
Topographic Analysis Kit (TAK) Manual v1.0

Adam M. Forte1 and Kelin X. Whipple2

1Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA
2School of Earth and Space Exploration, Arizona State University, Tempe, AZ

July 9, 2018

Contents
1 Attribution 3

2 Download and Install 3
2.1 Matlab Functions . 3
2.2 Compiled Functions . 3

3 Preparing Datasets for TAK 5

4 Workflow 6

5 Matlab and TopoToolbox Crash Course 7
5.1 Matlab Data Types . 7

5.1.1 Arrays . 7
5.1.2 Cell Arrays . 8
5.1.3 Tables . 9
5.1.4 Structures . 10

5.2 Using Matlab Functions . 11
5.3 Loading and Outputting Data . 13
5.4 TopoToolbox Classes . 13

5.4.1 GRIDobj . 14
5.4.2 FLOWobj . 14
5.4.3 STREAMobj . 14
5.4.4 SWATHobj . 14

6 Initial Data Processing 15
6.1 CheckTAKDependencies . 15
6.2 MakeStreams . 15
6.3 ConditionDEM . 18
6.4 RemoveFlats . 18
6.5 FindThreshold . 18

7 Stream Selection and Projection 19
7.1 SegmentPicker . 19
7.2 SegmentPlotter . 19
7.3 SegmentProjector . 19

8 Channel Steepness and χ Maps 21
8.1 KsnChiBatch . 21
8.2 KsnProfiler . 24

8.2.1 Stream Selection . 24
8.2.2 Dealing with Stream Junctions . 24
8.2.3 Defining the Minimum Threshold Area . 26
8.2.4 Restarting and Recovering from Errors . 27
8.2.5 General Use . 28
8.2.6 Outputs . 29

8.3 ClassifyKnicks . 30

1

9 Basin Selection 30
9.1 BasinPicker . 30

10 Basin Average Maps and Plots 31
10.1 ProcessRiverBasins . 31

10.1.1 Basic Operation . 31
10.1.2 Extra Grids . 32
10.1.3 Categorical Grids . 33
10.1.4 Understanding Outputs . 33

10.2 CatPoly2GRIDobj . 35
10.3 SubDivideBigBasins . 36
10.4 FindBasinKnicks . 38
10.5 PlotIndividualBasins . 38
10.6 Basin2Shape . 38
10.7 Basin2Raster . 40
10.8 CompileBasinStats . 40

10.8.1 Recalculating Means Based on Categories . 40
10.8.2 Populating Categories . 41
10.8.3 Means by Category . 41

10.9 BasinStatsPlots . 41
10.9.1 Basic Options . 42
10.9.2 Mean Gradient vs Mean ksn - ’grd ksn’ . 43
10.9.3 Mean Gradient vs Mean Relief - ’grd rlf’ . 45
10.9.4 Mean Relief vs Mean ksn - ’rlf ksn’ . 45
10.9.5 Comparing Filtered and Non-Filtered Means - ’compare filtered’ 45
10.9.6 Histograms of Category Means - ’category mean hist’ . 46
10.9.7 Comparisons of Category Means - ’category mean compare’ 47
10.9.8 Basin Hypsometry - ’stacked hypsometry’ . 48
10.9.9 Comparing Distribution of Basin Means vs All Nodes -’compare mean and dist’ 48
10.9.10 Grid of Bi-Plots of Means - ’scatterplot matrix’ . 49
10.9.11 Generic X-Y plot - ’xy’ . 50

11 Swath Profiles with Projected Data 50
11.1 MakeTopoSwath . 51
11.2 MakeCombinedSwath . 53
11.3 ProjectOntoSwath . 55

12 Miscellaneous 55
12.1 ksncolor . 55
12.2 PlotKsn . 55
12.3 DippingBedFinder . 55
12.4 Mat2Arc . 56

13 Error Reporting 56

2

1 Attribution
If you use or modify TAK functions for use in a publication, please cite the main TAK publication:

• Adam M. Forte and Kelin X. Whipple. Short Communication: The Topographic Analysis Kit (TAK) for Topo-
Toolbox. Earth Surface Dynamics, X:X–X, 2018a. doi: XX

Also, please cite the original TopoToolbox publications as TAK could not function without TopoToolbox:

• Wolfgang Schwanghart and Nikolaus J. Kuhn. TopoToolbox: A set of Matlab functions for topographic analysis.
Environmental Modelling and Software, 25(6):770–781, 2010. ISSN 13648152. doi: 10.1016/j.envsoft.2009.12.
002

• Wolfgang Schwanghart and Dirk Scherler. Short Communication: TopoToolbox 2 - MATLAB based software
for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2:1–7, 2014. doi:
10.5194/esurf-2-1-2014

2 Download and Install

2.1 Matlab Functions
The TAK functions were written (and periodically updated) to work with the most up to date version of TopoToolbox,

this can be downloaded from Wolfgang Schwanghart’s GitHub page. The TAK functions are available from Adam
Forte’s GitHub page. Both the TopoToolbox and TAK functions (and all of their subfolders) must be on your matlab
path for the functions to work properly.

A suggested strategy for both the TopoToolbox and TAK functions is to ’fork’ copies of these repositories and use
these forked versions on your local machine. Periodically, you can sync your fork with the master of the original
repository to merge in any changes that have been made to either TopoToolbox or TAK. If you are uncomfortable
with the command line, this can also be done on the web version of GitHub by ’comparing’ branches (for updating
TopoToolbox, make sure the ’head fork’ is wschwanghart/topotoolbox and the ’base fork’ is your forked version of
TopoToolbox, follow a similar procedure for TAK), click on the ’Create pull request’ button, give the pull request a
name in the ’Title’ box (the new ’Create pull request’ button will be grayed out until you provide a name) click ’Create
pull request’, click ’Merge pull request’, and then finally click ’Confirm merge’. Your forked version will now be up
to date with the master of TopoToolbox or TAK.

2.2 Compiled Functions
In attempt to make these functions accessible to a wider range of users, we have also produced compiled ver-

sions of these functions that do not require Matlab to run. Within the main repository, there is a folder called ’Com-
piled Versions’ that contains three folders associated with the compiled versions, ’cmpMfiles’, ’Windows’, and ’Ma-
cOSx’. The ’cmpMfiles’ folder contains modified versions of all the matlab functions that were compiled, for reference
(you will likely need to look at these to understand the inputs to the compiled functions). The compiled versions all
have a ’cmp’ prefix on them to differentiate them from the main functions (these are all functional in Matlab on their
own, though it’s not generally recommended that you use these in Matlab over their main counterparts), but as de-
scribed below, when calling a function from the command line of the compiled TAK, you use the name of the desired
function without the ’cmp’ prefix. The master function is ’TAK.m’ (for which there is not have a comparable function
in the non-compiled versions). This master function will not successfully run in Matlab as it is designed to translate

3

https://github.com/wschwanghart/topotoolbox
https://github.com/amforte/Topographic-Analysis-Kit
https://help.github.com/articles/syncing-a-fork/

inputs from the command line to the other functions in a way that works only when used in a deployed (i.e. compiled)
mode. The ’Windows’ and ’MacOSX’ folders each contain an executable named InstallTAKandMatlabRuntime (with
either an .exe or .app extension depending on the OS). Double clicking this executable will install the Matlab runtime
environment that is necessary to run compiled matlab code and the executable for TAK. To keep the size of this install
file manageable, this executable needs to access the internet to download the Matlab Runtime. Additionally, you will
likely need to have administrator privileges on your local machine in order to successfully install Matlab Runtime. If
you have previously installed the Matlab runtime environment, versions of just the TAK executable can be found in the
’Files Only’ folder.

Compiled TAK functions are designed to be run from the command line (i.e. cmd prompt on Windows, terminal on
Mac OS X). The procedure for this differs between Windows and Mac OS X and is described in the readme that appears
along with the executables. After installing Matlab Runtime, on Windows, open a command prompt and navigate to
the location of the TAK executable and then simply call TAK:

1 TAK arguments

The procedure is a little more complicated on Mac OS X, here there is a shell script to run the application but it requires
that you specify the location of the Matlab Runtime environment. For example, after installing Matlab Runtime and
navigating to the location of the TAK executable and this shell script (with a .sh file extension) in a terminal window:

1 . / run TAK . sh / l o c a t i o n / o f / runt ime arguments

As described in the readme associated with the Mac version, you can avoid having to give the location of the Matlab
Runtime environment every time you run TAK by permanently setting the DYLD LIBRARY PATH location in your
path.

Compiled TAK expects that the first argument (after whatever is required to call the main TAK function depending
on the operating system you are using) will be the name of the function you wish to use and the second argument will
be the full path (it really does need to be the full path) to your working directory. TAK expects that all input data
that you reference are stored in this working directory and it will store all output data in this working directory (or
folders created within this working directory). Generally, the compiled versions of the functions take the same input
as the matlab functions described in detail in later sections, but in some cases, because of the limitations of the style of
inputs allowed, these inputs are slightly different (e.g. functions require a text file input instead of a cell array input,
etc). To understand the inputs to the compiled functions, please refer to the headers of the relevant codes stored in the
cmpMfiles folder.

It is important to note that the form of inputs are also different at the command line. In short, no input should be
included in quotes regardless of the input type and each input should be separated by a single space. For example to
call the compiled version of MakeStreams on Mac OS X:

1 . / run TAK . sh / l o c a t i o n / o f / runt ime MakeStreams / l o c a t i o n / o f /work ing / d i r e c t o r y
dem . t i f 1 e6 t o p o f i l e s no da ta exp auto

where ’MakeStreams’ is the name of the function you want to use, ’/location/of/working/directory’ is the working
directory where input data will be read from and output data will be stored, ’dem.tif’ is the first required input of
MakeStreams and is the name of the dem file to import, ’1e6’ is the second required input of MakeStreams and is
the threshold accumulation area to use, ’topo files’ is the third required input of MakeStreams and is the name for
output files (note that this is NOT a required input for the non-compiled version of MakeStreams), ’no data exp’ is
the name of an optional parameter for MakeStreams, and ’auto’ is the value being passed to that optional parameter.
Some standards for the inputs; 1) when the function requires that you provide a name of an input file, it expects that

4

the file includes the file extension (e.g. .txt, .mat, .shp, etc) because it will use this file extension to make sure you’re
providing the correct kind of file, 2) any text file input is expected to have a .txt extension, 3) theoretically comma or
tab delimited data are both fine for text file inputs, but in practice, comma delimited files are preferred, and 4) when the
function requires (or allows as an optional input) the name of an output file, DO NOT include a file extension as this
name will likely be used for several different files with different extensions and the function will handle appending the
proper file extensions. The header of ’cmp*.m’ files for each function contain example inputs to the command line to
run that function.

The compiled versions are designed to mostly behave exactly the same as the non-compiled functions running Matlab
with a few minor exceptions (e.g. the compiled versions of KsnProfiler and BasinPicker do not allow for you to zoom
into a location on the DEM before you start picking). All function names described in later sections are valid functions
to invoke in the compiled version of TAK except ksncolor, CatPoly2GRIDobj, or ProjectOntoSwath. Also note that
two functions exist in compiled TAK which do not in the regular versions. These functions, called as PrepareAddGrids
and PrepareCatAddGrids at the command lines, are designed to prepare inputs for additional grids and additional
categorical grids, respectively, for use in the compiled version of ProcessRiverBasins. Refer to the ’cmp’ files for these
two functions (’cmpPrepareAddGrids.m’ and ’cmpPrepareCatAddGrids.m’) for instructions for use.

3 Preparing Datasets for TAK
TopoToolbox and TAK functions are designed assuming that data is supplied to them are in a projected coordinate

system with meters as linear units (e.g. UTM) and will produce unexpected results (or may error out) if you do not
reproject your data into a suitable projection and coordinate system. Similarly, for functions that take multiple datasets
as inputs (e.g. ProcessRiverBasins) it is expected that all of the datasets your provide are in the same projection system.
We would generally recommend doing the reprojections in a GIS environment (e.g. ArcGIS, QGIS, GDAL, etc), but
TopoToolbox does include some functions to reproject data (e.g. reproject2utm, projectGRIDobj).

It’s important to note that projected data (e.g. geotiffs, ascii grids, shapefiles, etc) exported from Matlab will not
include georeferencing information. The data is still projected (in the same projection as the original input data), but
you will need to define the projection in the GIS program you are using.

In this this manual, we use an example dataset from Southern California to demonstrate outputs of some of the
functions included as part of TAK (Figure 1). The example data is available within the released version of the TAK
code on GitHub and is contained within a tarball called ’ExampleData.tar.gz’. Within this tarball, you’ll find:

• SoCal UTM DEM.tif - GeoTiff of the example data area shown in Figure 1 from Open Topography and repro-
jected into UTM 11N

• prism precip.tif - GeoTiff of 30 year normals of precipitation from PRISM, data was cropped and reprojected
into UTM 11N

• geo polygons.shp - Polygon shapefile of Geology of California from California Department of Conservation,
data was reprojected into UTM 11N

• river mouths.txt - text file containing the river mouths used to generate basins in the example using Process-
RiverBasins

5

http://opentopography.org/
http://www.prism.oregonstate.edu/normals/
https://maps.conservation.ca.gov/cgs/#datalist

Figure 1: Example dataset area used in this manual.

4 Workflow
Possible workflows through the functions provided as a part of TAK are outlined in Figure 2. In the sections that

follow, descriptions of each function are provided and in some cases, possible outputs are included as figures using
the example dataset. In later sections we assume that you have a basic familiarity with Matlab data types (e.g. arrays,
cell arrays, structures, tables, etc) and the four main TopoToolbox classes (i.e. GRIDobj, FLOWobj, STREAMobj, and
SWATHobj), but we provide a brief primer in Section 5. This manual does not include all options for all functions; we
refer users to the headers of each relevant function for a complete list of required and optional parameters. Instead, this
manual is designed to highlight the basic utility of the functions along with some underlying rationale / methodology
employed within some of the functions and to provide examples of some recommended use cases.

6

Figure 2: Possible work flows using the functions included in TAK.

5 Matlab and TopoToolbox Crash Course
The following sections are written for people who have never used Matlab (Sections 5.1, 5.2, 5.3) or TopoToolbox

(Section 5.4). If you are familiar with basic manipulations of Matlab datatypes, general procedure for using Matlab
functions, how to load and save variables in matfiles, and the four primary TopoToolbox classes, feel free to skip these
sections and get right into Initial Data Processing with TAK.

5.1 Matlab Data Types
There are four Matlab data types that appear commonly in TAK functions as either inputs or ouptuts (in addition

to TopoToolbox specific classes, described in section 5.4), arrays, cell arrays, tables, and structures/geographic data
structures.

