C and TanDEM-X both exhibit vertical uncertainties < 3.5 m (Purinton and10

Bookhagen, 2017) and also have an appropriately long time difference for vertical land-level change detection. Auxiliary rasters

including the water indication mask (WAM), height error mask (HEM), consistency mask (COM), and coverage map (COV)

delivered with TanDEM-X (Wessel, 2016) allow enhanced understanding of DEM quality (cf. Supplement Section 1).

Random, or speckle, error caused by instrument thermal noise and localized de-correlation is the primary sensor bias for

radar (Rodríguez et al., 2006). These localized, small magnitude errors reduce with increasing looks used in the final mosaic.15

Speckle presents a greater issue in SRTM-C given the maximum three swaths at lower latitudes (Farr et al., 2007). Such noise is

expected to be minimal in the TanDEM-X, with average coverage in our study area of seven ascending and descending scenes,

and up to 14 in many steep areas (Fig. S1). Smoothing data prior to and after phase unwrapping (e.g., multi-looking, adaptive

filters, or down-sampling) can further reduce speckle. The SRTM-C raw resolution of ~30 m is similar to the final 1 arcsec

product, though, due to interferogram smoothing to reduce noise, the estimated true ground resolution of the final product is20

45–60 m (Sun et al., 2003; Farr et al., 2007; Tachikawa et al., 2011). This may be improved in the newly released data (Crippen

et al., 2016), but this remains to be tested. Multi-looking of 4×5 pixels of raw radar returns (resolution ~3.3 m) was used in the

case of TanDEM-X to generate a final 0.4 arcsec (~12 m) product, thus significantly smoothing and reducing speckle (Rizzoli

et al., 2017).

Besides a small geolocation error expected in both DEMs from instrument uncertainties, the SRTM-C has a number of25

spacecraft specific biases, manifested in short- and long-wavelength striping (Rodríguez et al., 2006; Yamazaki et al., 2017).

The short wavelength (~0.5–1 km, magnitudes typically < 0.5 m) stripes are related to jitter in the antenna mast caused by the

periodic firing of shuttle attitude thrusters (Farr et al., 2007). Longer wavelength errors with magnitudes > 1 m are caused by

individual swath tilts and form complex undulating patterns over ~100 km distances (Crippen et al., 2016; Yamazaki et al.,

2017). TanDEM-X satellite biases can be found in slight tilting of individual TerraSAR-X / TanDEM-X scenes (e.g., Neelmeijer30

et al., 2017), though these tilts were removed during stacking in the end product (Rizzoli et al., 2017). The careful monitoring

and control maintained over flight geometry, in addition to post-processing to remove tilts using ICESat (Ice, Cloud and land

Elevation Satellite; Schutz et al. (2005)), restricts most of the TanDEM-X uncertainty to the second category of terrain specific

error (Rizzoli et al., 2017).
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Land-surface cover plays a key role in modulating radar returns. TanDEM X-band and SRTM C-band radar have different

penetration depths in dense vegetation (Carabajal and Harding, 2006; Hofton et al., 2006; Wessel et al., 2018) and snow and ice

(Rignot et al., 2001; Rossi et al., 2016), leading to different height returns. We note this important caveat, but are able to ignore

it for our particular study question (land-level change of bare material) and area (only partial vegetation and no permanent

snow and ice). Sub-tropical vegetation in our study area does allow some exploration of the effect on dh, however, we find no5

clear relation (cf. Supplement Section 2). In any case, vegetation differences are expected to be less significant than for optical

data, which returns only the canopy heights (e.g., Yamazaki et al., 2017). Both DEMs have major inconsistencies and speckle

over water bodies, wet salt flats, and deserts caused by de-correlation, variable reflectance, and/or weak backscatter of the radar

signal (Rodríguez et al., 2006; Farr et al., 2007; Wendleder et al., 2013; Rizzoli et al., 2017). For the SRTM-C, these areas are

largely voids anyway, and for TanDEM-X the WAM raster provides information on coherence and amplitude for each pixel to10

identify these untrustworthy measurements (Fig. 1C).

Remaining errors in the SRTM-C and TanDEM-X are related to terrain characteristics (cf. Supplement Section 2). This is the

result of topographic complexity below the resolution of the sensor, radar geometry considerations (layover, foreshortening,

and shadowing), and interferometric phase unwrapping errors, all most pronounced in steep mountains. Such terrain biases are

demonstrated in the SRTM-C with elevation (Berthier et al., 2006; Paul, 2008), slope and aspect (Gorokhovich and Voustian-15

iouk, 2006; Van Niel et al., 2008; Peduzzi et al., 2010; Shortridge and Messina, 2011), and resolution (manifested in curvature)

(Gardelle et al., 2012), and in the TanDEM-X with only slope (Purinton and Bookhagen, 2017; Wessel et al., 2018). Terrain

slope—also related to relief (Fig. S7)—is the primary cause of error in any DEM, demonstrated in the division of vertical

uncertainties for most DEMs into slope bins (e.g., Wessel et al., 2018). Slope dependent errors may be reduced with finer

resolution data and increased look angles for mosaicking, as in the case of TanDEM-X, but these uncertainties are expected to20

remain as the most prevalent cause of error in any spaceborne DEM.

