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Abstract. We formulate tracer particle transport and mixing in soils due to disturbance driven particle motions
in terms of the Fokker-Planck equation. The probabilistic basis of the formulation is suitable for rarefied particle
conditions, and for parsing the mixing behavior of extensive and intensive properties belonging to the particles
rather than to the bulk soil. The significance of the formulation is illustrated with the examples of vertical profiles
of expected Beryllium-10 (10Be) concentrations and optically stimulated luminescence (OSL) particle ages for
the benchmark situation involving a one-dimensional mean upward soil motion with nominally steady surface
erosion in the presence of either uniform or depth dependent particle mixing, and varying mixing intensity.
The analysis, together with Eulerian-Lagrangian numerical simulations of tracer particle motions, highlight the
significance of calculating ensemble expected values of extensive and intensive particle properties, including
higher moments of particle OSL ages, rather than assuming de facto a continuum-like mixing behavior. The
analysis and results offer guidance for field sampling and for describing the mixing behavior of other particle
and soil properties. Profiles of expected 10Be concentrations and OSL ages systematically vary with mixing
intensity as measured by a Péclet number involving the speed at which particles enter the soil, the soil thickness,
and the particle diffusivity. Profiles associated with uniform mixing versus a linear decrease in mixing with depth
are distinct for moderate mixing, but become similar with either weak mixing or strong mixing; uniform profiles
do not necessarily imply uniform mixing.

1 Introduction

Soils on Earth’s surface are granular materials consisting of
polymineralic clasts and individual mineral grains, organic
matter and live biota. These materials experience patchy,
intermittent mixing motions associated with disturbances5

due to bioturbation (Darwin, 1881; Shaler, 1891; Gabet,
2000; Reichman and Seabloom, 2002; Meysman et al., 2006;
Wilkinson et al., 2009; Covey et al., 2010; Astete et al.,
2015), the effects of frost and ice growth and thaw (Bran-
son, 1992; Matsuoka and Moriwaki, 1992; Auzet and Am-10

broise, 1996; Branson et al., 1996; Harris et al., 1997; Mat-

suoka, 1998; Anderson, 2002), and the swelling and shrink-
ing of certain minerals with wetting and drying (Eyles and
Ho, 1970; Fleming and Johnson, 1975). In addition, these
soil materials may undergo mixing motions in relation to the15

chronic creation and relaxation of disordered granular struc-
tures (Hsiau and Hunt, 1993; Utter and Behringer, 2004; Fan
et al., 2015) associated with granular creep (Houssais et al.,
2017; Ferdowsi et al., 2018).

Soil particle mixing is a key process in soil formation20

(Shaler, 1891; Birkeland, 1984; Wilkinson et al., 2009) and
in its associated ecological role of “modifying geochemi-
cal gradients, redistributing food resources, viruses, bacte-
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ria, ...and eggs” (Meysman et al., 2006), as well as being
responsible for redistributing substances, including contam-25

inants, attached to particles (Cousins et al., 1999; Covey et
al., 2010; Astete et al., 2015). Moreover, the idea of distur-
bance driven transport and mixing of soil particles is cen-
tral to current treatments of soil creep (Culling, 1963; Roer-
ing et al., 1999, 2002; Gabet, 2000; Anderson, 2002; Gabet 30

et al., 2003; Furbish, 2003; Roering, 2004; Furbish et al.,
2009, 2018a), the slow but steady bulk motion of soils on
hillslopes, where the influence of gravity gives a downslope
bias to particle motions. Because of the significance of soil
particle mixing in numerous problems spanning ecological 35

to geomorphic timescales, there is a continuing, compelling
need to fully clarify the kinematics, and eventually the me-
chanical basis, of soil particle motions during transport and
mixing (Furbish et al., 2009b, 2018a, 2018b; BenDror and
Goren, 2018; Ferdowsi et al., 2018). 40

Currently it is not possible to directly measure disturbance
driven particle motions and associated mixing in the setting
of a natural soil (although this is entirely possible in exper-
iments and numerical simulations of granular creep (Utter
and Behringer, 2004; Kamrin and Koval, 2012; Fan et al., 45

2015)). Moreover, we do not yet have a mechanical theory
to describe these motions given the complexity — notably
the biotic complexity — of phenomena involved in distur-
bances and associated particle displacements (Furbish et al.,
2009b, 2018a). Thus, as in studies of particle mixing asso- 50

ciated with marine bioturbation (Boudreau, 1986a, 1986b;
Boudreau and Imboden, 1987; Teal et al., 2008; Lecroart et
al., 2010), a key strategy to clarify the nature of particle mo-
tions and mixing in soils involves using tracer particles iden-
tified by specific physical or chemical properties. Two tracer 55

properties have emerged in the field of geomorphology as
being of particular interest: in situ cosmogenic radionuclide
(CRN) concentrations and optically stimulated luminescence
(OSL) particle ages (Granger and Riebe, 2014; Heimsath et
al., 2002; Johnson et al., 2014). Cosmogenic nuclides con-
tinually accumulate within minerals due to cosmic ray in-
teractions with mineral atom nuclei, for example, producing
10Be from spallation of oxygen nuclei. Using luminescence
systematics, the time elapsed since luminescence-sensitive5

particles were last exposed to light or heat at the soil sur-
face is estimated from the luminescence signal that accumu-
lates within the crystal lattice in response to a combination of
ionizing radiation emitted from the decay of radioactive ele-
ments in the surrounding soil and cosmic radiation (Rhodes,10

2011). Particles that accumulate CRN atoms or luminescence
signals during their complex motions within soils — thereby
serving as tracer particles — are naturally occurring (as op-
posed to being “seeded”) and therefore behave mechanically
the same as other soil particles. As a consequence, CRN and15

OSL tracer particles are particularly relevant in assessing par-
ticle mixing over timescales of soil formation and transport
in the context of landform and landscape evolution.

Building from the pioneering work of Lal (1991) concern-
ing the relation between rock erosion rates and the in situ20

production of cosmogenic radionuclides, vertical profiles of
CRN concentrations in soils and underlying saprolite are now
used to calculate soil production rates (e.g. Heimsath et al.,
1997, 2000, 2005, 2012; Small et al., 1999; Anderson, 2002;
Wilkinson et al., 2005) as well as to infer the intensity of25

soil particle mixing in the presence of mechanical and chem-
ical erosion (Small et al., 1999; Schaller et al., 2009; Granger
and Riebe, 2014; Furbish et al., 2018b). Similarly, profiles of
particle OSL ages are used to assess particle mixing (Heim-
sath et al., 2002; Wilkinson and Humphreys, 2005; John-30

son et al., 2014; Furbish et al., 2018b). Because profiles of
CRN concentrations and OSL ages inform descriptions of
soil transport and interpretations of the delivery of CRNs to
channels (Heimsath et al., 2002; Anderson, 2015; Furbish et
al., 2018b), and associated interpretations of erosion rates35

at catchment scales (e.g., Brown et al., 1995; Bierman and
Steig, 1996; Granger et al., 1996; Granger and Riebe, 2014;
Granger and Schaller, 2014; Lukens et al., 2016), there is
merit in further clarifying what these profiles reveal about
particle mixing in soils.40

It is now conventional to conceptualize certain soil parti-
cle mixing motions as a diffusion-like process (Furbish et al.,
2009b, 2018a, 2018b; Campforts et al., 2016), building from
the pioneering work of Culling (1963), who first pointed to
the idea that soil particles undergo Gaussian diffusion in re-45

sponse to small disturbances. Various studies have thus ap-
pealed to some form of a diffusion equation or an advection-
diffusion equation (Cousins et al., 1999; Covey et al., 2010;
Stang et al., 2012; Johnson et al., 2014; Furbish et al., 2009b,
2018a, 2018b; Astete et al., 2015; Campforts et al., 2016;50

Gray, 2018) to describe transport and mixing for comparison
with measured vertical profiles of tracer particles in soils, no-
tably including in situ CRN concentrations and particle OSL
ages. But herein arises a need for caution, and clarity.

As described in Section 2, natural tracer particles — quartz 55

particles in particular — occur under rarefied conditions,
where it is unclear that a description of particle mixing based
on a diffusion or advection-diffusion equation formulated for
continuum conditions is satisfactory. Moreover, we often are
interested in the transport of quantities that are associated 60

with the particles, and are not in themselves subject to ad-
vection and diffusion as normally envisioned to occur in a
continuum. This includes particle CRN concentrations and
OSL ages. Rather, such quantities might experience advec-
tion and diffusion, but only indirectly via the motions of the 65

particles with which the quantities are associated. Within this
context, our objectives in this mostly theoretical contribution
are five.

First, we illustrate why quartz tracer particles in soils expe-
rience transport and mixing under rarefied (non-continuum) 70

conditions, and why it therefore becomes important to treat
transport and mixing probabilistically, in a manner that for-
mally appeals to the statistical mechanics idea of ensemble



Furbish et al.: Tracer particle transport and mixing 3

expected (average) quantities. Our focus on quartz particles
is purposeful, as these are ideal targets for in situ production 75

of 10Be atoms, and for accumulating OSL signals. Second,
we illustrate how the probabilistic basis of the Fokker-Planck
equation, versus an “ordinary” continuum-like advection-
diffusion equation, is well suited to the problem of rarefied
conditions. Third, because extensive and intensive properties 80

such as particle volume, 10Be concentration and OSL age
“belong” to individual particles, not to the bulk soil, we illus-
trate why the probabilistic basis of the Fokker-Planck equa-
tion is suitable for parsing the mixing behavior of these prop-
erties — as opposed to assuming de facto a continuum-like 85

mixing behavior in which these properties are assigned to
the bulk soil. Fourth, we provide complementary numerical
analyses that reveal important information not readily appar-
ent in the analytical formulations, including an illustration of
the variability in 10Be concentrations and OSL ages of in- 90

dividual particles in soils, with implications for interpreting
field-based measurements. This part of the paper highlights a
benchmark situation involving a one-dimensional mean up-
ward soil motion with nominally steady surface erosion in
the presence of either uniform or depth dependent particle 95

mixing, and varying mixing intensity. Fifth, we use the re-
sults for this benchmark case in relation to published field-
based measurements to suggest constraints on assessing the
intensity and depth dependence of mixing.

Note that in the formulations presented below, we use full 100

functional notation throughout. This provides clarity in how
random variables, parameters, and moments of random vari-
ables depend on position and time, as well as how random
variables might covary.

2 Rarefied versus continuum particle conditions in
soils

Quartz particles targeted in sampling for 10Be analysis typi-
cally are within the range of 0.25 – 0.50 mm; but sometimes
grains as small as 0.125 mm and as large as 0.85 mm or 15

mm are sampled from quartz-poor source materials (Gosse
and Phillips, 2001; Morgan et al., 2011; Shakun et al., 2018).
Quartz particles targeted for single-grain OSL analysis typi-
cally are within the range of 0.35 – 0.425 mm (e.g., Heimsath
et al., 2002; Johnson et al., 2014), but smaller grains some-10

times are used. Thus, neglecting aeolian inputs, target grains
represent a subset of the total population of quartz grain sizes
in soils released from parent bedrock during soil formation.
In the following discussion we consider for illustration a sin-
gle particle size, with recognition that the ideas extend to15

other particles.
Consider a soil element with dimensions XY h, where

X = Y = h= 1 m, residing on a soil-mantled hillslope (Fig-
ure 1). If in the ideal this element contains uniform parti-
cles of diameter d= 1 mm that are approximately closely20

packed, then the total number of particles in the soil element

Figure 1. Definition diagram of soil-mantled hillslope with me-
chanically active soil thickness h= ζ − η, and cutout soil ele-
ment with dimensionsXY h. Bedrock material is continually trans-
formed into soil by chemical and mechanical processes, and soil
particles are transported downslope by creep or surface erosion.

is O(109). Each cubic centimeter contains O(103) particles.
The average spacing is approximately equal to one particle
diameter, and the geometrical mean free path λ (Furbish et
al., 2009b) is a fraction of the particle diameter. For com-25

parison, the number of molecules in a cubic centimeter of
air, a continuum material at ordinary pressure-temperature
conditions, is O(1019). The mean free path, which varies
inversely with the molecular collision frequency or num-
ber density, is O(10−7) m, approximately 103 larger than30

the effective molecular diameter. Assuming the continuum
hypothesis is satisfied for a value of the Knudsen number
Kn = λ/L≤ 0.01, then the averaging length scale L defin-
ing a continuum physical point for air is O(10−5) m, far
smaller than most scales of interest in treating particle trans- 35

port and mixing in air.
For a soil developed from granitic bedrock, 20% to 60%

of the volume of particles are quartz particles, some larger
than 1 mm in diameter and many smaller. Per unit volume,
the number of quartz particles targeted in sampling for 10Be 40

analysis thus is generally smaller than the close-packed value
of O(103) cm−3 estimated above, and the average spacing
may be on the order of millimeters to a centimeter or more.
For example, in practical terms, 10Be analysis requires about
10 g of quartz. Assuming 0.5 mm grains, this represents 45

∼60,000 grains. For soils formed on granitic bedrock, one
typically samples at least one liter of soil for 10 g of quartz.
This translates to n∼ 10 – 100 grains per cubic cm. The as-
sociated geometrical mean free path is about 1 – 10 cm, and
the average spacing λs ∼ (cm3/n)1/3 is 0.2 – 0.5 cm. Al- 50

though the behavior of tracer particles is unlike gas particle
kinetics, we nonetheless can use these quantities in analogy
with the mean free path. Conservatively using the average
spacing as a suitable measure of the particle number density,
then to satisfy the Knudsen condition of Kn ≤ 0.01 in order 55

to appeal to a continuum description of particle behavior, the
averaging length scale L may approach the soil thickness.
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This condition is exacerbated if the parent bedrock is quartz
poor. In addition, a small fraction — only a few percent — of
quartz particles initially released from bedrock are sensitive 60

to OSL and develop a less-than-saturated luminescence sig-
nal following exposure to sunlight or heat at the soil surface.
Thus, tracer particles identified as those possessing a finite
OSL age (Heimsath et al., 2002; Johnson et al., 2014) may
be highly rarefied. 65

We therefore must admit at the outset that the number
concentration of target quartz particles does not necessar-
ily satisfy the continuum hypothesis. Nonetheless, we wish
to use continuum-like formulations of transport and mixing
of particle concentrations and associated quantities, that is, 70

where particle concentrations, 10Be concentrations and par-
ticle OSL ages may be viewed as continuously differentiable
functions of position and time. In order to justifiably do this,
we therefore appeal to the idea of an ensemble of particle
configurations, a statistical mechanics idea designed to treat 75

rarefied particle conditions.
For an element of soil with dimensions XY h (Figure 1),

let fz(z, t) denote the probability density function of particle
positions z within the element. Thus, fz(z, t)dz represents
the probability that a particle is located within the small inter- 80

val z to z+dz at time t. This represents an ensemble expected
value, as follows. We envision, as did Gibbs (1902), a great
number (an ensemble) of nominally identical but indepen-
dent systems, each containing a large number N of particles
and behaving in a statistically similar manner with respect 85

to transport and mixing. The expected number of particles
within the interval z to z+ dz in any system (realization) at
time t may vary from one system to another. However, we
then imagine taking the expected value over the ensemble
(Kittel, 1958), akin to ensemble Reynolds averaging (Monin
and Yaglom, 1971). This represents the expected number of
particles within dz, namely,Nfz(z, t)dz, where fz(z, t) now
is interpreted as the ensemble expected density. Moreover,
we may assume that fz(z, t) is a smooth, continuous func-5

tion. Further details regarding rarefied versus continuum con-
ditions and ensemble averaging are provided in Appendix A.

