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Dear Dr. Sofia,

Thank you for conducting the helpful and efficient review process that has greatly improved the quality
of our manuscript. Below we list the AE and reviewer comments in italic font; our responses are in
normal font.

Dear Authors, I received the reviewers’ reports, and I believe the manuscript was improved after
the first round of review. At this stage, one of the reviewers still highlights the need of a few more
technical modifications to the paper, which should be addressed.

Details of the changes in response to technical comments are listed at the end of this response letter, as
they all represent minor changes in the wording and corrections of typographical errors.

The other reviewer pointed out the importance of this work as a technical piece, improving our ability to
investigate landscapes and specifically knickpoints. As you pointed out in your manuscript, the scientific
community needs improved methods for knickpoints delineation, and I believe that your paper reports
a significant technical advance in this context. The manuscript content presents a robust delineation
method, rather than an enhanced theoryobservation on knickpoints (studies on knickpoints and their
importance are well documented in the literature, as nicely underlined in the introduction of your
manuscript). Due to its technical content, the paper actually well-fits the short communication type in
ESurf, also considering that, if you wish, detailed and specific technical information such as your codes
and samples for the research might be included as electronic supplements (although I see that they are
currently already available through your GitHub repository). I would suggest to consider this option
and frame the paper in this context, after addressing the technical modifications suggested by the reviewer.

We acknowledge the need for clarifications about our choice of publication type, as stated by referee 1
(Stefan Hergarten). We understand the reasoning behind the suggestion of changing the submission
type regarding the technical nature of our work. As stated in the manuscript types description from
the ESURF webpage, short communication format should be short (a few pages only), and previously
published examples are between 6 and 10 pages. Our use of the ESURF template suggests the current
manuscript is around twice as long as a typical short communication. Thus, if we were to reformat the
paper as a short communication, we would need to remove half the current manuscript and move it to
the supplemental materials.



We are very reluctant to move the much of the paper to the supplemental materials: we have already
placed information we believe is supplemental to the manuscript in that section and we believe what
is in the current manuscript should be exposed in the main paper to the geomorphology community.
These components include the theory behind the method, the choice of parameters, and the testing sites
(which include, for the Brazilian site, new data). It is our opinion that moving any of these sections
into the supplemental materials required to reformat as a short communication would jeopardise the
overall quality of the manuscript. Essentially, we have struggled to identify sections that can actually
fall into the already long supplemental materials without altering the manuscript quality.

Highly detailed and specific technical information such as computer programme code or user man-
uals can be included as electronic supplements.

Both the computer code and user manual are already available outside the manuscript (they are
on the github pages). They are specifically written about the software operation rather than about
the algorithm uses, reproducibility and limitations which are the scope of this manuscript. Our test
sites are not samples used to illustrate the algorithm outputs, but studies specifically chosen to test the
advantages and limitations of the method in various landscapes against (i) existing algorithms, (ii) field
data (including an unpublished dataset). Critical discussion about the effect of each of the parameters is
provided. Dropping this out of the main text would undermine the importance of carefully constraining
the algorithm whereas we show that a wrong concavity, as one example amongst many, can lead to
strong misinterpretations. Finally, we carefully compare our method with existing algorithms, which
serves to frame the strengths and differences of each methods. We believe this justifies our choice of
submission format and, in our opinion, a short communication about our algorithm would relegate the
main text as a technical description of the method and a brief presentation of the outputs. As we stated
in our first responses: the code will ultimately produce output, and we believe that shortening this
contribution would be a disservice to the geomorphological community in the sense that none of the
sections can be taken out without increasing the risk algorithm misuse.

Sincerely,

Boris Gailleton
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Technical comments from the associate editor

I would also suggest some improvements, as I spotted some minor typos (i.e. caption of fig 10 knicpoint).

Thanks for spotting this, we fixed this typo and a similar one in the caption of table 1.

Also, I suggest using a different terminology rather than windowed standard deviation or windowed
statistical approach, (i.e. standard deviation within the window and identification of the window for the
statistical analysis of a node.

This is a good idea and makes the reading clearer, thanks. We slightly modified the section ex-
plaining this method (section 2.3.3) and adapted the caption of Fig. 5, which were the two part
mentioning similar expression.

Technical comments from reviewer 2 (Wolfgang Schwanghart)

I thus have no further objections against publishing the manuscript as is. A few minor changes
concern orthographic errors in the supplements to the paper. 4.6 Change heading to ”Sensitivity to
reference area” 4.7 Remove the colon at the end of the heading 5.2.1. Remove the colon at the end of
the heading

Thanks for spotting these, we applied all these changes.
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Abstract. Changes in the steepness of river profiles or abrupt vertical steps (i.e. waterfalls) are thought to be indicative of

changes in erosion rates, lithology, or other factors that affect landscape evolution. These changes are referred to as knickpoints

or knickzones and are pervasive in bedrock river systems. Such features are thought to reveal information about landscape

evolution and patterns of erosion, and therefore their locations are often reported in the geomorphic literature. It is imperative

that studies reporting knickpoints and knickzones use a reproducible method of quantifying their locations, as their number5

and spatial distribution play an important role in interpreting tectonically active landscapes. In this contribution we introduce

a reproducible knickpoint and knickzone extraction algorithm that uses river profiles transformed by integrating drainage

area along channel length (the so-called integral or χ method). The profile is then statistically segmented and the differing

slopes and step changes in elevations of these segments are used to identify knickpoints and knickzones, and their relative

magnitudes. The output locations of identified knickpoints and knickzones compare favourably with human mapping: we test10

the method on Santa Cruz Island, CA, using previously reported knickzones and also test the method against a new dataset

from the Quadrilátero Ferrífero in Brazil. The algorithm allows extraction of varying knickpoint morphologies, including

stepped, positive slope-breaks (concave upward) and negative slope-break knickpoints. We identify parameters that most affect

the resulting knickpoint and knickzone locations, and provide guidance for both usage and outputs of the method to produce

reproducible knickpoint datasets.15

1 Introduction

Landscapes are shaped by competition between crustal processes such as tectonic plate motion or dynamic topography and

deposition or erosion at the Earth’s surface. This competition, if unperturbed, tends toward topographic steady-state where

vertical motions are counterbalanced by erosion (e.g., Hack, 1960; Willett and Brandon, 2002). In unglaciated landscapes, the

main driver of erosion is the river system (Ahnert, 1970), which incises the landscape to remove and transport material from20

uplands to active basins. The analysis of river long profiles has been a key method to interpret landscape evolution (e.g., Wobus

et al., 2006), from the early recognition of graded rivers (e.g., Gilbert, 1877) to the generalised recognition that river profiles

reflect varying erosion processes (e.g., Mackin, 1948; Hack, 1960; Howard, 1965; Howard et al., 1994; Dietrich et al., 2003;

Kirby and Whipple, 2012).
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In a river system, topographic steady state requires spatially stable rock uplift and climatic conditions over a long period

of time (Willett and Brandon, 2002). In most landscapes, however, these conditions are unlikely (Baldwin et al., 2003). Many

processes have been suggested to result in both spatial and temporal variations in uplift rate, such as varying tectonic stress

(e.g., Kirby and Whipple, 2012), complex mantle processes inducing vertical motions (e.g., Faccenna and Becker, 2010; Braun,

2010), uplift driven by differential rock density (Braun et al., 2014) and base level variations linked to eustatic variations (e.g.,5

Powell, 1875; Lambeck and Chappell, 2001; Schumann et al., 2016). River systems affected by these processes respond by

transmitting signals upstream through the channel network (e.g., Whipple et al., 1999; Royden and Perron, 2013), eventually

driving drainage network reorganisation resulting in additional transient signals (e.g., Mather, 2000; Castelltort et al., 2012;

Willett et al., 2014; Whipple et al., 2017b; Mudd, 2017). Moreover, river profiles are also affected by intrinsic landscape

properties, such as fracture density (e.g Whipple, 2002) or differential lithology (e.g., Stock and Montgomery, 1999; Forte10

et al., 2016) which can also lead to morphological adjustment of the channel (e.g., Kirby and Whipple, 2012). The most direct

and widely observed expression of river adjustment to transient or intrinsic perturbations is a discrete change in river gradient,

commonly referred as a “knickpoint”.

Changes in channel gradient linked to different lithologies have been recognised in geomorphological studies for centuries.