With this framework for understanding the potential error sources in the SRTM-C and TanDEM-X, it is possible to correct

one dataset to another in a multi-step processing chain (e.g., Yamazaki et al., 2017) allowing dh identification and measurement

with greater certainty.

3 Methods25

Given the excellent agreement with differential GPS globally (Wessel et al., 2018) and in the study area (Purinton and Bookha-

gen, 2017) along with the minimal errors associated with orbital characteristics, we consider the TanDEM-X DEM as our

reference surface in order to correct the more problematic SRTM-C. During correction, we do not apply any speckle reduction

(e.g., via an adaptive filter as in Yamazaki et al. (2017)), as we are interested in raw elevation values and not a smoothed DEM.

For the SRTM-C we select the non-void filled NASADEM data so as not to include any auxiliary elevation measurements30

from, for instance, ASTER (Crippen et al., 2016). Importantly, both DEMs are referenced to the WGS84 ellipsoid vertical

datum, whereas previous SRTM-C releases have been referenced to the EGM96 geoid (Farr et al., 2007), thus requiring a

geoid-adjustment step introducing additional uncertainties prior to comparison.
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For correction and differencing we use the 0.4 arcsec TanDEM-X that we bilinearly resampled to 1 arcsec to match the raw

resolution of the SRTM-C. Wessel (2016) note that the delivered TanDEM-X 1 arcsec tiles, which we also have a number of,

were generated with average resampling of the 0.4 arcsec tiles by DLR and not by any increase in multi-looks or interferogram

smoothing. We tested a number of resampling schemes including average, bilinear, cubic, and cubic spline on the original

0.4 arcsec tiles and found better results (lower vertical uncertainty compared with differential GPS) from the commonly used5

bilinear resampling, whereas the un-edited 1 arcsec tiles delivered by the DLR—generated by average resampling—had higher

vertical uncertainties.

The TanDEM-X and recently updated SRTM-C were both referenced to high-accuracy ICESat (Schutz et al., 2005; Zwally

et al., 2009) measurements (collected between 2003–2009) during final block adjustments (Crippen et al., 2016; Rizzoli et al.,

2017). While this removes the complete independence of these datasets, the relative sparsity of these points (170 m along track10

and up to 80 km across track) does not provide a continuous adjustment surface, but rather acts to improve local elevations

and overall DEM quality with respect to remaining tilts (Rizzoli et al., 2017). Throughout the study dh refers to the TanDEM-

X−SRTM-C 15 year differences (including both real change and vertical uncertainties).

3.1 SRTM-C Correction Steps

Our correction chain was applied using the previous SRTM-C output at each stage as input in the following step. All steps were15

carried out on a 1◦×1◦ tile-by-tile basis (unprojected WGS84 vertical and horizontal datums), however, merging tiles and then

processing produced identical results. We also found comparable results using Universal Transverse Mercator (UTM) equal

area projected tiles. The correction steps served to correct SRTM-C orbital biases and did not attempt to correct for terrain

characteristics. We assumed that actual vertical change in our study area represented an extremely small fraction of pixels in

the ~13 million pixel dh raster for each tile. This ensures that the corrections only rectified SRTM-C biases on stable terrain20

and were not influenced by smaller areas of true vertical land-level changes. Comparison of correction steps was done using

normalized percentage difference histograms and quantile-quantile (QQ) plots.

3.1.1 Co-registration

We corrected for sub-pixel offsets known to affect DEM comparisons (Van Niel et al., 2008; Berthier et al., 2007) using the

universal co-registration of Nuth and Kääb (2011). This rigid translation is based on a cosine function fit to the relationship25

between terrain aspect and dh normalized by terrain slope:

dh

tan(α)
= a · cos(b−ψ) + c (1)

where α is slope, ψ is aspect, and the variables a, b, and c are the magnitude, direction, and mean bias, respectively. The

shifts were applied to the SRTM-C by bilinear resampling with the dx= a · cos(b) and dy = a · sin(b) vectors used to weight

the neighboring cells, and the mean shift dz = c · tan(ᾱ) added at the end.
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We fit equation (1) to only slopes > 5◦ and, if necessary based on goodness of fit parameters, continued iteration of the fitting,

shift vector solving, and interpolation until the magnitude of the shift vector (a) was < 0.5 m or the reduction in normalized

median absolute difference (NMAD; Höhle and Höhle (2009)) on stable terrain was < 5% (Nuth and Kääb, 2011).

Our co-registration did not correct for slope and curvature using polynomial fitting (e.g., Kääb, 2005; Gardelle et al., 2012)

as this introduces empirical models and additional uncertainties. We did not observe a linear positive or negative trend between5

slope and dh (Fig. S7). Curvature versus dh demonstrates the difference in actual resolution of raw sensor data between the

SRTM-C and TanDEM-X (Fig. S10), however, correction of this intrinsic measurement limit introduces artificial elevations

and are thus inappropriate for dh mapping between DEMs from different data sources and time-steps (cf. Supplement Section

2).