5.1.1 Arrays

Arrays are the most basic data type in Matlab and are essentially a matrix of numeric values. They have some
specific rules associated with them, most importantly that they can only contain numbers and that there can be no

7

empty elements in an array:

1 % To make an a r ray , v a l u e s s e p a r a t e d by s em i c o l o n s i n d i c a t e rows and v a l u e s
s e p a r a t e d by commas i n d i c a t e columns , and en ca s i n g them i n b r a c k e t s
i n d i c a t e s t ha t i t i s an a r ray , so

2 a = [1 ; 2 ; 3] ;
3 % Wi l l make an a r r a y wi th 3 rows and 1 column , whereas
4 a = [1 , 2 , 3] ;
5 % Wi l l make an a r r a y wi th 1 row and 3 columns , and
6 a = [1 , 2 , 3 ; 4 , 5 , 6] ;
7 % Wi l l make an a r r a y wi th 2 rows and 3 columns
8 % The sem i co l on at the end o f the p r e v i o u s commands s u p p r e s s e s any output to

the command prompt
9 % Po s i t i o n s w i t h i n a matlab a r r a y can be s p e c i f i e d by t h e i r row and column

p o s i t i o n (note tha t the f i r s t i nd ex i n Matlab i s 1 , not 0 l i k e i n C , Java ,
Python , e t c) , so c a l l i n g

10 a (1 , 2)
11 % Wi l l p r i n t 2 at the command prompt as t h i s i s the number i n the f i r s t row

and second column .
12 % Po s i t i o n s can a l s o be s p e c i f i e d by t h e i r ’ l i n e a r index ’ , which i s a s i n g l e

number t ha t s t a r t s coun t i ng from p o s i t i o n (1 , 1) and p roce ed s down columns
and then a c r o s s rows , so

13 a (5)
14 % Wi l l p r i n t 5 at the command prompt , t h i s i s e q u i v a l e n t to c a l l i n g a (1 , 3)

5.1.2 Cell Arrays

Cell arrays are versatile data types that can be thought of as an array of containers. Cell arrays are primarily used
in TAK in ProcessRiverBasins. Each ’cell’ in a cell array can contain pretty much any other data type, e.g. a single
number, and entire array, another cell array, etc:

1 % Making a c e l l a r r a y i s s i m i l a r to making an a r ray , e x c ep t you use c u r l y
b r a c k e t s i n s t e a d o f squa r e b r a c k e t s

2 c ={1 ,2 ,3} ;
3 % Wi l l p roduce a 1 x 3 c e l l a r r a y
4 % Ce l l a r r a y s can con t a i n d i f f e r e n t t yp e s o f data wi th d i f f e r e n t d imens i on s i n

each c e l l
5 a = [1 , 2 , 3 ; 4 , 5 , 6] ;
6 c={a , 5 , ’ c e l l s can con t a i n s t r i n g s too ’ } ;
7 % Wi l l a l s o produce a 1 x 3 c e l l a r r a y but t h i s t ime wi th v e r y d i f f e r e n t data

s t o r e d i n each c e l l
8 % To r e f e r e n c e a p a r t i c u l a r c e l l , you need to use c u r l y b r a c k e t s aga in
9 c {1 ,2}

10 % Would p r i n t 5 to the comman prompt , where as
11 c {1}
12 % Would p r i n t the e n t i r e a r r a y s t o r e d i n a to the command prompt
13 % You can a l s o use p a r an t h e s e s to i ndex a c e l l a r r ay , but i n t h i s ca s e the

r e s u l t i s a new c e l l a r r a y j u s t c o n t a i n i n g the c e l l s you s p e c i f i e d

8

14 new c=c (2) ;
15 % Would produce a 1 x 1 c e l l a r r a y c o n t a i n i n g the number 5 i n the c e l l ,

whereas
16 new c=c (1 , 2 : 3) ;
17 % Would produce a 1 x 2 c e l l a r r a y wi th the number 5 i n the f i r s t c e l l , and

the s t r i n g ’ c e l l s can con t a i n s t r i n g s too ’ i n the second c e l l

There are some useful functions to be aware of for converting between arrays and cell arrays, specifically mat2cell,
cell2mat, and num2cell. These may be useful in preparing inputs for TAK functions, so we would suggest looking at
the help files on these functions if you are having problems generating some of the required inputs for particular TAK
functions.

5.1.3 Tables

Tables are similar to cell arrays in that elements within a table can contain a variety of different types of data, but they
differ primarily in that they also allow you to specify column and row names and thus the way you access data within
tables is different. Tables are primarily used in TAK in the CompileBasinStats, CatPoly2GRIDobj, and BasinStatsPlots
functions. As an example, consider extracting information from the table output from MakeCombinedSwath:

1 % You can que r r y the s i z e o f a t a b l e w i th s i z e
2 s i z e (T)
3 % The e n t i r e c on t en t s o f a p a r t i c u l a r column can be s t o r e d as a new v a r i a b l e

by c a l l i n g the name o f the t ab l e , e . g . to e x t r a c t the c on t en t s o f the ’
mean ksn ’ column which c o n t a i n s b a s i n ave raged no rma l i z ed channe l s t e e p n e s s
data i n the t a b l e output from the Comp i l eBa s i nS ta t s

4 a l l k s n=T. mean ksn ;
5 % You can a l s o e x t r a c t the c on t en t s o f a s i n g l e e l ement w i t h i n a column , e . g . ,

to e x t r a c t the 10 th e l ement o f the ’ mean ksn ’ column
6 ksn10=T. mean ksn (10 ,1) ;
7 % I n d i v i d u a l e l ement s i n a t a b l e can con t a i n data o f v a r i a b l e s i z e s and types ,

e . g . i n the t a b l e output from Comp i l eBas inSta t s , each e l ement o f the ’
mean ksn ’ column w i l l have one numer ic va lue , where as each e l ement o f the
’ hyps ’ column w i l l have a n x 2 a r r a y c o n t a i n i n g the hypsometry i n f o rma t i o n
f o r a p a r t i c u l a r b a s i n

Tables can also be a useful way to load in data for use in other functions, though generally you will need to convert
to other Matlab data types to be valid input for TAK functions:

1 % To read i n a f i l e c o n t a i n i n g mixed data , e . g . a t e x t f i l e w i th columns named
’ sample names ’ , ’ s amp l e l a t ’ , and ’ samp l e l on ’ and c o n t a i n i n g the names o f
samples as c h a r a c t e r s , the l a t i t u d e o f samples , and the l o n g i t u d e o f

samples r e s p e c t i v e l y
2 T=r e a d t a b l e (’ samples . t x t ’) ;
3 % Pa r t i c u l a r columns can be e a s i l y e x t r a c t e d to a r r a y s or c e l l a r r a y s
4 l a t=T. s amp l e l a t ; % Wi l l p roduce an a r r a y named l a t
5 l o n=T. s amp l e l on ; % Wi l l p roduce an a r r a y named l on

9

6 samples=T. sample names ; % Wi l l p roduce a c e l l a r r a y named samples because the
sample names column c on t a i n s c h a r a c t e r s

7 % You can a l s o r e f e r e n c e p a r t i c u l a r rows o f p a r t i c u l a r columns , f o r columns
c o n t a i n i n g numbers you r e f e r e n c e t h e s e l i k e a r r a y s , f o r columns c o n t a i n i n g
c h a r a c t e r s you r e f e r e n c e t h e s e l i k e c e l l a r r a y s

8 % Grabb ing the 10 th row o f each column
9 l a t 1 0=T. s amp l e l a t (10 ,1) ;

10 l on10=T. s amp l e l on (10 ,1) ;
11 name10=T. sample names {10 ,1} ;

5.1.4 Structures

Structures allow you to group similar data and store them in containers referred to as fields. Structures can also have
multiple dimensions like an array. In TAK, structures are used within the context of geographic data structures, which
are a special subset of structures that contain specific fields and can be written out as shapefiles using the shapewrite
command. Geographic data structures must have fields named, Geometry, X and Y (or Lon and Lat), and BoundingBox
(unless the Geometry is Point). We refer interested readers to the Matlab Help documents for the specific requirements
of the data stored in these fields if you wish to generate a valid geographic data structure that can be output as a shapefile
on your own. Geographic information structures can also have additional fields which will be interpreted as fields in
the output shapefile. Several functions produce geographic data structures, e.g. ProcessRiverBasins or KsnChiBatch.
Consider the example of interacting with the ’MSNc’ geographic information structure stored within the outputs of
ProcessRiverBasins that contains information related to ksn:

1 % You can que r r y the d imens i on s o f a s t r u c t u r e w i th s i z e
2 s i z e (MSNc)
3 % Which i n the ca se o f ’MSNc’ w i l l be n x 1 depend ing on the s i z e o f the

st ream network
4 % You can a l s o que r r y which f i e l d s a r e s t o r e d i n ’MSNc’ w i th f i e l d n ame s
5 f i e l d n ame s (MSNc)
6 % You can e x t r a c t the c on t en t s o f a g i v en f i e l d from a p a r t i c u l a r d imens ion ,

f o r example to e x t r a c t what ’ s s t o r e d i n the ’ ksn ’ f i e l d i n the 10 th e l ement
7 ksn10=MSNc(10 ,1) . ksn ;
8 % Examining t h e s e f i e l d s , you can see tha t they have v a r i a b l e s i z e s , f o r

example the ’ Geometry ’ f i e l d has a s i n g l e e n t r y pe r e l ement tha t i s ’ L ine ’ ,
i n d i c a t i n g tha t the s h a p e f i l e Geometry type i s L ine , where as the X and Y

f i e l d s w i l l have n x 1 a r r a y s s p e c i f y i n g the X and Y c o o r d i n a t e s o f l i n e
segments

9 % You may wish to e x t r a c t a l l the v a l u e s from a s p e c i f i c f i e l d , e . g . a l l the
no rma l i z ed s t e e p n e s s v a l u e s s t o r e d i n the ksn f i e l d , but u n l i k e w i th a
t a b l e i f you s imp l y c a l l a f i e l d w i thout s p e c i f y i n g a d imens ion , you w i l l
ge t the f i r s t e lement , not the e n t i r e l i s t o f e l ement s

10 MSNc. ksn % Wi l l p r i n t whateve r ksn v a l u e i s i n the MSNc(1 , 1) . ksn
11 % To e x t r a c t a l l the ksn v a l u e s s t o r e d i n the ksn f i e l d , you must conca t ena t e

the f i e l d v a l u e s
12 a l l k s n =[MSNc. ksn] % w i l l p roduce a row vec to r , 1 x m o f ksn v a l u e s
13 a l l k s n=ho r z c a t (MSNc . ksn) % w i l l p roduce a row vec to r , 1 x m o f ksn v a l u e s
14 a l l k s n=v e r t c a t (MSNc . ksn) % w i l l p roduce a column v e c t o r n x 1 o f ksn v a l u e s

10

15 % Va l i d g eog r aph i c i n f o rma t i o n s t r u c t u r e s can be output as s h a p e f i l e s
16 s h ap ew r i t e (MSNc, ’ ksn . shp ’) ;
17 % You can a l s o impor t s h a p e f i l e s i n t o Matlab as g eog r aph i c i n f o rma t i o n

s t r u c t u r e s
18 MS=shape read (’ shape name . shp ’) ;

5.2 Using Matlab Functions
All of the files included in TAK are written as Matlab functions. A Matlab function is stored in a ’.m’ file and is

called by the name of that file:

1 % For a f u n c t i o n f i l e named Tes tFunc t i on .m, you would c a l l i t l i k e t h i s a t the
command prompt i n Matlab

2 Tes tFunc t i on (my ar ray) ;
3 % In t h i s example , the Tes tFunc t i on has one i npu t tha t i s an a r r a y

All of the TAK functions have extensive ’headers’, i.e. commented text that appears at the top of the .m file that
contains a description of the use of the function along with lists of inputs and outputs. You can always open an .m file
in Matlab or a text editor to view these, but you can also access them directly from the command line:

1 % S t a r t i n g the c a l l f o r a f u n c t i o n l i k e t h i s
2 Tes tFunc t i on (
3 % Wi l l d i s p l a y a pop up showing the r e q u i r e d i n p u t s f o r the f u n c t i o n and

i n c l u e a l i n k l a b e l e d ’More Help . . . ’ t h a t i f c l i c k e d w i l l open the heade r
i n f o rma t i o n f o r the f u n c t i o n i n a new window .

The majority of TAK functions have both required and optional inputs. As the names imply, required inputs are data
or information the function must have to run where as optional inputs are inputs that can be omitted and the function
will still run. In many cases, optional inputs are required for the function to run, but they have a default value that
will be used if the user does not supply a value to the optional input (e.g. many TAK functions require a reference
concavity, this is always specified as an optional parameter that will be set to 0.5 if you do not provide a different
number). Required inputs for TAK functions will generally will take one of three forms:

1. The name of a variable stored in the workspace

1 % The header o f Tes tFunc t i on t e l l s you tha t i t has one r e q u i r e d i npu t tha t
i s a Matlab a r r a y named INPUT , t h i s means you can p r o v i d e any Matlab

a r r a y (w i th any name) to Tes tFunc t i on
2 Tes tFunc t i on (my ar ray) ;
3 % A l t e r n a t i v e l y , i f Te s tFunc t i on s a y s i t r e q u i r e s two inpu t s , INPUT1 and

INPUT2 , i . e . the he l p pop up l o o k s l i k e Tes tFunc t i on (INPUT1 , INPUT2) ,
and the f i r s t i n pu t i s supposed to be a Matlab a r r a y and the second i s
supposed to be a Matlab c e l l a r r ay , then a v a l i d i n pu t would be

4 Tes tFunc t i on (my array , m y c e l l a r r a y) ;
5 % Always c o n s u l t the heade r f o r s p e c i f i c r equ i r emen t s , some a r r a y s have

r e s t r i c t i o n s on t h e i r d imens ions , e . g . they must be an n x 2 a r r a y .
I n pu t s to TAK f u n c t i o n s w i l l be ’ parsed ’ so i f they do not meet the
r equ i r emen t s , you w i l l be in fo rmed o f t h i s and the f u n c t i o n w i l l e r r o r
out

11

2. A character string defining an option or giving the name of a file or folder

1 % The header o f Tes tFunc t i on t e l l s you i t r e q u i r e s one i npu t Method tha t
d e f i n e s a method and tha t the v a l i d i n p u t s to method a r e ’ s p l i t ’ o r ’
j o i n ’ , so

2 Tes tFunc t i on (’ s p l i t ’) ;
3 % Would be a v a l i d c a l l to the f un c t i o n , where as
4 Tes tFunc t i on (s p l i t)
5 % Would not be a v a l i d c a l l
6 % S im i l a r l y , i f a r e q u i r e d i npu t i s the name o f a f i l e , you would g i v e

t h e s e i n s i n g l e quote s
7 Tes tFunc t i on (’ m y f i l e . t x t ’) ;

3. A logical value

1 % The header o f Tes tFunc t i on t e l l s you tha t i t has one r e q u i r e d input ,
Do X and tha t t h i s e x p e c t s a l o g i c a l va lue , then you cou ld c a l l i t l i k e
t h i s