Lapparent (1896) suggested that these changes may represent “successive reaches” with different base levels, hypothesising15

that these reaches somehow migrate upstream. Davis (1889) recognised the tectonic genesis of some of these signals, describing

how landscapes experience erosion cycles with periods of “rejuvenation” followed by periods of gradual adjustment, and thus

transience. However, these early studies did not name such morphologies as distinct entities. The term “knickpoint” was first

introduced into the geomorphological literature by Knopf (1924), borrowing the word from chemical sciences to “denote an

abrupt change in direction from a gentle concave curve to a curve that is convex upward” (p.636).20

Based on earlier observations on the topography and geology of the Appalachians (e.g., Barrell, 1920; Bascom, 1921),

Knopf (1924) described a knickpoint as a migrating steepened boundary between two river reaches. She went on to state

that the downstream reach should flow with a gradient determined by the present day balance between uplift and erosion,

and the upstream reach should flow with a gradient representing an older such balance. Recognition of knickpoints and their

significance in transient landscapes has driven much research into interpreting topography (e.g., Wobus et al., 2006; Crosby25

and Whipple, 2006; Abbühl et al., 2011; Kirby and Whipple, 2012), as well as using river profiles to extract past uplift histories

(e.g., Pritchard et al., 2009).

The diverse nature of knickpoint formation means that these features have been used to investigate many geomorphological

problems. For example, retreat rates have been used to link knickpoints with tectonic events and faulting (e.g Attal et al., 2008,

2011; Whittaker and Boulton, 2012) or climatically triggered base-level fall (e.g., Crosby and Whipple, 2006; Baynes et al.,30

2015; Neely et al., 2017). Although migrating knickpoints are commonly associated with base level variations, Haviv et al.

(2010) highlighted the role of differential lithologies in retreat rates of vertical knickpoints within tectonically and climati-

cally stable landscapes. Furthermore, Scheingross and Lamb (2016) and Scheingross et al. (2017) noted the importance of

sediment supply and hydraulic conditions in waterfall retreat, providing a quantitative interpretation of the early observations

of Lapparent (1896) on waterfall migration. Cook et al. (2013) observed an important correlation between knickpoint retreat35
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and bedload transport, further highlighting the importance of sediment transport. Bishop and Goldrick (2010) demonstrated

that considering the role of resistant lithologies is crucial when studying landscape evolution, as they can considerably slow

down landscape response time to transient signals. Other studies have linked knickpoints directly to landscape characteristics

such as heterogeneous lithology (e.g., Tucker and Slingerland, 1996; Stock and Montgomery, 1999; Kirby et al., 2003; Duvall,

2004). Recent analogue experiments on knickpoint retreat (e.g., Baynes et al., 2018) have highlighted the inter-connectivity of5

all these processes and the need to consider both internal and external landscape characteristics.

These examples demonstrate the importance but also the diversity of transient and lithologic signals in landscapes, and high-

light that different processes can generate remarkably similar channel morphology. It is therefore crucial to define knickpoints

morphologically before drawing interpretations about their significance in term of processes or genesis. In this contribution,

we aim to provide a method for reproducibly and systematically extracting knickpoints within real landscapes based on river10

profile morphology.

1.1 Knickpoint morphology and detection

1.1.1 Morphological description

Knickpoints can be defined as discrete changes in river gradient (Whipple et al., 1999). Haviv et al. (2010) proposed two

end-member knickpoints: break-in-slope knickpoints, expressed by an abrupt change in river gradient; and break-in-elevation15

knickpoints, characterized by step in the elevation as a waterfall with similar gradient on both sides of the knickpoint. These

knickpoints are now commonly referred as slope-break knickpoints and vertical-step knickpoints (e.g., Kirby and Whipple,

2012; Neely et al., 2017). Kirby and Whipple (2012) suggest that although vertical-step knickpoints tend to be linked to

discrete heterogeneities along the river profile (e.g., caused by geological boundaries), both morphologies can be either fixed

or mobile and each style of knickpoint may be generated by a range of processes.20

As discussed in Goldrick and Bishop (2007) and Kirby and Whipple (2012), both morphologies can be detected using a

slope–area plot (Figure 1) or a slope–distance plot. It has long been observed that channel gradients vary systematically as a

function of drainage area. For example, Gilbert (1877) stated that “In general we may say that, ceteris paribus, declivity bears an

inverse relation to quantity of water (p.114).” How do we then find anomalous channel gradients? In the mid-twentieth century,

authors such as Hack (1957) and Morisawa (1962) found systematic, quantitative relationships between channel gradient and25

drainage area, often used as a proxy for discharge. Morisawa (1962) and later Flint (1974) recognised that channel gradients

often declined systematically downstream in a trend that could be described by a power law:

S = ksA
−θ, (1)

where θ is referred to as the concavity index since it describes how concave a profile is: the higher the value, the more

rapidly a channel’s gradient decreases downstream. The term ks is called the steepness index, as it sets the overall gradient30

of the channel, and a number of authors have noted that ks frequently scales with erosion rate in lithologically homogeneous
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landscapes (e.g., Ouimet et al., 2009; DiBiase et al., 2010; Scherler et al., 2014; Mandal et al., 2015; Harel et al., 2016). A

knickpoint might manifest itself as an abrupt change in slope–area scaling, and lead to local variations in ks (Figure 1a).

However, using slope–area data derived from digital elevation models (DEMs) suffers from noise in channel slopes, leading

to scattering of gradient data, as discussed in Perron and Royden (2013). Wobus et al. (2006) proposed methods to reduce

the effect of noise and extract trends from slope–area plots. These recommendations include regular sampling of elevations5

to extrapolate artefact-free contour lines or logarithmic binning by drainage area. Smoothing induces inexorable data loss and

may result in difficulties detecting subtle, but important features such as knickpoints (Figure 1b).

Alternatively, we can integrate equation (1), since S = dz/dx where z is elevation and x is distance along the channel (e.g.,

Whipple et al., 2017a), resulting in

z(x) = z(xb)+

(

ks

A0
θ

) x
∫

xb

(

A0

A(x)

)θ

dx, (2)10

where A0 is a reference drainage area, introduced to nondimensionalise the area term within the integral in equation (2). We

can then define a longitudinal coordinate, χ (Royden et al., 2000):

χ=

x
∫

xb

(

A0

A(x)

)θ

dx. (3)

χ has dimensions of length, and is defined such that at any point in the channel

z(x) = z(xb)+

(

ks

A0
θ

)

χ. (4)15

The χ approach to represent normalised long profiles (equations (4) and (3)) can serve as an alternative method to explore

the slope–area relationship within a drainage network. The χ coordinate integrates information about drainage area, while

requiring less smoothing and lumping than log(S)–log(A) plots (Figure 1c). This approach has been widely used in recent

studies (e.g., Perron and Royden, 2013; Mudd et al., 2014; Willett et al., 2014; Mouchené et al., 2017; Whipple et al., 2017b;

Neely et al., 2017; Moodie et al., 2017).20

1.1.2 Existing algorithms

Traditional knickpoint identification from DEMs relied upon user-based selection along river long profiles (e.g., Hayakawa and

Oguchi, 2006; Wobus et al., 2006). Several computational methods have been proposed for extracting knickpoints from DEM-

derived datasets. The first (semi-)automated methods taking advantage of digital topographic data used long-profile geometry

to isolate knickpoints or knickzones. Hayakawa and Oguchi (2006) proposed a semi-automated extraction method based on25

decreasing of gradient with increasing length. This method involved the use of ArcGIS and spreadsheet software to process
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the outputs for each river. Recognising the need for automated regional knickpoint mapping methods in geomorphological

studies, Gonga-Saholiariliva et al. (2011) proposed an automated algorithm to map abrupt changes in river gradient using

slope, profile, and planview curvature. Gallen et al. (2013) used systematic changes in profile convexity over given thresholds

(> 20 metres in elevation drop, coupled with a slope threshold ≥ 0.1) to isolate knickpoints in fluvially-dominated channels

with the aim of reconstructing rejuvenation events, both climatically and tectonically driven, in the southern Appalachians.5

A similar method has been implemented in ArcGIS by Queiroz et al. (2015). More recently, Zahra et al. (2017) published an

ArcGIS toolset (called KET) that automates and optimizes the Hayakawa and Oguchi (2006) method. These methods are based

of the direct use of channel elevation, gradient and curvature, and so are susceptible to previously described limitations related

to noise. Furthermore, the Hayakawa and Oguchi (2006) method does not incorporate drainage area information, which is an

important parameter to consider when studying knickpoints over large spatial scales, or when interpreting the retreat rates of10

these features.