In the developments below, we also consider joint prob-
ability density functions, for example, the joint density
fVp,np,z(Vp,np,z, t) of individual particle volumes Vp, 10Be10

atom number concentrations np and positions z. We similarly
assume that these represent ensemble expected densities with
respect to z. In principle, therefore, we are considering the
expected concentration of particles and associated properties
within any small interval z to z+ dz in a soil element with15

dimensions XY h (Figure 1), where averaging is over an en-
semble of nominally identical but independent systems. In
practical terms, one hopes to sample over an area XY such
that the number of particles within any small interval z to
z+ dz is sufficiently large to provide reasonable estimates20

of ensemble averaged values, where these estimates vary ap-
proximately smoothly over z and average over the effects of

patchy, intermittent particle motions. However, this cannot
be known a priori, a point to which we return below.

3 Formulation25

3.1 Tracer Particles

Consider a set of tracer particles that are undergoing trans-
port and mixing within a soil. Here we initially restrict this
set to chemically resistant quartz particles. Nonetheless, this
set could consist of particles defined by other mineralogies;30

or it could be defined as the subset of quartz particles of a
given size that possess a specified 10Be concentration or fi-
nite OSL age. For simplicity, and in anticipation of further
analyses below, we focus on one-dimensional motions paral-
lel to the z axis.35

As above, let fz(z, t) denote the probability density func-
tion of tracer particle positions z. Following Furbish et al.
(2009b, 2018a, 2018b), this density satisfies a Fokker-Planck
equation of the form

∂fz(z, t)

∂t
40

=− ∂

∂z

[
wp(z, t)fz(z, t)−κz(z, t)

∂fz(z, t)

∂z

]
, (1)

wherewp(z, t) denotes the ensemble averaged particle veloc-
ity (sometimes referred to as the “drift speed”) and κz(z, t)
denotes the ensemble averaged particle diffusivity. Specifi-45

cally, let r = z(t+ dt)− z(t) denote a particle displacement
during the small interval of time dt. Then let fr(r;z, t) de-
note the probability density function of displacements r. The
particle velocity wp(z, t) is then defined kinematically as

wp(z, t) = lim
dt→0

a(z, t)

dt

∞∫
−∞

rfr(r;z, t)dr , (2) 50

and the particle diffusivity κz(z, t) is defined as

κz(z, t) = lim
dt→0

a(z, t)

2dt

∞∫
−∞

r2fr(r;z, t)dr , (3)

where a(z, t) denotes the particle activity probability, effec-
tively the proportion of time that particles are in motion (Fur-
bish et al., 2009a, 2009b, 2016, 2018a). 55

This formulation assumes Gaussian diffusion of particles.
Interestingly, Culling (1963) first pointed to the idea that
soil particles undergo Gaussian diffusion in association with
particle concentration gradients, in response to small distur-
bances. Culling developed his ideas from kinetic theory and 60

statistical mechanics, borrowing the description of Brown-
ian motion due to Einstein (1905) and the formulation of a
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particle diffusion-like equation due to Chandrasekhar (1943),
both of which start from the Master equation (Risken, 1984;
Ebeling and Sokolov, 2005; Furbish et al 2009a, 2009b). 65

Culling’s formulation has for decades provided the inspira-
tion for conceptualizing what now are referred to as “distur-
bance driven” particle motions associated with bioturbation,
freeze-thaw cycles, etc. (Darwin, 1881; Shaler, 1891; Eyles
and Ho, 1970; Fleming and Johnson, 1975; Matsuoka and 70

Moriwaki, 1992; Auzet and Ambroise, 1996; Harris et al.,
1997; Matsuoka, 1998; Gabet, 2000; Anderson, 2002; Re-
ichman and Seabloom, 2002; Meysman et al., 2006; Wilkin-
son et al., 2009; Covey et al., 2010; Astete et al., 2015),
and numerous authors have applied some form of a diffusion 75

equation to describe transport and mixing of soil particles
(Cousins et al., 1999; Furbish et al., 2009b, 2018a, 2018b;
Covey et al., 2010; Johnson et al., 2014; Astete et al., 2015;
Campforts et al., 2016; Gray, 2018).

We emphasize that Eq. (1) is basically an advection- 80

diffusion equation. As written, it is purely kinematic, as noth-
ing is specified mechanically about the velocity wp(z, t) or
the diffusivity κz(z, t). In this view, the ideas of particle
advection and diffusion are purely probabilistic constructs
based on the first and second moments of the particle dis- 85

placements r (Furbish et al., 2016, 2018a), as in Eq. (2)
and Eq. (3). As a description of the time evolution of the
probability density fz(z, t) of particle positions z, advection
and diffusion in Eq. (1) refer to fluxes of probability. This
means that, for a great number of particles within the soil 90

element XY h, each particle “carries” a small, finite amount
of probability with it as it moves over z. Moreover, despite
the fact that Eq. (1) has the continuous form of a contin-
uum advection-diffusion equation, Eq. (1) does not neces-
sarily imply a continuum behavior. Only if conditions sat- 95

isfy the continuum hypothesis can Eq. (1) be reinterpreted
as an ordinary advection-diffusion equation describing trans-
port and mixing in an individual (continuum) realization. For
rarefied conditions, however, Eq. (1) represents the ensemble
expected behavior, not necessarily what happens in an in-
dividual realization (Appendix A). We elaborate this point5

below in relation to expected particle positions z, 10Be con-
centrations and OSL ages.

We reemphasize a point made above, that currently it is
not possible to directly measure particle displacements r
and the associated probability density fr(r;z, t) in the set-10

ting of a natural soil. Nor is it possible to directly calcu-
late the activity probability a(z, t). Thus, in the absence of a
mechanical theory to describe these displacements, indirect
measures of particle mixing behavior as reflected by profiles
of 10Be concentrations and particle OSL ages are particu-15

larly valuable. Namely, any kinematic formulation of parti-
cle motions and mixing, specifically the underlying assump-
tions of the formulation, must be judged by its consistency
with these profiles. In this vein, assuming Gaussian mix-
ing is parsimonious, as an initial step, and in the absence of20

evidence of non-Gaussian behavior (Furbish et al., 2018a).

This is essentially the same strategy adopted in early statisti-
cal mechanics, that the veracity of the fundamental assump-
tion of equally probable microstates (Gibbs, 1902) only can
be “tested” against experimental outcomes (Tolman, 1938).25

Moreover, we suggest that a Gaussian formulation of mixing
possesses the right granularity to accommodate uncertainty
that goes with field sampling of soils. That is, this formu-
lation captures the essence of particle mixing behavior that
can be tested within the current capabilities of field-based30

sampling and measurements of 10Be concentrations and OSL
ages.

3.2 Expected 10Be concentrations

3.2.1 Conservation of 10Be atoms

Let fVp,np,z(Vp,np,z, t) denote the joint probability density35

function of particle volumes Vp, 10Be atom number con-
centrations np and positions z. For particles with a given
volume Vp and concentration np, and momentarily neglect-
ing the production and decay of 10Be atoms, the density
fVp,np,z(Vp,np,z, t) satisfies a Fokker-Planck equation of40

the form

∂fVp,np,z(Vp,np,z, t)

∂t

=− ∂

∂z

[
wp(z, t)fVp,np,x(Vp,np,x, t)

45

−κz(z, t)
∂fVp,np,z(Vp,np,z, t)

∂z

]
. (4)

We now define a conditional joint probability density func-
tion of volumes Vp and concentrations np, namely,

fVp,np|z(Vp,np|z, t) =
fVp,np,z(Vp,np,z, t)

fz(z, t)
. (5)

Multiplying both sides of Eq. (5) by the product Vpnp, rear- 50

ranging, and integrating with respect to Vp and np,

fz(z, t)

∞∫
0

∞∫
0

VpnpfVp,np|z(Vp,np|z, t)dnpdVp

=

∞∫
0

∞∫
0

VpnpfVp,np,z,t(Vp,np,z, t)dnpdVp . (6)

Note that the product Vpnp is equal to the number of 10Be 55

atoms within a particle of volume Vp.
The double integral on the left side of Eq. (6) defines the

expected value of the product Vpnp, that is, Vpnp(z, t). Thus,

fz(z, t)Vpnp(z, t)



6 Furbish et al.: Tracer particle transport and mixing

60

=

∞∫
0

∞∫
0

VpnpfVp,np,z,t(Vp,np,z, t)dnpdVp . (7)

If, however, Vp and np are independent, then Vpnp(z, t) =
V p(z, t)np(z, t). More formally, if the particles are small
and within a limited size range, we may assume that Vp
and np are independent. In this case, fVp,np|z(Vp,np|z, t) = 65

fVp|z(Vp|z, t)fnp|z(np|z, t), and we rewrite Eq. (6) as

fz(z, t)

∞∫
0

VpfVp|z(Vp|z, t)dVp

∞∫
0

npfnp|z(np|z, t)dnp

=

∞∫
0

∞∫
0

VpnpfVp,np,z,t(Vp,np,z, t)dnpdVp . (8)

Evaluating the integrals on the left side of Eq. (8) then yields 70

fz(z, t)V p(z, t)np(z, t)

=

∞∫
0

∞∫
0

VpnpfVp,np,z,t(Vp,np,z, t)dnpdVp . (9)

where V p(z, t) is the expected (average) particle volume and
np(z, t) is the expected particle 10Be concentration. We use 75

these results momentarily.
We now multiply Eq. (4) by the product Vpnp and integrate

with respect to Vp and np, namely,

∞∫
0

∞∫
0

Vpnp
∂fVp,np,z(Vp,np,z, t)

∂t
dnpdVp

=−
∞∫
0

∞∫
0

Vpnp
∂

∂z

[
wp(z, t)fVp,np,z(Vp,np,z, t)5

−κz(z, t)
∂fVp,np,z(Vp,np,z, t)

∂z

]
dnpdVp . (10)

Noting that the random variables Vp and np are not functions
of time t or position z, and using Leibniz’s rule, Eq. (10) may
be written as10

∂

∂t

 ∞∫
0

∞∫
0

VpnpfVp,np,z(Vp,np,z, t)dnpdVp



=− ∂

∂z

wp(z, t) ∞∫
0

∞∫
0

VpnpfVp,np,z(Vp,np,z, t)dnpdVp



+
∂

∂z

(
κz(z, t)15

· ∂
∂z

 ∞∫
0

∞∫
0

VpnpfVp,np,z,t(Vp,np,z, t)dnpdVp

) . (11)

Using Eq. (7), this becomes

∂

∂t

[
fz(z, t)Vpnp(z, t)

]
=− ∂

∂z

[
wp(z, t)fz(z, t)Vpnp(z, t)

]
20

+
∂

∂z

(
κz(z, t)

∂

∂z

[
fz(z, t)Vpnp(z, t)

])
, (12)

and using Eq. (9),

∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]
=− ∂

∂z

[
wp(z, t)fz(z, t)V p(z, t)np(z, t)

]
25

+
∂

∂z

(
κz(z, t)

∂

∂z

[
fz(z, t)V p(z, t)np(z, t)

])
. (13)

We now turn to the production and decay terms to be added
to Eq. (12) or Eq. (13).

3.2.2 Production and decay of 10Be atoms 30

In the absence of advection and diffusion, the joint prob-
ability density fVp,np,z(Vp,np,z, t) satisfies a statement of
conservation of probability having the form of an advection
equation with respect to the np domain, namely,

∂fVp,np,z(Vp,np,z, t)

∂t
35

=−P (z, t)
∂fVp,np,z(Vp,np,z, t)

∂np
, (14)

where the advective speed P (z, t) = dnp/dt is the rate of
production of 10Be atoms per unit particle volume. Multiply-
ing Eq. (14) by the product Vpnp and using the product rule 40

leads to

Vpnp
∂fVp,np,z(Vp,np,z, t)

∂t

=−P (z, t)Vpnp
∂fVp,np,z(Vp,np,z, t)

∂np
45

=−P (z, t)
∂

∂np

[
VpnpfVp,np,z(Vp,np,z, t)

]
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+P (z, t)VpfVp,np,z(Vp,np,z, t) . (15)

Because the product VpnpfVp,np,z(Vp,np,z, t) represents a
proportion of all 10Be atoms in the soil column, we may at 50

this point add the effect of radioactive decay, so that Eq. (15)
becomes

Vpnp
∂fVp,np,z(Vp,np,z, t)

∂t

=−P (z, t)
∂

∂np

[
VpnpfVp,np,z(Vp,np,z, t)

]
55

+P (z, t)VpfVp,np,z(Vp,np,z, t)

−λVpnpfVp,np,z(Vp,np,z, t) , (16)

where λ denotes the decay constant. 60

In turn, integrating Eq. (16) with respect to Vp and np, and
using Eq. (9),

∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]

=−P (z, t)

∞∫
0

∞∫
0

∂

∂np

[
VpnpfVp,np,z(Vp,np,z, t)

]
dnpdVp 65

+P (z, t)

∞∫
0

∞∫
0

VpfVp,np,z(Vp,np,z, t)dnpdVp

−λ
∞∫
0

∞∫
0

VpnpfVp,np,z(Vp,np,z, t)dVpdnp . (17)

Assuming that fVp,np,z(Vp,∞,z, t) = 0, the first double in-
tegral on the right side of Eq. (17) is equal to zero. We then
write Eq. (17) as5

∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]

= P (z, t)

∞∫
0

VpdVp

∞∫
0

fVp,np,z(Vp,np,z, t)dnp

−λ
∞∫
0

∞∫
0

VpnpfVp,np,z(Vp,np,z, t)dVpdnp10

= P (z, t)

∞∫
0

VpfVp,z(Vp,z, t)dVp

−λ
∞∫
0

∞∫
0

VpnpfVp,np,z(Vp,np,z, t)dVpdnp . (18)

Using fVp,z(Vp,z, t) = fz(z, t)fVp|z(Vp|z, t) then leads to15

the result that
∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]
= P (z, t)fz(z, t)V p(z, t)−λfz(z, t)V p(z, t)np(z, t) . (19)

Thus, the production and decay terms to be added to Eq. (12)20

or Eq. (13) are given by the right side of Eq. (19).

3.3 Expected particle OSL ages

3.3.1 Conservation of OSL age

In principle, the experimentally determined OSL burial age
of a particle is independent of its size. In addition, as pre-25

viously mentioned, quartz particles targeted for single-grain
OSL analysis have a relatively narrow range of sizes (0.35 –
0.425 mm). For these reasons we may neglect particle vol-
ume in the following formulation.