2 Tes tFunc t i on (t r u e) ;
3 % Or l i k e t h i s
4 Tes tFunc t i on (1) ;
5 % As 0 and 1 a r e e q u i v a l e n t to f a l s e and t rue , r e s p e c t i v e l y

Optional inputs follow many of the same rules, but they importantly differ in that they require that they are proceeded
by the name of the optional parameter:

1 % From the heade r o f TestFunct ion , you l e a r n tha t i t has t h r e e r e q u i r e d i npu t s
, 1) data , which e xp e c t s a Matlab a r ray , 2) method , which s p e c i f i e s a
method to use on the data tha t i s e i t h e r ’ s p l i t ’ o r ’ j o i n ’ , and 3)
save ou tpu t , which e xp e c t s a l o g i c a l v a l u e . Tes tFunc t i on a l s o has two
o p t i o n a l parameter s , 1) f i l e n ame , which e xp e c t s the name o f the f i l e to be
output and 2) e x t r a d a t a , which e xp e c t s ano the r Matlab a r r a y . A l l o f the

f o l l o w i n g a r e v a l i d c a l l s to Tes tFunc t i on
2 Tes tFunc t i on (my array , ’ s p l i t ’ , t r u e) ; % Running f u n c t i o n wi th no o p t i o n a l

i n p u t s
3 Tes tFunc t i on (my array , ’ j o i n ’ , t rue , ’ f i l e n ame ’ , ’ m y f i l e . t x t ’) ;
4 Tes tFunc t i on (my array , ’ s p l i t ’ , f a l s e , ’ e x t r a d a t a ’ , my o t h e r a r r a y) ;
5 Tes tFunc t i on (my array , ’ j o i n ’ , t rue , ’ e x t r a d a t a ’ , my o the r a r r a y , ’ f i l e n ame ’ , ’

m y f i l e . t x t ’) ;
6 % Note tha t the o r d e r i n which you s p e c i f y o p t i o n a l pa ramete r s doesn ’ t matter ,

but the argument pas sed to an o p t i o n a l paramete r must a lways immed i a t e l y
f o l l o w the name o f the a p p r o p r i a t e o p t i o n a l paramete r

Many of the TAK functions also have outputs that will be stored as variables in the Matlab workspace after a
successful run of the function. Outputs are specified like so:

1 % The header i n d i c a t e s t ha t Tes tFunc t i on from the p r e v i o u s example has two
outputs , s p l i t d a t a and j o i n e d d a t a , you can s p e c i f y the name o f the
v a r i a b l e s f o r t h e s e ou tpu t s

12

2 [m y s p l i t s , my j o i n s]=Tes tFunc t i on (my array , ’ s p l i t ’ , t r u e) ;
3 % Now v a r i a b l e s m y s p l i t s and my j o i n s w i l l appear i n your Matlab workspace
4 % I f you don ’ t a c t u a l l y c a r e about one o f the outputs , e . g . you on l y want

my jo in s , you can supp l y a ˜ to any output you don ’ t want to be output to
the workspace

5 [˜ , my j o i n s]=Tes tFunc t i on (my array , ’ s p l i t ’ , t r u e) ;

5.3 Loading and Outputting Data
The outputs of many TAK functions are automatically saved as ’matfiles’, which are versatile matlab files that can

contain multiple variables and will have a ’.mat’ suffix. Some basic operations with matfiles:

1 % You can que r r y the c on t en t s o f a m a t f i l e
2 whos (’− f i l e ’ , ’ Bas in 1 Data . mat ’)
3 % Which w i l l p r i n t out the l i s t o f v a r i a b l e names , t h e i r s i z e s , and the type

o f data s t o r e d i n tha t v a r i a b l e to the workspace
4 % A l t e r n a t i v e l y , h i g h l i g h t i n g a m a t f i l e i n the ’ Cu r r en t Fo lde r ’ window w i l l

d i s p l a y the con t en t s i n the bottom l e f t o f the Matlab s c r e e n
5 % I f you want to l oad i n a p a r t i c u l a r v a r i a b l e , you can use l oad
6 l o ad (’ Bas in 1 Data . mat ’ , ’DEMcc ’) ; % Wi l l l o ad the DEMcc v a r i a b l e i n t o the

workspace
7 % You can l oad a l l v a r i a b l e s c on t a i n ed i n a m a t f i l e by not s p e c i f y i n g any

v a r i a b l e s w i th the l oad command
8 l o ad (’ Bas in 1 Data . mat ’) ;
9 % The syn tax f o r s a v i n g data i n t o a m a t f i l e i s s i m i l a r

10 save (’MyMat . mat ’ , ’DEMcc ’) ;
11 % I f the s p e c i f i e d mat f i l e name a l r e a d y e x i s t s , the p r e v i o u s a c t i o n w i l l

o v e rw r i t e the m a t f i l e . I f you i n s t e a d want to add the v a r i a b l e to the
v a r i a b l e s a l r e a d y s t o r e d i n the ma t f i l e , you can use ’−append ’

12 save (’MyMat . mat ’ , ’DEMcc ’ , ’−append ’) ;

5.4 TopoToolbox Classes
There are four primary TopoToolbox classes, GRIDobj, FLOWobj, STREAMobj, and SWATHobj. We refer interested

users to the TopoToolbox documentation or Wolfgang Schwanghart’s excellent blog for detailed discussions of these
data classes, but below we provide a very brief description of these different classes. A general point to be aware of
when using TopoToolbox classes is that many functions require several of these different classes and, unless otherwise
stated, it is assumed that these are datasets that were generated together and from each other (e.g. the STREAMobj
generated from a particular FLOWobj which in turn was generated from a particular GRIDobj). You generally don’t
need to worry about this if you are using the TAK functions exclusively, but if you ever get an error regarding datasets
not aligning, check to make sure you are not mixing different TopoToolbox datasets that did not derive from the same
DEM.

The TopoToolbox dataclasses are unique, but in terms of other Matlab data types, they are the most similar to a 1
dimensional structure, i.e. they contain a series of ’fields’ that contain a variety of different data types:

1 % To e x t r a c t the data a r r a y w i t h i n a GRIDobj named DEM

13

https://topotoolbox.wordpress.com/

2 e l e v a t i o n s=DEM.Z ; % Wi l l be a n x m a r r a y o f numer ic v a l u e s
3 % To e x t r a c t the c e l l s i z e o f a GRIDobj named DEM
4 c e l l s i z e=DEM. c e l l s i z e ; % Wi l l be a s i n g l e v a l u e
5 % The con t en t s o f a TopoToolbox o b j e c t can be q u e r r i e d wi th the ’ f i e l dnames ’

f un c t i o n , j u s t l i k e a s t r u c t u r e
6 f i e l d n ame s (DEM)
7 % Wi l l output a c e l l a r r a y w i th the names o f the f i e l d s con t a i n ed w i t h i n DEM

5.4.1 GRIDobj

GRIDobjs are for storing raster data. In TAK, they are how DEMs, flow accumulation rasters, and other additional
gridded data is stored. It is very simple to generate a GRIDobj:

1 % GRIDobjs can be c r e a t e d from a s c i i g r i d s o r g e o t i f f s
2 DEM=GRIDobj (’ / path / to / g r i d d e d e l e v a t i o n d a t a . t x t ’) ;
3 GRID=GRIDobj (’ / path / to / o t h e r g r i d d e d d a t a . t i f ’) ;

It is important to note that it is recommended that you project data into a projected coordinate system (e.g. UTM)
before turning it into a GRIDobj, failure to do so will result in errors in various TAK functions.
If you want to plot a GRIDobj

1 % To p l o t a s i n g l e GRIDobj
2 imagesc (GRID) ;
3 % To p l o t a h i l l s h a d e c o l o r e d by ano the r GRIDobj (can p r o v i d e the DEM as the

second i npu t to c o l o r by e l e v a t i o n)
4 imageschs (DEM, GRID) ;

5.4.2 FLOWobj

FLOWobjs are special data classes for storing flow routing information. Unlike a flow direction raster in ArcGIS,
this is not something that can be easily visualized, but it is a crucial dataset used for almost all TAK functions.

5.4.3 STREAMobj

STREAMobjs are data classes for storing stream networks. To plot a STREAMobj,

1 %To p l o t a map o f a STREAMobj
2 p l o t (S) ;
3 % To p l o t a l o n g i t u d i n a l p r o f i l e o f the s t r eams i n a STREAMobj
4 p l o t d z (S ,DEM) ;

5.4.4 SWATHobj

SWATHobjs are data classes for storing swath data extracted from GRIDobj. To create a basic plot of a SWATHobj,

1 %To p l o t swath p r o f i l e o f a SWATHobj
2 p l o t d z (SW) ;

14

6 Initial Data Processing

6.1 CheckTAKDependencies
TopoToolbox and TAK require several different Matlab toolboxes. CheckTAKDependencies is a simple function that

checks to see if you have licensed versions of all the required toolboxes.

1 % CheckTAKDependencies t a k e s no i n p u t s and has no fo rma l ou tpu t s
2 % I f runn ing
3 CheckTAKDependencies
4 % Produces no warn ings , then a l l o f the TAK f u n c t i o n s shou l d work (or at l e a s t

, they shou ldn ’ t f a i l because o f m i s s i n g dependenc i e s !)
5 % A l t e r n a t i v e l y you may see t e x t l i k e :
6 ’ Warning : F a t a l e r r o r : You do not have a l i c e n s e f o r the Mapping Toolbox ,

TopoToolbox w i l l not f u n c t i o n p r o p e r l y ’
7 % I f you a r e m i s s i n g a c r u c i a l TopoToolbox , o r t h i s :
8 ’ Warning : You do not have a l i c e n s e f o r the S t a t i s t i c s and Machine Lea rn i ng

Toolbox , some f u n c t i o n s w i l l not work p r o p e r l y ’
9 % I f you a r e m i s s i n g a Toolbox tha t a r e on l y used by some TAK f u n c t i o n s

TAK requires licenses for the Image Processing Toolbox, Mapping Toolbox, Optimization Toolbox, and Statistics
and Machine Learning Toolbox. If you do not have all licenses for all of these, you may need to use the Compiled
Functions.

6.2 MakeStreams
MakeStreams is a simple wrapper around creating the basic TopoToolbox objects needed for the majority of other

TAK functions, specifically a digital elevation model (DEM) as a GRIDobj, a flow direction dataset as a FLOWobj, a
flow accumulation grid as a GRIDobj, and a stream network as a STREAMobj. The minimum inputs are the location of
a valid DEM as either a geotiff or ascii grid and a minimum threshold drainage area (in square map units) for beginning
stream network definition:

1 [DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6) ;

The basic usage of MakeStreams will produce stream networks, that depending on the nature of your DEM, may
include areas that are not of interest or should not be included in stream definition (Figure 3).

15

Figure 3: Result of running MakeStreams without any control for flat areas.

MakeStreams includes various simple options to filter the input DEM. This can be done through a logical expression,
for example, if you wanted to set any portions of the DEM at or below 0 m elevation to no data (and thus suppress
stream definition), you could use the following:

1 [DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6 , ’
no da ta exp ’ , ’DEM<=0 ’) ;

There is also a built in auto filter that will identify true flats (i.e. areas of constant elevation) and set these to no data:

1 [DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6 , ’
no da ta exp ’ , ’ auto ’) ;

Using this auto filter produces a more reasonable stream network and removes the Pacific Ocean and Salton Sea from
the areas where streams are defined. (Figure 4). The auto filter can be controlled by setting a minimum area to identify
as a flat to avoid finding small flat areas of DEMs that you do not wish to remove. This is set to a default minimum
area of 1e8 m2. Setting this minimum flat area to small values may result in a discontinuous stream network (Figure
5).

16

Figure 4: Result of running MakeStreams with auto removal of flat areas and min flat area set to 1e8.

(a) Minimum flat area of 1e6 (b) Minimum flat area of 1e7

Figure 5: Difference in output of MakeStreams depending on value used for min flat area when auto removing flat areas
in the area around Big Bear lake (outline of lake is shown in thin dotted black line) in the San Bernadino Mountains.
When min flat area is 1e6 (5a), the lake is identified as a flat and removed, but when min flat area is 1e7 (5b) the lake
is not identified as a flat and thus streams are routed through the lake.

17

MakeStreams also has controls for resampling the input DEM. This can be useful (and is sometimes necessary),
because after reprojecting georeferenced data in a GIS program, the cellsize of the DEM can end up as a number
with a lot of decimal places. This can cause problems in some TopoToolbox and TAK functions because of different
rounding behaviors and thus cause the codes to think that two datasets do not line up, even when they do. To avoid
this, MakeStreams will warn you if the provided DEM does not have a whole number cellsize and suggest that you use
the resample option to fix this for later processing.

MakeStreams also has an options to provide a precipitation dataset (with or without a comparable runoff ratio grid)
to automatically produce a weighted flow accumulation raster:

1 PRECIP=GRIDobj (’ / Use r s / a f o r t e /GISdata / p r i sm p r e c i p . t i f ’) ;
2 [DEM,FD,A, S]=MakeStreams (’ / Use r s / a f o r t e /GISdata /SoCal UTM DEM . t x t ’ ,1 e6 , ’

p r e c i p g r i d ’ ,PRECIP) ;

6.3 ConditionDEM
DEMs can be extremely noisy and thus can produce very jagged stream profiles. This is both visually unappealing,

but more importantly is problematic for calculations that use stream gradient (e.g. normalized channel steepness).
TopoToolbox includes a variety of different algorithms to condition or smooth DEMs, either as an entire grid or
specifically along specified stream networks. The ConditionDEM function is a wrapper around all of these different
routines. Some are very computationally intensive and require several parameters, so you are advised to spend some
time ’playing’ with the parameters and choices to see the outcome. ConditionDEM produces example stream profiles
comparing the unconditioned and conditioned result along with a map showing where elevations were changed to aid
you in understanding what the chosen algorithm has done.

It is not strictly required to use the ConditionDEM function. All TAK functions that need smoothed channel profiles
have built in conditioning, using the mincosthydrocon algorithm with an interpolation value of 0.1. If you want to use a
different conditioning algorithm, you can use ConditionDEM to produce a conditioned DEM that you can then supply
as an optional input to TAK functions that need a conditioned DEM.

6.4 RemoveFlats
For topographic analysis, we are often not interested in flat areas and it can be helpful to remove these from DEMs

or set them to no data to restrict stream definition. Some of this can be accomplished with the simple controls built into
MakeStreams, but when these flat areas are not perfectly flat or occur at multiple elevations, they can be problematic to
remove without manual clipping of DEMs. The RemoveFlats function is an attempt to partially automate this process.
It allows you to graphically identify areas (with a single click for each connected flat area) that you consider flats and
the function will attempt to find contiguous areas. This function can sometimes be overly aggressive and remove areas
of interest, so it is always best to inspect the results of the function before using it for subsequent processing (e.g.
providing the filtered DEM produced here to MakeStreams to regenerate a stream network) and compare it with the
basic output of MakeStreams to determine whether the results of RemoveFlats are suitable for use.