Another set of methods exploit the use of ks from equation 1 (or ksn when calculated using a fixed value of θ) to extract

knickpoints from slope-area plots, as reviewed by Neely et al. (2017). These methods suffer from limitations linked to slope-

area scattering, noise sensitivity and difficulty in precisely locating knickpoints because of the stepped nature of drainage area

(increasing instantaneously downstream when a new tributary reaches the river channel). To ameliorate problems with noise15

and data scattering, Bennett et al. (2016) devised a method that first calculates ksn on channel profiles smoothed using the

algorithm of Schwanghart and Scherler (2014). This derives ksn either from regression of slope–area plots, or using the first-

order derivative of χ plots. The method selects a knickpoint where the ratio between downstream and upstream ksn , averaged

with two 2-km long serial windows, exceeds a factor of two.

Neely et al. (2017) developed an algorithm focused on knickzone detection (KZ-picker). Knickzones are selected from20

normalized profiles (using the approach of Perron and Royden (2013)) by comparison with a reference profile, calculated

for a defined concavity index (θ in equation 1). This reference profile is a line in χ–elevation space between the outlet and

headwaters of the channel, and knickzones are then defined based on the deviation of the χ profile from the reference. After

initial detection, knickzones are quantified by their relief (elevation drop) and adjusted using several filters or lumping-window

parameters. This method is well adapted to detect knickzones that are composed of a base and a lip separating a steepened25

reach. Example of output produced by this algorithm and compared to our is presented in section (5.4).

Another method for extracting knickpoints has recently been implemented using TopoToolbox (Schwanghart and Scherler,

2014). Albeit unpublished, the code is available and also aims to reproducibly extract knickpoint locations from river profiles.

It selects knickpoints by creating reference channel profiles that are concave up and then selecting knickpoints where the actual

channels are the most different from the reference channels. Although not based on the slope–area relationship, this method is30

perhaps the closest algorithmic attempt to match the knickpoint definition of early workers (e.g., Knopf, 1924). A sensitivity

parameter defines the number of iterations and indirectly the number of knickpoints detected. After knickpoint extraction, a

value is attributed to each identified knickpoint quantifying the divergence of the long profile from the reference profile. We

discuss the similarities and differences of this method compared to our method in Section 6.
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1.1.3 Motivation for a new method

Despite the large number of past approaches to selecting knickpoints, we have developed a new method because i) many

authors still select knickpoints based on qualitative interpretation of channel long profiles or slope–area data and we desired an

open source, reproducible method that has no reliance on proprietary software such as ArcGIS (e.g., Hayakawa and Oguchi,

2006) or MATLAB (e.g., Schwanghart and Scherler, 2014; Neely et al., 2017); ii) channel erosion is modelled to scale with5

discharge, and therefore we wished to use a method that includes discharge (or its proxy drainage area); iii) existing slope–area

approaches make it difficult to pinpoint knickpoint locations (Figure 1), and therefore we choose to use a χ-based approach;

iv) we wished to develop a method that not only selected knickpoint locations but included metrics of changes in normalised

channel steepness, as that metric is frequently used in tectonic geomorphology and v) we aimed to create a method allowing

the differentiation between different knickpoints morphologies (e.g., slope-break vs vertical-step).10

Although the newest methods (Schwanghart and Scherler, 2014; Neely et al., 2017) meet a subset of these criteria, they

both only describe a specific morphology of knickpoint/knickzone and use indirect methods to quantify their magnitude (e.g.

derived from the comparison with a reference profile). Our aim here is to provide a method that selects locations, styles (e.g.

vertical step, slope-break), and magnitudes (e.g. main features or secondary ones) of knickpoints and knickzones that is free of

manual selection in order to complement these existing methods that are more focused on identifying locations of a particular15

style of knickpoints and knickzones (e.g. waterfall).

We provide comparisons with two existing methods in section 5.4. These have been chosen for the following reasons: i)

the knickpoint-extracting algorithms are open-source (with the limitation of MATLAB licenses), ii) the methods are objective,

reproducible and provides a quantification of knickpoint magnitude in order to compare it with our and iii) (Schwanghart and

Scherler, 2014) is purely based on channel morphology while (Neely et al., 2017) uses the slope–area relationship and χ thus20

providing a reasonable comparison of our algorithm with the range of existing methods.

2 Methods

An overview of our knickpoint identification method can be found in figure 2.

2.1 DEM preprocessing and river network extraction

Firstly, we fill the DEM using the filling algorithm of Wang and Liu (2006), to make sure that each cell has a flow direction25

and to avoid internal basins generated by DEM noise (e.g., Barnes et al., 2014). This approach is suitable for cases where no

feature is spuriously damming the DEM. Spurious damming can occur when vegetation, bridges, or other features lead to high

elevations over the channel when in fact the channel sits at a lower elevation. The filling process will create flat surfaces behind

such spurious dams and will therefore hinder channel profile analysis.

If features that lead to spurious damming are present, we give users the option to use a breaching or carving algorithm.30

This excavates through spurious dams to avoid overfilling. The depression-breaching algorithm in our code is that created
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by Lindsay (e.g., 2016) and adapted from Barnes (2016) within our method. It is also possible to supply the algorithm with

preprocessed DEMs (e.g., Schwanghart and Scherler, 2017).

From the preprocessed, carved, or filled DEM, we provide several methods of extracting the river network, including the

DrEICH method (Clubb et al., 2014); a curvature method proposed by Pelletier (2013); and a method that uses a Wiener filter

(Wiener, 1949) that combines elements of the methods of Pelletier (2013) and Passalacqua et al. (2010) first implemented by5

Grieve et al. (2016) and Clubb et al. (2017); Grieve et al. (2016) found this latter method least sensitive to DEM resolution.

Finally, we include extraction based on a drainage area threshold, more suitable for low-resolution DEMs (e.g., SRTM, ASTER)

or large-scale studies where the location of channel heads is less important. We also ensure during the preprocessing that no

catchments are beheaded by the edge of the DEM, as the χ coordinate is a function of drainage area and therefore incomplete

basins will have incorrect χ values.10

2.2 ksn extraction

Following channel extraction, we then calculate the χ coordinate for the resulting network. A key parameter that must be

constrained prior to calculation of χ is the concavity index (θ). Changing the concavity index significantly affects values of the

the χ coordinate (e.g., Kirby and Whipple, 2012; Gasparini and Whipple, 2014; Mudd et al., 2018) and therefore subsequent

knickpoint extraction. We select the concavity index using a method developed by Mudd et al. (2018). This method calculates15

the χ coordinates for a range of concavities within each watershed, and determines the most likely concavity index by directly

comparing the collinearity of points on each tributary with the trunk channel (Perron and Royden, 2013; Mudd et al., 2018).

This approach does not assume linearity in χ–elevation space, and therefore is applicable in transient landscapes (Mudd et al.,

2018).

Once we determine θ values for each basin, we calculate χ and then use χ–elevation profiles to determine changes in20

ksn , which is the gradient of the χ–elevation profile when we set A0 = 1 (see equation 2). Theoretical work by Royden and

Perron (2013) suggested that in eroding landscapes changes in erosion rates would be represented by changes in χ–elevation

gradient between segments of channels that would be linear in χ–elevation space, which Royden and Perron (2013) called

slope patches. Mudd et al. (2014) devised a statistical method that identified the most likely linear segments in χ–elevation

space. This technique searched all possible combinations of channel pixels and used the corrected Akaike Information Criterion25

(AICc) (Akaike, 1974; Hurvich and Tsai, 1989) to balance goodness of fit of linear segments against over-fitting the data. Here

we use this same algorithm to search for breaks in slope within the profile corresponding to knickpoint locations.

Knickpoints will manifest themselves as changes in the slope of these patches, equivalent to the slope-break knickpoints of

Kirby and Whipple (2012), whereas knickzones will be represented by patches with locally high gradients. That is, knickpoints

and knickzones result in either changes in or locally high values of ks (or ksn if calculated with a fixed concavity index). The30

segmentation algorithm casts the profile as a series of linear segments, and each segment has a gradient and an intercept. The

gradient reflects ks of the segment and the intercept can be used to detect vertical-step knickpoints, as it detects elevation jumps

between adjacent slope patches.
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The method developed by Mudd et al. (2014) subsamples underlying topographic data iteratively: on each iteration nodes

from the channel network are chosen randomly and segmentation is applied to this subset of nodes. The number of iterations is

called nMC . This iterative approach was taken because it significantly reduces the sensitivity of the results to user parameters

(Mudd et al., 2014). The computational expense of the segmentation scales highly nonlinearly with the number of nodes so

channel profiles are broken into subsections of length ntg (called the “Target Nodes” in Mudd et al. (2014)). The sampling5

of the underlying data on each iteration is random: after each sample nodes are “skipped” randomly, the number of nodes

skipped varies with a uniform distribution from zero to twice a parameter nsk such that the mean “skip” is nsk. We explore the

sensitivity of the method to these parameters in the discussion.