Let fAp,z(Ap,z, t) denote the joint probability density30

function of particle OSL ages Ap and positions z. For par-
ticles with a given age Ap, and momentarily neglecting
the production of age, the density fAp,z(Ap,z, t) satisfies a
Fokker-Planck equation of the form

∂fAp,z(Ap,z, t)

∂t
35

=− ∂

∂z

[
wp(z, t)fAp,z(Ap,z, t)

−κz(z, t)
∂fAp,z(Ap,z, t)

∂z

]
. (20)

We now define a conditional joint probability density func- 40

tion of ages Ap, namely,

fAp|z(Ap|z, t) =
fAp,z(Ap,z, t)

fz(z, t)
. (21)

With Eq. (20) and Eq. (21) in place, we multiply both by Ap,
integrate with respect to Ap, then follow the same steps as
presented in Section 3.2.1 above to give 45

∂

∂t

[
fz(z, t)Ap(z, t)

]
=− ∂

∂z

[
wp(z, t)fz(z, t)Ap(z, t)

]

+
∂

∂z

(
κz(z, t)

∂

∂z

[
fz(z, t)Ap(z, t)

])
, (22)

where Ap(z, t) is the expected particle OSL age. We now
turn to the production term to be added to Eq. (22). 50



8 Furbish et al.: Tracer particle transport and mixing

3.3.2 Production of OSL age

In the absence of advection and diffusion, the joint probabil-
ity density fAp,z(Ap,z, t) satisfies a statement of conserva-
tion of probability having the form of an advection equation
with respect to the Ap domain, namely, 55

∂fAp,z(Ap,z, t)

∂t
=−S

∂fAp,z(Ap,z, t)

∂Ap
, (23)

where the advective speed S = dAp/dt= 1 is the rate at
which particles accumulate OSL age. We then multiple Eq.
(23) byAp, integrate with respect toAp, then follow the same
steps as presented in Section 3.2.2 above to give 60

∂

∂t

[
fz(z, t)Ap(z, t)

]
= Sfz(z, t) . (24)

Thus, the production term to be added to Eq. (22) is given
by the right side of Eq. (24). We elaborate below in practical
terms the relation between the rate S and the radiation dose
rate during particle motions within the soil. 65

3.3.3 Variance of OSL ages

Because of its significance for sampling of particles for OSL
analysis, here we consider the variance of particle OSL ages.
Let fAp,z(Ap,z, t) denote the joint probability density func-
tion of agesAp and positions z. We now form the conditional 70

probability density function,

fAp|z(Ap|z, t) =
fAp,z(Ap,z, t)

fz(z, t)
. (25)

Multiplying by (Ap−Ap)2, rearranging, and integrating with
respect to Ap,

fz(z, t)

∞∫
0

(Ap−Ap)2fAp|z(Ap|z, t)dAp

=

∞∫
0

(Ap−Ap)2fAp,z(Ap,z, t)dAp . (26)5

This yields

fz(z, t)m2(z, t) =

∞∫
0

(Ap−Ap)2fAp,z(Ap,z, t)dAp , (27)

where m2(z, t) denotes the variance of particle OSL ages.
In turn, multiplying Eq. (20) by (Ap−Ap)2 and integrat-

ing with respect to Ap — recognizing that Ap is a function10

of position and time and therefore judiciously applying the
product rule and Leibniz’s rule — then leads to the conclu-
sion that

∂

∂t
[fz(z, t)m2(z, t)] =− ∂

∂z
[wp(z, t)fz(z, t)m2(z, t)]

15

+
∂

∂z

(
κz(z, t)

∂

∂z
[fz(z, t)m2(z, t)]

)

+2κz(z, t)fz(z, t)

[
∂Ap(z, t)

∂z

]2
. (28)

Thus the variancem2(z, t) satisfies a Fokker-Planck equation
with a source-like term involving the average age Ap(z, t).20

Because this term depends on the structure of Ap(z, t), it
therefore is indirectly associated with the production of OSL
age. However, it is straightforward to show that direct pro-
duction of the variance m2(z, t) of OSL ages is zero.

3.4 Advection and diffusion25

The Fokker-Planck equation is basically an advection-
diffusion equation. But here we reemphasize that the 10Be
concentration np and the OSL age Ap are intensive proper-
ties of individual particles, and the volume Vp is an extensive
property of individual particles. These quantities do not ex-30

perience advection and diffusion as normally envisioned as
occurring in a continuum. To be clear, the particles experi-
ence advection and diffusion, and the quantities np, Vp and
Ap are merely carried with the particles.

With respect to a soil column with dimensions XY h, let35

us assume a great number N of particles. Then the prod-
uct Nfz(z, t) = c(z, t) may be interpreted as the expected
number concentration of particles. That is, c(z, t)XY dz rep-
resents the expected number of particles within the volume
XY dz between z and z+ dz at time t. We may then rewrite 40

Eq. (1) as

∂c(z, t)

∂t
=− ∂

∂z

[
wp(z, t)c(z, t)−κz(z, t)

∂c(z, t)

∂z

]
, (29)

which looks like a familiar advection-diffusion equation.
Similarly, Nfz(z, t)V p(z, t)np(z, t) = n(z, t) represents

the expected number concentration of 10Be atoms, and 45

fz(z, t)V p represents the volumetric particle concentration.
We may then rewrite Eq. (13) as

∂n(z, t)

∂t
=− ∂

∂z

[
wp(z, t)n(z, t)−κz(z, t)

∂n(z, t)

∂z

]

+P (z, t)−λn(z, t) , (30) 50

where P (z, t) now is interpreted as the production rate per
unit volume of soil.

We write the product Nfz(z, t)Ap(z, t) as c(z, t)Ap(z, t),
noting that c(z, t) now specifically refers to particles with
finite OSL age Ap. To simplify the notation, we denote the 55

first moment of particle OSL ages asm1(z, t) =Ap(z, t). We
may then rewrite Eq. (22) as

∂

∂t
[c(z, t)m1(z, t)]
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=− ∂

∂z

(
wp(z, t)c(z, t)m1(z, t) 60

−κz(z, t)
∂

∂z
[c(z, t)m1(z, t)]

)
+Sc(z, t) . (31)

For the variance m2(z, t),

∂

∂t
[c(z, t)m2(z, t)]

65

=− ∂

∂z

(
wp(z, t)c(z, t)m2(z, t)

−κz(z, t)
∂

∂z
[c(z, t)m2(z, t)]

)

+2κz(z, t)c(z, t)

[
∂m1(z, t)

∂z

]2
. (32) 70

4 The steady one-dimensional problem

We now turn to a benchmark situation inspired by the pio-
neering work of Lal (1991) and Lal and Chen (2005) con-
cerning CRN profiles within rock, and within well mixed
soils above rock, undergoing steady surface erosion. With 75

reference to Figure 2, we imagine the idealized situation in-

Figure 2. Schematic diagram of: (A) soil element with dimensions
XY h. Particles move from the soil-saprolite interface (z = 0) into
the element at a steady rate W and are eroded from the surface
(z = h). Particles experience a mean motion (gray arrows) with su-
perimposed mixing motions. (B) in situ 10Be production rate P (z).
(C) idealized luminescence dose rate D as the sum of the external
rate De(z) and the contribution from cosmic rays Dc(z). Compare
with Figure 1 in Mudd and Yoo (2010).

volving a one-dimensional vertical mean motion of particles
through a soil column, where steady surface erosion plus any
chemical mass losses match the rate of soil production at
the base of the column (e.g., Mudd and Yoo, 2010; Dixon
and Riebe, 2014; Granger and Riebe, 2014). Although ideal-
ized, given that surface erosion rates generally are not steady5

(e.g., Small et al., 1997; Parker and Perg, 2005; Schaller et

al., 2009), this benchmark nonetheless represents a valuable
starting point for assessing actual conditions in field settings,
including the possibility of a sudden change in surface ero-
sion (Granger and Riebe, 2014), and as a contrast for two-10

dimensional transport by soil creep (Small et al., 1999; An-
derson, 2015; Furbish et al., 2018b). With respect to cos-
mogenic nuclides — 10Be in particular — previous formu-
lations of this problem have focused on two end-member
cases: absence of soil particle mixing, and the so-called “well15

mixed” case (or “complete” mixing) (e.g., Lal and Chen,
2005; Granger and Riebe, 2014), without reference to partial
mixing or to the possible significance of the vertical struc-
ture of mixing, that is, whether particle mixing is uniform or
depth dependent. This contrasts with the idea that soil dis-20

trubances and associated mixing likely involve a systematic
depth dependence (Humphreys and Field, 1998; Cousins et
al., 1999; Roering, 2004; Wilkinson et al., 2009). No analo-
gous benchmark formulation exists for particle OSL ages.

We note that quartz enrichment (Small et al., 1999;25

Granger and Riebe, 2014) due to chemical weathering and
mass loss may occur during any transient approach to steady
conditions; but under steady conditions this enrichment does
not impact the mechanical transport and mixing of quartz
particles. In addition, we are for simplicity neglecting the30

vertical variation in soil bulk density that can occur with bio-
turbation (e.g., Furbish et al., 2009b, see Figure 4 therein).

In this steady problem, note that wp(z, t) =W and
κz(z, t) = κz(z). We consider two forms of the particle dif-
fusivity κz(z). In the first case we consider uniform mix-35

ing such that κz(z)→Kz . In the second case we consider
a linear variation in mixing such that κz(z) =Kzz/h. This
represents the first-order structure of a depth dependency in
mixing which, although currently not well constrained, ap-
peals to the idea that disturbances leading to particle mix- 40

ing systematically decline with depth (Humphreys and Field,
1998; Cousins et al., 1999; Roering, 2004; Wilkinson and
and Humphreys, 2005; Wilkinson et al., 2009; Johnson et al.,
2014). These two cases provide a straightforward contrast for
considering how the form of κz(z) might influence the pro- 45

files of 10Be concentration and particle OSL age. Following
Furbish et al. (2018a, 2018b), we define a Péclet number as
Pe =Wh/Kz . This provides a measure of the overall inten-
sity of mixing. A large value of Pe represents weak mixing,
whereas a small value of Pe represents strong mixing. 50

Following Furbish et al. (2018b), we assume that particles
experience a constant radiation dose rate D (Figure 2) dur-
ing their motions within the soil column. Indeed, single-grain
OSL systematics require assuming a constant natural dose
rate in order to calculate a burial age Ap from the measured 55

particle luminescence and a regeneration curve created by
subjecting the particle to varying experimental “equivalent
dose” values (Duller, 2008). But the natural dose rate that a
particle experiences may vary with its position, and therefore
with time, as the particle moves up and down within the soil 60

column. This means that a particle will yield a luminescence
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signal, and thus an OSL age, that depends on its history of
exposure to different dose rates; but this particle history can-
not be inferred in the experimental determination of its OSL
age. 65

With respect to the source S = dA/dt= 1 of particle OSL
aging in Eq. (31), we are essentially assuming, as described
above, that particles experience a uniform radiation dose rate
during their motions within the soil column. Namely, assum-
ing homogeneous soil material and moisture content, the ex- 70

ternal dose rate De(z) supplied by the radioactive decay of
elements within the surrounding soil is uniform below ∼30
cm (or less (Aitken et al., 1985)) and declines toward the soil
surface because of the incomplete gamma dose field at shal-
low depths (Figure 2C). The dose rate Dc(z) due to cosmic 75

rays (varying with latitude and altitude) declines nonlinearly
below the soil surface (Prescott and Hutton, 1988, 1994). The
total dose rate D(z) equals the sum of the external and cos-
mic rates. In general, the cosmic contribution tends to offset
the decline of the external rate. But this depends on the rela- 80

tive magnitudes of these two contributions, where the magni-
tude of the external rate is determined by the mineral content
of the soil, and the associated concentration of radioactive
elements.

If the magnitude of the cosmic dose rate is similar to that 85

of the external dose rate near the soil surface, then the total
dose rate is approximately uniform (Figure 2C). If, however,
the cosmic rate does not fully offset the decrease in the exter-
nal rate, we nonetheless suggest that the assumption of a uni-
form dose rate is a reasonable starting point for comparison 90

with deviations in OSL age profiles that might be expected
from a nonuniform dose rate, particularly under conditions
of moderate to strong particle mixing, whose effects likely
mask spatial variations in the total dose rate (e.g., Furbish
et al., 2018b). That is, this is a parsimonious assumption —5

that the effects of mixing of ages outweigh any consequence
of a nonuniform dose field. Previous studies using lumines-
cence to examine soil mixing show relatively uniform total
dose rates (e.g., Heimsath et al., 2002, Johnson et al., 2014).

In order to present our results below in a manner that high-10

lights the effects of differences in the intensity and depth de-
pendence of particle mixing, it is convenient to define the
following dimensionless quantities denoted by circumflexes:

ẑ =
z

h
, ĉ(ẑ) =

c(z)

c(h)
, n̂(ẑ) =

n(z)

n(h)

15

and m̂j(ẑ) =

(
W

h

)j
mj(z) . (33)

Here, ẑ denotes the dimensionless height within the soil col-
umn above the soil-saprolite interface, n̂(ẑ) denotes the di-
mensionless concentration of 10Be atoms relative to the con-
centration at the soil surface, ĉ(ẑ) denotes the dimensionless20

number concentration of particles with finite OSL ages rel-
ative to the concentration at the soil surface, and m̂j(ẑ) de-

notes the jth moment (j = 1,2) of OSL ages relative to the
mean residence time, h/W , of target quartz particles.

The analytical results presented in the next two sections25

involving n̂(ẑ) and m̂j(ẑ) are derived in the appendixes of
this paper. As described therein, each of the statements of
conservation above must satisfy specific boundary conditions
that depend on uniform versus nonuniform particle mixing.
Here are key constraints. The 10Be flux across the soil surface30

equals the flux into the soil column across the soil-saprolite
interface plus the total production of 10Be within the column.
The flux of particles with finite OSL age across any surface
normal to z is zero, and the concentration of these particles
at the surface is equal to the concentration of OSL sensitive35

particles entering the base of the column, although these take
on finite OSL ages only after they reach the surface and are
bleached. The expected OSL age at the soil surface is zero,
and a diffusive flux of age across the surface matches the to-
tal production of age within the column. Particles with finite40

OSL age cannot be imported to the soil column. We defer
commenting on the results presented next until we present
our numerical simulations in Section 5.

4.1 Expected 10Be concentrations

Assuming that 10Be production is due to spallation (e.g.,45

Gosse and Phillips, 2001), the production rate P (z) in Eq.
(30) is (Lal, 1991; Small et al., 1999)

P (z) = P0e
−(h−z)/ls , (34)

where P0 is the 10Be production rate at the surface and ls is
the e-folding attenuation length of the soil. Neglecting the de- 50

cay of 10Be with its half-life of ∼ 106 years, then for steady
conditions Eq. (30) becomes

d

dz

[
Wn(z)−κz(z)

dn(z)

dz

]
= P0e

−(h−z)/ls . (35)

For uniform mixing with κz(z)→Kz , the solution of Eq.
(35) is (Appendix B) 55

n̂(ẑ) = e−Pe(1−ẑ)

+
Pels

Pels − 1

[
e−h(1−ẑ)/ls − e−Pe(1−ẑ)

]
, (36)

where Pels =Wls/Kz is a secondary Péclet number. In
turn, for nonuniform mixing with κz(z) =Kzz/h, the so- 60

lution of Eq. (35) is

n̂(ẑ) = ẑPe +Pe

[(
−hẑ
ls

)Pe

Γ

(
−Pe,−hẑ

ls

)

−
(
− h
ls

)Pe

Γ

(
−Pe,− h

ls

)
ẑPe

]
e−h/ls , (37)
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where Γ denotes the incomplete gamma function. Note that 65

Eq. (37) has real and imaginary parts. Only the real part is
physically meaningful in this problem.