Iterative shifting and bilinear resampling of one DEM to another by decimeter steps had the same effect on rectifying aspect10

biases (same shift vectors leading to minimization of bias) as the empirical fitting of the cosine relationship and calculation

of shift vectors (cf. Supplementary Iterative Shifting Video). This indicates the robust nature of the method of Nuth and Kääb

(2011), assuming a sufficient distribution of high-slope, multi-aspect-facing topography is available for cosine fitting. The

minimization of the sum of errors and cross-correlation methods (e.g., Kääb, 2005) were unsuccessful at removing shifts in

our study region.15

3.1.2 Destriping

For removal of long- and short-wavelength striping patterns in the SRTM-C, we followed previous work using frequency

analysis techniques to identify striping artifacts (e.g., Arrell et al., 2008) and noise (e.g., Purinton and Bookhagen, 2017) in

DEMs. We took particular inspiration from Yamazaki et al. (2017) and used fast fourier transforms (FFTs) to filter the dh.

In a first step, we removed all pixels identified as having low coherence in the TanDEM-X WAM. This filtered large water20

bodies and other areas that may show artifact noise affecting FFT analysis. Following this, any void pixels (including the low-

coherence areas) were set to dh= 0 and an FFT was run. The power spectral density (PSD) was calculated as the magnitude

of the FFT squared and a mean 5×5 filter was passed over it. The ratio of original and smoothed PSD was then taken to

identify regions of the spectrum with high outliers (high ratio) representing cyclic, tile-spanning stripe bias. We used the 97.5th

percentile of the ratio as the cutoff value. The remaining top 2.5% high- and low-frequency outliers received an inverse FFT,25

which produced a map of the long- and short-wavelength stripes. These stripes were then removed from the SRTM-C and the

process was repeated iteratively until the improvement in root mean squared error (RMSE) was < 5%.

We refer to the above parameters as non-aggressive destriping, since we are just "shaving off" the top of the distribution. In

aggressive tests, we experimented with lower percentile cutoff values (e.g., 95th) and lower tolerance for RMSE convergence

(e.g., < 2% improvement). While these more aggressive destriping schemes did successfully eliminate the SRTM-C orbital30

biases, we also found that the true topography was often filtered following the > 5 iterations needed to meet the RMSE

convergence requirements (Fig. S11). Therefore, we chose to use the non-aggressive cutoffs and ran additional blocked shifting

discussed in the following section.
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3.1.3 Blocked Shifting

Patchy positive and negative regions in the co-registered, destriped dh map were solved by breaking the 1◦ × 1◦ tile into

square blocks and shifting each block by the median value. These areas likely correspond to remaining orbital biases that

were not removed in our non-aggressive destriping technique. There may be local correspondence between these patches

and atmospheric water vapor conditions at the time of SRTM-C collection in February 2000, however, such data at the sub-5

kilometer scale necessary for analysis is unavailable. Furthermore, local adjustment of the SRTM-C and TanDEM-X to ICESat

measurements could contribute to these shifts, though the contribution is difficult to quantify.

We began by masking the low-coherence pixels (again from the WAM) since these would disproportionately contribute to

local median shifts. Using a variety of block sizes with edge lengths ranging from 1.35–7.2 km, we found the median dh and

median slope in each block. We used the median slope to normalize the median dh values, since we expect areas of higher slope10

to have greater uncertainties and biases (Fig. S7) unrelated to SRTM-C orbital biases. Furthermore, we allowed a maximum

shift per block of ±1 m, thus ensuring that this step did not cause unreasonably large shifts due to outliers contained in a given

block.

3.2 Differencing for Change Detection

Following orbital SRTM-C bias corrections, it is possible to merge corrected tiles and create maps of dh to measure areas15

of actual change. Previous change mapping over gravel-bed channels has relied on level of detection cutoffs and probabilistic

thresholding (e.g., Lane et al., 2003; Wheaton et al., 2010). These studies have, however, been developed for meter to sub-meter

photogrammetric or lidar data. Here we use a hybrid approach of statistical outlier detection on the entire distribution of pixels

followed by a level of detection cutoff for remaining pixels well within the bounds for expected noise between the datasets.

Remaining uncertainties are primarily caused by speckle noise and terrain characteristics, with the biggest impact from slope.20

The following sections provide a detailed description of the change detection method for channels and hillslopes.

3.2.1 Channels

We know from field observations that large braided gravel-bed channels in the study area (Fig. 1B) change rapidly with local

incision and aggradation (natural and anthropogenic in the form of gravel mining) on the order of meters during the past

decade. Outlines of the bank-to-bank active width of the primary channel branch were digitized from open-source satellite25

imagery from BingTM and GoogleEarthTM. We buffered the resulting channels by −60 m (upper limit of gridded SRTM-C

resolution). This means we only use the wide (> 120 m), non-vegetated channel reaches from Río Toro and Río Grande where

there has been recent aggradation and incision.