6.5 FindThreshold
Stream definition is commonly controlled by a minimum threshold accumulation area, i.e. streams are defined as

anywhere within a DEM where the upslope drainage area exceeds a threshold value. The FindThreshold function is
designed to aid you in choosing an appropriate minimum threshold area or, alternatively, manually setting this threshold

18

area on a stream by stream basis. It requires that you run MakeStreams initially, though the threshold area you use when
running MakeStreams is not critical (though this will dictate the initial drainage density and thus the number of channel
heads with which to work).

FindThreshold can be run in one of two ways. In the first way, when you provide a numeric input to the ’num streams’
parameter, the function displays this user specified number of streams extracted all the way to the drainage divide and
allows you to choose, on either a χ-elevation or slope-area plot where you think the hillslope to channel transition
might be. In this mode, the function will produce a new stream network based on the average of your minimum thresh-
old area choices, and will also give you the population of minimum threshold areas and associated distances from the
drainage divide to the channel head for the streams you choose. Alternatively, FindThreshold if ’num streams’ is set
to ’all’, it runs in a mode where the function iterates through all channel heads in the provided stream network and
uses the same picking protocol as above to manually set the minimum threshold area for each stream. In this mode
each stream will have a variable minimum threshold area, but the total number of streams (i.e. channel heads) will still
be dictated by the drainage density of the input stream network. Running FindThreshold with ’num streams’ set to
’all’ on a large stream network may be very labor intensive, for example, the southern California dataset with an initial
threshold area of 1e6 m2 has > 120,000 channel heads so if you were to in ’all’ mode, you would have to manually
identify the hillslope-channel transition on ALL of those channel heads.

7 Stream Selection and Projection
The three functions for stream selection and projection have some overlap with similar functions in TopoToolbox,

but are slightly different in implementation or style of outputs. Exploring both to see which set better fits your needs is
advisable.

7.1 SegmentPicker
SegmentPicker is a function designed to select portions of larger stream networks. In terms of stream selection, the

function has two primary modes, either ’down’, i.e. you select individual streams based on a channel head location, or
’up’, i.e. you select portions of networks above a given pour point. Channel selection can be done interactively within
Matlab or by providing coordinates of channel heads or pour points as an array or a point shapefile. SegmentPicker
shares some similarity to the TopoToolbox function flowpathapp or functionality available in topoapp.

7.2 SegmentPlotter
SegmentPlotter takes the output of SegmentPicker and plots each selected stream individually. The stream network

is plotted as χ-elevation, longitudinal profile, and slope-area plots. There are various options for subsetting portions of
picked streams, producing individual or single figures, and labeling.

7.3 SegmentProjector
SegmentProjector allows you to select a portion of a stream to project along the length of the entire stream (i.e. from

the mouth to the channel head of the provided stream). This can be useful for a variety of questions, e.g. estimating the
amount of uplift of a low relief portion of a landscape (Figure 6) or identifying portions of a stream profile that may be
tectonically deformed or otherwise disturbed (Figure 7).

19

(a) Projected stream (b) Residual on projected stream

Figure 6: Example of SegmentProjector outputs for a stream within Basin 402 (northeastern San Jacinto Mountains)
with a low relief upper portion.

20

(a) Projected stream (b) Residual on projected stream

Figure 7: Example of SegmentProjector outputs for a stream within Basin 313 (northwestern San Jacinto Mountains)
with possible localized deformation or landslide deposit within the profile.

SegmentProjector will iterate through all channel heads within a provided stream network, so it is suggested that
you use SegmentPicker or some other means of selecting streams of interest before running SegmentProjector. Note
that if you are using the output of SegmentPicker, you will need to load the PickedSegments *.mat file and provide
the STREAMobj Sc stored within this file as the required STREAMobj input to SegmentProjector. SegmentProjector is
similar to the TopoToolbox streamproj function.

8 Channel Steepness and χ Maps

8.1 KsnChiBatch
KsnChiBatch is designed to be similar to the original ’batch’ mode in Profiler51 for creating normalized channel

steepness (ksn) maps, but has many more options. KsnChiBatch can be used to produce stream networks with values of
ksn or χ or continuous grids of either ksn or χ. There are options to produce outputs as either shapefiles or ascii grids
for use in a GIS program or matlab outputs for display (e.g. using PlotKsn) or for analysis. There are also options

21

to remove incomplete portions of stream networks (which can be problematic for both χ and ksn calculations) and
control outlet elevation (which can be important for correctly interpreting χ anomalies). The methodology employed
for dealing with χ in KsnChiBatch is identical to that as in the companion DivideTools GitHub repository, the details
of which are described in Forte and Whipple [2018b] [Link to Journal Site] .

The outputs of the KsnChiBatch function differ depending on the type of map being calculated. If the required
’product’ input is set to ’ksn’, then the function will save a polyline shapefile, but if the ’product’ is ’chi’, ’chigrid’,
or ’ksngrid’ the function will save an ascii grid. χ maps are output as grids to avoid averaging of chi values along a
stream network during the production of a shapefile. If you wish to create a shapefile of a χ map, you can use a GIS
program to create a shapefile from the ascii grid (e.g. in ArcGIS, convert the ascii to a raster and then use the raster to
polyline function).

You can also specify that you want the function to produce outputs to the workspace with the optional ’output’
parameter. The number of outputs will again vary with the product:

1 % When ’ ksn ’ i s the ’ product ’ , two ou tpu t s w i l l be produced , a GRIDobj w i th
ave raged ksn v a l u e s s t o r e d i n nodes a long the st ream network (
KSN STREAM GRID) and a geog r aph i c i n f o rma t i o n s t r u c t u r e o f ksn v a l u e s (
ksn ms)

2 [KSN STREAM GRID , ksn ms]=KsnChiBatch (DEM,FD,A, S , ’ ksn ’) ;
3 % When ’ k sng r i d ’ i s the product , a GRIDobj o f i n t e r p o l a t e d ksn v a l u e s w i l l be

produced
4 [KSN GRID]=KsnChiBatch (DEM,FD,A, S , ’ k s n g r i d ’) ;
5 % When ’ chimap ’ i s the product , a GRIDobj w i th c h i v a l u e s s t o r e d i n nodes

a l ong the st ream network w i l l be produced
6 [CHI MAP]=KsnChiBatch (DEM,FD,A, S , ’ chimap ’) ;
7 % When ’ c h i g r i d ’ i s the product , a GRIDobj w i th c h i v a l u e s i n a l l nodes not

e x c l uded by o u t l e t c o n d i t i o n s w i l l be produced
8 [CHI GRID]=KsnChiBatch (DEM,FD,A, S , ’ c h i g r i d ’) ;
9 % When ’ ch i ’ i s the product , the c h i map output w i l l come f i r s t

10 [CHI MAP , CHI GRID]=KsnChiBatch (DEM,FD,A, S , ’ c h i ’) ;
11 % When ’ a l l ’ i s the product , a l l o f the p r e v i o u s ou tpu t s w i l l be produced i n

the f o l l o w i n g o r d e r
12 [KSN STREAM GRID , ksn ms , KSN GRID , CHI MAP , CHI GRID]=KsnChiBatch (DEM,FD,A, S , ’ a l l

’) ;

Values of ksn can be calculated in two primary ways. The default ’ksn method’ (and the same method used in the
original Profiler51 or the TopoToolbox ksn function) is denoted ’quick’ and calculates ksn across the entire stream
network simultaneously by solving the equation S = ksn ∗ A−θ, where S is the gradient, A is the drainage area, and
θ is a reference concavity. This result will typically be extremely noisy because of small variations in gradient, so ksn
values are usually averaged over some length, depending on the resolution of the data. This ’smooth distance’ is a user
controlled parameter in KsnChiBatch.

The default method described above is quick to calculate, but can sometimes smear out true abrupt changes in ksn
at confluences. For this reason, by setting ’ksn method’ to ’trib’, ksn can also be calculated with KsnChiBatch where
network segments (i.e. stream segments between confluences) are selected, divided into sub-segments determined by

22

https://github.com/amforte/DivideTools
https://www.sciencedirect.com/science/article/pii/S0012821X18302292

the ’smooth distance’, and then the average ksn of each sub-segment is calculated by finding the best fit slope on the
χ-elevation relationship for this sub-segment (ksn is equivalent to the slope of the χ-elevation relationship when the
reference drainage area is set to 1). The ’quick’ and ’trib’ methods do produce different ksn patterns, though while
subtle, do show some systematic behavior (Figure 8).

Figure 8: Comparison of the regular ’quick’ method vs the ’tributary’ method of calculating ksn using KsnChiBatch.

While we have not conducted a full study of the differences of these two methods, the southern California example
suggests that generally the regular ’quick’ method of ksn calculation may be slightly biased towards higher ksn values,
though 90% of ksn values of the two methods are within ±50 of each other (this is with a reference concavity of 0.50,
so absolute magnitudes of ksn and thus magnitudes of deviations between these two methods will scale with choice
of reference concavity). The ksn values from the regular method are generally systematically larger than the tributary
method values in low relief areas, where as generally ksn values from the tributary method tend to be higher than regular
values in higher relief portions of the landscape (Figure 8).

The geographic information structure (and shapefile) produced from both methods for each segment (controlled by
the ’smooth distance’) will have fields containing values for ksn (’ksn’), mean drainage area (’uparea’), mean gra-
dient (’gradient’), and the difference between the conditioned stream elevation and non-conditioned stream elevation
(’cut fill’) to inform the user whether an anomalous ksn value may because of an overly aggressive conditioning scheme.
If the ’trib’ method is used, the geographic information structure and shapefile will include an extra field, ’chi r2’,
which is the R2 value on the χ-elevation fit and can be interpreted as a measure of the linearity of each sub-segment.

23

8.2 KsnProfiler
For detailed analysis of streams, it is often necessary to manually select knickpoint bounded steam segments for

which you wish to calculate average ksn values. This was the primary purpose of the original Profiler51 code and we
have produced the KsnProfiler function to replicate and improve upon the original Profiler51 methodology. In detail,
KsnProfiler calculates ksn of user selected segments by finding the best fit linear slope of the χ-elevation relationship
for the segment in question. It should be noted that 1) calculation of ksn via this method will produce identical results
to finding the intercept of a fit in slope-area space (providing that the reference area in the χ calculation is set to 1, as it
is in KsnProfiler) so there is no need to distinguish between ksn values calculated by a χ-elevation slope or a slope-area
intercept and 2) though the publication associated with the original Profiler51 codes discussed ksn calculation in terms
of slope intercepts (Wobus et al. [2006]), internally, the code used the slope of a linear fit on a χ-elevation relationship
to calculate ksn. KsnProfiler has a large number of optional inputs, so you should familiarize yourself with all of the
ways in which it can be run by reading through the header of the function. We highlight some of the main options in
the following sections.

8.2.1 Stream Selection

There are four different ways in which you can define which streams you would like to fit. The default is an
interactive channel selection method where you choose streams (from all of the streams in the provided STREAMobj)
manually by clicking near a channel head of interest. In this case, the call of KsnProfiler is relatively simple:

1 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S) ;

While this can be nice especially as it will update the map with ksn values as you continue to pick and fit streams, it
can be unstable or slow if you are trying to analyze a very large area (though you can use the ’plot type’ parameter to
switch to a map plot that is more optimized for larger datasets). The three other selection methods do not involve a
map of streams, so is generally more stable for large datasets. The other options are called like:

1 % To i t e r a t e through a l l s t r eams i n the p r o v i d ed STREAMobj :
2 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ a l l s t r e am s ’) ;
3 % To i t e r a t e through a l l s t r eams and f i t any st ream ove r 50 km i n t o t a l

l e n g t h :
4 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ s t r e am l e n g t h ’ , ’

m i n l e n g t h t o e x t r a c t ’ ,50000) ;
5 % To f i t s t r eams based on a d e f i n e d l i s t o f channe l head l o c a t i o n s p r o v i d ed

as an a r r a y o f channe l head l o c a t i o n s (c h l i n the example below) :
6 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ c h anne l h ead s ’ , ’

c h a n n e l h e a d l i s t ’ , c h l) ;
7 % To f i t s t r eams based on a d e f i n e d l i s t o f channe l head l o c a t i o n s p r o v i d ed

as an a r r a y o f channe l head l o c a t i o n s from a po i n t s h a p e f i l e o f channe l
heads :

8 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ input method ’ , ’ c h anne l h ead s ’ , ’
c h a n n e l h e a d l i s t ’ , ’ c hanne l h ead s . shp ’) ;

8.2.2 Dealing with Stream Junctions

Similar to the methodology employed in KsnChiBatch, KsnProfiler gives you the option to fit across stream junctions
or only fit portions of streams upstream of junctions. This is controlled with the optional parameter, ’junction method’,
which by default is set to ’check’.

24

1 % To run K s nP r o f i l e r i n d e f a u l t mode where f i t s do not occu r a c r o s s s t ream
j u n c t i o n s , no argument i s r e q u i r e d f o r ’ j unc t i on method ’ :

2 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S) ;
3 % I f you s t i l l want to s p e c i f y i t so tha t t h e r e i s a r e c o r d i n the workspace :
4 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ check ’) ;

In this mode, the first time a particular stream segment within a given connected network is chosen, the entire stream
profile will be displayed (i.e. from the channel head to the outlet) and used during the fitting process. For any sub-
sequent chosen streams that share a portion of a previously fit stream, only the unique (i.e. the portion of the stream
upstream of junctions) will be displayed and fit. This allows you to analyze portions of streams independently to
avoid fitting across confluences and also avoids the stacking effect downstream of confluences where shared portions
of picked streams are fit multiple times. By setting ’junction method’ to ’ignore’, you can operate KsnProfiler similar
to the original Profiler51 where all stream chosen stream segments are displayed in their entirety and stream junctions
are ignored.

1 % To run K s nP r o f i l e r s i m i l a r to how P r o f i l e r 5 1 ope ra t ed and f i t a l l s e l e c t e d
s t r eams i n t h e i r e n t i r e t y :

2 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ i g n o r e ’) ;

There is a related optional parameter, ’stack method’ that deals with the overlapping portions of streams allowing you
to either generate multiple polylines (one for each fit) that will be stacked on top of each other in the resulting shapefile
or to average values node by node in any overlapping segments.

1 % Ig n o r i n g st ream j u n c t i o n s and s t a c k i n g p o l y l i n e s i n output s h a p e f i l e :
2 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ i g n o r e ’ , ’ s tack method ’ , ’

s t a c k ’) ;
3 % Ig n o r i n g st ream j u n c t i o n s and a v e r a g i n g v a l u e s i n o v e r l a p p i n g segments

b e f o r e p roduc i ng output s h a p e f i l e :
4 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ j unc t i on method ’ , ’ i g n o r e ’ , ’ s tack method ’ , ’

a v e r age ’) ;

The two different junction methods (i.e. ’check’ vs ’ignore’) will produce slightly different results, but are generally
more similar to each other than when compared to ksn values calculated via batch processing using KsnChiBatch
(Figure 9).