4.2 Expected particle OSL ages

Recall that the number concentration c(z, t) in Eq. (31)
specifically refers to particles with finite OSL age. For steady 70

conditions Eq. (1) becomes

d

dz

[
Wc(z)−κz(z)

dc(z)

dz

]
= 0 . (38)

Using this, Eq. (31) is simplified to

d

dz

[
−κz(z)c(z)

dm1(z)

dz

]
= Sc(z) . (39)

For the variance m2(z), 75

d

dz

[
−κz(z)c(z)

dm2(z)

dz

]

−2κz(z)c(z)

[
dm1(z)

dz

]2
= 0 . (40)

Note that Eq. (39) and Eq. (40) involve only diffusion, not
advection. Advection and diffusion of particles possessing fi- 80

nite OSL ages involve the transport and mixing of OSL ages,
thus influencing the age moments. But because upward ad-
vection of these particles is balanced by downward diffusion
under steady conditions, this balance sets the OSL age struc-
ture wherein diffusion maintains the steady, finite values of
the age moments in the presence of production of OSL age.5

For uniform mixing with κz(z)→Kz , the solution of Eq.
(38) is (Appendix C)

ĉ(ẑ) = e−Pe(1−ẑ) . (41)

For nonuniform mixing with κz(z) =Kzz/h, the solution of
Eq. (38) is10

ĉ(ẑ) = ẑPe . (42)

In turn, using these results for ĉ(ẑ), for uniform mixing the
solution of Eq. (39) is (Appendix D)

m̂1(ẑ) = S(1− ẑ) +
Se−Pe

Pe

[
1− ePe(1−ẑ)

]
, (43)

and for nonuniform mixing the solution of Eq. (39) is (Ap-15

pendix D)

m̂1(ẑ) =
SPe

1 +Pe
(1− ẑ) . (44)

For the variance m̂2 the solution of Eq. (40) for uniform mix-
ing is (Appendix E)

m̂2(ẑ) =
2S2

Pe
(1− ẑ)20

+
4S2

Pe2
[
(1 +Pe)e−Pe − (1 +Pe ẑ)e−Peẑ

]

+
S2

Pe2
(
e−2Pe − e−2Peẑ

)
. (45)

and for nonuniform mixing the solution of Eq. (40) is (Ap-25

pendix E)

m̂2(ẑ) =
S2Pe2

(2 +Pe)(1 +Pe)2
(
1− ẑ2

)
. (46)

Also for reference below, the column-averaged particle
OSL age M̂1 within the soil is

M̂1 =

1∫
0

ĉ(ẑ)m̂1(ẑ)dẑ . (47)30

For uniform mixing, Eq. (41) and Eq. (43) lead to

M̂1 =
S

Pe2
(
1− e−2Pe

)
− 2Se−Pe

Pe
. (48)

For nonuniform mixing, Eq. (42) and Eq. (44) lead to

M̂1 =
SPe

1 +Pe

(
1

1 +Pe
− 1

2 +Pe

)
. (49)

We comment further on the results above after presenting our35

numerical simulations.

5 Numerical simulations

We now turn to numerical simulations of particles under-
going random-walk motions within the soil column, during
which they accumulate 10Be atoms within the production 40

field, and undergo OSL “aging” following their most recent
encounters with the soil surface. These simulations have two
purposes.

First, the random-walk motions implied by the probabilis-
tic formulations above are in principle straightforward to im- 45

plement numerically, and it is important to demonstrate that
such computational results match the analytical results pre-
sented. In doing this, the simulations reveal important infor-
mation that is not readily apparent in the analytical results.
This includes an illustration of the variability in 10Be con- 50

centrations and OSL ages of individual particles, in contrast
to expected values at positions z, with important implications
for interpreting field-based measurements, and the nature of
the terms in Eq. (14) and Eq. (23) describing production of
10Be atoms and particle OSL age. 55

Second, numerical simulations of particle motions within
soils offer important opportunities to examine phenomena
that cannot readily be treated analytically, for example, ef-
fects of particle residence times on mineral weathering, or
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effects of a nonuniform radiation dose rate. So, spinning our 60

first objective around, any numerical simulation of random
walk motions must be able to correctly reproduce benchmark
(analytical) solutions before being applied to more complex
situations, for example, two-dimensional motions and un-
steady conditions. The simulations presented here highlight 65

important aspects involved.
Following Furbish et al. (2018a, 2018b), we adopt a

straightforward Eulerian-Lagrangian algorithm to simulate
particle motions in a mass conserving manner. Particles are
numerically introduced to the base of the soil column (z = 70

0), then undergo a mean upward motion equal to W with
superimposed Gaussian fluctuations. For uniform mixing the
particle diffusivity is set as κz =Kz , and the random walk
becomes

z(t+ ∆t) = z(t) +W∆t+Rz(a) , (50) 75

where ∆t denotes the time step and Rz(a) is a Gaussian ran-
dom variable with argument a= (2Kz∆t)

1/2. For nonuni-
form mixing with κ(z) =Kzz/h, the random walk becomes

z(t+ ∆t) = z(t) +W∆t+Rz(a) +κ′z∆t , (51) 80

with argument a= [2κz(z+ 0.5κ′z∆t)∆t]
1/2, where κ′z =

∂κz(z)/∂z. This yields a mass conserving behavior, that is,
one that prevents particles from unrealistically drifting from
sites with high particle diffusivity to sites with low diffusiv-
ity. Moreover, this algorithm has been shown to work for 85

variations in diffusivity that are not linear (e.g., Legg and
Raupach, 1982; Hunter et al., 1993; Visser, 1997). The theo-
retical basis of Eq. (51) and its relation to the Fokker-Planck
equation are covered in these references and in Appendix G
of Furbish et al. (2018a).

Each particle accumulates 10Be atoms as a function of its
local position z, and it accumulates a numerical OSL age
from the time of its last encounter with the soil surface. We5

spin up each simulation to a steady-state condition, where
the rate at which particles exit the soil column is equal to the
rate at which they are introduced at the base, and particles
within the column are distributed uniformly over the thick-
ness h. The total spin-up time involves at least four e-folding10

residence times h/W . At steady state, the total number of
particles within the column is NT ≈Nc(h/W )/∆t, where
Nc is the number of particles in the cohort introduced at each
time step. We use a minimum of NT ≈ 10,000 for the 10Be
simulations.15

The lower boundary (z = 0) is treated as a reflecting
boundary. For each particle reaching the upper boundary
(z = h), it either may leave the column with a specified prob-
ability that ensures global particle conservation, or it is re-
flected. In the case of particle OSL ages, the numerical age20

of an individual particle is set to zero if it is reflected at z = h.
The effect of this is to correctly mimic the boundary condi-
tion in the formulation above, that m̂j = 0 at ẑ = 1. In ac-
tuality, however, bleaching of particles can occur just below

the soil surface with light penetration (to a few particle diam-25

eters) and with heating from fires at the surface (Wilkinson
and Humphreys, 2005; Duller, 2008), such that actual values
m̂j = 0 occur below the soil surface.

All simulated NT particles at steady state possess a 10Be
value. But only a proportion of these NT particles possess30

finite OSL ages at steady state, as not all of them reach the
surface to subsequently take on finite OSL ages. We cannot
know this proportion a priori. Thus, it is important to insist
on global particle conservation in the simulations, involving
verification of a specified NT together with a uniform dis-35

tribution of particle positions z. In addition, we increase NT
(up to 20,000) and the total spin-up time (up to six residence
times h/W ) for the OSL simulations to ensure that a suffi-
ciently large number of particles is included in our calcula-
tions of expected values. However, this is not entirely possi-40

ble with large Péclet number Pe , as described below.

5.1 10Be concentrations

The simulated, expected 10Be concentrations closely match
the theoretical results for different values of the Péclet num-
ber Pe involving both uniform mixing (Figure 3) and nonuni-45

form mixing (Figure 4). These profiles show that with weak
mixing (large Pe), the expected concentration approaches
the original exponential solution provided by Lal (1991).
With strong mixing (small Pe), the expected concentra-
tion becomes increasingly uniform over the soil column, ap-50

proaching the concentration at the soil surface. With uniform
mixing (Figure 3), the concentration n̂(0) may be finite, as
diffusion effectively moves particles downward to the soil-
saprolite interface. With nonuniform mixing (Figure 4), the
concentration n̂(0) is anchored by the value within the sapro- 55

lite, as diffusion weakens downward then vanishes at the soil-
saprolite interface.

With both uniform and nonuniform mixing, the distribu-
tion fn̂p

(n̂p, ẑ) of 10Be concentrations n̂p of individual par-
ticles within any small interval dẑ systematically varies with 60

vertical position and the Péclet number Pe (Figure 5). No-
tably, this distribution at any ẑ is approximately symmetrical
about the expected value for large Pe , and becomes increas-
ingly skewed with decreasing Pe . The expected concentra-
tion n̂(ẑ) at small Pe thus is strongly influenced by the tail 65

of this distribution, that is, by particles possessing concentra-
tions much larger than the modal concentration.

5.2 Particle OSL ages

The simulated, expected OSL ages closely match the theo-
retical results for different values of the Péclet number Pe 70

involving both uniform mixing (Figure 6) and nonuniform
mixing (Figure 7), where we note that the simulations yield
meaningful results only near the surface for large Péclet num-
ber Pe . (Because the concentration ĉ(ẑ) of particles with fi-
nite OSL ages declines rapidly with depth for large Pe (Ap- 75
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Figure 3. Plot of dimensionless 10Be concentration n̂= n(z)/n(h) versus dimensionless height ẑ = z/h showing simulated particle con-
centrations n̂p (gray dots) for Pe = 100,10,1,0.1, and estimates of expected concentrations n̂ averaged within 0.1h intervals (black circles)
with one standard deviation bars. Simulations represent uniform mixing with κz =Kz . Right solid line is the theoretical result, and left solid
line represents the absence of mixing.

pendix C), achieving reasonable numerical values of the ex-
pected age m̂1(ẑ) over the entire soil thickness would require
unreasonably large computational memory and time.) These
profiles show that with weak mixing (large Pe), the expected
particle OSL age increases linearly, or approximately lin- 80

early, with depth. With strong mixing (small Pe), the ex-
pected age becomes increasingly uniform and close to zero
over the soil column. With uniform mixing, the diffusive flux
of age must vanish at the soil-saprolite interface, so with fi-
nite diffusivityKz , the slope dm̂1/dẑ|ẑ=0 = 0. With nonuni- 85

form mixing, the diffusive flux of age likewise vanishes at the
soil-saprolite interface as the diffusivity goes to zero. But the
magnitude of the slope dm̂1/dẑ is finite near this interface in
order to compensate the decreasing diffusivity.

With both uniform and nonuniform mixing, the distribu- 90

tion fÂp
(Âp, ẑ) of particle OSL ages within any small in-

terval dẑ mostly is highly skewed (Figure 8). This skew in-
creases with decreasing Péclet number Pe . Particularly with
nonuniform mixing, the expected OSL age m̂1(ẑ) thus is
strongly influenced by the tail of this distribution, that is, by 95

particles possessing finite ages much larger than the modal
age.

The simulated second moment m̂2(ẑ) of OSL ages rea-
sonably matches the theoretical results for different values
of the Péclet number Pe for both uniform and nonuniform 100

mixing. Focusing on the example of Pe = 1 (Figure 9), the
variance m̂2(ẑ) rapidly increases with depth from zero at the
soil surface, then becomes relatively uniform with increasing
depth. With both uniform and nonuniform mixing, the vari-
ance at any position ẑ generally decreases with decreasing 105

Pe (Figures 6 and 7). We note that, whereas in any individ-
ual simulation the numerical estimates of the expected OSL
ages m̂1(ẑ) closely match the theoretical values with large
NT for small Pe (Figures 6 and 7) — a consequence of the
central limit theorem — numerical estimates of the variance
m̂2(ẑ) may fluctuate about the theoretical values from one5

simulation to the next (Figure 9).
The simulations suggest that particle OSL ages within the

entire soil column are distributed approximately exponen-
tially for both uniform and nonuniform mixing (Figure 10),
where the column-averaged age M̂1 varies systematically10

with the Péclet number Pe . Interestingly, based on Eq. (48)
and Eq. (49), the average M̂1 increases from zero at Pe→ 0,
reaches a maximum of M̂1 ∼ 0.1 near Pe ∼ 1, then declines
again with increasing Pe (Figure 11), consistent with the
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Figure 4. Plot of dimensionless 10Be concentration n̂= n(z)/n(h) versus dimensionless height ẑ = z/h showing simulated particle con-
centrations n̂p (gray dots) for Pe = 100,10,1,0.1, and estimates of expected concentrations n̂ averaged within 0.1h intervals (black circles)
with one standard deviation bars. Simulations represent nonuniform mixing with κz =Kzz/h. Right solid line is the theoretical result, and
left solid line represents the absence of mixing.

simulations (Figure 10). For Pe→ 0, small values of M̂1 re-15

flect the idealized condition of complete mixing, where par-
ticles that reach the soil surface and are bleached and then
move downward rather than being eroded, nonetheless fre-
quently return to the soil surface due to strong mixing. For
large Pe , small values of M̂1 reflect that particles with fi-20

nite OSL age tend to remain near the soil surface due to the
strong effect of upward advection, and thus frequently re-
turn to it, many exiting by erosion before accumulating large
ages. Relatively large values of M̂1 at intermediate Pe reflect
the effects of an approximate balance between upward advec- 25

tion and downward diffusion of particles with finite OSL age,
such that particles return to the soil surface less frequenty. We
emphasize that the maximum value of M̂1 is a fraction of the
mean residence time h/W .

6 Discussion and Conclusions 30

6.1 Implications of rarefied transport conditions

We emphasize that, in contrast to continuum formulations
of advection and diffusion of material (e.g., mass) measured
as an intensive quantity (e.g., concentration) of the contin-

uum, the extensive and intensive particle properties Vp, np 35

and Ap “belong” to the particles, not to the bulk soil. For
this reason, a formulation of advection and diffusion of 10Be
concentrations and expected particle OSL ages based on the
Fokker-Plank equation provides a satisfactory way to parse
the behavior of the particle-centric quantities Vp, np and Ap. 40

In the case of 10Be, the formulation describes the behavior
of the expected value of individual particle concentrations at
a position z. When this is combined with the expected par-
ticle volume and number concentration, the expected 10Be
concentration n(z, t) then may be considered an intensive
property of the soil at position z. As a consequence, the ex-
pected concentration n(z, t) satisfies what looks like an ordi-
nary advection-diffusion equation with production and decay5

terms — although this does not necessarily imply a contin-
uum behavior (Section 3.1).