Change mapping was done by separating the in-channel dh values into bins of contributing error factors (local relief and

TanDEM-X individual scene consistency) and applying 5th and 95th percentile cutoffs to each bin, thus only taking the top30

(positive=aggradation) and bottom (negative=incision) 5% of outliers. We first used the TanDEM-X WAM to remove the

untrustworthy dh pixels where coherence was lost three or more times (Wessel, 2016). Because gravel-bed channels represent
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a low-slope environment with no vegetation and we are only measuring wide valleys, we assumed that DEM error from SRTM-

C and TanDEM-X were restricted to random speckle noise. Nonetheless, to account for steeper areas with potentially more

error from phase unwrapping, we separated dh into relief bins using the pixels’ 500-m radius relief values. We also separated

dh by the TanDEM-X consistency (COM) and height error (HEM) masks (Fig. S2–S3). Taken together, dh pixels in high-relief,

high-height error, and low-consistency bins required greater magnitudes to avoid noise cutoffs than vice versa. A minimum5

level of detection approach (Lane et al., 2003) was taken as the RMSE of the entire dh map on low-slope (similar to channel

slope) areas. In a final step, all remaining in-channel dh values below this RMSE cutoff were removed as likely noise. Volume

changes are calculated from the sum of pixel area (900 m2) multiplied by vertical change, with uncertainties taken as the level

of detection RMSE and propagated via equation (15) in Lane et al. (2003).

3.2.2 Entire Landscape10

When considering dh over the entire landscape, we include far more uncertainties related chiefly to steeper terrain. Thus, the

error must be handled differently than for strictly low-slope pixels (in-channel). First, a corrected dh map for the entire study

area was generated. Similar to channel mapping, low-coherence pixels were removed with the WAM and dh was separated

into bins of slope, height error, and consistency to retrieve only the top and bottom 5% of outliers in each bin set. The level of

detection cutoff was taken as the RMSE across the entire landscape, which was almost entirely stable terrain, and remaining15

dh values below this cutoff were eliminated.

At this stage, a great many lone and patchy dh values remained. Given this, it was not possible to automatically identify

areas of change that were only a small number of pixels in size. Interested in large-scale changes, likely not associated with a

single pixel, we sought connected pixels showing all up or all down vertical motion. To winnow the potential change pixels,

we applied binary opening with a 1-pixel radius circular kernel, thus removing many unconnected outliers and small patches.20

Next, we took the summed dh of each separate patch. It was assumed that the majority of patches, and thus majority of summed

values, were remaining noise in the difference map, whereas signal should be spatially coherent and largely positive or negative.

Therefore, by applying a standard deviation cutoff over summed patches (here we used 1-σ, though this can be easily set for

testing), we removed a vast majority of remaining pixels, and only kept the largest outliers. This limited the method to only

assessing the largest coherent vertical changes in the landscape, but eliminated the possibility of mis-identifying change that25

was in fact noise. These remaining patches can be explored in map-view and compared with satellite or historical imagery for

further confirmation and analysis.

4 Results

4.1 Correction Steps

Co-registration of SRTM-C to TanDEM-X revealed X-Y shifts of ~1/10 of a pixel (~3.7 m). Although minor Z shifts (~130

m) were also determined and corrected during co-registration, these were not unique across entire tiles, but rather related to
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long-wavelength SRTM-C biases. The cosine fitting to dh normalized by terrain slope can be seen in Figure 2, whereas, in

map-view the change is more subtle and difficult to discern.

In Figure 3, we demonstrate one iteration of destriping for a single SRTM-C tile (S 24◦, W 66◦). It is apparent in the co-

registered dh map that a number of long- and short-wavelength shifts are affecting the tile. Using our FFT, statistical cutoffs,

inverse transform, and stripe removal, the resulting dh map has a much more uniform appearance and the median and RMSE5

are both reduced. This process was typically repeated 2–4 times per tile, until the RMSE began to converge. While topographic

uncertainties remain in steep and high-relief regions, the overprinting biases are reduced.

Since we do not use an aggressive FFT filtering scheme, a number of patchy outliers remain. We attempted to correct these

regions using blocked shifting (Fig. 4), shown in this case over three tiles covering the foreland and Altiplano-Puna Plateau

Region (S 24–26◦, W 66◦). After testing multiple block sizes, we preferred blocks with edge length of 3.6 km, since these10

provide a small enough area to correct highly localized inconsistencies, while also being far greater in size than the largest

vertical changes we would expect in the landscape.

Figure 2. Relationship of dh (normalized by tangent of slope) to aspect (A) before and (B) after co-registration and bilinear resampling of

SRTM-C. We fit to equation (1) on all raw data. Note the close match between equation fit and median values. The cosine relationship in (A)

is caused by overestimation of the SRTM-C on NE facing aspects (peaking at ~60◦) and underestimation on SW facing aspects (peaking at

~220◦). The resulting (dx, dy) shift vector is directed SW.

4.1.1 Comparison of Correction Steps

Since stacked histograms are difficult to interpret and larger magnitude outliers are fewer in number and thus obscured, we

plotted the normalized bin percentage difference of dh in each step of correction (Fig. 5). Co-registration mostly caused a15

mean shift in the distribution. Moving to destriping, the number of pixels at high outlier values went down significantly (>
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Figure 3. One iteration of FFT destriping from one tile (S 24◦, W 66◦). Both median and RMSE improve from (A) the co-registered map to

(C) the destriped map. Stripes removed by FFT are shown in (B). Note that (C) is not the final corrected map as iteration was run twice more

before RMSE began to converge at 5% tolerance level. Voids (white space) are untrustworthy pixels removed by TanDEM-X WAM cutoff

prior to destriping.

