We thank reviewer 2 (Wolfgang Schwanghart) for his thoughtful review of our manuscript. Below
we list reviewer comments in italic font and our responses in regular font.

Gailleton et al. present a method that automatically extracts knickpoints from longitudinal river
profiles. The algorithms developed by the authors are well described and are implemented in LSD
TopoTools, a terrain analysis software written and maintained by the authors. The algorithms are
tested against hand-picked knickpoints and those derived with other software, and the code is publicly
available. Owverall, the manuscript is very well written and nicely illustrated. I have no concern about
this paper being appropriate for the journal ESURF. To this end, I only have a few questions and some
specific comments.

Thanks. We are glad to hear the manuscript is clear.

Would it make a difference, if you first smooth the elevation values using the TVD-approach and
then calculate ksn? The smoothness-parameter would then be independent of theta.

Thanks for this suggestion. We were not keen to do this in the first version of the manuscript as
we didn’t want to smooth elevation before searching for differences in x gradient, since it would add
an extra layer of complexity to the method. However, we have now attempted the smoothing of
elevation using some different techniques to test if it makes a difference to the results.

Firstly, the TVD algorithm cannot be applied on the raw profile since it is designed to flatten
signals and cannot be used on monotonically increasing data. Our approach has been to apply the
TVD on a detrended elevation for each tributary (i.e., applying the filter on A elevation rather than
elevation itself. As shown on Figure 1, different values of A will generate different level of smoothing
by flattening Az with different intensity. The denoised Az is then applied from the base level to
the channel head to produce the denoised profiles. However, the denoising still depends on the A
coefficient as the intensity of denoising might depend on the DEM quality and the user need (e.g., fo-
cusing on large-scale gradient changes or small scale). Although the § dependency cannot be avoided,
we have added an elevation denoising option in the algorithm and also a description of this in the
manuscript. In addition, we have added figures to the supplementary materials showing the per-
formance of elevation denoising. However, we suggest to be cautious with adding denoising to the
method as it involves data loss. We suggest reading relevant literature (e.g., [1]) that discusses this
specific issue before considering filtering initial dataset. The following figure illustrates the denoising
results: a) shows the effect of lambda on the denoising intensity and b) the resulting ks, for denois-
ing with a voluntary high regulation parameter A = 25 to show that another denoising still is required.
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Figure 1: Effect of applying a TVD denoising filter on the elevation prior to the rest of the method
as described in the manuscript. a) Long profile representation for values of A. b)kg, calculated with
[2] from a higly denoised profile (A = 25). Even significantly denoised, it still requires a run of TVD
to clean the signal. The noise magnitude is still dependent on 6 in the same way described in the
manuscript.

Detecting knickpoints by identifying gradient-changes of ksn could also be achieved by calculating the
profile curvature of the elevation data in chi-space. Similarly to M, this could be C, (or something
similar). Of course, mathematically, this is the same. In addition, curvature is strongly affected by
noise in the river long profile. However, using curvature instead of gradients of gradients is slightly
more elegant and smoothing curvature might directly yield the peaks and troughs that you are looking

for.

Again, thanks for the suggestion. We tested several scenarios of curvature fitting to see if it improved
our method. Tests suggested some potential for using curvature to detect and quantify knickpoints,
however there were several serious limitations. We first experimented Cy, = d(ksn)/d(x), where kg,
is calculated with the segmentation algorithm [2] and filtered with the TVD. However as the dis-
crete changes in x between each node are quite variable, the resulting profile is significantly noisier
than using kg, directly. The magnitude of each of the knickpoints detected with curvature becomes
more sensitive to x spacing and therefore § compared to the method using kg,. This is illustrated



