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Abstract. We formulate tracer particle transport and mixing in soils due to disturbance driven particle motions in terms of

the Fokker-Planck equation. The probabilistic basis of the formulation is suitable for rarefied particle conditions, and for

parsing the mixing behavior of extensive and intensive properties belonging to the particles rather than to the bulk soil. The

significance of the formulation is illustrated with the examples of vertical profiles of expected 10Be concentrations and particle

OSL ages for the benchmark situation involving a one-dimensional mean upward soil motion with nominally steady surface5

erosion in the presence of either uniform or depth dependent particle mixing, and varying mixing intensity. The analysis,

together with Eulerian-Lagrangian numerical simulations of tracer particle motions, highlight the significance of calculating

ensemble expected values of extensive and intensive particle properties, including higher moments of particle OSL ages, rather

than assuming de facto a continuum-like mixing behavior, with implications for field sampling and for describing the mixing

behavior of other particle and soil properties. Profiles of expected 10Be concentrations and OSL ages systematically vary with10

mixing intensity as measured by a Péclet number involving the speed at which particles enter the soil, the soil thickness, and

the particle diffusivity. Profiles associated with uniform mixing versus a linear decrease in mixing with depth are distinct for

moderate mixing, but become similar with either weak mixing or strong mixing; uniform profiles do not necessarily imply

uniform mixing.

To reviewers: Please note that in this one-column version of our manuscript, some of the equations are written on multiple15

lines in order to fit a two-column format, where the meaning of parentheses and square brackets (and their sizes) is essential.

We trust you will thus pardon the sometimes wonky appearance of the equations (particularly Eq. (11) and Eq. (A22)).

1 Introduction

Soils on Earth’s surface are granular materials consisting of polymineralic clasts and individual mineral grains, organic matter

and live biota. These materials experience patchy, intermittent mixing motions associated with disturbances due to bioturbation20

(Darwin, 1881; Shaler, 1891; Gabet, 2000; Reichman and Seabloom, 2002; Meysman et al., 2006; Wilkinson et al., 2009; Covey
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et al., 2010; Astete et al., 2015), the effects of frost and ice growth and thaw (Branson, 1992; Matsuoka and Moriwaki, 1992;

Auzet and Ambroise, 1996; Branson et al., 1996; Harris et al., 1997; Matsuoka, 1998; Anderson, 2002), and the swelling and

shrinking of certain minerals with wetting and drying (Eyles and Ho, 1970; Fleming and Johnson, 1975). In addition, these

soil materials may undergo mixing motions in relation to the chronic creation and relaxation of disordered granular structures

(Hsiau and Hunt, 1993; Utter and Behringer, 2004; Fan et al., 2015) associated with granular creep (Houssais et al., 2017;5

Ferdowsi et al., 2018).

Soil particle mixing is a key process in soil formation (Shaler, 1891; Birkeland, 1984; Wilkinson et al., 2009) and in its

associated ecological role of “modifying geochemical gradients, redistributing food resources, viruses, bacteria, ...and eggs”

(Meysman et al., 2006), as well as being responsible for redistributing substances, including contaminants, attached to particles

(Cousins et al., 1999; Covey et al., 2010; Astete et al., 2015). Moreover, the idea of disturbance driven transport and mixing of10

soil particles is central to current treatments of soil creep (Culling, 1963; Roering et al., 1999, 2002; Gabet, 2000; Anderson,

2002; Gabet et al., 2003; Furbish, 2003; Roering, 2004; Furbish et al., 2009, 2018a), the slow but steady bulk motion of soils

on hillslopes, where the influence of gravity gives a downslope bias to particle motions. Because of the significance of soil

particle mixing in numerous problems spanning ecological to geomorphic timescales, there is a continuing, compelling need to

fully clarify the kinematics, and eventually the mechanical basis, of soil particle motions during transport and mixing (Furbish15

et al., 2009b, 2018a, 2018b; BenDror and Goren, 2018; Ferdowsi et al., 2018).