The final ksn values are an average of many iterations using different channel profiles subsampled from the raw data, as

are intercepts of local segments. These averaged values are used to build segmented elevation. Each node then represents an10

average of the best-fit segments for every iteration of the segmentation routine (Figure 3a):

zsegi =Mχi ∗χi + bχi, (5)

where i is the given node, zseg its elevation on the segment, Mχ the average gradient of the segments and bχ the averaged

intercept of the segments. Mχ can be expressed with the following equation:

Mχ = (
E

K ∗Am
0

)1/n, (6)15

We note here that Mχ is the same as ksn if χ is calculated using A0 = 1m2.

2.3 Knickpoint extraction from ksn data

2.3.1 Change point detection

Change point detection is a common technique used within many fields (e.g., time series analysis) and a number of statistical

tools have been developed to identify change points, reviewed and described by Truong et al. (2018). In our case, the signal20

(ksn) is by definition piecewise stationary, and abrupt changes occur between each segment (i.e., knickpoints). Change point

detection algorithms aim to estimate and isolate the exact location of these boundaries between stationary patches. Method

choice depends on the nature of the original dataset (e.g., noise intensity) and the number of changes we aim to extract (e.g.,

predetermined or unknown). In our case, although the segmentation algorithm of Mudd et al. (2014) can result in very sharp

segment boundaries, in many cases the transitions between segments is fuzzy. We therefore have an unknown number of25

change points to detect from a variably noisy signal. We therefore choose to use a signal processing filter (Condat, 2013) to

flatten the piecewise ksn patches and discretise all potential change points. This algorithm identifies where ksn and elevation

are statistically varying the most within any transition zones. It also combines segments that have very small changes in ksn

relative to the noise in the data (Figure 3b).
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We denoise the data using a one dimensional Total Variation Denoising (TVD), a signal processing filter adapted from a

optimized algorithm by Condat (2013) solving the following equation:

minimize
x∈ℜN

1

2

N
∑

k=1

|y[k]−x[k]|
2
+λ

N−1
∑

k=1

|x[k+1]−x[k]| , (7)

where N represents the number of samples (nodes) per population (in this case a river channel from source to next higher-

order stream, or the outlet), y represents the raw signal y1,y2,y3, ...yN , in this case ksn ordered by ascending χ within each5

river, x the denoised signal x1,x2,x3, ...xN , referred as denoised ksn , and λ is a regularization parameter (Condat, 2013). This

method minimises variations, where the parameter λ must be real and greater than zero. Greater λ values result in less variation

in the processed signal, and λ→+∞ results in no variation in the processed signal whatsoever. The selection and sensitivity

of this parameter is discussed in Section 5.1.

After denoising the data, our method then iterates through all nodes in each channel and identifies change points as any10

variation in the denoised ksn data. These represent first-order knickpoints that we quantify by their change in denoised ksn ,

which we call ∆ksn . ∆ksn is a quantitative measure of the magnitude of the slope-break component of the knickpoint (Figure

4a). We refer to change points as knickpoints in the rest of the manuscript.

2.3.2 Combining knickpoints

Denoised ksn data can still contain closely clustered steps in ksn values, which may in fact represent a single knickpoint. We15

therefore use an algorithm to determine which of these clusters can be combined. Iterating through each river, the algorithm

tests the neighbouring nodes of each raw knickpoint in a window that we call the “combining window”. If two knickpoints

in the denoised ksn data are within the combining window and both have the same sign of ∆ksn , the two knickpoints are

merged and their magnitude summed. This process is repeated using newly merged knickpoints until no nodes are within the

combining window, or until a change in knickpoint sign (Figure 4b). The combined knickpoint is then centred between the20

combined nodes. The width of the combining window (which we denote rcomb, and is defined by a number of nodes rather

than a flow distance) is a user-defined parameter, the selection of which we address in Section 5.1.

2.3.3 Vertical-step knickpoint detection

Small variations between segments with similar ksn values may be ignored by denoising, which may seem trivial if the aim is

to isolate the main variations in channel steepness. However, this may lead to vertical-step knickpoints being missed if channel25

segments above and below the vertical-step knickpoint have similar ksn values despite a jump in zseg . We therefore use a

second approach to extract knickpoints, allowing us to identify both slope-break and vertical-step knickpoints.

The algorithm calculates changes in zseg using equation (5) in order to isolate the main jumps in profile elevation. We

differentiate this value along the river nodes (∆zseg ) to detrend the elevation signal and focus on the stepped variations. For

each node in the channel, the mean and standard deviation of ∆zseg is calculated within a window of surrounding nodes; the30
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window width in nodes is called rW . The nodes within the first and last half-windows are calculated using respectively the

first and last window. ∆zseg is then compared to the windowed standard deviation of the corresponding node
✿✿✿✿

nodes
✿✿✿✿✿✿

within
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿

window
✿

multiplied by a coefficient (which we call Tσ), and the node is selected as a vertical-step knickpoint

if ∆zseg is greater (Figure 5b). This approach ensures that the selected vertical-step knickpoints show an anomalous increase

in elevation. The selection of the window width and the coefficient are discussed in Section 5.1. We can then use ∆zseg as a5

quantitative measure of the size of each vertical-step knickpoint.

2.4 Accuracy metrics

The accuracy of the method is assessed using a true positive (TP), false positive (FP) and false negative (FN) approach. This

comparison method is often use to test algorithm performances on point data, such as channel heads (e.g., Orlandini et al., 2011;

Clubb et al., 2014) or knickzone locations (e.g., Neely et al., 2017). We test the algorithm with these accuracy metrics using two10

sites where locations of hand-picked knickpoints based on field observations and river profiles are available. Knickpoints were

identified at Santa Cruz Island (California, USA) by Neely et al. (2017), and we introduce a new dataset in the Quadrilátero

Ferrífero, Minas Gerais, Brazil.

We define as TP a reference knickpoint detected by the algorithm, as FP a knickpoint detected by the algorithm that is not a

reference knickpoint, and as FN reference knickpoints not detected by the algorithm. Neely et al. (2017) proposes a fourth kind15

of prediction called “mixed” to assess the knickzone base and lip detection, where only one of the two knickzone boundaries is

detected. We chose not to use this approach as we define a knickpoint as a point location showing an increase or decrease of ksn

or ∆zseg , which is more applicable to varying knickpoint morphologies. The definition of the different knickpoint predictions

allows the calculation of sensitivity, s, reliability, r, and metrics. We also add an overall quality metric, q, described in Heipke

et al. (1997). The sensitivity can be expressed as:20

s=

∑

TP
∑

TP +
∑

FN
, (8)

where
∑

TP and
∑

FN are the sum of TP and FN . This metric measures the method’s ability to detect knickpoint that a

user would have manually picked. s = 1 implies the detection of all the locations of reference knickpoints. The reliability can

be expressed as:

r =

∑

TP
∑

TP +
∑

FP
, (9)25

where
∑

TP and
∑

FP are the sum of TP and FP . This metric measures the occurrences where the method identifying

knickpoints that a user would not have picked. The overall quality metric can be expressed as:

q =

∑

TP
∑

TP +
∑

FP +
∑

FN
. (10)
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A q value of unity implies perfect agreement between algorithmically and hand-picked knickpoints. We focus on these

metrics instead of the knickpoint magnitude, as it is more difficult to predict and is dependent on many parameters within the

extraction of the ∆ksn values.

3 Test locations

In order to test the performance of our method, we extract knickpoints from two field sites with independently-mapped knick-5

point and knickzone locations. The first of these sites is Smugglers Basin on Santa Cruz Island (California, US), where knick-

points and knickzones were mapped by Neely et al. (2017) using a combination of fieldwork and supervised selection from

river long profiles. Smugglers basin is undergoing transient adjustment to climatic and tectonic signals (Neely et al., 2017). The

second field site is located in the Quadrilátero Ferrífero (Minas Gerais, Brazil), where we present a new dataset of extracted

knickpoint and knickzone locations from field observations and river profiles. Quadrilátero Ferrífero represents a more stable10

site in term of climate and tectonics (e.g., Dorr, 1969; Salgado et al., 2008), and therefore knickpoints in this landscape have

been linked instead to changes in lithology.