25

Figure 9: Comparison of ksn values for Basin 56, calculated using the batch method (using KsnChiBatch) or KsnProfiler
either ignoring or checking stream junctions.

8.2.3 Defining the Minimum Threshold Area

By default, the KsnProfiler function will use the stream network exactly as supplied, but there are several options
for more precisely controlling the minimum threshold area for streams. The first option is to use FindThreshold to

26

regenerate the stream network and use this new STREAMobj as the input to KsnProfiler. Alternatively, you can use a
built in function of KsnProfiler via the optional ’redefine threshold’ parameter to choose the minimum threshold area
on either a slope-area or χ-elevation plot (Figure 10).

1 % To r e d e f i n e minimum t h r e s h o l d a r ea f o r each st ream chosen st ream segment
i n d i v i d u a l l y :

2 [˜ , ˜ , ˜ , ˜]= K s nP r o f i l e r (DEM,FD,A, S , ’ r e d e f i n e t h r e s h o l d ’ , t r u e) ;

(a) Before threshold area selection (b) After threshold area selection

Figure 10: Example of defining minimum threshold area on a slope-area plot using KsnProfiler, black dots are portions
of the stream network that will be excluded from channel definition.

8.2.4 Restarting and Recovering from Errors

The KsnProfiler function is designed to be very robust in case of errors (both actual errors and user error). Through-
out the normal operation of the function, the user is able to redo any step in the stream selection or fitting processes.
While the function is running, a temporary mat file is also saved that stores all the values necessary to restart if the
code fails for some reason. A failed run can be restart by using the ’restart’ optional parameter. The ’restart’ option
can also be used to pick up where you left off from a user terminated session (i.e. you indicated to the function that you
were done, but subsequently decided you wanted to keep fitting streams). Whether you are restarting a run because of
failure or simply picking up where you left off, you do not need to recreate the exact call to the function as the function
also saves a record of all parameter values and uses these saved values during a restart run (note though that you still
need to provide the required datasets).

27

8.2.5 General Use

KsnProfiler can be run either with a user provided reference concavity or in a mode where the best fit concavity
is found for each selected stream individually. Note that ksn values can only be compared between streams if the
same reference concavity is used, so it is generally recommended that unless you are explicitly only interested in the
concavity of streams, that you leave the concavity method set to the default ref mode. Regardless of your choice for
concavity method, a best fit concavity is calculated for each stream segment and is recorded in the outputs. During
general use of KsnProfiler, for any stream that is selected, you will be prompted to select segment boundaries on a plot
(Figure 11a).

The exact construction of the plot will depend on a variety of optional input parameters. You can choose segment
boundaries on either a χ-elevation plot, a longitudinal profile plot, or a slope-area plot. In detail, regardless of the plot
on which you choose to select segments, the calculation of best fit ksn is performed on the χ-elevation relationship for
that segment. To ensure that the fit is not biased by the spacing of χ values that vary as a function of drainage area,
the fit is performed on a spline interpolated version of the χ-elevation relationship for the segment with equal point
spacing in χ. The function also produces a residual plot to aid in your assessment of the goodness of fit (Figure 12).

(a) Main channel display before segment selection
(b) Main channel display after segment selection showing fit seg-
ments

Figure 11: Segment selection and fitting in KsnProfiler
.

For all options, a plot of the batch ksn vs a relevant quantity (i.e. either χ, distance, or log area) will be displayed to
aid you in picking out potential segments. The plot on which you need to make your selection will be highlighted with
red axes, though for all options, the choice is recorded internally based on the position of the cursor in the x coordinate,

28

so in the example (Figure 11a) you could click on segment boundaries based on values of χ on either the χ-elevation
or χ-Auto ksn plots and produce an accurate choice. The order in which you select segment boundaries doesn’t matter
and the outlet and channel head are automatically considered segment boundaries (i.e. you don’t need to define these
as segment boundaries). If you do not click anywhere in the plot, the function will treat the selected stream as one
segment and fit a single ksn value to the entire stream segment. Once you are done selecting segment boundaries, the
function will find the best fit ksn for each segment and display these (Figure 11b).

Figure 12: Residuals on ksn fit. Note that uncertainty values on the ksn fits are calculated and plotted, but in this
example, the uncertainties are small enough that they are not distinguishable from the main ksn lines.

8.2.6 Outputs

The KsnProfiler function produces four outputs to the workspace:

1 [kn l , k sn maste r , b n d l i s t , Sc]= K s nP r o f i l e r (DEM,FD,A, S) ;

29

where knl is an array of all stream locations with best fit ksn, uncertainty values on this fit, concavity values, gradient,
drainage area information, and reference ID numbers for the streams. This same output is also provided as a cell array,
ksn master, where individual streams are separated into cells. The segment boundaries are provided as an array of x, y,
and z, locations in bnd list and a STREAMobj of the selected streams is provided as Sc. Two shapefiles are produced,
one as a polyline of the selected streams and containing all the information in the knl output and a point shapefile of
segment boundaries (i.e. knickpoints) is also produced (assuming segment boundaries were selected for any stream).
Depending on the setup of your KsnProfiler run, all of the plots generated during the fitting process may also be saved
automatically.

8.3 ClassifyKnicks
The ClassifyKnicks is a companion function to KsnProfiler that allows you to iterate through all segment boundaries
selected during a KsnProfiler run and provide a classification. This classification can either be numeric (e.g. 1, 2, 3,
etc) or a character string (e.g., ’bound’, ’slopebreak’, ’knick’, etc). If using character strings, these should be short (the
shapefile format restricts entries in fields to 254 characters). The function will generate a new version of the knickpoint
shapefile with this classification appended.

9 Basin Selection

9.1 BasinPicker
The BasinPicker function was originally designed to aid in the selection of sample locations for catchment averaged

erosion rates (i.e. sand samples for 10Be analysis), but can also be used as an interactive gateway to the ProcessRiver-
Basins function. BasinPicker takes the standard inputs:

1 [Ou t l e t s]= Ba s i nP i c k e r (DEM,FD,A, S) ;

and displays the DEM along with a map of local relief (radius of relief can be specified with optional ’rlf radius’
parameter) and the provided stream network and prompts the user to choose a pour point / river mouth. The function
will first confirm that you choose the correct portion of the stream network and then, if you answer in the affirmative,
will display the plot of the χ-elevation and longitudinal profile for the streams within the selected basin and will also
print out the mean local relief, mean channel steepness, and drainage area of the selected basin. The function will
then ask if you wish to keep or discard this basin from the running list of outlets. The rationale being that if you are
using this for sample site selection, you may not want to include basins that have major knickpoints, are below/above
a particular drainage area, or do not meet some user defined morphometric criteria.

After each confirmed selection, BasinPicker will append this to an ’Outlets.mat’ file. If you run BasinPicker when
an ’Outlets.mat’ file is in the active directory (or on your path), the code will attempt to populate the map with previous
outlet selections. You can also provide an additional GRIDobj if you wish to consider an additional gridded dataset in
selecting basin outlet locations:

1 PRECIP=GRIDobj (’ / Use r s / a f o r t e /GISdata / p r e c i p . t i f ’) ;
2 [Ou t l e t s]= Ba s i nP i c k e r (DEM,FD,A, S , ’ e x t r a g r i d ’ ,PRECIP) ;

The provided extra grid does not need to the same dimensions as the input DEM, etc, but it does need to be in the same
projection. If you provide an extra grid, the mean values of this grid within the selected basin(s) will also be displayed
in the plots.

30

10 Basin Average Maps and Plots
A major part of the Topographic Analysis Kit are tools designed for efficient selection and analysis of basin averaged

data.

10.1 ProcessRiverBasins
10.1.1 Basic Operation

The workhorse function within the broader basin averaging set of tools is ProcessRiverBasins. ProcessRiverBasins
was initially designed to efficiently clip out a series of watersheds from a larger DEM for use in ArcGIS, but has
expanded much beyond that capability. The basic operation of ProcessRiverBasins requires the standard inputs along
with a list of river mouths above which watersheds will be extracted. This list of river mouths can be provided as a
Matlab array, e.g. the list of outlets output from BasinPicker is a valid input for ProcessRiverBasins:

1 % Using output o f Ba s i nP i c k e r to run P r o c e s sR i v e rBa s i n s
2 l o ad (’ Ou t l e t s . mat ’ , ’ Ou t l e t s ’) ;
3 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’) ;

where ’basin dir’ is the name of a folder (or full path of a folder) in which to store all of the datafiles that will be
produced during a ProcessRiverBasins run. If the provided folder name does not exist, the function will create the
folder. You do not have to use BasinPicker to generate the river mouth input, you only need to provide an array of x
and y locations with ID numbers. Alternatively, you can provide a point shapefile where individual points are placed in
locations where you wish there to be river mouth and each point has an identifying number (you can use the default ID
number that ArcGIS will generate, but it is recommended that you make a separate field in your shapefile and manually
provide ID numbers) :

1 % Using a po i n t s h a p e f i l e to run P r o c e s sR i v e rBa s i n s
2 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , ’ p o i n t s s h a p e . shp ’ , ’ b a s i n d i r ’) ;

As a caution, if you are going to use a GIS program (e.g. ArcGIS or QGIS) to select river mouth locations, it is strongly
recommended that you use the stream shapefile output from MakeStreams as opposed to a stream network generated
using flow routing in the GIS program of your choice. This is because flow routing algorithms vary slightly and thus
absolute stream locations vary. Prior to the clipping process, ProcessRiverBasins will snap the provided river mouths
to the provided stream network, so accidental selection of the wrong basin is possible if the selection of river mouths
was done on an alternative stream network shapefile. Similarly, if you are using ProcessRiverBasins to clip out and
calculate statistics on true sample locations (e.g. locations of detrital sediment samples as recorded by a GPS), it is
again recommended that you ensure that these locations lie on the correct portion of the stream network generated by
MakeStreams or incorrect basins may be clipped. This may require moving true locations to lie on the correct flow
routed stream!

A final option for fully automated selection of river mouths allows you to provide an elevation as the river mouth
parameter. This will place river mouths on the stream network at every location the stream network drops below this
provided elevation:

1 % To c r e a t e b a s i n s w i th o u t l e t s above 1000 mete r s e l e v a t i o n
2 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S ,1000 , ’ b a s i n d i r ’) ;

31

River mouths provided to ProcessRiverBasins can be non-nested or nested as each basin is processed independently
of all other basins. If you’re goal is to simply to generate a large dataset of arbitrary small basins within a landscape, we
recommend placing river mouths at strategic locations (e.g. where streams exit a mountain range, Figure 13) and use
ProcessRiverBasins to process these large basins and then use SubDivideBigBasins to automatically subdivide basins
as opposed to manually selecting large numbers of nested, sub-basins.

The function will use the river mouth locations to extract basins. Each basin will have its own basic TopoToolbox
files along with various derived quantities, e.g. geographic data structure of ksn using a reference concavity, geographic
data structure of ksn using a best fit concavity for that watershed (remember that ksn values calculated with different
concavities are not comparable when considering these outputs!), hypsometry and hypsometric integral for the basin,
slope map, and statistics (mean, standard deviation or standard errors) on the majority of these quantities. Because it
is time consuming, local relief is not calculated by default, but you can specify that you wish to calculate relief at a
variety of radii using the ’calc relief’ and ’relief radii’ parameters:

1 % Ca l c u l a t e r e l i e f w i th a r a d i u s o f 2500 m f o r a l l b a s i n s
2 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ c a l c r e l i e f ’ , t rue , ’

r e l i e f r a d i i ’ ,2500) ;
3 % Ca l c u l a t e r e l i e f w i th at 1000 , 2500 , and 5000 m r a d i i f o r a l l b a s i n s
4 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ c a l c r e l i e f ’ , t rue , ’

r e l i e f r a d i i ’ , [1000 2500 5000]) ;

If relief is calculated, statistics on these relief grids are also calculated. For each basin, a single .mat file is saved in
the specified directory. The naming convention for these files is ’Basin # Data.mat’ where # is the ID number in the
river mouth input for a given basin. It is important that you do not change the names of these files as this will break
other functions that use these as inputs. By default, files suitable for use in a GIS program are not generated for each
basin. You can have the function do this automatically for all basins by setting the optional ’write arc files’ to true or
manually by using Mat2Arc for the desired basins.

10.1.2 Extra Grids

You can also provide an arbitrary number of extra grids to have ProcessRiverBasins clip and calculate basin averaged
statistics for these grids. These extra grids do not need to be the same dimensions or cellsize as the input DEM, but they
do need to be in the same coordinate system and projection. Also, if any provided extra grids are smaller than the DEM
and any selected basin includes areas that are not covered by the extra grid, this will produce biased statistics. Extra
grids are provided to the ProcessRiverBasins function as a 2 column Matlab cell array where the first column contains
the GRIDobj and the second column includes a name for this grid in conjunction with the ’add grids’ parameter:

1 % To run P r o c e s sR i v e rBa s i n s and i n c l u d e two e x t r a g r i d s
2 % Create the two GRIDobjs from data o f i n t e r e s t
3 PRECIP=GRIDobj (’ / Use r s / a f o r t e /GISdata / p r e c i p . t i f ’) ;
4 NDVI=GRIDobj (’ / Use r s / a f o r t e /GISdata / n d v i g r i d . t i f ’) ;
5 % Make an empty c e l l a r r a y
6 AG=c e l l (2 , 2) ;
7 % Popu la te c e l l a r r a y w i th n e c e s s a r y data
8 % Note tha t l o c a t i o n i n c e l l a r r a y s a r e r e f e r e n c e d wi th c u r l y b r a c k e t s
9 AG{1 ,1}=PRECIP ;

10 AG{1 ,2}= ’ p r e c i p ’ ;
11 AG{2 ,1}=NDVI ;

32

12 AG{2 ,2}= ’ n d v i v a l ’ ;
13 % Run P r o c e s sR i v e rBa s i n s
14 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ a d d g r i d s ’ ,AG) ;

As a note, it is not recommended that you provide a local relief grid as an extra grid, but rather use the ’calc relief’
option. The reason for this is twofold, 1) because local relief is calculated with a moving window, simply clipping out
watersheds from a larger local relief raster will bias the statistics within the clipped watersheds as edge pixels will be
influenced by neighboring basins and 2) subsequent codes explicitly look for the relief datasets in ProcessRiverBasins
outputs to determine behaviors.