Currently it is not possible to directly measure disturbance driven particle motions and associated mixing in the setting

of a natural soil (although this is entirely possible in experiments and numerical simulations of granular creep (Utter and

Behringer, 2004; Kamrin and Koval, 2012; Fan et al., 2015)). Moreover, we do not yet have a mechanical theory to describe

these motions given the complexity — notably the biotic complexity — of phenomena involved in disturbances and associated20

particle displacements (Furbish et al., 2009b, 2018a). Thus, as in studies of particle mixing associated with marine bioturbation

(Boudreau, 1986a, 1986b; Boudreau and Imboden, 1987; Teal et al., 2008; Lecroart et al., 2010), a key strategy to clarify

the nature of particle motions and mixing in soils involves using tracer particles identified by specific physical or chemical

properties. Two tracer properties have emerged in the field of geomorphology as being of particular interest: in situ cosmogenic

radionuclide (CRN) concentrations and optically stimulated luminescence (OSL) particle ages (Granger and Riebe, 2014;25

Heimsath et al., 2002; Johnson et al., 2014). Cosmogenic nuclides continually accumulate within minerals due to cosmic ray

interactions with mineral atom nuclei, for example, producing 10Be from spallation of oxygen nuclei. Using luminescence

systematics, the time elapsed since luminescence-sensitive particles were last exposed to light or heat at the soil surface is

estimated from the luminescence signal that accumulates within the crystal lattice in response to a combination of ionizing

radiation emitted from the decay of radioactive elements in the surrounding soil and cosmic radiation (Rhodes, 2011). Particles30

that accumulate CRN atoms or luminescence signals during their complex motions within soils — thereby serving as tracer

particles — are naturally occurring (as opposed to being “seeded”) and therefore behave mechanically the same as other soil

particles. As a consequence, CRN and OSL tracer particles are particularly relevant in assessing particle mixing over timescales

of soil formation and transport in the context of landform and landscape evolution.
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Building from the pioneering work of Lal (1991) concerning the relation between rock erosion rates and the in situ production

of cosmogenic radionuclides, vertical profiles of CRN concentrations in soils and underlying saprolite are now used to calculate

soil production rates (e.g. Heimsath et al., 1997, 2000, 2005, 2012; Small et al., 1999; Anderson, 2002; Wilkinson et al., 2005)

as well as to infer the intensity of soil particle mixing in the presence of mechanical and chemical erosion (Small et al., 1999;

Schaller et al., 2009; Granger and Riebe, 2014; Furbish et al., 2018b). Similarly, profiles of particle OSL ages are used to assess5

particle mixing (Heimsath et al., 2002; Wilkinson and Humphreys, 2005; Johnson et al., 2014; Furbish et al., 2018b). Because

profiles of CRN concentrations and OSL ages inform descriptions of soil transport and interpretations of the delivery of CRNs

to channels (Heimsath et al., 2002; Anderson, 2015; Furbish et al., 2018b), and associated interpretations of erosion rates at

catchment scales (e.g., Brown et al., 1995; Bierman and Steig, 1996; Granger et al., 1996; Granger and Riebe, 2014; Granger

and Schaller, 2014; Lukens et al., 2016), there is merit in further clarifying what these profiles reveal about particle mixing in10

soils.

It is now conventional to conceptualize certain soil particle mixing motions as a diffusion-like process (Furbish et al., 2009b,

2018a, 2018b; Campforts et al., 2016), building from the pioneering work of Culling (1963), who first pointed to the idea that

soil particles undergo Gaussian diffusion in response to small disturbances. Various studies have thus appealed to some form of

a diffusion equation or an advection-diffusion equation (Cousins et al., 1999; Covey et al., 2010; Stang et al., 2012; Johnson et15

al., 2014; Furbish et al., 2009b, 2018a, 2018b; Astete et al., 2015; Campforts et al., 2016; Gray, 2018) to describe transport and

mixing for comparison with measured vertical profiles of tracer particles in soils, notably including in situ CRN concentrations

and particle OSL ages. But herein arises a need for caution, and clarity.