3.1 Santa Cruz Island, USA

The first calibration test site is the headwaters of the Smugglers Cove catchment, located in the SE of Santa Cruz Island, the

largest of the California Channel Islands (California, USA). Lidar data at 1 m resolution are available in the basin via the 201015

US Geological Survey Channel Islands lidar Collection, available from OpenTopography (opentopography.org).

The basin has a total relief of approximately 550 m and drains to the Pacific Ocean. Previous work has estimated uplift rates

of ≈1 mm yr−1 using dated terraces and fault activity (e.g., Pinter et al., 1998; Muhs et al., 2014), and the site has experienced

regional sea-level variations (e.g., Schumann et al., 2016; Pinter et al., 2018). This, along with bedrock heterogeneity, has led to

numerous knickzones in the catchment which have been mapped and tested against a previous knickzone extraction algorithm20

by Neely et al. (2017). 18 knickzone bases and lips have been reported based on topographic expression and field observations

across the whole catchment. As the Neely et al. (2017) algorithm is targeted specifically at knickzones, we compare the

mapped knickzone bases and lips with those picked by our algorithm. Knickzone bases and lips are the equivalent of increases

and decreases in ksn , respectively.

We extracted channel heads using a curvature-based method of channel extraction, following Pelletier (2013) and Grieve25

et al. (2016). This method has an estimated accuracy of ≈10 metres horizontally along drainage paths (Clubb et al., 2014).

Before extracting channel steepness, we calculated the best fit concavity index for the basin by maximising collinearity between

the main stem channel and the tributaries in χ–elevation space, using the bootstrapping method of Mudd et al. (2018): the best-

fit θ at the site is 0.25.
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3.2 Quadrilátero Ferrífero, Minas Gerais, Brazil

The second calibration test site is located in the eastern part of the Quadrilátero Ferrífero (QF, Brazil), in a basin draining the

Caraça Range (Figure 8). The QF is an area of relatively high elevation in southeastern Brazil, and the Caraça Range is its most

pronounced topographic feature with a maximum elevation of ≈2100 m and maximum relief of ≈1500 m. Tectonic activity is

thought to have ceased by ≈500 Ma (e.g., Dorr, 1969; Chemale et al., 1994; Alkmim and Marshak, 1998). Upstream areas are5

primarily underlain by resistant rocks (e.g., quartzites and banded iron formations), whereas less resistant rocks often underlie

downstream areas (e.g., schists and phyllites). The association of mountainous topography and long-term tectonic stability

have led to controversy in the post-orogenic evolution of the QF (Peifer Bezerra, 2018). The most accepted hypothesis is that

differential denudation of lithologies with different resistance to denudation has led to a geomorphic differentiation where the

uplands, underlain by strong rocks, are high because they have been denuded less and more slowly than their surroundings10

(e.g., Harder and Chamberlin, 1915; James, 1933; Varajão, 1991; Salgado et al., 2008; Peifer Bezerra, 2018). An alternative

hypothesis is that the relief of the QF results from a complicated history of geographic cycles interrupted by epeirogenic uplift

(e.g., King, 1956; Dorr, 1969; Barbosa, 1980).

Knickpoints are common features in the rivers flowing away from the Caraça Range (Figure 8). These rivers have headwaters

at high elevations (≈2000 m), and their long profiles display many convexities associated with substantial elevation drops (up15

to 1.4 km of descent over ≈15 km of downstream distance), and steep channel and hillslope gradients. These rivers flow

over quartzite terrains, yet transitioning in their distal part to schists (see Supplementary Materials 5.2). The origin of these

knickpoints is unresolved, being possibly the result of spatial variations in rock resistance, or alternatively resulting from

transient uplift signals that have failed to progress beyond quartzite units (Peifer Bezerra, 2018). We used a TanDEM-X DEM

with 12 m resolution to extract knickpoints from the QF. Before extracting channel steepness, we estimated the best fit concavity20

index as 0.15 using the methods presented in Mudd et al. (2018).

4 Results

4.1 Performance at Santa Cruz Island

We carried out knickpoint extraction on Santa Cruz Island initially with parameters detailed in Table 1; the full parameter file

is available in the Supplementary Materials. As explained in Section 2, extraction prior to post-processing thinning generates25

a dense dataset of knickpoints both within and outside knickzones identified by the calibration dataset (see Supplementary

Materials 5.1). Therefore, we apply a threshold approach to thin the dataset by removing small knickpoints. We set cut-off

values of |∆ksn |> 0.8 and ∆zseg > 2.1, where knickpoints smaller than these thresholds are ignored. These values are set for

this case study with the specific aim to isolate the main knickpoints while matching with the calibration dataset. This approach

is fully reproducible and does not involve manual picking of knickpoints.30

Our thinning procedure reduced the number of slope-break knickpoints from 398 to 160; and the number of vertical-step

knickpoints from 40 to 17. This is a relatively high number of knickpoints compared to the calibration bases and lips (18 pairs).
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However, this disparity can partly be explained by the differences in methods: our algorithm details discrete changes in channel

morphology whereas the calibration knickzones are identified over longer channel reaches. Therefore, one mapped knickzone

may contain several algorithmically identified knickpoints.

Neely et al. (2017) propose an error radius of 50 metres around each base and lip in order to test the performance of their

algorithm: we used the same approach when comparing our extracted knickpoints to the calibration data. A TP is determined5

as any knickpoint within the calibration knickzone or the corresponding 50 m radius. A FP is determined as any knickpoint

which does not lie within this radius, and a FN is determined as a base or a lip which is not identified by our algorithm. The

reliability, sensitivity, and overall quality metrics are presented in Table 2. High sensitivity (s = 0.93) but lower reliability (r

= 0.53) and overall quality (q = 0.51) suggest that the algorithm detect the bulk of human selected knickpoints, but also a

significant amount of other knickpoint features. The implications of these results are discussed below.10

4.2 Performance at Quadrilátero Ferrífero, Minas Gerais, Brazil

The application of our method in the Ribeirão Caraça basin resulted in a dense dataset of knickpoints (n = 252); see Table 1

for parameter values and the supplementary materials for full parameter file. To thin this dataset, we removed knickpoints

with attributes lower than the cut-off values of |∆ksn |> 0.8 and ∆zseg > 2.1 for the slope-break and vertical-step knickpoints

respectively. This filtering procedure decreased the number of slope-break knickpoints from 252 to 108, whereas the number15

of vertical-step knickpoints diminished from 44 to 23. We tested the performance of our method compared to human-selected

knickpoints for the Ribeirão Caraça basin using the metrics TP, FP and FN (Table 3). We used the same error radius as was

used on Santa Cruz Island for consistency. These metrics (see Section 2.4) indicate that the sensitivity of our method is high for

the Ribeirão Caraça basin (s = 0.89), and thus the bulk of human-selected knickpoints are captured by our algorithm. On the

other hand, the reliability (r = 0.60) and the overall quality (q = 0.56) are lower because the number of false positives is high,20

indicating that our algorithm determines a relatively high number of knickpoints compared to human selection. In summary,

our algorithm captures knickpoints that are visually selected for the Ribeirão Caraça basin, as well as many knickpoints that

are not recognised by traditional field mapping of knickpoints, but are morphologically similar, as defined by our algorithm.

4.3 Sensitivity to algorithm parameters

One important parameter in our method of knickpoint detection is the concavity index (θ). The concavity index controls the25

magnitude of ksn because it determines the values of χ (equation 6), and a higher concavity index will produce higher ksn

values for the same channel. We ran the algorithm on Santa Cruz Island for θ values ranging from 0.05 to 0.95, in steps of 0.05.

Because the value of θ affects ksn order of magnitude, λ must be adapted to keep denoising the signal. We therefore tested

a wide range of λ values for each θ value. From these tests (see Supplementary Materials 4.1) we determined default λ values

appropriate for a range of θ values. These default values are implemented internally in the code, but can be modified if needed.30

Sensitivity of knickpoint locations to θ using default λ values are presented in Figure 9. This analysis shows that the general

spread of the data, represented by its zscore (difference between the data point and the mean normalised by the standard

deviation), is not significantly impacted by different θ values. However, the relative magnitude of each knickpoint, measured
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by changes in ksn , depends on the chosen value of θ. Therefore, if the intention of the user is to find the spatial distribution of

the largest knickpoints then it is essential that θ is picked with care (see Supplementary Materials 4.2 for more illustrations of

that).