In the case of particle OSL ages, the formulation similarly
describes the behavior of the expected value (and the vari-
ance) of individual particle OSL ages at a position z. By def-10

inition, our interest is in this expected particle OSL age, as
this is what is determined from single-grain OSL measure-
ments. It therefore does not make sense to define OSL age as
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Figure 5. Example histograms representing the distribution
fn̂p(n̂p, ẑ) using simulated values of n̂p from Figure 4 (Pe = 1)
over the intervals (A) 0.9ẑ− 1.0ẑ, (B) 0.5ẑ− 0.6ẑ and (C) 0.1ẑ−
0.2ẑ. Analogous histograms associated with uniform mixing show
a similar structure.

an intensive property of the soil by combining the expected
particle OSL age with the expected particle number concen-15

tration (resulting in a “total” OSL age at position z). More-
over, by maintaining this distinction, the formulation reveals
that the expected particle OSL age (and the variance) satisfy
a diffusion-like equation according to Eq. (39) and Eq. (40),
not an advection-diffusion equation. This is in contrast to the20

idea that the “age” of a fluid parcel moving through a contin-
uum domain satisfies an advection-diffusion equation with a
production term equal to unity, as described in oceanographic
and hydrological applications (England, 1995; Goode, 1996).
This is important because, unlike a continuum material, the 25

expected number concentration c(z, t) of particles possessing
a finite OSL age generally is not uniform over z (Appendix
C). That is, this concentration does not mimic a uniform con-
tinuum domain within which particle OSL age is transported.

An essential lesson is this. When the quantity of interest 30

can be expressed as a total value within an interval dz, as
with the total number of 10Be atoms, then this quantity may
be treated as an intensive property of the bulk soil. When the
quantity of interest is an expected value within dz, as with the
moments mj(z) of particle OSL age, then this quantity can- 35

not be expressed as an intensive property of the bulk soil, and
its behavior must be coupled with that of the expected con-
centration c(z) of the particles possessing the property. Sim-
ilar quantities include, for example, particle size (in relation
to descriptions of vertical sorting (Campforts et al., 2016)) 40

and particle age as measured from the time of entry into the
mechanically active soil column (in relation to studies of par-

ticle weathering (White and Brantley, 2003; Mudd and Fur-
bish, 2006; Almond et al., 2007; Anderson et al., 2007; Yoo
and Mudd, 2008; Mudd and Yoo, 2010; Ferrier et al., 2016)).
In contrast, there is a growing interest in the use and interpre-
tation of the total OSL intensity of bulk soil samples as mea-
sured by portable OSL readers (Muñoz-Salinas et al., 2010;
Sanderson and Murphy, 2010; Stang et al., 2012; Munyikwa5

and Brown, 2014; Gray et al., 2017; Gray, 2018; Porat et al.,
2018). The luminescence intensities of individual particles
— decidedly a random variable (Gray, 2018) — contribute
to the total measured intensity. Thus, because the quantity of
interest is the total intensity rather than expected moments of10

individual particle intensities, the total intensity can be for-
mulated as being an intensive property of the bulk soil (Gray
et al., 2017; Gray, 2018).

Throughout we have emphasized that 10Be concentrations
and OSL ages are to be considered expected values. More-15

over, this expectation is defined with respect to an interval z
to z+ dz in a soil element with finite areal dimension XY ,
and it formally is an ensemble average, rather than the ex-
pected value associated with an individual realization. The
significance of this bears on the practical issue of sampling20

soil material for measurements of 10Be and particle OSL age,
in view of the fact that disturbance driven particle motions
in soils are patchy and intermittent at many scales, where
most particles are at rest most of the time. Namely, vertical
profiles of soil properties measured in an individual soil pit25

(where XY is on the order of 1 × 1 m) reflect a “snapshot”
of possible conditions (Furbish et al., 2009b). This snapshot
represents the recent history of transport and mixing, one that
is much shorter than the typical soil particle residence time,
W/h. 30

We cannot avoid this issue of legacy (or “inheritance”),
namely, the likelihood that what is being measured reflects
only the recent history of transport and mixing as opposed
to conditions consistent with an imagined behavior averaged
over longer timescales, as represented by the expected pro- 35

files in Figures 3, 4, 6 and 7 above. In the case of measured
profiles of 10Be concentrations and particle OSL ages, this
has two parts. Consider a profile that reflects an expected
steady-state condition (Figures 3, 4, 6 or 7). Disturbances
that contribute to the mixing motions consistent with the pro- 40

file may occur at different length scales and with different
frequencies, where large disturbances may involve coherent
motions whose effects are more akin to stirring than mixing,
thus momentarily producing irregularities about the expected
state. To the extent that mixing is adequately characterized 45

as being diffusive, then we may define a relaxation timescale
as T = r2/κ∼ r2/〈r2〉f , where now the mixing motion r is
used as a measure of the length scale of disturbance, f de-
notes a characteristic frequency of disturbance, and the an-
gle brackets denote ensemble averaging. With r2 in the nu- 50

merator and 〈r2〉 in the denominator, this expression high-
lights the duality of disturbances, that these provide mixing
motions, yet this mixing is responsible for diffusive smooth-
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Figure 6. Plot of dimensionless OSL age Âp = (W/h)Ap versus dimensionless height ẑ = z/h showing simulated particle ages Âp (gray
dots) for Pe = 100,10,1,0.1, and estimates of expected values m̂1 averaged within 0.1h intervals (black circles) with one standard deviation
bars. Simulations represent uniform mixing with κz =Kz . Solid line is the theoretical result.

ing of disturbance produced irregularities about the expected
profile state. This is in marked contrast to, say, classic molec- 55

ular diffusion, where molecular motions smooth irregulari-
ties, but are not the source of disturbances to the expected
state. Thus, for a given ensemble averaged disturbance mag-
nitude 〈r2〉1/2, the relaxation time T goes with the square of
the scale of disturbance and inversely with the characteristic 60

frequency of disturbances. For a given frequency f , effects
of big disturbances tend to persist whereas effects of small
disturbances do not. In either case, this persistence decreases
with increasing disturbance frequency f (i.e., decreasing Pé-
clet number Pe). 65

We now take the ensemble average of relaxation
timescales T over all disturbance length scales, namely,
〈T 〉 ∼ 1/f . This indicates that the overall relaxation in re-
sponse to a range of disturbance scales goes simply with
the reciprocal of the disturbance frequency f . Thus, regard- 70

less of the mixture of disturbance scales involved, the dis-
turbance frequency has a dominant role in setting the relax-
ation timescale. Then, for example, if disturbances and mix-
ing motions are consistently small and relatively uniform in
comparison to the size of the soil pit (and the size of individ- 75

ual soil samples), and if the frequency of the disturbances is

sufficiently high, then one might anticipate observing at any
instant only small variations about the expected steady-state
profile. If, however, disturbances are infrequent and patchy
at the scale of the soil pit or larger, then one might antici- 80

pate a greater likelihood of observing conditions unlike the
expected profile. Conversely, frequent and spatially uniform
large disturbances likely would lead to wholesale homoge-
nization of tracer particles.

This points to the need to avoid over-interpreting the
forms of profiles from individual soil pits in terms of what
these forms might reflect about the vertical structure of mix-5

ing (e.g., uniform versus depth dependent mixing). Unfortu-
nately, this issue is exacerbated by the reality that digging
soil pits and sampling for 10Be concentrations and particle
OSL ages is quite laborious, and subsequent analytical anal-
yses are prohibitively expensive. In addition, in choosing soil10

pit sites, we often avoid sites with evidence of recent distur-
bance. On the one hand, this strategy may obviate the sam-
pling of conditions that likely deviate from averaged condi-
tions; but on the other hand, it neglects observing profile ir-
regularities that reflect the full range of disturbance scales.15

Connecting sampling strategies (e.g., involving multiple soil
pits, choosing sampling intervals within individual pits, etc.)
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Figure 7. Plot of dimensionless OSL age Âp = (W/h)Ap versus dimensionless height ẑ = z/h showing simulated particle ages Âp (gray
dots) for Pe = 100,10,1,0.1, and estimates of expected values m̂1 averaged within 0.1h intervals (black circles) with one standard deviation
bars. Simulations represent nonuniform mixing with κz =Kzz/h. Solid line is the theoretical result.

with appropriate averaging relative to scales of disturbances
and mixing remains an important open question.

Momentarily assuming that mixing conditions are rea-20

sonably reflected by the expected particle OSL age profile
m̂1(ẑ), then the results above bear on the practical ques-
tion of variability in these expected ages as a consequence
of small sample sizes. As a point of reference, Heimsath et
al. (2002) sampled an average of 41 quartz grains from each 25

of one to three vertical positions within four soil pits. Of the
total 10 samples, on average 19 grains had finite OSL ages.
Johnson et al. (2014) analyzed 42–49 grains from each of five
intervals in a single soil pit. Considering only grains with fi-
nite OSL ages, the sample sizeNs from each vertical interval 30

is about 20 – 50 in these examples. Regardless of the form of
the distribution of finite particle OSL ages with variance σ2

within each interval (Figure 8), the central limit theorem sug-
gests that the standard error se of the estimate of the mean is
se ≈ σ/

√
Ns, or, in dimensionless form, ŝe ≈ σ̂/

√
Ns. 35

Let is assume that within a small interval of ẑ, σ̂2 = m̂2(ẑ)
from Eq. (45) or Eq. (46). We may then write

ŝe(ẑ)≈±

√
m̂2(ẑ)

Ns
. (52)

This yields an estimate of ŝe(ẑ) depending on the intensity
and structure of mixing in relation to the sample size Ns, 40

and represents uncertainty in the mean value m̂1(ẑ) that is
in addition to analytical uncertainty associated with single-
grain OSL age estimates. The standard errors ŝe(ẑ) for uni-
form and nonuniform mixing are similar, although nonuni-
form mixing generally yields smaller values of ŝe(ẑ). The
well-known formula Eq. (52) suggests that, in order to obtain
a standard error ŝe(ẑ) of specified magnitude within a small
interval at position ẑ requires that Ns ≈ m̂2(ẑ)/s2e. Because
m̂2(ẑ) increases with depth (Figure 9), uncertainty in the es-5

timate of the expected value m̂1(ẑ) increases with depth for
a given sample size Ns, as directly reflected in the data of
Heimsath et al. (2002) and Johnson et al. (2014). Stated an-
other way, there may be value in judiciously varyingNs with
depth when faced with a research budget that limits the total10

number of single-grain OSL age analyses. We note, however,
that this uncertainty associated with sample size cannot be
distinguished from effects of any legacy of disturbances as
described above.

The results of the numerical simulations as depicted in15

Figures 3, 4, 6 and 7 provide an important perspective on the
nature of production of 10Be and OSL age in relation to parti-
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Figure 8. Example histograms representing the distribution
fÂp

(Âp, ẑ) using simulated values of Âp from Figure 7 (Pe =
1) over the intervals (A) 0.9ẑ− 1.0ẑ, (B) 0.5ẑ− 0.6ẑ and (C)
0.1ẑ− 0.2ẑ. Analogous histograms associated with uniform mix-
ing show a similar structure.

Figure 9. Plot of dimensionless variance m̂2 = (W/h)2m2 versus
dimensionless height ẑ = z/h showing values obtained from simu-
lations (Pe = 1) for uniform mixing (black circles) and nonuniform
mixing (gray circles) compared with theoretical values (black and
gray lines).

cle transport and mixing, and the associated structuring of the
profiles n(z) and m1(z). We note that the points in Figures
3 and 4 represent large samples drawn from the joint proba-20

bility density fnp,z(np,z, t), and the points in Figures 6 and
7 represent samples drawn from the joint probability density

fAp,z(Ap,z, t). With respect to fnp,z(np,z, t), at any instant
a particle within the np− z domain only can move in the
positive np direction due to its accumulation of 10Be atoms 25

(neglecting decay). Similarly, with respect to fAp,z(Ap,z, t),
a particle within the Ap− z domain only can move in the
positive Ap direction due to its accumulation of OSL age.
This means that the distribution fnp(np,z) or fAp(Ap,z) at
any position z as depicted in Figures 5 and 8 is at all instants 30

being uniformly advected in the positive np or Ap direction.
In both cases, particles at any instant may move in either the
positive or negative z direction due to their random-walk mo-
tions.

Combining Eq. (4) and Eq. (14), neglecting particle vol- 35

ume and the decay of 10Be, and assuming steady conditions,

− ∂

∂z
(qA + qD)−P (z)

∂fnp,z(np,z)

∂np
= 0 , (53)

where qA and qD denote the advective and diffusive parts of
the flux. Similarly, combining Eq. (20) and Eq. (23), 40

− ∂

∂z
(qA + qD)−S

∂fAp,z(Ap,z)

∂Ap
= 0 . (54)

These highlight how production at any position within the
np−z orAp−z domain is exactly balanced by the local, com-
bined effects of particle advection and diffusion. Consider
the density fnp,z(np,z). With reference to Figure 5, at all lo-
cations (np,z) where the derivative ∂fnp,z(np,z)/∂np < 0,
the effect of production is to increase the 10Be content at
these locations in proportion to the production rate P (z)5

and the magnitude of this derivative; and at locations where
the derivative ∂fnp,z(np,z)/∂np > 0 the effect of produc-
tion is to decrease the 10Be content at these locations. The
variation in qA and qD with respect to z must be such that
their combined divergence balances these effects of produc- 10

tion. In turn, consider the density fAp,z(Ap,z). With refer-
ence to Figure 8, at all locations (Ap,z) where the derivative
∂fAp,z(Ap,z)/∂Ap < 0 the effect of particle aging is to in-
crease the OSL age content at these locations in proportion
to the magnitude of this derivative; and at locations where 15

the derivative ∂fAp,z(Ap,z)/∂Ap > 0 the effect of particle
aging is to decrease the OSL age content at these locations.
Variations in qA and qD with respect to z must then compen-
sate these effects.

We normally envision that local production of a quantity 20

implies a local increase in the quantity. But this is not neces-
sarily so when viewed in the np− z or Ap− z domain. Only
when the production is averaged via integration over the np
or Ap domain, as in Sections 3.2.2 and 3.3.2, does a produc-
tion term emerge as normally envisioned. This point further 25

highlights a key idea underlying the formulation, that exten-
sive and intensive particle properties are not in themselves
subject to advection and diffusion, but rather, are merely car-
ried with the particles as these undergo advection and diffu-
sion with respect to z. Indeed, the production terms in Eq. 30
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Figure 10. Exceedance probability plots of dimensionless particle OSL age Âp = (W/h)Ap for (A) uniform mixing and (B) nonuniform
mixing for Péclet numbers Pe = 10, 1 and 0.1.

Figure 11. Plot of dimensionless column-averaged OSL age M̂1 =
(W/h)M1 versus Péclet number Pe =Wh/Kz for uniform and
nonuniform mixing.

(53) and Eq. (54) represent only advection over the np and
Ap domains, not diffusion (mixing) over these domains.

The numerical simulations suggest that the overall particle
OSL age distribution is approximately exponential (Figure
10), consistent with field data (see data of Heimsath et al. 35

(2002) as described by Furbish et al. (2018b)). This result
awaits a theoretical explanation. Meanwhile, as described by
Furbish et al. (2018b), the distribution fTr (Tr) of the return
times Tr between successive encounters of a particle with the
soil surface is expected to be a power-law distribution with 40

an undefined mean (Redner, 2001) for the idealized situa-
tion involving uniform Gaussian mixing in a vertically un-
bounded domain, in the absence of upward advection. Be-
cause the OSL age of a particle increases at the same rate
as its (eventual) return time, the distribution of OSL ages 45

also is likely to be a power-law distribution in this situa-
tion. However, upward advection (with surface erosion) com-
bined with a finite soil thickness have the effect of strongly
tempering this distribution, yielding an approximate expo-
nential form. Further tempering is provided with nonuniform 50

mixing, where diffusion decreases with depth then vanishes
at the soil-saprolite interface. This behavior of particle OSL
ages is entirely analogous to the exponential tempering of the
power-law distribution of residence times of particles under-
going burial and exhumation in a stream channel, where a 55

finite sediment thickness limits the depth of burial. At long
times the particles fully explore the accessible thickness, and
a finite (unchanging) average residence time emerges (Voe-
pel et al., 2013).