As described in Section 2, natural tracer particles — quartz particles in particular — occur under rarefied conditions, where

it is unclear that a description of particle mixing based on a diffusion or advection-diffusion equation formulated for continuum20

conditions is satisfactory. Moreover, we often are interested in the transport of quantities that are associated with the particles,

and are not in themselves subject to advection and diffusion as normally envisioned to occur in a continuum. This includes

particle CRN concentrations and OSL ages. Rather, such quantities might experience advection and diffusion, but only indi-

rectly via the motions of the particles with which the quantities are associated. Within this context, our objectives in this mostly

theoretical contribution are five.25

First, we illustrate why quartz tracer particles in soils experience transport and mixing under rarefied (non-continuum) condi-

tions, and why it therefore becomes important to treat transport and mixing probabilistically, in a manner that formally appeals

to the statistical mechanics idea of ensemble expected (average) quantities. Our focus on quartz particles is purposeful, as

these are ideal targets for in situ production of 10Be atoms, and for accumulating OSL signals. Second, we illustrate how the

probabilistic basis of the Fokker-Planck equation, versus an “ordinary” continuum-like advection-diffusion equation, is well30

suited to the problem of rarefied conditions. Third, because extensive and intensive properties such as particle volume, 10Be

concentration and OSL age “belong” to individual particles, not to the bulk soil, we illustrate why the probabilistic basis of

the Fokker-Planck equation is suitable for parsing the mixing behavior of these properties — as opposed to assuming de facto

a continuum-like mixing behavior in which these properties are assigned to the bulk soil. Fourth, we provide complementary

numerical analyses that reveal important information not readily apparent in the analytical formulations, including an illustra-35
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tion of the variability in 10Be concentrations and OSL ages of individual particles in soils, with implications for interpreting

field-based measurements. This part of the paper highlights a benchmark situation involving a one-dimensional mean upward

soil motion with nominally steady surface erosion in the presence of either uniform or depth dependent particle mixing, and

varying mixing intensity. Fifth, we use the results for this benchmark case in relation to published field-based measurements

to suggest constraints on assessing the intensity and depth dependence of mixing.5

Note that in the formulations presented below, we use full functional notation throughout. This provides clarity in how

random variables, parameters, and moments of random variables depend on position and time, as well as how random variables

might covary.

2 Rarefied versus continuum particle conditions in soils

Quartz particles targeted in sampling for 10Be analysis typically are within the range of 0.25 – 0.50 mm; but sometimes grains10

as small as 0.125 mm and as large as 0.85 mm or 1 mm are sampled from quartz-poor source materials (Gosse and Phillips,

2001; Morgan et al., 2011; Shakun et al., 2018). Quartz particles targeted for single-grain OSL analysis typically are within

the range of 0.35 – 0.425 mm (e.g., Heimsath et al., 2002; Johnson et al., 2014), but smaller grains sometimes are used.

Thus, neglecting aeolian inputs, target grains represent a subset of the total population of quartz grain sizes in soils released

from parent bedrock during soil formation. In the following discussion we consider for illustration a single particle size, with15

recognition that the ideas extend to other particles.

Consider a soil element with dimensions XY h, where X = Y = h= 1 m, residing on a soil-mantled hillslope (Figure 1).

If in the ideal this element contains uniform particles of diameter d= 1 mm that are approximately closely packed, then the

Figure 1. Definition diagram of soil-mantled hillslope with mechanically active soil thickness h= ζ−η, and cutout soil element with dimen-

sions XY h. Bedrock material is continually transformed into soil by chemical and mechanical processes, and soil particles are transported

downslope by creep or surface erosion.

total number of particles in the soil element is O(109). Each cubic centimeter contains O(103) particles. The average spacing

is approximately equal to one particle diameter, and the geometrical mean free path λ (Furbish et al., 2009b) is a fraction of20

the particle diameter. For comparison, the number of molecules in a cubic centimeter of air, a continuum material at ordinary
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pressure-temperature conditions, is O(1019). The mean free path is O(10−7) m, approximately 103 larger than the effective

molecular diameter. Assuming the continuum hypothesis is satisfied for a value of the Knudsen number Kn = λ/L≤ 0.01,

then the averaging length scale L defining a continuum physical point for air is O(10−5) m, far smaller than most scales of

interest in treating particle transport and mixing in air.