20% drop in ±15–20 m bins) and there was some (~10%) increase in bins ±5 m, whereas the number of values close to

zero dh decreased. This represents an overall re-distribution of error from the SRTM-C orbital biased patterns (Fig. 3) to a

more uniform spatial pattern (Fig. 4). The final blocked shifting caused very little overall change in the distribution, which

was mostly in the form of another mean shift (this time directed the other way from co-registration). These effects can also

be seen in a QQ plot of each subsequent correction step (Fig. 6), where co-registration caused a mean shift and some outlier5

reduction, de-striping had a large effect on narrowing the distribution at the tails, and blocked shifting again had a minimal

effect on narrowing the distribution at the most extreme outliers. In all cases, the median value (0.5 quantile) moved closer to

zero. Overall, these plots indicate the importance of SRTM-C correction and of the destriping step in particular prior to using

TanDEM-X−SRTM-C dh maps for change mapping.

4.2 Areas of Change10

As discussed in the methods, we separated potential change identification and measurement from corrected (co-registered,

destriped, block shifted) dh maps between the in-channel pixels and the entire landscape.

4.2.1 Channels

Binning corrected in-channel dh and cutting off any remaining outliers within the low-slope RMSE of ~3 m reduced the

data density significantly by cutting out any pixels within expected noise. The potential signal pixels were then plotted atop15

longitudinal profiles from the Río Toro and Río Grande (Fig. 7). The point clouds of dh values were colored with a Gaussian
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Figure 4. Blocked shifting on three destriped and merged tiles (S 24–26◦, W 66◦). Blocks are 3.6 km in height and width. The (A) destriped

median and RMSE both improve slightly in (D) the final shifted dh map. Note that the original blocked medians (B) show a slight pattern

resembling the long-wavelength stripe bias from SRTM-C. In (C) we have normalized the median shifts by the median slope values, so as

not to over-correct the steeper regions with higher uncertainties. The color scheme is changed for (B) and (C), and the scale of (C) is half

the width of (B) since it only extends to the maximum allowable shift of ±1 m. Scales and color scheme in (A) and (D) are identical. Voids

(white space) are untrustworthy pixels removed by TanDEM-X WAM cutoff prior to median calculation.

kernel density estimate (KDE) to demonstrate the denser (warmer colors) versus sparser (cooler colors) zones of measurement.

The density is displayed as percentiles of the full distribution of the 2D KDE of dh from both channels. Turning to map-view,

we can observe the location of these pixels in the channel and their relation to local characteristics, upstream factors, and

anthropogenic tampering (Fig. 8).

4.2.2 Entire Landscape5

To be mapped as true vertical change, an area in the greater landscape must be significantly large and coherently positive or

negative since many of the pure noise patches are > 10 pixels in size (> 0.01 km2). Furthermore, the individual pixels must show

significant height changes above the overall RMSE of ~6 m and outlier cutoffs in each bin, which in steeper bins may be > 10 m.

12



Figure 5. Characteristic (A) stacked histograms and (B) normalized percentage bin difference from three tiles merged and processed (S

24–26◦, W 66◦). Though it is difficult to interpret the histograms, plotting their difference (normalized by bin count) as percentage change

between successive steps demonstrates the shifting of the median to near-zero and the reduction in outliers.

Examining results in map-view (Fig. 9) allows assessment of the potential true signal versus noise. At this stage it is necessary

to include auxiliary data from field knowledge or remote sources like aerial or satellite imagery (e.g., GoogleEarthTM). Our

method was able to identify one major landslide in the study area (Fig. 9D), however, most other measurements are remaining

large artifacts attributable to both the SRTM-C and TanDEM-X. Low-coherence zones that may represent change between

TerraSAR-X / TanDEM-X contributing scene collection (Fig. 9B–C) are necessarily removed in the WAM cutoff prior to5

binning.
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Figure 6. Quantile-quantile (QQ) plots showing difference between each successive correction step from three tiles merged and processed (S

24–26◦, W 66◦). (A) original to co-registered, (B) co-registered to destriped, and (C) destriped to block shifted. We note that co-registration

and destriping have the greatest effect on zero-median-shifting and narrowing the outliers. The quantiles (0.01, 0.05, 0.5, 0.95, and 0.99) and

their respective values are indicated on each axis to highlight this effect.
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Figure 7. Longitudinal profiles of (A) Río Grande and (B) Río Toro overlain with point cloud of potential dh signal (pixels outside of the

range of expected noise). Error bars are RMSE from low-slope (< 5◦) terrain outside of the channel area. Each dh point cloud is colored

by probability density from a Gaussian 2D KDE to show the denser (warmer) versus sparser (cooler) reaches. The KDE is scaled over all

measurements from both channels and relative percentiles of the full distribution are used to highlight denser zones, particularly in (B) Río

Toro. Note the x-axis range is 100 km greater for the longer Río Grande, despite the same axis scaling. Color scheme for elevation profiles

on right axes match map-view color of each channel in Figure 1B. The knickpoint in Río Grande is caused by the large Del Medio fan (Savi

et al., 2016), whereas the origin in Río Toro is tectonic, caused by the Gólgota Fault (Marrett et al., 1994; Hilley and Strecker, 2005). In both

cases, the majority of the dh signal appears downstream of the knickpoint. Map-view of green highlighted regions is shown in Figure 8.
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Figure 8. Map-views of the in-channel dh measurements for Río Grande (A) and Río Toro (C) highlighted in the longitudinal profiles in