in Figure 2a where some of the C, differ from Akg,. 0 in our case is relatively low, and therefore
the discrete changes in x happen to be in the same order of magnitude as the discrete changes in
elevation. However, for higher values of 8, Ax can be several orders of magnitude lower than Az
and therefore generate unnecessary high values. A similar issue is discussed in section 5.2) in the
manuscript. Moreover, we find the Ak, quantity more appealing as it can directly be translated into
a drop/increase of channel slope (normalised to the concavity). We then explored the possibility of
using a direct calculation of x- elevation profiles to detect knickpoints (ie., d?z/dx?). We applied a
moving-average window on the C), and on |Cy| to smooth and isolate peaks in curvature as suggested
in the review. This method fails at identifying single outliers. Figure 2 shows the results of the three
methods tested using curvature-based methods.
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Figure 2: Methods based on chi curvature (Cy). a) The C, values (green) of a river reach de-
rived from C), = d(ks,)/d(x) and compared with Akg, values (in red) used in the manuscript to
identify slope-break knickpoints. Their magnitude is similar but is very sensitive to dy, which is a
function of 6. The two circles show cases where C, and Ak, show different and similar behaviour
from the same original data. b) C\ = d(ksy)/d(x) across the main river in the Smugglers Catchment.
The red line represents a moving-average window of 20 nodes across the signal. The high and low peak
values suggest some show potential to isolate knickpoints, but would require strong signal processing
to be isolated: this method does not do better than our current method. ¢) Absolute value version of
method b).

Detecting change points in noisy data is a common topic in signal processing and statistics (see e.g.
Truong et al., 2018). I wonder whether some of the techniques of knickpoint identification could actu-
ally be applied in a more formal statistical framework.

Thanks for pointing out this reference; we have included it in the text. Alongside with this addi-
tion, we are adapting the vocabulary describing the method to fit with the statistical framework.
Moreover, the reference offers (i) a review of the different statistical method to detect point changes
and (ii) a python implementation of the main algorithm “rupture”. The TVD suits our needs, but one
might want a different method to adapt to a specific case study that would fall in the limitation of our
method. We therefore adapted the code to generate raw files containing the output of the algorithm at
different stages of our method. User can now, if needed, fit another method to ours using for example
the “rupture” package.



Specific comments

6, 25: Filling might cause problems, because it can generate some large steps. Carving might be a
better alternative.

Yes, thanks for raising this. Our test examples were in locations where there were few roads and
bridges. These features can generate steps after filling. The sites also had relatively little topographic
noise and so we did not find valley filling to be a problem in our analysis. However, we recognise
that many DEMs will have steps introduced by the filling algorithm. We therefore added a depression
breaching algorithm in our software suite [3], as well as an option to directly feed the algorithm with
a preprocessed raster from an alternative source (e.g., TopoToolbox, RichDEM). We have also added
reference to the carving algorithm in the text.

8, 12: How much does ”"combining knickpoints” (2.3.2) actually affect the objective to identify the
precise location of transitions between segments? It seems to me that knickpoint merging will let you
pick knickzones, rather than knickpoints.

We addressed this point by running a sensitivity analysis, which was available in the supplemen-
tary materials of the discussion materials. The segments are made of a large number of nodes and
results show that, except for a large combining window (i.e., >100 nodes), the combining algorithm
only cleans composite transitions between segments and does not combine large knickzones. We agree
with the point that in the specific case of a close succession of knickpoints (e.g., a succession of water-
falls) and if the DEM precision is high enough to show them, then the algorithm might combine this
succession of knickpoints as a single entity. We add this point to the main manuscript.

Eq. 7: Denoising: The TVD algorithm (Eq. 7) is similar to the smoothing approach by [1], with
the difference being the applied smoothness penalty. It would be interesting to know why you chose a
gradient penalty instead of a curvature penalty. Wouldn’t the gradient penalty require the horizontal
distance in the denominator as the node-to-node distance may change depending on whether the node
s a cardinal or diagonal neighbor?

We developed a statistical approach in [2] to identify the best fit segments in chi-elevation space
and the gradient is calculated on the basis of these segments: the spacing of the nodes is taken into
account withing the segmentation routine. The TVD is then applied to the segmented data in order
to minimise small variations in the already calculated kg, enabling extraction of knickpoint locations.
We have added a reference to the study suggested above and described how it is different from our
approach in the revised manuscript.

12, 20: I was wondering about this error radius when reading through section 2.4. Consider to mention
the radius also there. Did you use the same radius in the Brazilian test case?

The radius has been chosen from [4] based on their published parameters. We applied the same
radius in the Brazilian case study (made with new field-derived dataset of knickpoint) for consistency.
This has been clarified in the manuscript.
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