10.1.3 Categorical Grids

Some data that you may want to include in ProcessRiverBasins is not natively supported as a GRIDobj, specifically
non-numeric data stored in polygonal shapefiles, e.g. units from a geologic map or vegetation types. You can provide
this data as a usable input to ProcessRiverBasins via the optional ’add cat grids’ parameter and with the help of
the CatPoly2GRIDobj function. The input to the ’add cat grids’ parameter is expected as a 3 column Matlab cell
array, where the first column is the GRIDobj, the second column is the lookup table (both of these are generated by
CatPoly2GRIDobj), and a name for the grid:

1 % To run P r o c e s sR i v e rBa s i n s an a d d i t i o n a l c a t e g o r i c a l g r i d
2 % Genera te the c a t e g o r i c a l g r i d and lookup t a b l e w i th CatPoly2GRIDobj
3 [GEO, g e o t a b l e]=CatPoly2GRIDobj (DEM, ’ g eo po l ygon s . shp ’ , ’PTYPE ’) ;
4 % Make an empty c e l l a r r a y
5 ACG=c e l l (1 , 3) ;
6 % Popu la te c e l l a r r a y w i th n e c e s s a r y data
7 ACG{1 ,1}=GEO;
8 ACG{1 ,2}= geo t a b l e ;
9 ACG{1 ,3}= ’ r o c k t y p e ’ ;

10 % Run P r o c e s sR i v e rBa s i n s
11 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ a d d c a t g r i d s ’ ,ACG) ;
12 % For s imp l e i n p u t s l i k e above , you can do most o f t h i s i n one l i n e a f t e r

g e n e r a t i n g GEO and g e o t a b l e w i th CatPoly2GRIDobj
13 P r o c e s sR i v e rBa s i n s (DEM,FD,A, S , Out l e t s , ’ b a s i n d i r ’ , ’ a d d c a t g r i d s ’ ,{GEO

ge o t a b l e ’ g eo l ogy ’ }) ;

As with extra grids, more than one categorical grid can be provided, simply add additional rows to the input cell array.
The remaining functions in this section all are either designed to operate on the products of ProcessRiverBasins or
serve as helper functions for ProcessRiverBasins, e.g. CatPoly2GRIDobj. Because it is assumed that mean values of
a category are not meaningful, the mode category value for each basin is found and used as the statistic. The function
also calculates the number of pixels of each basin that belong to each category and saves this within the outputs.

10.1.4 Understanding Outputs

Each basin .mat file (or sub-basin file if considering the outputs of the related SubDivideBigBasins) contains a lot of
outputs. For the most part, subsequent functions are designed to use and process these basin files, but in some cases
you may wish to use products directly so we provide a list of all the outputs and a brief description of each below.

1. Default outputs regardless of optional parameters or datasets:

• RiverMouth - array storing the x and y coordinate and ID number of the outlet of the basin

33

• DEMcc - clipped GRIDobj of the hydrologically conditioned DEM of the basin

• DEMoc - clipped GRIDobj of the original DEM of the basin

• out el - scalar value of elevation of the outlet of the basin in map units

• drainage area - scalar value of the drainage area of the basin in square kilometers

• hyps - two column array of the hypsometry of the basin, first column is relative frequencies, second column
is elevation

• FDc - clipped FLOWobj of the basin

• Ac - clipped GRIDobj of the flow accumulation raster of the basin

• Sc - STREAMobj containing the full stream network of the basin

• SLc - STREAMobj containing the largest connected full stream network of the basin (should be identical to
Sc in almost all cases).

• Chic - structure containing information regarding chi, direct output of the TopoToolbox function chiplot.

• Goc - clipped GRIDobj of the gradient of the basin

• MSc - geographic data structure of the stream network containing ksn information using a best fit concavity

• MSNc - geographic data structure of the stream network containing ksn information using the user supplied
reference concavity

• KSNc stats - 5 column array containing the mean ksn, standard error on the mean ksn, standard deviation on
the mean ksn, minimum ksn, and maximum ksn of the clipped basin.

• Gc stats - 5 column array containing the mean gradient, standard error on the mean gradient, standard
deviation on the mean gradient, minimum gradient, and maximum gradient of the clipped basin.

• Zc stats - 5 column array containing the mean elevation, standard error on the mean elevation, standard
deviation on the mean elevation, minimum elevation, and maximum elevation of the clipped basin.

• Centroid - two column array containing the weighted x and y coordinate of the center of the basin.

• ChiOBJc - clipped GRIDobj with χ values along the stream network as defined by Sc.

• ksn method - character array indicating whether ksn was calculated with the quick or tributary method

• gradient method - character array indicating whether the gradient was calculated using gradient8 or arcs-
lope.

• KsnOBJc - clipped GRIDobj with interpolated ksn values for the entire watershed, note construction of this
can sometimes fail for small basins so this may not appear in all basin files, but the user will be warned that
particular basins do not included this output if that is the case.

• theta ref - scalar value recording the reference concavity used for calculating ksn and χ.

2. Outputs included if relief is calculated using the optional ’calc relief’ parameter:

• rlf - 2 column cell array where the first column contains a GRIDobj of local relief calculated for the clipped
basin and the second column contains a scalar recording the relief radius used. This cell array will have the
same number of rows as the number or relief radii provided to ProcessRiverBasins.

• rlf stats - a 5 column array containing the mean local relief, standard error on the local relief, standard
deviation on the local relief, minimum local relief, and maximum local relief of the clipped basin. This
array will have the same number of rows as the number of relief radii provided to ProcessRiverBasins and
will be in the same order as the rlf output.

34

3. Outputs included if extra grids are provided with the optional ’add grids’ parameter:

• AGc - 2 colum cell array where the first column contains a clipped GRIDobj of the additional grid(s)
provided to ProcessRiverBasins and the second column is the character string that is the name of the
additional grid provided by the user in argument for the ’add grids’ parameter. The cell array will have the
same number of rows as the numer of additional grids provided to ProcessRiverBasins.

• AGc stats - 5 column array containing the mean of the additional grid, the standard error on the mean of the
additional grid, the standard deviation on the mean of the additional grid, the minimum of the additional
grid, and the maximum of the additional grid of the clipped basin. This array will have the same number
of rows as the number of additional grids provided to ProcessRiverBasins and will be in the same order as
the AGc output.

4. Outputs inlcuded if categorical grids are provided with the optional ’add cat grids’ parameter:

• ACGc - 3 column cell array where the first column contains a clipped GRIDobj of the additional categorical
grid(s) provided to ProcessRiverBasins, the second column is the look up table for the relevant categorical
grid provided to ProcessRiverBasins, and the third column is the name of the categorical grid provided by
the user in argument for the ’add cat grids’ parameter. The look up table included in the ACGc output
will have an extra column named ’Counts’ which will include the number of pixels within the clipped
categorical grid that below to each category. The cell array will have the same number of rows as the
number of additional categorial grids provided to ProcessRiverBasins.

• ACGc stats - one column array containing the mode of the clipped categorical grid. This array will have
the same number of rows as the number of additional categorical grids provided to ProcessRiverBasins and
will be in the same order as the ACGc output.

10.2 CatPoly2GRIDobj
As discussed in section 10.1.3, sometimes it is helpful to have categorical data stored as a GRIDobj, but GRIDobjs

do not natively support non numeric values for cells. CatPoly2GRIDobj is designed to get around that by generating a
valid GRIDobj with numeric values replacing categorical values and bundling this with a lookup table that serves as a
key for the numeric values in the GRIDobj. CatPoly2GRIDobj requires a DEM input along with the name of a valid
polygonal shapefile that contains the categorical data of interest and the name of the field within that shapefile that
contains the specific data.

1 % Genera te a c a t e g o r i c a l g r i d and lookup t a b l e f o r a g e o l o g i c map f o r the rock
type f i e l d w i th the name ’PTYPE’ i n the i npu t s h a p e f i l e

2 [GEO, g e o t a b l e]=CatPoly2GRIDobj (DEM, ’ g eo po l ygon s . shp ’ , ’PTYPE ’) ;

The output GRIDobj will have the same dimensions as the input DEM. The provided shapefile does not need to have
the same dimensions (it can be larger or smaller than the input DEM), but it does need to be in the same coordinate
system and projection. CatPoly2GRIDobj can only handle one field within a shapefile, so if you have a shapefile that
has multiple fields you wish to convert to GRIDobjs, you will need to run CatPoly2GRIDobj multiple times. Any node
of the input DEM that does not have categorical values associated with it will be set to ’0’ in the GRIDobj, which
will correspond to a value of ’undef’ in the lookup table. As a note, this function relies heavily on the underlying
TopoToolbox function polygon2GRIDobj. At the time of writing, polygon2GRIDobj sometimes has issues dealing
with nested or overlapping polygons that will result in areas being set to ’0’ and ’undef’.

35

10.3 SubDivideBigBasins
The SubDivideBigBasins function is designed to automatically divide up basins output from ProcessRiverBasins

greater than a user specified drainage area. There are a variety of different methods for subdividing basins, including
on the basis of stream order (i.e. outlets of streams of a user specified order within a basin are used as new river mouths
above which to extract new sub-basins), confluences or upstream confluences (i.e. the former using the confluence as
a river mouth, the latter using points immediately upstream of a confluences as river mouths), filtered confluences (i.e.
using confluences as river mouths if those confluence points are above a user defined drainage area or percentage of the
input basin drainage area), confluence points with trunk stream (i.e. river mouths will be points immediately upstream
of every confluence with the main trunk within each specified basin), or filtered confluences with the trunk stream.
Some examples:

1 % Subd i v i d e b a s i n s s t o r e d i n the ’ b a s i n d i r ’ f o l d e r t ha t a r e g r e a t e r than 100
squa r e k i l om e t e r s i n d r a i n ag e on the b a s i s o f s t ream o rd e r w i th o u t l e t s o f
second o r d e r s t r eams s e r v i n g as r i v e r mouths

2 SubD iv i d eB igBas i n s (’ b a s i n d i r ’ ,100 , ’ o r d e r ’ , ’ s o r d e r ’ , 2) ;
3 % Subd i v i d e b a s i n s on the b a s i s o f c o n f l u e n c e s where c o n f l u e n c e s a r e a r e a s

w i th d r a i a ng e a r e a s g r e a t e r than 5 squa r e k i l om e t e r s i n d r a i n ag e a r ea
4 SubD iv i d eB igBas i n s (’ b a s i n d i r ’ ,100 , ’ f i l t e r e d c o n f l u e n c e s ’ , ’ m i n b a s i n s i z e ’ , 5) ;
5 % Subd i v i d e b a s i n s on the b a s i s o f t runk c o n f l u e n c e s g r e a t e r than 5 squa r e

k i l om e t e r s f o r any main ba s i n g r e a t e r than 50 squa r e k i l om e t e r s
6 SubD iv i d eB igBas i n s (’ b a s i n d i r ’ , 50 , ’ f i l t e r e d t r u n k ’ , ’ m i n b a s i n s i z e ’ , 5) ;

These different subdivision schemes will result in the selection of different sub-basins (Figure 13) which in turn will
result in different populations of basin statistics (Figure 15). Identical statistics and operations are performed on each
sub-basin as were for the main basins produced by ProcessRiverBasins.

36

Figure 13: Comparison of mean ksn values calculated for manually selected basins (upper left panel) from Process-
RiverBasins and for a variety of sub-basin division schemes using SubDivideBigBasins.

We refer you to the function header for a full list of optional parameters for running SubDivideBigBasins, but it is
important to highlight the ’SBFiles Dir’ optional parameter. This parameter allows the user to specify the name of
the folder that will contain the sub-basin mat files and is set to ’SubBasins’ by default. This folder will be placed
within the main basin directory (specified with required ’basin dir’ parameter). If you want to generate different sets
of sub-basins based on different subdivision schemes, it is important to provide unique folder names in which to place
your different sub-basin datasets, otherwise overwriting and mixing of different subdivision schemes may occur. Sub-

37

basin mat files are saved as ’Basin # DataSubset ##.mat’ where # is the original basin number that is being subdivided
and ## is a sequential number based on the number of sub-basins produced within that main basin. It is important
that you do not change these file names as this will cause other functions which use these as inputs to fail or behave
unexpectedly. River mouth IDs for sub-basins are assembled by appending the sequential number of the sub-basin as
at least a 3 digit number (i.e. with the appropriate number of leading zeros) to the main basin number. For example,
river mouth ID for the 7th sub-basin of basin number 50 will be 50007, where as the 14th sub-basin for basin number
156 will be 156014. If there are more than 999 sub-basins, the function will still work fine, e.g. the river ID number
for the 1200 sub-basin of basin number 156 would be 1561200.

10.4 FindBasinKnicks
FindBasinKnicks allows you to find, mark, and optionally classify knickpoints within a basin file produced by

ProcessRiverBasins or SubDivideBigBasins. Function will iterate through each stream in a given basin and allow
the user to select knickpoint locations on a χ-elevation plot. If you set the optional ’classify knicks’ parameter to
true, you can also input a classification for each selected knickpoints. As with the ClassifyKnicks function for use
with KsnProfiler, classification can be numeric or short character strings. The FindBasinKnicks function will output a
Matlab table with location information for the selected knickpoints and optionally produce a shapefile by providing a
valid character string to the optional ’shape name’ parameter.

10.5 PlotIndividualBasins
PlotIndividualBasins will iterate through a directory containing basin files output from ProcessRiverBasins and

produce a three panel plot displaying the χ-elevation, longitudinal profile, and slope-area relationships for each basin.
Each plot will be titled with the basin number and the drainage area of the basin. If you wish to produce plots for sub-
basins, you must provide the location of the sub-basins of interest with the optional ’location of subbasins’ parameter.
Note that if a valid sub-basin directory is supplied, plots for a subdivided main basin will not be produced, i.e. if main
basin 100 was subdivided, a plot for this basin will not be produced, but plots for all of its subbasins will be produced.
If you want to produce plots for all main basins and sub-basins, you will need to run the code twice, one time providing
a folder name for ’location of subbasins’ that is either empty or doesn’t exist.

10.6 Basin2Shape
The Basin2Shape function will take the products of ProcessRiverBasins and SubDivideBigBasins and produce a

single polygon shapefile containing all the basins and a variety of fields. The only required inputs are the original DEM
provided to ProcessRiverBasins and the location of the outputs of ProcessRiverBasins. The function provides three
options for which basins are included in the shapefile (depending on whether you ran SubDivideBigBasins or not) via
the optional ’include’ parameter. Similar to other functions, if you wish to include subdivided basins, you must provide
the name of the sub-basin folder. Assuming you ran both ProcessRiverBasins and SubDivideBigBasins the options are:

1 % To i n c l u d e on l y the o r i g i n a l p r oduc t s o f P r o c e s sR i v e rBa s i n s
2 [MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ i n c l u d e ’ , ’ b i g o n l y ’) ;
3 % To i n c l u d e a l l b a s i n s , meaning tha t even the main b a s i n s t ha t were

s u bd i v i d e d w i l l be i n l c u d e d
4 [MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ i n c l u d e ’ , ’ a l l ’ , ’ l o c a t i o n o f s u b b a s i n s ’ , ’

my sub ba s i n s ’) ;
5 % To i n c l u d e non−s u bd i v i d e d b a s i n s and s u bd i v i d e d bas in , meaning tha t main

b a s i n s t ha t were s u bd i v i d e d w i l l NOT be i n c l u d e d

38

6 [MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ i n c l u d e ’ , ’ s u b d i v i d e d ’ , ’
l o c a t i o n o f s u b b a s i n s ’ , ’ my sub ba s i n s ’) ;

The function will include information from the various statistics (e.g. mean elevation, mean ksn, mean gradient) and
will also include uncertainty values of the users choice (i.e. either standard deviations, standard errors, or both) on
these statistics. The code detects whether statistics exist for relief or any extra grids and will include those as well.