Figure 7. For location of each map refer to Figure 1C. More details are shown in zoom-ins of the in-channel dh measurements in (B) and

(D). The solid outline is the digitized bank-to-bank channel and the stippled line is the −60 m buffer area of measurement. We note large

areas of incision related to the steep and narrow channel downstream of the Del Medio fan and knickpoint in Río Grande (A), immediately

followed by a zone of aggradation with levee structures to direct gravels (B). For Río Toro (C) we highlight the anthropogenic influence of

gravel mining generating large piles and also causing incision due to local excavation (D).

5 Discussion

5.1 Necessity of Correction Steps

The original SRTM-C is plagued by numerous terrain and sensor specific errors and biases (e.g., Carabajal and Harding,

2006; Gorokhovich and Voustianiouk, 2006; Van Niel et al., 2008; Gallant and Read, 2009; Yamazaki et al., 2017). Despite
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Figure 9. (A) Map-view of landscape-wide dh identification. For location refer to Figure 1C. Our method returns little change on the low-

erosion Altiplano-Puna. The dunes (B–C) are not identified since they are masked out using the TanDEM-X auxiliary WAM as low-coherence

zones. This indicates their rapid displacement between TerraSAR-X / TanDEM-X scene collection. Our method is able to identify one major

landslide (D) in the Del Medio catchment (Savi et al., 2016), however, there are many erroneous results in steep and vegetated zones to the

east, shown in (E) over the TanDEM-X hillshade.

re-processing of the original data in the new NASADEM product, many of these errors remain (Crippen et al., 2016). On the

other hand, the newer TanDEM-X apparently has far fewer biases related to satellite geometry, and most error is restricted to

terrain characteristics like slope and vegetation, though results are still nascent (e.g., Baade and Schmullius, 2016; Purinton

and Bookhagen, 2017; Wessel et al., 2018). Our correction steps do not seek to eliminate bias related to terrain characteristics

at the scale of a few hundred meters, but rather to correct large scale biases related to primarily the SRTM-C at scales of5
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several hundred meters to kilometers. Perhaps this reduction in bias is most obvious in map-view of the subsequent dh patterns

between processing steps (Fig. 3A to Fig. 4A to Fig. 4D), but we also show statistically that these steps lead to a narrowing

of the distribution and centering of the differences on zero-median (Fig. 5–6). We assume that the vast majority of the pixels

(outside of the cryosphere) should be unchanged over 15 years, and thus median shifts between the datasets at large scales are

biases in need of correction.5

Co-registration indicates NE facing aspects are overestimated by the SRTM-C causing a negative excursion in the cosine fit,

whereas SW facing aspects are underestimated and thus the dh compared to TanDEM-X is positive. This error mostly affects

higher slopes (Nuth and Kääb, 2011), which is the reason for normalization of dh by the tangent of slope. The directions of bias

correspond to the look direction orthogonal to the SRTM-C descending path and parallel to the ascending path. This indicates

that the source of this bias is the SRTM-C, as reported by previous authors (Bourgine and Baghdadi, 2005; Gorokhovich and10

Voustianiouk, 2006; Shortridge and Messina, 2011), and not TanDEM-X. A shift—accompanied by bilinear resampling—of

just ~3.7 m (magnitude a of equation (1) fit) to the SW rectifies this aspect bias.

As opposed to Yamazaki et al. (2017), we do not set a user defined ratio for FFT destriping, but rather use statistical "shaving

off" of only the outlier stripe noise until the data converge. This conservative approach retains the true topographic signal at

the expense of remaining stripe noise. In the case of more aggressive FFT filtering, using lower percentiles for the ratio cutoff15

and more strict RMSE convergence requirements, the actual topography began to filter out of the dh maps (Fig. S11), which,

as stated, is not the aim of our orbital bias correction steps and would lead to the inclusion of artificial (i.e., FFT generated) dh

measurements.

Remaining stripe noise is apparent in Figure 4B, where the blocked medians resemble the original long-wavelength stripe

pattern, though discontinuous. Despite the appearance in some areas of more negative values in the western parts of tiles20

(higher elevation, Altiplano-Puna Plateau), we do not find any clear relation between block medians and elevation at any block

size or in any tile (cf. Supplement Section 3). Block shifting removes the remaining noise, but again we avoid correcting for

strongly overprinting topographic biases related to slope by normalizing the block median dh by median slope. Overall, these

steps provide a more trustworthy dh map, while respecting the inherent and difficult to account for biases in radar derived

spaceborne DEMs.25

5.2 Potential Change Mapping

For lower slope regions (i.e., channels), the potential for change mapping is greater than in steeper areas. This is caused by

the better agreement and lower vertical uncertainty of the two datasets in flatter, vegetation free areas. In both channels, the

largest density of measurements is found below the respective knickpoints. This corresponds to an order of magnitude increase

in the 2D KDE shown by the warm colored patches in Figure 7. In terms of the actual number of measurements (number of30

dh pixels) per binned channel reach, Figure S13 demonstrates this approximately five to ten fold increase in the downstream

reaches with a simple histogram. This result partially has to do with a narrower channel and thus less measurements available

above the knickpoints (hence the numerous gaps in measurement in the upstream reaches), however, these results also appear

18



to indicate that the most geomorphic work is happening downstream of the oversteepening point. This also coincides with a

transition to a wetter environment in both cases.