Because ksn values are sensitive to the value of the concavity index, θ, it is important to note that basins with different θ

values should be analysed separately to isolate knickpoint locations. ∆ksn values are therefore also dependent on the value5

of θ and so relative magnitudes of knickpoints and knickzones should only be compared amongst basins with the same θ

value. On the other hand, the locations of knickpoints and knickzones are relatively insensitive to θ so the method can be

used to determine the spatial distribution of knickpoints across large areas even in the event that the concavity index may vary

spatially.

The extraction of channel steepness will also be influenced by parameters in the segment fitting algorithm (Mudd et al.,10

2014): the number of target nodes (noted ntg) and the average number of nodes skipped (noted nsk). We therefore ran sensitivity

analyses on these parameters testing every combination for the following ranges of values: from 5 to 120 ntg , and values of 1 to

4 for nsk parameter. Our results show that both of these parameters affect the segment lengths. Increasing either the number of

ntg or the nsk parameter leads to longer segments (see Supplementary Materials 4.3 for more details). This affects the number

of knickpoints detected. We also tested the number of Monte-Carlo iterations (nMC ) processed for each segment from 5 to15

500, and find that the results become insensitive to nMC when nMC > 50.

The results of the vertical-step knickpoint detection can change with the size of moving window that detects sudden changes

in zseg compared to neighbouring nodes (Section 2). We tested the following combination of parameters for vertical-step

knickpoint detection: rW from 10 to 200 nodes, over intervals of 10 nodes; and Tσ from 5 to 10 over intervals of 0.5. Our

results show that the extraction is insensitive to rW above a threshold minimum value, around 80 in our case. Below this value,20

the algorithm begins to identify steep channels as a succession of steps and will detect each node in the steep section as a

knickpoint. We find that the number of extracted knickpoints becomes much higher if Tσ < 6, whereas Tσ > 8 results in very

few knickpoints being detected. We therefore suggest selecting a value of 6≤ Tσ ≤ 8.

The resolution of the DEM may also affect the location of extracted knickpoints and knickzones. We conducted a sensitivity

analysis on raster resolution by resampling the original 1 m lidar-derived DEM into coarser grids to represent common available25

resolutions of 5 m (e.g., NED or NetMap), 10 m (e.g., NED or TanDEMX) and 30 m (ASTER or SRTM). Our results (see

Supplementary Materials 4.7) show a decreasing number of detected knickpoints at coarser grid resolutions. This is directly

linked to the amount of nodes in each river profile: as the resolution decreases, the number of nodes per river also decreases,

meaning that less segments are used to extract ksn . Therefore, less knickpoints are detected as knickpoints tend to be located

near the segment boundaries. Furthermore, with lower resolution grids the knickpoints that are detected tend to represent30

larger-scale variations in the channel profile. Vertical-step knickpoints also tend to be identified as steepened reaches rather

than purely vertical regions of the channel profile, as the grid resolution prohibits identification of small waterfalls. In order to

show an overview of the algorithm performance in different field sites and DEM datasets, we extracted knickpoints from an

additional test site using a 30 m DEM derived from SRTM (Supplementary Materials, Figure S21).
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5 Discussion

5.1 Selecting parameter values

Ideally our method for knickpoint detection could proceed without any human supervision. Due the the method’s sensitivity

to grid resolution, roughness, as well as the intrinsically heterogeneous nature of landscapes, the method does however retain

some user-defined parameters. The sensitivity analysis performed on the Santa Cruz Island data (Section 4.3) indicates which5

of these must be selected with care.

We found that changing the concavity index does not change the location of the knickpoints substantially, but it does control

their relative magnitude (Section 4.3), and therefore if the user is interested in knickpoint magnitude than θ should be selected

carefully (e.g., Mudd et al., 2018). Parameters linked to segmenting the χ–elevation profiles (Mudd et al., 2014) that affect

results are the ntg and nsk parameters (Section 4.3). Increasing both of these increases the length of the segments, where10

setting these parameters to smaller values result in a large number of detected changes in ksn which must thereafter be thinned.

The one potential advantage of smaller segments is that more vertical-step knickpoints can be detected (i.e., waterfalls). Smaller

segments also affect the relative values of knickpoint magnitude because short, steep reaches can be extracted and will generate

high magnitude ∆ksn knickpoints. If high values for the ntg and nsk parameters are used, the resulting knickpoint dataset will

be sparser but will not necessarily detect local changes of ksn due to local layers of hard rock layer or a change in erosion15

process, for example. Larger segments are also less sensitive to topographic noise. After running sensitivity analyses, we

recommend default parameters of ntg = 80 and nsk = 1.

Once segmentation is performed, we use the TVD routines to isolate changes in ksn , which require an additional parameter

(λ) to control the degree of denoising (equation 7). As the relative magnitude of ksn is controlled by the θ value, we also

determine the λ value for each value of θ that best isolates changes in ksn based on our sensitivity analysis (Section 4.3).20

However, some landscapes that are either very gentle or steep may require changes to the λ value: low-relief landscapes may

require a smaller λ value whereas the opposite is true for steep landscapes. The user can check the efficacy of the selected λ

value by plotting ksn and denoised ksn against χ or the flow distance. Guidance on selection of λ is described in greater detail

in Supplementary Materials Section 4.1.

We also explored the possibility of using the TVD routine to denoise the river profile before extracting knickpoints in order25

to avoid dependency on the θ parameter. We applied the denoising routine on ∆elevation in order to reduce the amount of

variation. The intensity λ of denoising has to be manually selected and controls the amount of change from original data.

Results from these tests are available in the Supplementary Materials (Figures S18-S20). We found that additional denoising

is still required during the Monte Carlo segment determination of Mudd et al. (2014). We suggest that prior smoothing of river

profiles needs to be carefully considered, as it unavoidably leads to some modification of the existing profile. Users of our30

software may, if they wish, apply a technique for denoising river profiles prior to applying our method (e.g. Schwanghart and

Scherler, 2017).

The width of the combining window can also be an important factor. As explained in Section 2, segment boundaries can

still be fuzzy after the denoising process, generating successions of low-magnitude slope-break knickpoints. The combining
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window solves this issue by merging adjacent knickpoints within a certain radius. However, underestimating rcomb could result

in retaining some of these low-magnitude knickpoints. Overestimating its size would possibly result in shifted knickpoint

locations and misrepresentation of their magnitude if unrelated knickpoints are merged. In the case where the DEM resolution

is high enough to represent a close succession of knickpoints, we recommend carefully choosing a combining window smaller

than the spacing between these features in order to avoid merging them.5

Vertical-step knickpoint detection is controlled by two parameters: the window radius (rW ) and the standard deviation

threshold for detecting anomalies (Tσ). Section 4.3 details the combined sensitivity analysis on these parameters and allows

us to determine a set of values suitable for this analysis. However, if the user’s specific aim to detect vertical-step knickpoints

(assuming that the DEM precision allows it), we recommend that users precisely constrain the standard deviation coefficient,

the window size and the segment size, in order to make sure that vertical-step knickpoints are extracted rather than slope-break.10

Although parameters in the method may be tuned and therefore the method can be supervised, it is reproducible. Workers

using the method can report on the parameter values used and others can use these to reproduce the original results. One ad-

vantage of these adjustable parameters is that users can visually inspect outputs and change parameters such that the algorithm

selects “obvious” knickpoints. However, we emphasize that this is not hand picking of knickpoints: the algorithm output is a

dense dataset of knickpoints. While sorting the dataset, once a threshold or statistical criteria is selected, all knickpoints and15

knickzones matching the selection are chosen. This means that one cannot eliminate knickpoints that qualitatively appear to

be in the “wrong” place. As highlighted in Figure 7, human selected knickpoints and knickzones frequently produce biased

knickpoint datasets that both include and exclude knickpoints and knickzones that have the same magnitude. We note that

because the segmentation algorithm uses a Monte Carlo sampling routine (Mudd et al., 2014) there may be minor differences

in results between two users, but by using a reasonable nMC (>50) the results from one run to the next are nearly identical.20