The emergence of a maximum average OSL age M̂1 at an
intermediate Péclet number Pe ∼ 1 (Figure 11) is in direct
contrast with the two-dimensional case involving downslope
transport by creep without surface erosion (Furbish et al.,
2018b), where the average OSL age monotonically decreases5

with decreasing Pe . In this case, at large Pe , OSL particles
remain near the surface (as in the one-dimensional case), but
they can accumulate large ages before exiting the soil man-
tle downslope. Moreover, in the one-dimensional case, that
the average OSL age is a fraction of the mean particle resi-10

dence time lends support to the idea of defining two distinct
populations of OSL tracers (Heimsath et al., 2002; Furbish
et al., 2018b), those with finite age and those that are satu-
rated, having an “infinite” age, inasmuch as the mean resi-
dence time is much smaller than the determinable OSL age 15

limit (Murray and Olley, 2002).
That the numerical simulations mimic analytical solutions

for the benchmark situation of a one-dimensional mean mo-
tion involving both uniform and nonuniform mixing with
varying mixing intensities lends confidence in applying the 20

numerics to more complicated situations. Such situations
might be motivated by questions concerning consequences
of transient conditions of surface erosion and soil produc-
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tion, aeolian inputs to the soil, particle weathering in relation
to particle aging, accumulation of luminescence signals with 25

nonuniform dose rates, and the structuring of tracer particles
under depositional conditions. Our experience suggests the
need to implement the numerics of boundary conditions care-
fully, ensuring consistency with global particle conservation.

Here we return to our starting point. Our use of the Fokker- 30

Planck equation assumes Gaussian diffusion of tracer parti-
cles. As described above, this is a parsimonious choice whose
consequences, and veracity, must be judged by its consis-
tency with measurable outcomes of mixing, including pro-
files of CRN concentrations and OSL ages as emphasized 35

here, but possibly to include other soil properties. We suggest
that a Gaussian model of particle mixing is robust inasmuch
as this mixing behavior is insensitive to the form of the prob-
ability distribution of particle displacements, fr(r), so long
as this distribution is not heavy-tailed. We further emphasize 40

that the effective particle diffusivity may actually represent
motions involving a mixture of characteristic length scales
and associated frequencies of occurrence in settings involv-
ing both biotic and abiotic disturbances. We also acknowl-
edge that it may be more appropriate to consider some distur- 45

bances, for example, macro-disturbances by tree throw and
fossorial animals, as having the effect of stirring rather than
mixing, where homogenization occurs at length scales com-
parable to the mechanically active soil thickness (see next
section). This points to the need for a clearer understanding 50

of the spatiotemporal structure of mixing motions in adopt-
ing more sophisticated (i.e., non-Gaussian) models of mixing
behavior. The goal is to understand the information content
of tracers aimed at constraining mechanical formulations of
transport and mixing, notably in relation to soil creep. The
one-dimensional benchmark situation described here is a key5

starting point due to the lessons it offers.

6.2 Assessing the intensity and depth dependence of
mixing

Here we focus on results for the one-dimensional benchmark
case (Section 4, Figure 2) — specifically the profiles of ex-10

pected 10Be concentrations and particle OSL ages — to sug-
gest constraints on assessing the intensity and depth depen-
dence of mixing. For ease of comparison, we collect these
profiles from Figures 3 and 4, and from Figures 6 and 7, and
combine them in Figures 12 and 13.15

As described above, these profiles systematically vary
with the Péclet number, Pe =Wh/Kz . In the case of 10Be
concentrations, the profile converges to the exponential solu-
tion provided by Lal (1991) for weak mixing (large Pe), and
it converges to a uniform value equal to the surface concen-20

tration for strong mixing (small Pe). In the case of expected
particle OSL ages, the profiles vary approximately linearly
with depth, and converge to a uniform value close to zero for
strong mixing.

Figure 12. Plot of dimensionless expected concentration n̂(ẑ) =
n(z)/n(h) of 10Be atoms versus dimensionless height ẑ = z/h
with uniform mixing (solid lines) and nonuniform mixing (dashed
lines) as these vary with the Péclet number Pe =Wh/Kz .

Figure 13. Plot of dimensionless expected particle OSL age
Âp(ẑ) = (W/h)Ap(z) versus dimensionless height ẑ = z/h with
uniform mixing (solid lines) and nonuniform mixing (dashed lines)
as these vary with the Péclet number Pe =Wh/Kz .

Not surprisingly, with weak mixing the 10Be and OSL pro-25

files for uniform and nonuniform mixing are virtually indis-
tinguishable (Figures 12 and 13), as the profiles in this case
are mostly determined by the mean motion. Similarly, with
strong mixing the 10Be profiles are not markedly different
except near the base of the soil column, and the OSL age 30

profiles are nearly the same. Significant differences in the
profiles appear only in the presence of intermediate mixing
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intensities. The essence of these differences at intermediate
intensities (Pe ∼ 1) arises from how rapidly the particle dif-
fusivity decreases with increasing depth (Sections 5.1 and 35

5.2). Thus, the forms of the profiles might change in detail
in the presence of a more complicated (e.g., nonlinear) mix-
ing structure. Nonetheless, these results suggest that 10Be
and OSL age profiles may help constrain the mixing struc-
ture in the presence of intermediate mixing intensities, albeit 40

depending on the resolution of measurements.
These profiles highlight that uniform particle mixing is not

synonymous with the idea of complete mixing, and why a
uniform profile of 10Be concentration or particle OSL age
does not necessarily indicate the presence of uniform mix- 45

ing. Whereas “uniform mixing” refers to the mixing structure
wherein the statistical qualities of particle random walks are
independent of vertical position, “complete mixing” refers
to an idea from reservoir theory (Bolin and Rodhe, 1973),
that particle mixing within a specified control volume is suf- 50

ficiently thorough that the probability of a particle exiting
the volume is independent of its residence time in the volume
(Bolin and Rodhe, 1973; Furbish et al., 2018a) — an idea that
is strongly conditioned by the geometry of particle motions,
specifically, the proximity of the inflow and outflow locations 55

relative to the particle trajectories, and the degree of mixing
between these locations (Bolin and Rodhe, 1973). Both uni-
form and nonuniform mixing yield uniform 10Be and OSL
profiles in the limit of Pe→ 0. That said, complete parti-
cle mixing within soils is mechanically unlikely, a point that 60

is consistent with available 10Be and OSL data concerning
creeping soils (Furbish et al., 2018a, 2018b), and deserving
reexamination in interpreting 10Be profiles with respect to
surface ages and denudation rates (Schaller et al., 2009). This
point also is consistent with the idea of depth dependent mix-5

ing (Humphreys and Field, 1998; Cousins et al., 1999; Roer-
ing, 2004; Wilkinson and and Humphreys, 2005; Wilkinson
et al., 2009; Johnson et al., 2014; Gray, 2018), in which the
local intensity of mixing declines with depth.

Here we step back and look at published data. We first10

note that, whereas our benchmark case involves a steady one-
dimensional mean motion, available field-based measure-
ments of 10Be concentrations and OSL particle ages mostly
pertain to transient conditions or involve two-dimensional
downslope soil transport. One cannot make a direct compar-15

ison between tracer profiles sampled on sloping surfaces and
the one-dimensional results depicted in Figures 12 and 13.
For example, the upper boundary conditions examined here
are quite different from those in the two-dimensional case.
One effect of these differences is directly reflected by the20

column-averaged OSL age as this varies non-monotonically
with the Péclet number Pe (Figures 10 and 11) versus
the monotonic variation of this quantity with Pe for two-
dimensional particle motions (Furbish et al., 2018b, Figure
6 therein). Nonetheless, in comparing our results with those25

presented in Furbish et al. (2018b, Figures 4 and 5 therein),
it is clear that the basic forms of profiles resulting from one-

dimensional and two-dimensional transport systematically
vary in like manner with the intensity of mixing, as char-
acterized by the Péclet number Pe .30

As an important backdrop to the benchmark case exam-
ined here, 10Be profiles from a flight of five marine terraces
near Santa Cruz, California, illustrate the continued accu-
mulation of 10Be atoms with increasing terrace age within
the mixed soil and underlying undisturbed material, under35

the condition of negligible surface erosion (Perg et al., 2001,
Figures 2 and 4 therein; Granger and Riebe, 2014, Figure 9
therein). Near-surface concentrations are relatively uniform,
and in three cases (terraces 1, 3 and 5) decline toward the
value at the base of the assumed mixing depth, suggesting40

Pe ∼ 1 and likely an associated decline in mixing intensity.
Concentrations are mostly centered about a vertically aver-
aged value that is less than the surface concentration that
would occur with steady surface erosion. Similarly, as noted
by Furbish et al. (2018b), uniform concentrations of 10Be45

in weakly developed soils on the crests of moraines near
Pinedale, Wyoming, suggest well mixed conditions near the
surface (Schaller et al., 2009), although there is inconsistency
with expected concentrations based on the formulation of Lal
and Chen (2005) for the well mixed case; there also is uncer-50

tainty in the calculated lowering rates and mixing depths, and
the sites may represent transient conditions.

Relatively uniform 10Be profiles from hillslopes in the
Great Smokey Mountains reflect strongly mixed conditions
at the sample locations (Jungers et al., 2009, Figure 7 therein;55

reproduced in Anderson, 2015, Figure 14 therein), likely due
to effects of tree throw and other bioturbation events that
stir the soil over much of its ∼60 cm thickness. Within the
context of the analysis above, these conditions suggest that
Pe < 1. Similarly, five profiles sampled on hillslopes at Gor- 60

don Gulch, Colorado, display a mixture of conditions, vary-
ing from relatively uniform concentrations (Pe < 1) to an ap-
proximately linear variation with depth (Pe > 1) (Foster et
al., 2015, Figure 7 therein; reproduced in Anderson, 2015,
Figure 14 therein). In turn, three profiles measured along 65

a 100 m catena flow line in a soil developed from granitic
bedrock on Osborn Mountain, Wyoming (Small et al., 1999,
Figure 6 therein; reproduced in Anderson, 2015, Figure 14
therein), reflect conditions consistent with Pe & 1 (Furbish
et al., 2018b), where relatively uniform concentrations in the 70

upper parts of the profiles then decrease in the lower one
third.

An OSL age profile Ap(z) based on single quartz grains
collected from a bioturbated soil developed on a basalt flow
on the Denna Plain in northeast Queensland, Australia (John- 75

son et al., 2014, Figure 2 therein; Furbish et al., 2018b, Fig-
ure 10 therein), most closely matches the benchmark case
described here. This profile suggests an approximately linear
increase in OSL ages with depth, as in Figure 13. In addi-
tion, the sampled quartz grains likely were added to the soil 80

at its surface, a boundary condition that is consistent with the
theoretical formulation (Furbish et al., 2018b; Appendixes C
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and D). Moreover, the OSL ages are only a fraction of the
estimated mean residence time at this site, consistent with
moderate to strong mixing (Furbish et al., 2018b). Although 85

mixing at this site likely varies with depth, the similarity be-
tween profiles in Figure 13 suggests that the mixing struc-
ture cannot be distinguished. Similarly, the OSL age profiles
Ap(z) reported by Heimsath et al. (2002, Figure 1 therein;
Furbish et al., 2018b, Figure 8 therein) based on single grains 90

of quartz collected from a hillslope with nonuniform soil
thickness over granitic bedrock in the Nunnock River catch-
ment, Australia, suggest an approximately linear increase in
OSL ages with depth. Although involving downslope trans-
port, the profiles are consistent with strong mixing (small 95

Pe), possibly including macro-disturbances (Heimsath et al.,
2002). Moreover, the distribution of all particle OSL ages is
approximately exponential with an average age that is much
smaller than the calculated mean soil residence time, consis-
tent with strong mixing (Furbish et al., 2018b; Figure 10). 100

In all cases summarized above, the profiles suggest mod-
erate (Pe & 1) to strong (Pe < 1) mixing. Distinguishing be-
tween uniform and non-uniform mixing likely will require
higher resolution sampling than reported in these cases. Our
own bias is that many if not most settings with significant 105

mixing by bioturbation or the effects of freezing and thawing
likely involve depth dependent mixing. At least for the one-
dimensional case examined here, CRN profiles are capable
of revealing mixing intensity and possibly mixing structure
for Pe ∼ 1. In contrast, OSL profiles are capable of reveal-
ing mixing intensity, but not likely mixing structure.

To our knowledge there are no available measurements of
profiles of 10Be concentrations and OSL ages taken together.
We suggest that there is merit in doing just this as a means5

to provide a more demanding test of formulations of trans-
port and mixing (Furbish, 2003; Roering et al., 2004). We
also reiterate that our results provide an analytical bench-
mark for assessing the veracity of emerging numerical meth-
ods aimed at simulating particle transport and mixing, to in-10

clude Eulerian-Lagrangian descriptions of particle motions
that might incorporate individual detrital grain CRN concen-
trations (Codilean et al., 2010) as well as fully treating the ef-
fects of a nonuniform radiation dose field. This includes sim-
ulations that start from probabilistic, physically based for-15

mulations of total luminescence intensities as measured by
portable OSL readers (Gray et al., 2017; Gray, 2018), as an
addition to multi-grain and single-grain analyses aimed at ex-
tracting particle burial ages. Such measurements may be ca-
pable of revealing mixing structure, as well as intensity, from20

relatively high resolution sampling since particles involved
in accumulating luminescence signals are likely to be more
uniformly distributed within the soil column relative to those
possessing finite OSL ages (Appendix C).

Code availability. The code for simulating particle motions is25

written for Matlab, and is available by request from any of the au-
thors.

Appendix A: Rarefied versus continuum conditions

To further illustrate the significance of the probabilistic for-
mulation of conservation in relation to rarefied versus con-30

tinuum conditions, here we start with the familiar exam-
ple of Brownian motion, the initial formal description of
which is separately attributable to Einstein (1905) and von
Smoluchowski (1906). With reference to Figure A1, let x de-

Figure A1. Plot of coordinate position x of particle undergoing a
random walk motion showing: Gaussian distribution fx(x,t) of ex-
pected positions at time t as the solution, Eq. (A2), of the Fokker-
Planck equation, and the actual (example) particle position x= xa;
and uniform steady-state distribution fx(x) = 1/2 for a bounded
domain such that −1< x < 1.

note a coordinate along which Brownian particles take one-35

dimensional random walks, where x extends indefinitely in
the positive and negative directions about the origin x= 0.
Suppose that a particle starts at the origin at time t= 0, and
with equal probability moves in the positive or negative di-
rection during successive small intervals dt. By the definition40

of a random walk, the motion of the particle — specifically
its expected position x after an interval of time t > 0 — can
be predicted only in a probabilistic sense. Namely, letting
fx(x,t) denote the probability density function of possible
positions x, then this density satisfies a Fokker-Planck equa-45

tion involving only its diffusion term:

∂fx(x,t)

∂t
= κx

∂2fx(x,t)

∂x2
, (A1)

where κx denotes the particle diffusivity. The solution of Eq.
(A1) is the Gaussian distribution with mean µx = 0, namely,
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50

fx(x,t) =
1√

4πκxt
e−x

2/4κxt . (A2)

For this highly rarefied system involving a single particle, we
can only offer probabilistic predictions of its position at time
t. For example, we may confidently state that with probabil-
ity p= 1/2 the particle is either at a position x < 0 or at a po- 55

sition x > 0. Or, we may state that with probability p≈ 0.68
the particle is within the domain defined by plus one and mi-
nus one standard deviations about the mean position, namely,
−
√

2κxt < x <+
√

2κxt. For this single-particle system (re-
alization), the actual particle position xa is represented by a 60

Dirac distribution δ(xa−x,t) (Figure A1), but this cannot be
predicted deterministically.