The Río Toro has a particularly dense zone of measurements at the mountain front where naturally high rates of aggradation

are enhanced by human gravel excavation and piling. On the other hand, in the Río Grande the downstream measurements

are spread over a greater channel reach and thus appear less dense in the 2D KDE (the measured Río Grande is ~100 km5

greater in length than the Río Toro). Downstream of the knickpoint, Río Toro is in a net aggradation state with a corrected

dh volume of 0.81±0.15×106 m3, whereas, for Río Grande the net state is incision with a volume of −0.69±0.15×106 m3.

In comparison, the pre-correction volume in each case is −1.18±0.12×106 m3 and 2.80±0.11×106 m3 for Río Toro and Río

Grande, respectively, thus indicating a flip in sign and reduction of magnitude following careful corrections applied prior to

differencing.10

Locally, the aggrading and incising patches may be related to braided channel avulsion and subsequent rapid incision into

the unconsolidated bed material during frequent high-discharge events brought by convective rainfall in the summer monsoon

(Castino et al., 2016a, b, 2017). In map-view (Fig. 8), we see that these automated measurements can be correlated with

additional sources. For Río Grande, the steep knickpoint at the Del Medio fan (Savi et al., 2016; Schildgen et al., 2016) causes

a major zone of incision immediately followed by aggradation where the material is deposited. Fieldwork has indicated that15

some of this incision is man-made, caused by attempted removal of aggrading material coming from the productive (e.g.,

debris flows cf. Savi et al. (2016)) Del Medio catchment. Levee structures (Fig. 8B) are a testament to this tendency towards

aggradation downstream of this extremely erosive fan. The cause of aggradation in the Río Toro is clearly enormous gravel

piles being created just at and downstream of the mountain front. The volume of the large gravel pile indicated in Figure 8D

directly at the mountain front in Río Toro is 0.78±0.06×106 m3, with this growth between SRTM-C and TanDEM-X observed20

during field work over the past decade and from GoogleEarthTM historical imagery back to 2003. This is coupled with incision

in the active channel upstream of the piles where gravel is being removed to prevent widespread aggradation.

In terms of rates of change, our minimum measurable dh of ±3 m corresponds to a rate of ±0.2 m/yr, given the conservative

15 year time difference between DEMs. This rate represents an average for the entire measurement period and assumes constant

geomorphic change, whereas the true rates are more stochastic, following rainfall and anthropogenic activity variation. The25

area of greatest point density in the longitudinal profiles in Figure 7 is centered at ±5 m, corresponding to a rate of ±0.33

m/yr, with maximum rates of incision and aggradation, occurring at anthropogenic gravel piles and excavation sites, in excess

of ±0.5 m/yr. Human tampering is known to cause significant excursions from natural river dynamics (Kondolf, 1997; Grant,

2012), and we have shown that signals of excavation and piling are highlighted as above-the-noise outliers. Previous studies

have demonstrated similar rates over longer time-scales (tens to hundreds of years) using more sparse measurements (e.g.,30

Rinaldi and Simon, 1998; Rovira et al., 2005; Walter and Merritts, 2008; Comiti et al., 2011) and at shorter time-scales (< 5

years) from meter-scale lidar data (Lane et al., 2003; Wheaton et al., 2010). The identification and quantification of incision

and aggradation has important implications for infrastructure and agriculture given that 60% of global sediment delivery to

coasts originates in high mountain regions (Syvitski et al., 2005).
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Mapping dh signals across the entire landscape presents a greater challenge given the higher uncertainties on steeper more

complex topography. Nevertheless, using the binning method, binary operations, and outlier selection removes a large portion

of the noise from the corrected data. Our method displays very little change on the low-relief, low-slope Altiplano-Puna besides

some salt flat areas that were not removed by the coherence masking from the TanDEM-X WAM. Remaining noise mapped

as potential change is clear at the mountain front where steep slopes and heavy vegetation causes complication of accurate5

radar measurement. In many locations these erroneous patches correspond with low-amplitude or low-coherence zones also

identified in the WAM. We were able to automatically map one landslide, previously reported on by Savi et al. (2016), in the

Del Medio sub-catchment of the Humahuaca Basin using this method. This material likely contributes to the aggradation we

see occurring downstream of the fan in the longitudinal profile (Fig. 7A) and in map-view (Fig. 8A). The calculated detachment

and deposit volumes from this massive earth movement are −10.5±0.12×106 m3 and 16±0.15×106 m3, respectively, with10

vertical land-level changes greater than ±50 m associated with the break-off and lobe (Fig. 9D). These magnitudes of change

show little difference in the pre- and post-corrected mapping, indicating (a) this is a localized region of good agreement between

SRTM-C and TanDEM-X and (b) this large landslide can be identified in uncorrected difference maps.