If categorical grids were provided, the function will produce fields reporting the modal value for these but will
save the modal values as the original categories (e.g. if rock types from a geologic map were provided and the most
prevalent unit in a given basin is ’granite’ then within the relevant field for that basin). The function will also produce
a field to record what percentage of the basin is occupied by that modal category. There is also an optional parameter
’populate categories’ that if set to true will produce a field for each category in the original categorical grid and for
each basin will record the percentage of the basin occupied by that category.

With the optional ’extra field values’ and ’extra field names’ parameters, you can add additional values to the shape-
file. The input to ’extra field values’ is expected as a cell array with a row for each basin (not an array within a cell
array row) with the first column being the ID number of that basin (i.e. the third column in the river mouth array) and
subsequent columns containing the values of interest you wish to add to the shapefile. Every basin must have a value
for all extra fields or the code will produce an error. The cell array containing IDs and values of interest does not need
to be in any particular order, the function will use the basin ID number to match the relevant data with the correct basin.
The ’extra field names’ parameter expects a cell array where the columns contain character strings that will serve as
the field names in the shapefile. These are expected to be in the same order as the columns in ’extra field values’
and should have one fewer column than the ’extra field values’ array (i.e. you do not include a field name for the ID
number). For example, if for each watershed you had a text file containing the river mouth ID numbers, sample names,
erosion rates, and uncertainty on erosion rates with the headers named ’ID’, ’sample’, ’E rates’, and ’E unc’ you could
add these to the shapefile via the following:

1 % Load i n your t e x t f i l e i n t o a t a b l e s p e c i f y i n g tha t i t has a heade r
c o n t a i n i n g the v a r i a b l e names , t h i s i s the e a s i e s t way to impor t mixed data
c o n t a i n i n g both c h a r a c t e r s and numbers

2 T=r e a d t a b l e (’ SampleTable . t x t ’ , ’ ReadVar iableNames ’ , t r u e) ;
3 % The ’ sample ’ column w i l l a l r e a d y be a c e l l a r r a y because i t c o n t a i n s

c h a r a c t e r s , but the o th e r columns w i l l be numer ic a r r a y s so you w i l l need
to conv e r t them to c e l l a r r a y s and then h o r i z o n t a l l y conca t ena t e them
tog e t h e r

4 EFVal=ho r z c a t (num2ce l l (T . ID) ,T . sample , num2ce l l (T . E r a t e s) , num2ce l l (T . E unc)) ;
5 % This shou ld produce a c e l l a r r a y wi th 4 columns and as many rows as t h e r e

a r e b a s i n s
6 % Create the names f o r the e x t r a f i e l d s
7 EFName{1 ,1}= ’ sample ’ ;
8 EFName{1 ,2}= ’ E r a t e ’ ;
9 EFName{1 ,3}= ’ E unc ’ ;

10 % Run Bas in2Shape
11 [MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’ , ’ e x t r a f i e l d n am e s ’ ,EFName , ’

e x t r a f i e l d v a l u e s ’ , EFVal) ;

39

Basin2Shape will output a geographic data structure that is suitable for production of a shapefile:

1 [MS]=Bas in2Shape (DEM, ’ b a s i n d i r ’) ;
2 s h ap ew r i t e (MS, ’ shape name . shp ’) ;

but the function will automatically produce a shapefile saved in the active directory unless you suppress this with the
optional ’suppress shape write’ parameter.

10.7 Basin2Raster
The Basin2Raster is a simpler alternative to Basin2Shape that will output a GRIDobj and save out an ascii raster of

the basin extents filled with values specified by the user. Possible values are mean ksn, mean gradient, mean elevation,
mean relief (you must specify which radius you want to use), R2 value on the χ-elevation relationship (this can be a
useful metric for assessing how well adjusted a basin is, R2 values closer to 1 should have fewer significant deviations
from a linear χ-elevation relationship, though this will also be influenced by the reference concavity used for calculating
χ), drainage area in km2, hypsometric intergral, basin ID number, best fit concavity, or the name of any additional grid
or additional categorical grid originally provided to ProcessRiverBasins. If the name of an additional grid is provided,
value will be the basin mean and if the name of a categorical grid is provided , value will be the basin mode.

If the basins provided to Basin2Raster were manually nested (i.e. you provided a list of river mouths to Process-
RiverBasins that included nested catchments and did not run SubDivideBigBasins), then you should set the optional
’method’ parameter to ’nested’ to ensure that all basins are visible in the output raster. If you did not manually nest any
basins or ran SubDivideBigBasins, then you do not need to provide an argument to ’method’.

10.8 CompileBasinStats
CompileBasinStats is desgined to aggregate information from a population of basins output from ProcessRiverBasins

and SubDivideBigBasins either for export or for use with BasinStatsPlots or MakeCombinedSwath. The output of
CompileBasinStats is a Matlab table, which can be exported easily as a textfile:

1 % Genera te b a s i n s t a t s t a b l e
2 [T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’) ;
3 % Export t a b l e
4 w r i t e t a b l e (T, ’ b a s i n s t a t s . t x t ’) ;

The inputs for and behavior of several optional parameters for CompileBasinStats are identical to those for Basin2Shape
(e.g. including extra fields, controlling which basins are included in the output, specifying which type of uncertainty
to include) and the Matlab table that CompileBasinStats outputs shares some similarities with the geographic data
structure output by Basin2Shape, but CompileBasinStats has several additional options that Basin2Shape does not,
mostly related to to categorical grids.

10.8.1 Recalculating Means Based on Categories

If categorical grids were provided to ProcessRiverBasins, then particular categories can be used to recalculate means
within the basins based on subsets of these categories. Specifically, means can be recalculated by either applying an
inclusive or an exclusive filter. For example, if you created a categorical grid for the rock type from a geologic map,
you could use this functionality to recalculate means only for parts the landscape occupied by particular units (i.e. an
inclusive filter) or recalculate means for the entire landscape except those covered by particular units (i.e. an exclusive
filter):

40

1 % To c a l c u l a t e means on l y from p o r t i o n s o f a b a s i n d e f i n e d by c e r t a i n rock
t yp e s

2 [T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’ , ’ f i l t e r b y c a t e g o r y ’ , t rue , ’ f i l t e r t y p e ’ , ’
i n c l u d e ’ , ’ c a t g r i d ’ , ’ g eo l ogy ’ , ’ c a t v a l u e s ’ ,{ ’ pCc ’ , ’ grMz ’ , ’pC ’ , ’ gr−m’ , ’Pc ’ , ’
grPz ’ , ’ grpC ’ , ’ g r ’ }) ;

3 % To c a l c u l a t e means from a l l p o r t i o n s o f b a s i n s excep t where the rock t yp e s
a r e c e r t a i n t yp e s

4 [T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’ , ’ f i l t e r b y c a t e g o r y ’ , t rue , ’ f i l t e r t y p e ’ , ’
e x c l ud e ’ , ’ c a t g r i d ’ , ’ g eo l ogy ’ , ’ c a t v a l u e s ’ ,{ ’Q ’ , ’Qpc ’ , ’Qg ’ , ’ Qls ’ , ’Qs ’ , ’Qv ’ ,
’ water ’ , ’ unde f ’ }) ;

where the argument provided to ’cat grid’ is the name of the additional categorical grid of interest as originally supplied
to ProcessRiverBasins, ’cat values’ is a cell array containing the list of categories to use in the filter, and ’filter type’
is either ’include’ or ’exclude’ depending on desired behavior.

Recalculated means will be produced for properties for which means were originally calculated (i.e. ksn, elevation,
gradient, relief (if it was calculated), and any additional grids (if provided)). Names for these recalculated means will
appear in the table with ’ f’ appended to the column name, e.g. ’mean ksn f’. The original mean values calculated for
the entirety of each basin will still appear in the table.

10.8.2 Populating Categories

Setting the optional ’populate categories’ parameter to true will result in a column for each category in the provided
categorical grids where the value in that column for a given basin is the percentage of pixels in that basin which belong
to that category. For example, if the categorical grid was a geologic map with rock types, this would mean that there
would be a column for each rock type and an entry for what percentage of each basin was covered by that rock type.

10.8.3 Means by Category

This functionality allows you to calculate means of particular metrics within each category. Using the rock type
example, this would allow you to calculate things like mean ksn within each rock type, within each basin. If a basin
is not covered by a particular category, then the value for that category mean will be ’NaN’. To calculate means by
category, you can use the ’means by category’ parameter:

1 % To c a l c u l a t e means u s i n g the geo l ogy a d d i t i o n a l g r i d f o r ksn and 2500 m
l o c a l r e l i e f

2 [T]=Comp i l eBa s i nS ta t s (’ b a s i n d i r ’ , ’ means by ca t ego r y ’ ,{ ’ g eo l ogy ’ , ’ ksn ’ , ’
r l f 2 5 0 0 ’ }) ;

where the first column in the cell array provided to ’means by category’ must be the name of the categorical grid
provided to ProcessRiverBasins (in the example, ’geology’) followed by valid names of particular quantities (see
header of the function for full list).

10.9 BasinStatsPlots
Using the Matlab table output from CompileBasinStats, you can quickly plot a variety of basin averaged statistics,

but we have written the BasinStatsPlots function to aid in you producing some potentially useful plots. These plot
types are designed to allow you to explore populations of basins quickly and efficiently and are envisioned as primarily
data exploration tools (i.e. you will probably want to design your own functions to analyze and plot data output from

41

’CompileBasinStats’, with these plots as easy ways to guide further analysis). In the following sections, we describe the
different plotting options available to you in BasinStatsPlots and provide some examples of outputs using the example
dataset.

10.9.1 Basic Options

There are several options that span across multiple (or all) types of plots. If you wish to subset the basins by
their geographic location (i.e. you only want to generate a plot for basins within a specific area) you can use the
’define region’ parameter to either define a region based on input coordinates or, if you just set the ’define region’
parameter to true, interactively select a bounding box. Note that the function uses the basin centroid as the location for
determining whether a basin lies within or outside of the provided coordinates.

Many of the plots will attempt to plot uncertainty values as whiskers on points. You can control which estimation
of uncertainty (standard error or standard deviation) is used or suppress drawing uncertainty whiskers with the ’un-
certainty’ parameter. Some of the plots also allow you to color the points by a specified quantity using the ’color by’
parameter (e.g. Figure 14) which expects the valid name of a column in the input table as a string:

1 % To c o l o r a p l o t o f mean g r a d i e n t vs mean ksn by mean p r e c i p i t a t i o n , and
assuming the mean p r e c i p i t a t i o n i s s t o r e d i n a column named ’ mean prec ip ’
i n the i n pu t t ab l e , T

2 Ba s i n S t a t sP l o t s (T, ’ g r d k sn ’ , ’ c o l o r b y ’ , ’ mean prec ip ’) ;

The ’color by’ parameter is a valid input for Mean Gradient vs Mean ksn - ’grd ksn’, Mean Gradient vs Mean Relief
- ’grd rlf’, Mean Relief vs Mean ksn - ’rlf ksn’, and Generic X-Y plot - ’xy’ plot types. You can control the colormap
used for coloring points with the ’cmap’ parameter which expects the name of a valid colormap (e.g. ’jet’), the name
of a function that produces a valid colormap (e.g. ksncolor) or a nx3 array of RGB values usable as a colormap.

Figures created by the function can be automatically saved using the ’save figure’ parameter.

42

Figure 14: Selected outputs of BasinStatsPlots showing some options for plots using the ’color by’ optional parameter.

10.9.2 Mean Gradient vs Mean ksn - ’grd ksn’

Both mean hillslope gradient and mean ksn have previously been shown to correlate to mean erosion rate and can be
thought of as representing the hillslope and fluvial contributions, respectively, to the erosion rate. Thus, in the absence
of quantitative erosion rate data for a portions of basins, there can be utility in examining the relationship between
mean hillslope gradient and mean ksn, see Forte et al., 2016 for a full discussion of the nuances of interpreting these
relationships. The ’grd ksn’ plot option will plot these two quantities against each other (Figure 15).

43

https://www.sciencedirect.com/science/article/pii/S0012821X16303004

Figure 15: Comparisons of mean ksn vs mean basin gradient and associated fits for a variety of sub-basin division
schemes using SubDivideBigBasins using the ’grd ksn’ plot from BasinStatsPlots. See Figure 13 for a map view of
these different basin division schemes. 44

Via the optional ’fit grd ksn’ parameter, you can also use the relationship between to mean hillslope gradient and
mean ksn to estimate some morphometric parameters for the populations of basins, specifically the erosional efficiency,
hillslope diffusivity, and limiting gradient. The fits are done via a constrained minimization of least absolute deviation
on a relatively complicated equation which means that to successfully run the fits, you need access to the Optimization
Toolbox in Matlab and that the fits are sensitive to the choice of initial parameters, which you can control with the
optional ’start diffusivity’, ’start erodibility’, and ’start threshold gradient’ parameters. Also important is the optional
’n val’ parameter (equivalent to the slope exponent in the stream power model of incision) which is not a free pa-
rameter in the fits, but will control the shape of the fluvial portion of the relationship. We refer readers who are more
interested in the nuances of this fit and the (large) assumptions that go into it to Forte et al., 2016 and references therein.
Exploring the shape of this relationship (and thus the estimated values for the parameters that control it) also highlights
that choosing different methods of subdivision of basins using SubDivideBigBasins can produce statistically different
populations of basins (e.g. Figure 15).

10.9.3 Mean Gradient vs Mean Relief - ’grd rlf’

You can also plot mean gradient vs. mean local relief via the ’grd rlf’ plot option. This should be similar to the result
of Mean Gradient vs Mean ksn - ’grd ksn’ plot as mean local relief and mean ksn are typically linearly related (depending
on the relief radius). You can test the nature of the relationship between mean local relief and mean ksn with the Mean
Relief vs Mean ksn - ’rlf ksn’ plot option. The ’grd rlf’ plot will use the relief radius specified with the optional
’rlf radius’ parameter. If this specifies a relief radius that you did not calculate when running ProcessRiverBasins, this
will result in an error.

10.9.4 Mean Relief vs Mean ksn - ’rlf ksn’

Depending on the relief radius, the relationship between mean local relief and mean ksn should be linear, but you
can quickly test this with the ’rlf ksn’ option which will plot these two quantities against each other. The ’rlf ksn’ plot
will use the relief radius specified with the optional ’rlf radius’ parameter. If this specifies a relief radius that you did
not calculate when running ProcessRiverBasins, this will result in an error.