Let us now imagine an arbitrarily great numberN of iden-
tical, independent particles that start at the origin x= 0 at
time t= 0, each undergoing a random walk during t > 0. 65

When viewed together, the distribution of these particles
at time t= 0 is given by the Dirac distribution, namely,
fx(x,0) = δ(x). At any time t > 0 these particles are dis-
tributed according to Eq. (A2). That is, because N is arbi-
trarily large, the proportion of particles within any small in- 70

terval x to x+ dx closely matches what is predicted by Eq.
(A2), namely fx(x,t)dx, such that in the limit of dx→ 0
the actual distribution of positions x varies smoothly (con-
tinuously) and converges to Eq. (A2) (Figure A2). In con-
trast to the highly rarefied single-particle system in the pre- 75

vious example, we may thus assume that this great number
of particles, occurring in one system (realization), satisfies
the continuum hypothesis. Nonetheless, upon randomly se-
lecting a single particle from this system, we still can only
offer probabilistic predictions of its position at time t — as
in the example above involving a system with a single par-
ticle. Moreover, note that the continuous distribution of po-5

sitions x realized at time t for this one system involving a
great number N of particles is identical to the distribution
that would be realized upon pooling the x positions at time
t associated with a great number N of independent systems,
each involving a single particle.10

Now select a system with a modest number N of particles
such that conditions are rarefied. By this we mean that, after
some time t, the actual distribution of particle positions x is
at best represented by an irregular histogram that roughly ap-
pears Gaussian, but is decidedly discontinuous (Figure A2). 15

Moreover, any realization involving N particles possesses a
similar irregular form at time t, and no two are the same. In
effect, each realization represents a sample of size N drawn
from an imagined population represented by Eq. (A2). Also
note that each realization involving N particles at time t is 20

the same as N realizations, each involving a single particle,
when viewed collectively at time t.

Let us now consider a great number Ne of independent
but nominally identical systems — an ensemble — at any
fixed time t, where each system contains N particles, large 25

Figure A2. Histograms of particle positions x at time t for one sys-
tem showing that: (A) with a great numberN of particles represent-
ing a continuum condition this histogram converges to the smooth
Gaussian distribution in Figure A1 as dx→ 0; in this exampleN =
100,000; and (B) with a modest number of particles representing a
rarefied condition this histogram is irregular and discontinuous; in
this example N = 200.

or small. We now wish to describe the ensemble expected
conditions. To envision this, consider any small interval x
to x+ dx. If N = 1 as in the first example above, then
fx(x,t)dx is just the proportion of the Ne systems contain-
ing a particle within x to x+ dx at time t. Note that this is 30

identical to the result above involving an individual system
containing a great number N =Ne of particles. If instead
each system involves a great number N of particles, then
fx(x,t)dx simply becomes the expected proportion of the
N particles within x to x+ dx at time t, where the expec- 35

tation is calculated over the Ne systems. And note that this
outcome is identical to the proportion of N ×Ne indepen-
dent systems, each involving a single particle, which contain
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a particle within x to x+ dx at time t. In either case, the
expected proportion within the interval is the same. More- 40

over, we reach the same conclusion in considering a great
number Ne of systems, each involving a modest number N
of particles. Thus, when calculated over a great number of
systems for all intervals dx, then in the limit of dx→ 0, the
continuous function, Eq. (A2), is retrieved. The key points 45

are these: First, whether N is relatively small (representing
a rarefied condition) or N is large (representing a continuum
condition), the ensemble expected behavior represented by
Eq. (A2) applies equally to both conditions in a probabilis-
tic sense. Second, if N is small, then Eq. (A2) represents the 50

ensemble expected behavior, not the actual behavior of any
one system (realization); and if N is large, then the actual
behavior of the system is expected to converge to the smooth
ensemble behavior represented by Eq. (A2).

To complete the picture, suppose that the x domain 55

in Figure A1 is bounded such that −1< x < 1. Parti-
cles that reach these boundaries are “reflected” and remain
within the domain, continuing their random walks. In the
limit of t→∞, the probability density of particle posi-
tions x reaches a steady-state form, that is, ∂fx(x,t)/∂t→ 60

0 such that fx(x,t)→ fx(x). In this limit, Eq. (A1) be-
comes d2fx(x)/dx2 = 0. Moreover, the probability flux
qx =−κxdfx(x)/dx= 0 at all positions x, which means
that dfx(x)/dx= 0. These constraints together with the fact
that the distribution fx(x) must integrate to unity yield the 65

result that fx(x) = 1/2 over the bounded domain (Figure
A1). That is, the expected distribution fx(x) is uniform. As
with the unsteady problem described above, a modest num-
berN of particles representing rarefied conditions in any one
realization is at best represented by an irregular histogram
that roughly appears uniform, but is decidedly discontinuous
(Figure A3). Moreover, at an arbitrary later time, the result-
ing distribution (histogram) would be just as irregular; it does5

not become smoother with increasing time. As above, the ex-
pected continuous steady-state distribution is retrieved when
expected values are calculated over a great number Ne of
systems.

To place these ideas within the context of soil tracer par-10

ticles, including the practical assessment of rarefied versus
continuum conditions, let us now imagine a soil column of
thickness h= 1 m. Suppose that we wish to be able to de-
scribe the probability density fz(z) of tracer particle posi-
tions z as a smooth function at a resolution of, say, 1 cm. That15

is, we are aimed at a function that “looks” smooth in proceed-
ing along z from each 1-cm increment to the next. Choosing
a finer resolution would not make sense because then we are
approaching the scale of individual particles. On the other
hand, choosing a significantly larger resolution (e.g., 10 cm)20

would represent a loss of information at scales of possible
interest.

Let us now measure the number of tracer particles within
each of 100 cubic centimeters representing a column of soil,
that is, a column with horizontal dimensions X = Y = 1 cm.25

Figure A3. Histogram of particle positions x at time t→∞ for one
system showing that with a modest number of particles representing
a rarefied condition this histogram is irregular and discontinuous; in
this example N = 500.

For illustration, let us assume that the expected number of
particles within each cubic centimeter of soil is 10. The ex-
pected number of particles within the entire column there-
fore is N = 1,000. In this example the expected proportion
fz(z)dz with dz = 1 cm is 0.01.30

Now imagine that, due to randomness in the particle mix-
ing process, the number of tracer particles n(z) varies from
one increment dz = 1 cm to the next about the expected av-
erage of 10. Assuming for illustration that this variability is
spatially random at the centimeter scale, we may formally 35

draw values of n(z) from a binomial distribution (or approx-
imate this using a Poisson distribution or a normal distribu-
tion) with a mean of µ= 10 to populate each increment in the
soil column. The total expected number of particles remains
N = 1,000, so we may calculate the associated proportions 40

n(z)/N to represent the function f̂z(z) (Figure A4). Notice
that f̂z(z) fluctuates significantly about the expected value
fz(z)dz = 0.01.

Consider first the idea of describing this one realization as
a continuum, that is, where we might imagine that f̂z(z)dz 45

is smooth. To do this, we apply a boxcar moving average of
width L over the spatial series in Figure A4. We may think
of this width L as the averaging length defining a continuum
physical point, as described in the text. Notice that in this ex-
ample, L must approach a significant proportion of the soil 50

thickness h before a relatively smooth function emerges —
that is, a function that we would not be uncomfortable in tak-
ing its derivative to define a gradient having physical signifi-
cance with respect to particle transport. However, there may
be uncertainty in the fidelity of this operation. For example, 55

in the situation where n(z) is not uniform, then because aver-
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Figure A4. Plot of proportion n(z)/N = f̂z(z) versus position z
for the example ofN = 1,000 particles andX = Y = 1 cm with ex-
pected proportions of fz(z)dz = 0.01 (black dots), then smoothed
with boxcar filter with L= 10 cm (black line); and proportion for
N = 100,000 with X = Y = 10 cm and L= 4 cm (gray line).

aging of this sort represents a low-pass filter, averaging may
obscure physically meaningful variations of interest.

Consider now the idea of expanding either (or both) the
horizontal dimensions X and Y of the soil column. In this 60

situation both n(z) andN increase. Fluctuations f̂z(z) about
the expected value fz(z) systematically decrease with in-
creasing N . Using a boxcar moving average, smoothness in
f̂z(z) emerges with a smaller length L (Figure A4) relative
to the previous situation involving smaller XY and N . That
is, f̂z(z) looks more like a continuous function at finer res-5

olution. This is the reason for stating in the text that one
hopes to sample over a sufficiently large area XY to obtain
an approximately smooth distribution in any one realization.
Note, however, that this smoothness is scale dependent, as
it requires a sufficiently large area XY , and assumes that10

the process of mixing is uniform over x and y. But this also
means that variations with respect to x or y in the full three-
dimensional probability density fx,y,z(x,y,z) of particle po-
sitions x, y and z cannot be resolved in the situation where
the mixing process varies with x or y (e.g., two-dimensional15

transport and mixing).
Finally, consider the idea of taking an ensemble average,

where we return to the small 1 cubic centimeter sampling
volumes as described above. If at any geometrically similar
position (x,y,z) within a great number of nominally identical20

but independent systems the number of particles within the
volume dxdydz varies from one system (realization) to the
next, the central limit theorem guarantees that the ensemble
average of this number converges to its ensemble expected
value. It immediately follows that the ensemble expected dis-25

tribution fx,y,z(x,y,z) is a smooth continuous function; or in

one dimension, fz(z) for specified XY is a smooth continu-
ous function.

With respect to developments in the text, the Fokker-
Planck equation describes the time evolution of the proba-30

bility density fz(z, t). The formulation does not assume ei-
ther rarefied or continuum conditions. It is indifferent to these
conditions, yet equally applicable to both. As described in
the text, the Fokker-Planck equation is a special case of the
Master equation, a general statement of conservation of prob-35

ability that is independent of scale, and which is the basis of
more familiar statements of conservation when probability
is reinterpreted in terms of, for example, mass, momentum
or energy. If in an individual system (realization) the con-
tinuum hypothesis is satisfied (a condition that is indepen-40

dent of the probabilistic basis of the Master equation or the
Fokker-Planck equation), then the probabilistic formulation
based on ensemble expected conditions and its continuum
counterpart are essentially one and the same. If, however, the
continuum hypothesis is not satisfied, then one cannot de-45

fensibly start with a continuum equation, but instead must
appeal to a probabilistic formulation of ensemble expected
conditions (in order to justify the use of continuously differ-
entiable equations), with the proviso that any prediction of
the behavior of an individual (rarefied) system is probabilis-50

tic in nature.

Appendix B: Conservation of expected number
concentration of 10Be atoms

Assuming 10Be production is due to spallation (Gosse and
Phillips, 2001), the number concentration n(z, t) of 10Be 55

atoms satisfies a Foker-Planck-like equation, namely,

∂n(z, t)

∂t
=− ∂

∂z

[
w(z, t)n(z, t)−κz(z, t)

∂n(z, t)

∂z

]

+P0e
−(h−z)/ls −λn(z, t) , (B1)

where w(z, t) denotes the ensemble averaged particle ve- 60

locity and κz(z, t) denotes the ensemble expected parti-
cle diffusivity (Furbish et al., 2009b, 2018a, 2018b). For
steady conditions involving a one-dimensional mean motion,
∂n(z, t)/∂t= 0, n(z, t)→ n(z) and w(z, t)→W . Assum-
ing that the half-life of 10Be is much greater than the mean 65

residence time, h/W , of target quartz particles, then Eq. (B1)
becomes

d

dz

[
Wn(z)−κz(z)

dn(z)

dz

]
= P0e

−(h−z)/ls . (B2)

We first rewrite Eq. (B2) in terms of the flux qz(z) =
Wn(z)−dn(z)/dz, namely, 70

dq(z)

dz
= P0e

−h/lsez/ls . (B3)
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Vertically integrating Eq. (B3) over the soil thickness,

h∫
0

dq(z)

dz
dz = P0e

−h/ls

h∫
0

ez/ls dz . (B4)

With fixed boundaries, this yields

qz(h) = qz(0) +P0ls

(
1− e−h/ls

)
. (B5) 75

This says that the flux qz(h) of 10Be atoms across the soil
surface and removed by erosion is equal to the rate at which
atoms enter the soil column at its base, qz(0) =Wn(0), plus
the total rate at which they are produced within the column.
In this steady problem, no information is available regarding 80

the vertically averaged concentration.
In this problem, the concentration n(0) at the soil-saprolite

interface is obtained by solving the purely adective form of
Eq. (B2) and using the boundary condition that n(−∞) = 0.
The result is 85

n(0) =
P0ls
W

e−h/ls . (B6)

In turn, the flux qz(0) is

qz(0) = P0lse
−h/ls , (B7)

and the flux qz(h) is

qz(h) = P0ls . (B8)

As described below, the concentration n(h) at the soil surface
depends on what is assumed about the contributions to the
flux qz(h) at this surface. We now consider how the concen-5

tration profile n(z) differs with uniform versus nonuniform
mixing.

B1 Uniform mixing

With uniform mixing (κz =Kz), we start by integrating Eq.
(B3) to give10

qz(z) = P0lse
−h/lsez/ls +C1 . (B9)

The lower boundary condition, Eq. (B7), then gives
C1 = 0. Using this result together with qz(z) =Wn(z)−
Kzdn(z)/dz then leads to

dn(z)

dz
− W

Kz
n(z) =−P0ls

Kz
e−h/lsez/ls . (B10)15

We now simplify the notation and rewrite Eq. (B10) as

dn(z)

dz
−An(z) =−Bez/ls , (B11)

with

A=
W

Kz
and B =

P0ls
Kz

e−h/ls . (B12)

A general solution of Eq. (B11) is20

n(z) =
Bls

Als− 1
ez/ls +C1e

Az . (B13)

At this point we assume that the upper boundary flux is
purely advective. Physically this means we are imagining
that the rate of surface erosion E, being externally imposed,
removes 10Be atoms at a rate En(h) =Wn(h). This is con-25

sistent with the requirement that the rate of quartz particle
removal at the surface is equal to the rate at which quartz
particles enter the soil at the soil-saprolite interface, inde-
pendent of their 10Be concentration. Then, from Eq. (B8),
qz(h) = P0ls =Wn(h) so that n(h) = P0ls/W . Using this30

boundary condition,

C1 =
P0ls
W

e−Ah− Bls
Als− 1

eh/lse−Ah . (B14)

Substituting this into Eq. (B13) then doing algebra yields

n(z) =
P0ls
W

e−W (h−z)/Kz

35

+
P0l

2
s

Kz

1

Wls/Kz − 1

[
e−(h−z)/ls − e−W (h−z)/Kz

]
. (B15)

With dimensionless height ẑ = z/h, dimensionless concen-
tration n̂(ẑ) = n(z)/n(h), primary Péclet number Pe =
Wh/Kz and secondary Péclet number Pels =Wls/Kz , Eq.
(B15) becomes 40

n̂(ẑ) = e−Pe(1−ẑ)

+
Pels

Pels − 1

[
e−h(1−ẑ)/ls − e−Pe(1−ẑ)

]
, (B16)

which is Eq. (36) in the text.