The area of sand dunes, clearly visible as a low-coherence region from the TanDEM-X WAM in Figure 1C and Figure

9B–C, is not mapped as potential change since the coherence masking prior to binning eliminates this area from consideration.15

Examination of dh in this region is very noisy since the TanDEM-X contains measurements spanning 5 years, thus causing

completely different height inputs for the same pixel in many scenes. This indicates the potential of the WAM alone for mapping

change on shorter time-scales outside of very steep areas.

5.3 Caveats of Data and Method

Spaceborne DEMs present significant challenges for accurate height measurements, though until lidar or sub-meter satellite20

data becomes more widespread and cheaper (Passalacqua et al., 2015), it is the only option in many study areas. On the other

hand, unmanned aerial vehicles and point clouds generated using structure from motion technology could already provide a

viable alternative (Javernick et al., 2014; Cook, 2017), but applying these methods at the scale of entire catchments or over

tens-of-kilometers of river reaches is not feasible. Previously, dh measurement from space has been primarily focused on the

cryosphere (e.g., Berthier et al., 2006; Nuth and Kääb, 2011; Neelmeijer et al., 2017) due to limitations in data accuracy.25

Certainly radar data are more adequate than optical data (e.g., Fisher et al., 2013; Purinton and Bookhagen, 2017) for the case

of unconsolidated sediment, particularly since different penetration depths do not affect measurement (Rignot et al., 2001;

Rossi et al., 2016), assuming limited vegetation.

Here we have demonstrated the potential of new high-accuracy datasets such as TanDEM-X to correct outstanding biases

in the SRTM-C and potentially contribute to land-level change mapping and measurement over previously unattainable scales.30

Given remaining noise in the datasets, change mapping is limited to large areas of coherent change (e.g., massive landslides)

or specific low-slope areas of interest such as wide gravel-bed rivers. In any case, field data (e.g., repeat total station or GPS

surveys), field knowledge (e.g., via observations of incising reaches or roads damaged by aggrading channels), and/or auxiliary

data (e.g., GoogleEarthTM historical imagery change mapping) are necessary for accurate assessment of the location of true
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change signals versus noise. Further, the magnitude of change must be significantly above the expected uncertainty between

DEMs, which in the case of SRTM-C and TanDEM-X is as low as ~3 m on flat, sparsely vegetated terrain, and increasing with

slope and topographic complexity. We posit that these correction steps may also be applied to cryospheric studies, however,

radar penetration would need to be carefully considered first as this may exceed dh signals.

6 Conclusions5

In this study we have presented a novel use of two near-global spaceborne DEMs (SRTM-C and TanDEM-X) separated by

~15 years to measure land-level changes in the south-central Andes in northwestern Argentina. Previous measurement of land-

level changes at the scale of entire mountain belts has been restricted to the cryosphere, where the signal of snow and ice

change outweighs the noise associated with DEMs used for differencing (typically ASTER or single TerraSAR-X / TanDEM-

X CoSSC DEMs). On the other hand, studies outside of the cryosphere have relied on high-accuracy meter to sub-meter data10

at much smaller scales to measure height changes in rivers and hillslopes. Using the TanDEM-X DEM as a control surface,

we corrected long-standing SRTM-C errors related to orbital biases. We then successfully differenced the two datasets to

identify and quantify land-level changes outside of expected noise caused by radar DEM speckle and other terrain dependent

errors, increasing with steep and complex topography. Noise from imperfect datasets continues to hinder signal detection in

low magnitude geomorphic change detection, however, this study continues to push the envelope of the potential for change15

mapping using the data currently available to many scientists.

Our method is useful for the case of large gravel-bed rivers where the width far exceeds SRTM-C 1 arcsec resolution

considerations. In such flat, vegetation free environments it is useful to analyze the river alone and not include additional

uncertainties brought by increasing slopes and dense vegetation. For these steeper regions, the use of greater outlier cutoffs and

the necessity for large and coherent patches of land-level change, both to remove the majority of noise, limits the method to20

only very large earth movements. In either case, only signals outside of expected noise can be confidently identified, which in

the case of gravel-bed rivers typically fall in the realm of human tampering. From the TanDEM-X auxiliary data alone it is also

possible to identify regions that changed during TanDEM-X collection (2010–2015) using the water indication mask, however,

this does not provide quantifiable change.

Overall, the use of relatively coarse (1 arcsec) spaceborne DEMs to derive land-level changes benefit from higher accuracy25

radar-derived data, whereas the use of optical data is limited to sub-meter resolution satellites. The application of this method

to other regions around the world could indicate previously unmapped vertical changes. In the future, both the SRTM-C

and TanDEM-X will continue to be used as snapshots of the earth’s surface separated by over a decade, and thus useful for

differencing against newer datasets yet to be developed to continue measuring vertical change outside of the cryosphere.

Code and data availability. Python codes for co-registration, FFT destriping, blocked shifting, and potential change mapping are available30

on GitHub at https://github.com/UP-RS-ESP/SRTM-TanDEM-correction-dh.git. The SRTM-C updated NASADEM tiles can be found at:
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https://e4ftl01.cr.usgs.gov/provisional/MEaSUREs/NASADEM/. TanDEM-X data is only available from DLR commercially for the time

being.
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