5.2 Quantification and selection of knickpoints

The aim of extracting knickpoints is mainly to link knickpoint location and magnitude to a specific event resulting in landscape

transience (e.g., Crosby and Whipple, 2006). Therefore, an important step is to isolate the most significant knickpoint features

from the dense raw dataset in order to interpret landscape evolution, which can be done using knickpoint magnitude. Knickpoint

magnitude may be affected by the calculation of ksn using the gradient of segments in χ–elevation space. Depending on the25

relief, and particularly with a high value of θ, the absolute values of χ coordinates and associated elevation can differ by an

order of magnitude. If the values of χ are low compared to the values for elevation, any changes in elevation at a knickpoint

will result in a much higher segment gradient than if the χ values are of a similar magnitude as the elevation. This can result in

the exaggeration of knickpoint magnitude in high relief landscapes, for example, where it is more likely that χ values will be

lower than the elevation values and eventually results in a bias during the sorting. We therefore suggest that, in such cases, A030

from equation 3 should be set such that the value of the χ coordinate is the same order of magnitude as the elevation. However,

if A0 6= 1, then the gradient of the segment corresponds to Mχ in equation 6, rather than to ksn . We wish to emphasise that

this does not change the relative ordering between knickpoints. We illustrate this relationship by running a simple sensitivity

analysis on the Santa Cruz Island dataset, with a range of A0 varying from 1 to 500 (Figure 10). This sensitivity analysis shows
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that, as A0 is increased, the extreme values of ∆ksn within the dataset are reduced, so that the effect of low absolute χ values

on the gradient calculation is diminished. As for θ (see section 4.3), knickpoint absolute magnitude (i.e., the direct value of

∆ksn and ∆zseg) cannot be compared if calculated with different A0 from equation 3. However the location of the isolated

main knickpoints can still be compared.

Our sensitivity analyses suggest that two different approaches may be used to select knickpoints. The first of these is that5

a single θ and A0 can be fixed for an entire landscape: the knickpoint magnitudes can directly be used to isolate the main

knickpoint locations and relative importance. However, this approach may lead to some errors due to inevitable landscape

heterogeneity over larger scales. The second approach is to calculate θ and A0 values separately for individual basins, which

allows knickpoints to be extracted with greater precision than if a single value is set for the entire landscape. However, this

approach means that the knickpoint extraction has to be processed independently for each catchment, and only the location10

(e.g., latitude, longitude, elevation) are comparable between different catchments. Which approach is taken is dependent on the

aims of each particular study, and should be carefully considered on a case-by-case basis.

5.3 Knickpoint and knickzone morphology

Along with the calculation of knickpoint magnitude, our algorithm allows the characterisation of knickpoint morphology. We

can identify different knickpoint or knickzone types by i) identifying locations where ksn increases downstream (positive slope15

break knickpoints); or ii) identifying locations where ksn decreases (negative slope break knickpoints); and iii) identifying

locations where a sudden change in elevation occurs (vertical step knickpoints). This approach is suitable to identify the most

common morphologies described in the literature (e.g Haviv et al., 2010; Kirby and Whipple, 2012). However, we wish to

emphasise that this algorithm can also be used to focus on one particular knickpoint morphology. For example, the classical

convex-upwards knickpoint expression (e.g., Knopf, 1924) can be isolated by only displaying the knickpoints with a drop of20

∆ksn (Figure 11b). In order to examine steepened reaches or knickzones, we can also isolate locations where ∆ksn increases.

Finally, waterfall detection can be achieved, if the resolution of the DEM allows it, by focusing on locations with a jump in

zseg . We provide all these different knickpoint types for the Smugglers Catchment in the Supplementary Materials (Figure

S12).

5.4 Comparison with other knickpoint extraction techniques25

For each of our two study sites, we have presented performance metrics of our method compared to knickpoints selected by

humans. We find that our method has a high sensitivity, meaning that nearly all human-identified knickpoints were selected by

the algorithm, but a lower reliability. This suggests that our algorithm also identifies many changes in channel steepness which

are not selected as knickpoints through field mapping techniques. This raises the question of whether algorithmic selection of

knickpoints is more or less trustworthy than those selected by humans.30

Knickpoints identified for geomorphic studies should be reproducible, in that two workers should be able to select the same

locations and magnitudes from the same river profile. This is challenging when mapping features in the field, as different

workers may have different criteria for what constitutes a knickpoint. Furthermore, knickpoint selection should be objective:
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the same morphological criteria should be used to identify all features in the dataset. A common problem with field mapping by

humans is that some specific features are picked in order to interpret a signal, whereas others with a similar morphology may

be omitted. Our approach allows the production of an objective dataset of knickpoint locations and magnitudes that can be later

correlated by the user with process-based interpretations. Algorithmic extraction also allows coverage of much larger areas

compared to field mapping, that can later be calibrated with additional data (e.g., Crosby and Whipple, 2006). As illustrated by5

our accuracy metrics, our algorithm produces dataset significantly denser than hand picked knickpoints. However it is possible

to thin the number of knickpoints by applying thresholds metric values selected based on statistical criteria, and making the

number of identified features similar to human-picked datasets. Such a process is objective in the sense that no hand selection

is involved: only the morphology drives the thinning.

To provide a full assessment of our methods, we compare its output to the one generated two other algorithms as explained10

in section 1.1.3: TopoToolbox (Schwanghart and Scherler, 2014); and KZ-picker (Neely et al., 2017). Figure 11a expresses

the differences between KZ-picker and our algorithm for a single channel, where KZ-picker identifies the main knickzone (in

red) and quantifies its magnitude by the difference in elevation between the toe and lip of the knickzone. The purpose of the

KZ-picker is to find broad zones of steepened channels and is less granular than our method (e.g., Section 4.1). It is also not

constructed to identify discrete vertical-step knickpoints. Because the raw output from our algorithm is however denser than15

the KZ-picker, main knickpoints from our algorithm require more sorting based on their magnitudes which results in extra

steps to explore the data.

Figure 11b provides a basin-wide comparison of our outputs with those from TopoToolbox (Schwanghart and Scherler,

2014), with a tolerance parameter of the TopoToolbox method fixed to 5. In order to ensure that the comparison is valid we

only compare it to our negative ∆ksn knickpoints, which should quantify similar features. The TopoToolbox method effectively20

identifies the main knickpoints expressed by the difference to an idealised profile that is concave-up. However, reducing the

tolerance parameter increases the number of knickpoints detected (e.g., 10: 12 knickpoints, 5: 44 knickpoints, 1: 343 and 0.1:

2234) meaning that the TopoToolbox method can result in a network of knickpoints that has a similar density to our method.

However the TopoToolbox method relies on profiles in elevation plotted against flow distance and so further processing is

required to analyse changes in channel steepness using this method. Because selection of knickpoints in this method is not25

normalised for drainage area, the largest knickpoints selected may not correspond to the largest changes in channel steepness.

However it has fewer parameters and is more computationally efficient than our method.

While the KZ-picker and the TopoToolbox methods are well adapted for identifying specific types of knickpoint, neither

allows the separate identification and quantification of positive slope-break, negative slope-break, and vertical-step knickpoints.

Each method produces slightly different data products that can be used to interpret different components of the channel network,30

making these methods complementary.

Finally, we chose to build our change point detection method using the TVD routine (Condat, 2013). However, as explained

in Section 2, alternative methods could be used. The algorithm therefore provides the raw data before the TVD routine, meaning

that this data can be ingested by other change point detection techniques, e.g., the methods reviewed in Truong et al. (2018)

and its associated open-source code.35
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6 Conclusions

We have developed a new method for extracting knickpoints and knickzones from topographic data. Our method extracts slope-

break knickpoint locations using changes in channel steepness ksn , calculated by combining a statistical method for segmenting

channels into reaches of different channel steepness (Mudd et al., 2014) and a recently introduced denoising technique (Condat,

2013). The method also identifies vertical-step knickpoints by searching for breaks in elevation between channel segments of5

similar channel steepness. Our algorithms provide a dense dataset of objectively extracted knickpoint locations, along with the

relative magnitude of each knickpoint defined by either the change in channel steepness (for slope-break knickpoints) or the

jump in elevation (for vertical-step knickpoints) to quantify knickpoints morphologies.

We tested our algorithm on two datasets where knickpoints were independently field mapped, and found that our method

successfully extracted the human-identified knickpoints in the vast majority of cases. In general the method identifies more10

knickpoints compared to field mapping, as illustrated by our accuracy metrics, especially in the case of knickzones where

one broad steepened reach may result in multiple discrete segments in χ-elevation space. We provide tools for sorting and

thinning the dense dataset in order to isolate the most significant breaks in the channel profile without involving any human-

based selection. Resulting knickpoints can be compared with lithological, climatic, or tectonic datasets. Our method therefore

provides an objective, systematic and reproducible technique for quantifying knickpoints and knickzones, which can then be15

used to inform process-based interpretations of landscape evolution.