10.9.5 Comparing Filtered and Non-Filtered Means - ’compare filtered’

If you calculated filtered means when running CompileBasinStats, the ’compare filtered’ option will plot the filtered
means against the unfiltered means and visually highlight basins that imply higher filtered values compared to non-
filtered with red dots and basins that imply lower filtered values compared to non-filtered with blue dots (e.g. Figure
16). This plot option will produce an individual plot for any quantity for which a mean and a filtered mean was
calculated (obviously, if filtered means were not calculated, this option will produce an error). In the example, we
present examples of mean ksn and mean gradient in the case of a filter excluding quaternary units from the means and
an inclusive filter calculating means from granites, metamorphic rocks, and other ’basement’ rocks (Figure 16). This
allows you to assess relatively quickly that removing areas covered by quaternary units shifts means toward higher
values, where as only calculating means based on ’hard rocks’ also shifts many basins to higher means values, but not
in all cases. This will of course depend on the nature of the filter and like the majority of the plots, this is designed as
a data exploration tool to determine what aspects warrant deeper analysis.

45

https://www.sciencedirect.com/science/article/pii/S0012821X16303004

Figure 16: Selected outputs of ’compare filtered’ plot from BasinStatsPlots comparing results of an excluding quater-
nary, water, and undefined areas vs including basement rocks.

10.9.6 Histograms of Category Means - ’category mean hist’

If you calculate means by categories when running CompileBasinStats, you can use the ’category mean hist’ option
to plot histograms of the means across all basins within given categories for a statistic of interest. Using this option
requires providing an argument to the optional ’cat mean1’ parameter to specify which statistic (e.g. mean ksn) for
which you wish to produce histograms.

46

10.9.7 Comparisons of Category Means - ’category mean compare’

If you calculate means by categories when running CompileBasinStats, you can use the ’category mean compare’
option to compare two statistics of interest within the categories (e.g. plots of mean basin ksn vs mean gradient as a
function of rock type). Using this option requires providing arguments to the optional ’cat mean1’ and cat mean2’
parameters to specify which statistics you want to compare.

Figure 17: Selected output of ’stacked hypsometry’ plots from BasinStatsPlots.

47

10.9.8 Basin Hypsometry - ’stacked hypsometry’

The hypsometry of a basin (e.g. the empirical cumulative distribution of elevations in that basin) and the hypsometric
integral (e.g. the area underneath a normalized version of this curve) are classic morphometric parameters, which while
simplistic, can still be useful in understanding first order characteristics of a landscape. The ’stacked hypsometry’ plot
option will produce a series of 5 plots, a subset of which are shown in Figure 17. This option will plot figures of stacked
normalized hypsometries (not included in Figure 17), a version of the stacked normalized hypsometries displayed
as heatmap (not included in Figure 17), stacked hypsometries with elevations vs percentage area (not included in
Figure 17), a grid of normalized hypsometries with the mean hypsometry binned by the hypsometric integral with
the percentages of the basins within that bin (top portion of Figure 17), and a plot of the mean hypsometries in each
hypsometric integral bin and colored by the percentage of basins within that bin (bottom portion of Figure 17).

10.9.9 Comparing Distribution of Basin Means vs All Nodes -’compare mean and dist’

The ’compare mean and dist’ is designed to explore the distributions of particular statistics within the basins. This
option can function in two ways. The first way is by comparing the distribution of a statistic of interest (e.g. mean
gradient) across all nodes in all basins compared to the basin means across all basins (Figure 18). This requires that
you specify a statistic to compare using the optional ’statistic of interest’ parameter.

Figure 18: Sample output of ’compare mean and dist’ plot from BasinStatsPlots comparing the distribution of gradient
across all nodes in all basins (blue) to the distribution of mean gradients across all basins (orange).

48

The other way the ’compare mean and dist’ plot option can be used is to explore the distribution of the statistic
of interest of a particular basin compared to the mean value (Figure 19). This requires that you specify a statistic to
compare using the optional ’statistic of interest’ parameter and specify a basin of interest by the basin ID number with
the ’basin num’ parameter.

Figure 19: Sample output of ’compare mean and dist’ plot from BasinStatsPlots comparing the distribution of ksn
within Basin 56 to the mean ksn within that basin (the thick black line).

10.9.10 Grid of Bi-Plots of Means - ’scatterplot matrix’

The ’scatterplot matrix’ plot is designed as a very quick data exploratory tool to look for potential relationships
between basin statistics (Figure 20). The function will produce a grid of bi-plots comparing the mean values of all
metrics for which means were calculated (though this will not include means by categories if calculated). The function
also displays a simple second order polynomial fit on the relationship. In positions where values would be compared
against each other, the function instead displays a histogram of the distribution of those mean values. For users familiar
with R, this is designed to be largely similar to plots produced by the ’lattice’ package.

As a note, if you calculated filtered means and leave the optional ’use filtered’ to false (which is the default) this
option will produce a very large matrix as it will include both the regular means and the filtered means. For an input
table with filtered means, if you set ’use filtered’ to true, the function will use the filtered means to populate the
scatterplot matrix. If you want to display the regular means without the filtered means, provide an input table for which
you did not calculate filtered means when running CompileBasinStats.

49

Figure 20: Sample output of ’scatterplot matrix’ plot from BasinStatsPlots.

10.9.11 Generic X-Y plot - ’xy’

The final plot option for BasinStatsPlots is a generic option to plot any value against any other value. To use this
option you must specify the name of the columns to be used as the x and y values via the ’xval’ and ’yval’ parameters.
Using conjunction with the ’color by’ parameter can quickly produce plots to explore potential relationships within the
basin data (e.g. Figure 14).

11 Swath Profiles with Projected Data
TopoToolbox includes a robust and simple function to produce swath topographic profiles. We provide two functions

in TAK that build and expand upon this functionality and use some swath profiles through our example dataset to
illustrate the use of these functions (Figure 21).

50

Figure 21: Location of swaths used to demonstrate uses of MakeTopoSwath and MakeCombinedSwath.

11.1 MakeTopoSwath
The MakeTopoSwath function is a simple wrapper around the basic functionality of the SWATHobj class included

as a part of TopoToolbox. The main utility of MakeTopoSwath compared to simply using SWATHobj natively is more
control on the plots produced including different styles of displaying the data, direct control of the vertical exaggeration
via the optional ’vex’ parameter, and plotting the location of bends in a swath (Figure 22).

51

Figure 22: Basic swaths output from MakeTopoSwath highlighting the function of the ’vex’ parameter to control the
vertical exaggeration.

In addition to the basic swath figure, with MakeTopoSwath, you can also display the output swath as an array of
points (Figure 23) by setting ’plot as points’ to true or a heatmap (Figure 24) by setting ’plot as heatmap’ to true.

Figure 23: Swath output from MakeTopoSwath showing the result of plotting as points.

52

Figure 24: Swath output from MakeTopoSwath showing the result of plotting as a heatmap.

11.2 MakeCombinedSwath
It can be useful to visualize additional data projected onto a swath profile. The MakeCombinedSwath provides a

flexible framework within which to produce such plots. There are a variety of types of data that can be plotted onto a
swath profile:

• ’points3’ - generic point dataset with x, y, and z coordinates.

• ’points4’ - generic point dataset with x, y, and z coordinates with an additional value. The resulting plots will
color the points by this additional value.

• ’points5’ - generic point dataset with x, y, and z coordinates with two additional values. The resulting plots will
color the points by the first additional value and scale the points by the second value.

• ’eqs’ - plot optimized for earthquakes for data with x, y, depth, and magnitude. Points will be scaled by magni-
tude and colored by the distance from the center of the swath line (e.g. Figure 25).

• ’STREAMobj’ - will project portions of a provided STREAMobj onto the swath.

• ’ksn chandata’ - will project the ksn values from a ’chandata’ mat file produced by the old Profiler51 code (some
of us have A LOT of these sitting around).

• ’ksn batch’ - will project the ksn values contained in the geographic data structure output from the KsnChiBatch
function.

• ’ksn profiler’ - will project the ksn values contained in the ’knl’ array output from KsnProfiler.

• ’basin stats’ - will project basin data output from CompileBasinStats. You must specify a quantity to color basins
by with the ’basin value’ parameter and can optionally also scale point size by an additional quantity with the
’basin scale’ parameter (e.g. Figure 26).

• ’basin knicks’ - will project knickpoint locations as produced by FindBasinKnicks.

53

Figure 25: Swath output from MakeCombinedSwath projecting earthquake data

Figure 26: Swath output from MakeCombinedSwath projecting basin locations from CompileBasinStats and colored
by mean ksn and scaled by mean precipitation.

Importantly, the MakeCombinedSwath function is setup so that the width to sample the topography to produce the
topographic swath is decoupled from the width from which to sample the provided data (you can of course make these
equal if you want). By default the function will also plot a map displaying which data points are included in the
projected data on the swath figure, you can suppress the drawing of this map with the optional ’plot map’ parameter.

54

11.3 ProjectOntoSwath
The ProjectOntoSwath function is used in MakeCombinedSwath to do the data projection, but we include it as a

separate function as it may be useful for users. ProjectOntoSwath finds the distance of a list of x and y points along and
from the centerline of a provided SWATHobj based on a user defined width within which to sample the data. Distances
of points that lie beyond the extent of the swath or lie outside of the data sampling width will be set to NaN. The
function projects data onto each swath segment (i.e. if the swath line is bent) and finds the swath segment that data are
closest to in tangential distance to avoid duplication of points.

12 Miscellaneous

12.1 ksncolor
Function to generate a colormap that roughly approximates the stereotypical green-yellow-red color progression

commonly used for ksn data in publications, see Figure 26 for an example of the color map.

12.2 PlotKsn
The PlotKsn function will quickly plot a stream network colored by ksn overlaying a hillshade colored by elevation.

Uses the ksncolor colormap. You can provide a valid geographic data structure output from KsnChiBatch or Process-
RiverBasins or a shapefile output from KsnChiBatch, KsnProfiler, or ProcessRiverBasins. Optionally can also include
a set of knickpoints output from ProcessRiverBasins or FindBasinKnicks to plot knickpoint locations.

12.3 DippingBedFinder
DippingBedFinder is a simple function to estimate where a planar dipping bed should occur within a landscape

based on a known occurrence and some information about the bed (Figure 27). Specifically, you need to provide a
location for the observation, a total thickness for the bed, an estimate of the height above the base of the bed at the
point of observation, the strike of the bed (it’s assumed you give this using the right hand rule), and the dip of the bed.

(a) Projection of a 100 meter thick bed, 50 meters up from the
base.

(b) Projection of a 500 meter thick bed, 250 meters up from the
base.

Figure 27: Example outputs from DippingBedFinder for a bed striking 280°and dipping 10°.

You can provide an empty array for the location of observation to choose a point on the provided DEM to use as the
location. The location of the observation is marked on the figure with a white dot.

55

12.4 Mat2Arc
Mat2Arc is a helper function that takes any matfile as an input and will search its contents and produce ascii grids

and shapefiles from any valid datasets. Specifically, will make ascii grids of any GRIDobj, will convert any FLOWobj
to an Arc style flow raster an export as an ascii grid, and output any STREAMobj or recognizable geographic data
structure as a shapefile.

13 Error Reporting
We have tried to ensure that all options work properly within TAK, but unexpected errors may occur. The preferred

method of error reporting is to use the built in ’Issues’ function on the GitHub website so that there is a record of user
encountered errors. If you have forked a version of the code and think you can fix an error, issue a pull request with
the change, collaboration is welcome! If all else fails, you can email Adam Forte as well. Whether submitting and
Issue or emailing Adam, please provide as much information as possible on the error and what you were doing when
it occurred.

References
Adam M. Forte and Kelin X. Whipple. Short Communication: The Topographic Analysis Kit (TAK) for TopoToolbox.

Earth Surface Dynamics, X:X–X, 2018a. doi: XX.

Adam M Forte and Kelin X. Whipple. Criteria and tools for determining drainage divide stability. Earth and Planetary
Science Letters, 493:102–117, 2018b. doi: 10.1016/j.epsl.2018.04.026.

Wolfgang Schwanghart and Nikolaus J. Kuhn. TopoToolbox: A set of Matlab functions for topographic analysis.
Environmental Modelling and Software, 25(6):770–781, 2010. ISSN 13648152. doi: 10.1016/j.envsoft.2009.12.002.

Wolfgang Schwanghart and Dirk Scherler. Short Communication: TopoToolbox 2 - MATLAB based software for
topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics, 2:1–7, 2014. doi: 10.5194/
esurf-2-1-2014.

Cameron W Wobus, Kelin X Whipple, Eric Kirby, Noah P Snyder, J Johnson, K Spyropolou, Benjamin T Crosby,
and D Sheehan. Tectonics from topography: Procedures, promise, and pitfalls. In Sean D Willett, N Hovius, M T
Brandon, and Donald Fisher, editors, Tectonics, climate, and landscape evolution, number 398, pages 55–74. The
Geological Society of America, Boulder, CO, 2006.

56

mailto:aforte8@lsu.edu

	Attribution
	Download and Install
	Matlab Functions
	Compiled Functions

	Preparing Datasets for TAK
	Workflow
	Matlab and TopoToolbox Crash Course
	Matlab Data Types
	Arrays
	Cell Arrays
	Tables
	Structures

	Using Matlab Functions
	Loading and Outputting Data
	TopoToolbox Classes
	GRIDobj
	FLOWobj
	STREAMobj
	SWATHobj

	Initial Data Processing
	CheckTAKDependencies
	MakeStreams
	ConditionDEM
	RemoveFlats
	FindThreshold

	Stream Selection and Projection
	SegmentPicker
	SegmentPlotter
	SegmentProjector

	Channel Steepness and Maps
	KsnChiBatch
	KsnProfiler
	Stream Selection
	Dealing with Stream Junctions
	Defining the Minimum Threshold Area
	Restarting and Recovering from Errors
	General Use
	Outputs

	ClassifyKnicks

	Basin Selection
	BasinPicker

	Basin Average Maps and Plots
	ProcessRiverBasins
	Basic Operation
	Extra Grids
	Categorical Grids
	Understanding Outputs

	CatPoly2GRIDobj
	SubDivideBigBasins
	FindBasinKnicks
	PlotIndividualBasins
	Basin2Shape
	Basin2Raster
	CompileBasinStats
	Recalculating Means Based on Categories
	Populating Categories
	Means by Category

	BasinStatsPlots
	Basic Options
	Mean Gradient vs Mean ksn - 'grd_ksn'
	Mean Gradient vs Mean Relief - 'grd_rlf'
	Mean Relief vs Mean ksn - 'rlf_ksn'
	Comparing Filtered and Non-Filtered Means - 'compare_filtered'
	Histograms of Category Means - 'category_mean_hist'
	Comparisons of Category Means - 'category_mean_compare'
	Basin Hypsometry - 'stacked_hypsometry'
	Comparing Distribution of Basin Means vs All Nodes -'compare_mean_and_dist'
	Grid of Bi-Plots of Means - 'scatterplot_matrix'
	Generic X-Y plot - 'xy'

	Swath Profiles with Projected Data
	MakeTopoSwath
	MakeCombinedSwath
	ProjectOntoSwath

	Miscellaneous
	ksncolor
	PlotKsn
	DippingBedFinder
	Mat2Arc

	Error Reporting