B2 Nonuniform mixing 45

With nonuniform mixing (κz(z) =Kzz/h) we start with
Eq. (B9) with C1 = 0 together with qz(z) =Wn(z)−
Kz(z/h)dn(z)/dz to give

dn(z)

dz
− Wh

Kzz
n(z) =−P0lsh

Kz
e−h/ls

ez/ls

z
. (B17)

We now simplify the notation and rewrite Eq. (B17) as 50

dn(z)

dz
− A

z
n(z) =−Be

z/ls

z
, (B18)

with

A=
Wh

Kz
and B =

P0lsh

Kz
e−h/ls . (B19)
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A general solution of Eq. (B18) is

n(z) =B

(
− z
ls

)A
Γ

(
−A,− z

ls

)
+C1z

A . (B20) 55

where Γ is the incomplete gamma function. Using the advec-
tive boundary condition n(h) = P0ls/W ,

C1 =
P0ls
W

h−A−B
(
− h
ls

)A
Γ

(
−A,− h

ls

)
h−A . (B21)

Substituting this into Eq. (B20) then doing algebra yields

n(z) =
P0ls
W

( z
h

)Wh/Kz

60

+
P0lsh

Kz

[(
− z
ls

)Wh/Kz

Γ

(
−Wh

Kz
,− z
ls

)

−
(
− h
ls

)Wh/Kz
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·Γ
(
−Wh

Kz
,− h
ls

)( z
h

)Wh/Kz
]
e−h/ls . (B22)

With dimensionless height ẑ = z/h, dimensionless concen-
tration n̂(ẑ) = n(z)/n(h) and Péclet number Pe =Wh/Kz ,
Eq. (B22) becomes

n̂(ẑ) = ẑPe +Pe
[(
−hẑ
ls

)Pe

Γ

(
−Pe,−hẑ

ls

)
5 (
− h
ls

)Pe

Γ

(
−Pe,− h

ls

)
ẑPe
]
e−h/ls , (B23)

which is Eq. (37) in the text. Note that Eq. (B23) has real and
imaginary parts. Only the real part is physically meaningful
in this problem.

Like the results in Section A1 above, the concentration10

gradient at the soil surface, [dn(z)/dz]h = 0, as a conse-
quence of assuming an advective boundary condition.

Appendix C: Conservation of particles with finite
OSL age

The number concentration c(z, t) of particles with finite OSL15

age satisfies a Fokker-Planck-like equation, namely,

∂c(z, t)

∂t
=− ∂

∂z

[
w(z, t)c(z, t)−κz(z, t)

∂c(z, t)

∂z

]
, (C1)

where w(z, t) denotes the ensemble averaged particle veloc-
ity and κz(z, t) denotes the ensemble expected particle dif-
fusivity. For steady conditions involving a one-dimensional20

mean motion, ∂c(z, t)/∂t= 0, c(z, t)→ c(z), w(z, t)→W ,
and Eq. (C1) becomes

d

dz

[
Wc(z)−κz(z)

dc(z)

dz

]
= 0 . (C2)

Moreover, the particle flux must be zero across any surface
normal to z, so25

Wc(z)−κz(z)
dc(z)

dz
= 0 . (C3)

Under steady conditions the total number of particles with
finite (measurable, non-saturated) OSL age within the soil el-
ement remains fixed. A particle entering the soil cannot attain
a finite OSL age until it reaches the surface and is bleached,30

and then becomes buried and exposed to the dose field. Thus,
even though particles that eventually possess a finite OSL age
continuously enter the element through its lower boundary,
this boundary must be considered a zero flux boundary, as no
particle with finite age can be added to the soil. Particles at35

the soil surface with zero OSL age are removed by erosion.
The erosion rate matchesW , so the rate of loss of particles is
exactly balanced by the rate at which particles reach the sur-
face and become OSL particles (with an OSL age of zero),
many of which then take random walks downward. Thus, the40

upper boundary also must be considered a zero flux boundary
with fixed concentration c(h).

With uniform mixing (κz =Kz) we integrate Eq. (C3) to
obtain

c(z) = C1e
Wz/Kz , (C4) 45

with constant of integration C1. The boundary condition
c(h) = C1e

Wh/Kz then leads to the solution

c(z) = c(h)e−W (h−z)/Kz . (C5)

The boundary condition c(h) should be equal to the concen-
tration of OSL sensitive particles entering the base of the soil 50

element, but which only take on finite OSL ages once they
reach the surface and are bleached. With nonuniform mixing
(κz(z) =Kzz/h) we integrate Eq. (C3) to obtain

c(z) = c(h)
( z
h

)Wh/Kz

(C6)

With dimensionless height ẑ = z/h, dimensionless con- 55

centration ĉ(ẑ) = c(z)/c(h) and Péclet number Pe =
Wh/Kz , Eq. (C5) and Eq. (C6) become

ĉ(ẑ) = e−Pe(1−ẑ) (C7)

and

ĉ(ẑ) = ẑPe , (C8) 60

which are Eq. (41) and Eq. (42) in the text. These results
(Figure C1) are used next in obtaining the expected OSL age
A(z) of particles.
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Figure C1. Plot of dimensionless OSL particle concentration
ĉ(ẑ) = c(z)/c(h) versus dimensionless height ẑ = z/h with uni-
form mixing (solid lines) and nonuniform mixing (dashed lines) as
these vary with the Péclet number Pe =Wh/Kz .

Appendix D: Conservation of expected particle OSL
age

Let m1(z, t) denote the expected (average) finite OSL age of
particles within the small interval z to z+ dz in a soil ele-
ment with dimensions XY h. With a total of N such parti-5

cles within the element, the product Nc(z, t)m1(z, t)XY dz
represents the total (collective) OSL age of particles within
dz. The product c(z, t)m1(z, t) satisfies a Fokker-Planck-like
equation, namely,

∂

∂t
[c(z, t)m1(z, t)]10

=− ∂

∂z

(
w(z, t)c(z, t)m1(z, t)

−κz(z, t)
∂

∂z
[c(z, t)m1(z, t)]

)
+Sc(z, t) , (D1)

where w(z, t) denotes the ensemble averaged particle ve-15

locity, κz(z, t) denotes the ensemble expected particle dif-
fusivity, and S is a source term. For steady conditions
in both c and m1 involving a one-dimensional mean mo-
tion, (∂/∂t)[c(z, t)m1(z, t)] = 0, c(z, t)→ c(z), m1(z, t)→
m1(z), w(z, t)→W , and Eq. (D1) becomes20

d

dz

(
Wc(z)m1(z)−κz(z)

d

dz
[c(z)m1(z)]

)

= Sc(z) , (D2)

We now rewrite Eq. (D2) as

d

dz

(
m1(z)

[
Wc(z)−κz

dc(z)

dz

]
25

−κz(z)c(z)
dm1(z)

dz

)
= Sc(z) . (D3)

Using (B3), this reduces to

d

dz

[
−κz(z)c(z)

dm1(z)

dz

]
= Sc(z) . (D4)

indicating that the flux qz(z) =−κz(z)c(z)dm1(z)/dz of30

particle OSL age involves only diffusion. That is, OSL age
is not advected. In this problem, particles are advected, car-
rying their OSL age with them; but particle advection is bal-
anced by particle diffusion.

We now write Eq. (D4) as35

dqz(z)

dz
= Sc(z) . (D5)

Vertically integrating,

h∫
0

dqz(z)

dz
dz = S

h∫
0

c(z)dz . (D6)

With fixed boundaries, this yields

qz(h)− qz(0) = Sch. (D7) 40

where the overbar denotes a vertically averaged quantity.
Moreover, note that qz(0) = 0, as particles with a finite OSL
age cannot be imported to the soil element. Thus,

qz(h) =−κz(h)c(h)

[
dm1(z)

dz

]
z=h

= Sch. (D8)

This indicates that OSL age is diffused “through” the soil 45

surface at a rate equal to its total production within the soil
column.

D1 Uniform mixing

With uniform mixing (κz =Kz) we write

qz(h) = S

h∫
0

c(z)dz . (D9) 50

Using Eq. (C5), this becomes

qz(h) = Sc(h)e−Wh/Kz

h∫
0

eWz/Kz dz . (D10)
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Evaluating the integral then gives

qz(h) =
Sc(h)Kz

W

(
1− e−Wh/Kz

)
. (D11)

More generally, 55

qz(z) = Sc(h)e−Wh/Kz

∫
eWz/Kz dz . (D12)

Evaluating the integral,

qz(z) =
Sc(h)Kz

W
e−Wh/KzeWz/Kz +C1 . (D13)

Using the boundary condition obtained above for qz(h),

C1 =−Sc(h)Kz

W
e−Wh/Kz . (D14) 60

Using this result and qz(z) =−Kzc(z)dm1(z)/dz with c(z)
given by Eq. (C5), we obtain

dm1(z)

dz
=− S

W
+
S

W
e−Wz/Kz . (D15)

Integrating and using the boundary condition thatm1(h) = 0
then yields

m1(z) =
S

W
(h− z)

+
SKz

W 2

(
e−Wh/Kz − e−Wz/Kz

)
. (D16)5

With dimensionless height ẑ = z/h, dimensionless OSL age
m̂1(ẑ) = (W/h)m1(z) and Péclet number Pe =Wh/Kz ,
Eq. (D16) becomes

m̂1(ẑ) = S(1− ẑ) +
Se−Pe

Pe

[
1− ePe(1−ẑ)

]
, (D17)

which is Eq. (43) in the text.10

D2 Nonuniform mixing

With nonuniform mixing (κz(z) =Kzz/h) we use Eq. (C6)
and write

qz(h) = Sc(h)h−Pe

h∫
0

zPe dz . (D18)

Evaluating the integral then gives15

qz(h) =
Sc(h)h

1 +Pe
. (D19)

More generally,

qz(z) = Sc(h)h−Pe

∫
zPe dz . (D20)

Evaluating the integral,

qz(z) =
Sc(h)h−Pe

1 +Pe
z1+Pe +C1 . (D21)20

Using Eq. (D19), C1 = 0. Then using qz(z) =
−Kz(z/h)c(z)dm1(z)/dz together with Eq. (D19) we
obtain

dm1(z)

dz
=− Sh

Kz(1 +Pe)
. (D22)

Integrating and using the boundary condition thatm1(h) = 025

then yields

m1(z) =
Sh2

Kz(1 +Pe)

(
1− z

h

)
. (D23)

With dimensionless height ẑ = z/h, dimensionless OSL age
m̂1(ẑ) = (W/h)m1(z) and Péclet number Pe =Wh/Kz ,
Eq. (D23) becomes30

m̂1(ẑ) =
SPe

1 +Pe
(1− ẑ) , (D24)

which is Eq. (44) in the text.

Appendix E: Variance of OSL ages

For a set of particles possessing finite OSL ages within any
interval dz, their rate of “aging” is fixed, independent of age. 35

This means that the average OSL age increases at this fixed
rate, whereas the second and higher moments do not change.
Thus, direct production of the variance m2 of OSL ages is
zero.

For steady conditions we start with Eq. (40) in the text, 40

namely,

d

dz

[
−κz(z)c(z)

dm2(z)

dz

]

−2κz(z)c(z)

[
dm1(z)

dz

]2
= 0 . (E1)

In the following we go directly to nondimensional forms of 45

this.

E1 Uniform mixing

With κz =Kz and q̂ = [h/Kzc(h)(h/W )2]q we start with

dq̂

dẑ
=

d

dẑ

(
−ĉdm̂2

dẑ

)
= 2ĉ

(
dm̂1

dẑ

)2

. (E2)

Taking the derivative of Eq. (D17), squaring the result and 50

using ĉ= e−PeePeẑ then leads to

dq̂

dẑ
= 2S2e−PeePeẑ − 4S2e−Pe + 2S2e−Pee−Peẑ . (E3)
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Integrating this with respect to ẑ from ẑ = 0 to ẑ = 1 and
noting that q̂(0) = 0,

q̂(1) =
2S2

Pe
− 4S2e−Pe − 2S2e−2Pe

Pe
. (E4) 55

More generally,

q̂(ẑ) =
2S2e−Pe

Pe
ePeẑ − 4S2e−Pe ẑ

−2S2e−Pe

Pe
e−Peẑ +C1 . (E5)

Using Eq. (E5) gives C1 = 0. With q̂ =−ĉdm̂2/dẑ, and 60

again using ĉ= e−PeePeẑ ,

dm̂2

dẑ
= 4S2ẑe−Peẑ − 2S2

Pe
+

2S2

Pe
e−2Peẑ . (E6)

Integrating with respect to ẑ and evaluatinng the constant of
integration with the condition that m̂2(1) = 0 then yields

m̂2(ẑ) =
2S2

Pe
(1− ẑ) +

4S2

Pe2
[
(1 +Pe)e−Pe

65

−(1 +Pe ẑ)e−Peẑ
]

+
S2

Pe2
(
e−2Pe − e−2Peẑ

)
, (E7)

which is Eq. (45) in the text.

E2 Nonuniform mixing

With q̂ = [h/Kzc(h)(h/W )2]q we start with

dq̂

dẑ
=

d

dẑ

(
−ẑĉdm̂2

dẑ

)
= 2ẑĉ

(
dm̂1

dẑ

)2

. (E8)

With ĉ= ẑPe then ẑĉ= ẑ1+Pe . Using this and taking the
derivative of Eq. (D24) with respect to ẑ and squaring the5

result leads to

dq̂

dẑ
=

2S2Pe2

(1 +Pe)2
ẑ1+Pe . (E9)

Integrating this with respect to ẑ from ẑ = 0 to ẑ = 1 and
noting that q̂(0) = 0,

q̂(1) =
2S2Pe2

(2 +Pe)(1 +Pe)2
. (E10)10

More generally,

q̂(z) =
2S2Pe2

(2 +Pe)(1 +Pe)2
ẑ2+Pe +C1 . (E11)

Using Eq. (E10) gives C1 = 0. With q̂ =−ẑĉdm̂2/dẑ, and
again using ẑĉ= ẑ1+Pe ,

dm̂2

dẑ
=− 2S2Pe2

(2 +Pe)(1 +Pe)2
ẑ . (E12)15

Integrating with respect to ẑ and evaluating the constant of
integration with the condition that m̂2(1) = 0 then yields

m̂2(ẑ) =
S2Pe2

(2 +Pe)(1 +Pe)2
(1− ẑ2) , (E13)

which is Eq. (46) in the text.
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