Code and data availability. Code used for analysis is located in the LSDTopoTools github repository: https://github.com/LSDtopotools/

LSDTopoTools_ChiMudd2014, and scripts for visualising the results can be found at https://github.com/LSDtopotools/LSDMappingTools.

We have also provided documentation detailing how to install and run the software which can be found at https://lsdtopotools.github.io/

LSDTT_documentation. As part of the supplementary information we have also provided example parameter files which can be used to20

reproduce the results of all analyses performed in this study.
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Figure 1. Different methods to detect knickpoints. (a) Cartoon showing how vertical-step and slope-break knickpoints appear in slope–

area plots, adapted from Kirby and Whipple (2012). (b) A slope–area plot derived from SRTM 30 metres resolution data in Romania; the

catchment’s outlet coordinates are 45.252842, 26.375697 (WGS84). Different colours represent different tributaries, small ‘+‘ symbols are

individual data points and circles are logarithmically binned data. A single slope-break knickpoint can be interpreted but minor knickpoints

are more difficult to extract. (c) The same basin represented in a χ–elevation plot, using θ = 0.15.
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Figure 2. Flowchart of the knickpoint detection algorithm.
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Figure 3. Extraction of normalised channel steepness (ksn ) from a river profile. (a) Example of best-fit segmentation (Mudd et al., 2014)

where ‘+‘ symbols are individual data points and the coloured lines are the segments. (b) The associated plot of ksn plotted as a function of

χ coordinate. The segmentation output results in some noise due to iterative sampling of the channel network (‘+‘ symbols). Total Variation

Denoising filter (Condat, 2013) is then applied on the signal to extract the main variations in ksn .
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Figure 4. Knickpoint extraction from the denoised ksn profiles. (a) The first step extracts all variations of ksn , quantifying each with ∆ksn ,

which we call the “raw” knickpoint dataset. Negative and positive changes represents decreases or increases of ksn , respectively. (b) After

detection of changes in ksn , knickpoints are combined. All knickpoints within a node window will be combined, summing their values (i.e.,

a sum of ∆ksn . This process is repeated as long as the subsequent raw knickpoint is within a node window and as long as the polarity (i.e.,

if it is negative or positive) does not change.
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Figure 5. Extraction of knickpoints from the segmented elevation (equation 5). (a) Expression of a vertical-step knickpoint in a χ− zseg

profile compared to a slope-break knickpoint. (b) Representation of the windowed statistical approach for a single
✿✿✿✿✿✿✿✿✿

identification
✿✿✿✿✿✿✿

window

✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿✿✿

standard
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deviation
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around
✿✿

the
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reference node (in red). µ is the mean and Tσ the coefficient applied to the standard

deviation. This process is repeated for each node, and .
✿✿✿✿✿✿✿✿

Reference
✿

nodes outside their own window are considered to be outliers.
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Figure 6. The test location on Santa Cruz Island, CA, USA. (a) Map of channel network extracted with the Pelletier method (Pelletier, 2013),

and is coloured by ksn value calculated with Mudd et al. (2014). (b) Extracted knickpoints plotted after thinning the dataset as described

in Section 4.1. The purple and green circles respectively represent the calibration knickzones’ bases and lips with the 50m radius used for

assessing algorithm performances. Stars and associated numbers are source numbers, which can be compared to Figure 7. Topographic data

is 1 meter precision lidar DEM (see Supplementary Materials 1 for metadata), reprojected in WGS84 UTM zone 11N.
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Figure 7. Knickpoints extraction for Santa Cruz Island, CA, USA shown for the channel long profiles. These are the same knickpoints

depicted in Figure 6b. The stars and associated numbers correspond to the source numbers, and green and mauve circles correspond to the

lips and bases of mapped knickpoints from Neely et al. (2017).
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Figure 8. Knickpoint extraction on the Ribeirão Caraça basin (Caraça Range, QF, Brazil). (A) Map of knickpoints extracted with the algo-

rithm after thinning the dataset as described in Section 4.2. Most of the calibration knickpoints are expressed by a succession of knickpoints

detailing along-channel increases/decreases in ksn . Streams depicted in B are shown as thick blue lines. (B) Longitudinal profile of the trunk

stream (the Ribeirão Caraça river) highlighting the performance of the algorithm in picking along-channel breaks in steepness. (C) Example

of known waterfall (i.e., waterfall with a name) in the field; in this case, the Cascatinha waterfall. This waterfall features an elevation break

of 40 m. Other known waterfalls include the Cascatona, Bocaina, Brumadinho, and Quebra-ossos waterfalls.
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Figure 9. Sensitivity of the knickpoint extraction to the concavity index (θ). As different values of θ result in different values of ksn , we use

a normalised zscore (i.e. the difference to the mean normalised by the standard deviation) to compare the overall spread of ∆ksn . The plot

shows probability distributions of the zscore of ∆ksn represented by violin plots calculated with a Kernel Density Estimation (bandwith =

0.20). The outliers and their relative magnitudes are affected by this parameter, whereas the general data distribution remains similar. The

‘min’ and ‘max’ stated above and below the violin plots respectively represents the minimum and maximum ∆Mχ for each run.
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Figure 10. The effect of varying A0 on knickpoint extraction (equation 3). The reference area (A0) will affect knickpoint magnitude and

can be increased to reduce exaggerations in χ-elevation gradients. Changing A0 does not affect the relative order of knickpoints: the largest

knickpoints remains the largest for all values of A0. Increasing A0, however, reduces the spread in the zscore of the changes in channel

steepness. This value has to be set only if necessary (e.g., if the high-gradient effect is important): A0 6= 1 implies that the magnitude is not

∆ksn but ∆Mχ from equation 6. Moreover, overestimating A0 can mask knicpoints
✿✿✿✿✿✿✿✿✿

knickpoints that would be detected with A0 = 1 m2.

The ‘min’ and ‘max’ stated above and below the violin plots represent the minimum and maximum ∆Mχ for each run.
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Figure 11. Comparison of results on the Smugglers catchment from our algorithm and the most recent similar ones. (a) Results for a single

source from KZPicker (Neely et al., 2017) and our results. The results from Neely et al. (2017) are directly taken from their study to ensure

objectivity. Only the slope-break knickpoints are displayed to make the comparison valid. (b) Basin-wide comparison between our algorithm

outputs and the one recently implemented in Schwanghart and Scherler (2014) using tolerance = 5. We only display the knickpoints showing

a decrease of ksn , in order to provide a relevant comparison with the knickpoints morphology detected by Schwanghart and Scherler (2014).

Differences in channel length are due to different methods for extracting channel heads between the two techniques.
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Table 1. Parameter values used for the two field sites. Differences in parameter values between the two sites is due to differing DEM

resolution (1 metre for Santa Cruz Island, and 12 metres for the Ribeirão Caraça). Sensitivity to these parameters is described in Section 4.3.

Note that although the parameter values have been carefully optimized for knicpoint
✿✿✿✿✿✿✿

knickpoint
✿

analysis, we suggest the below values as

defaults for each of these two data resolutions in order to allow a rapid initial knickpoint extraction for other landscapes.

Parameter name Santa Cruz Island, USA Ribeirão Caraça, Brazil

ntg 30 50

nsk 1 1

nMC 100 100

λ 1.7 0.3

rcomb 10 30

Tσ 7 7

rW 120 100
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Table 2. Accuracy metrics for calibration site I (Smugglers Catchment, California, USA)

Source key TP FP FN Total detected

0 26 15 4 41

11 0 15 0 15

41 4 5 0 9

121 2 5 1 7

127 17 15 1 32

210 17 9 0 26

263 11 13 0 24

313 10 4 1 14

759 4 5 0 9

Total 91 81 7 177

s= 0.93, r = 0.53 and q = 0.51
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Table 3. Accuracy metrics for calibration site II (Ribeirão Caraça basin, Caraça Range, QF, Brazil)

Source key TP FP FN Total detected

0 17 13 2 32

1 6 5 1 12

5 9 1 0 10

22 4 2 0 6

37 3 2 1 6

56 4 2 1 8

88 9 7 1 17

114 5 2 1 9

139 8 5 0 14

151 4 4 1 10

252 6 8 0 15

Total 75 51 8 139

s= 0.89, r = 0.60 and q = 0.56
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