For a soil developed from granitic bedrock, 20% to 60% of the volume of particles are quartz particles, some larger than 15

mm in diameter and many smaller. Per unit volume, the number of quartz particles targeted in sampling for 10Be analysis thus

is generally smaller than the close-packed value of O(103) cm−3 estimated above, and the average spacing may be on the order

of millimeters to a centimeter or more. For example, in practical terms, 10Be analysis requires about 10 g of quartz. Assuming

0.5 mm grains, this represents ∼60,000 grains. For soils formed on granitic bedrock, one typically samples at least one liter of

soil for 10 g of quartz. This translates to n∼ 10 – 100 grains per cubic cm. The associated geometrical mean free path is about10

1 – 10 cm, and the average spacing λs ∼ (cm3/n)1/3 is 0.2 – 0.5 cm. Conservatively using the average spacing rather than

the mean free path as a suitable measure of the particle number density, then to satisfy the Knudsen condition of Kn ≤ 0.01 in

order to justify a continuum description of particle behavior, the averaging length scale Lmay approach the soil thickness. This

condition is exacerbated if the parent bedrock is quartz poor. In addition, a small fraction — only a few percent — of quartz

particles initially released from bedrock are sensitive to OSL and develop a less-than-saturated luminescence signal following15

exposure to sunlight or heat at the soil surface. Thus, tracer particles identified as those possessing a finite OSL age (Heimsath

et al., 2002; Johnson et al., 2014) may be highly rarefied.

We therefore must admit at the outset that the number concentration of target quartz particles does not satisfy the continuum

hypothesis. Nonetheless, we wish to use continuum-like formulations of transport and mixing of particle concentrations and

associated quantities, that is, where particle concentrations, 10Be concentrations and particle OSL ages may be viewed as20

continuously differentiable functions of position and time. In order to justifiably do this, we therefore appeal to the idea of an

ensemble of particle configurations, a statistical mechanics idea designed to treat rarefied particle conditions.

For an element of soil with dimensions XY h (Figure 1), let fz(z, t) denote the probability density function of particle

positions z within the element. Thus, fz(z, t)dz represents the probability that a particle is located within the small interval z

to z+ dz at time t. This represents an ensemble expected value, as follows. We envision, as did Gibbs (1902), a great number25

(an ensemble) of nominally identical but independent systems, each containing a large number N of particles and behaving

in a statistically similar manner with respect to transport and mixing. The expected number of particles within the interval

z to z+ dz in any system (realization) at time t may vary from one system to another. However, we then imagine taking

the expected value over the ensemble (Kittel, 1958), akin to ensemble Reynolds averaging (Monin and Yaglom, 1971). This

represents the expected number of particles within dz, namely, Nfz(z, t)dz, where fz(z, t) now is interpreted as the ensemble30

expected density. Moreover, we may assume that fz(z, t) is a smooth, continuous function.

In the developments below, we also consider joint probability density functions, for example, the joint density fVp,np,z(Vp,np,z, t)

of particle volumes Vp, 10Be atom number concentrations np and positions z. We similarly assume that these represent ensem-

ble expected densities with respect to z. In principle, therefore, we are considering the expected concentration of particles and

associated properties within any small interval z to z+dz in a soil element with dimensions XY h (Figure 1), where averaging35
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is over an ensemble of nominally identical but independent systems. In practical terms, one hopes to sample over an area XY

such that the number of particles within any small interval z to z+ dz is sufficiently large to provide reasonable estimates of

ensemble averaged values, where these estimates vary approximately smoothly over z and average over the effects of patchy,

intermittent particle motions. However, this cannot be known a priori, a point to which we return below.

3 Formulation5

3.1 Tracer Particles

Consider a set of tracer particles that are undergoing transport and mixing within a soil. Here we initially restrict this set to

chemically resistant quartz particles. Nonetheless, this set could consist of particles defined by other mineralogies; or it could

be defined as the subset of quartz particles of a given size that possess a specified 10Be concentration or finite OSL age. For

simplicity, and in anticipation of further analyses below, we focus on one-dimensional motions parallel to the z axis.10

As above, let fz(z, t) denote the probability density function of tracer particle positions z. Following Furbish et al. (2009b,

2018a, 2018b), this density satisfies a Fokker-Planck equation of the form

∂fz(z, t)
∂t

=− ∂

∂z

[
wp(z, t)fz(z, t)−κz(z, t)

∂fz(z, t)
∂z

]
, (1)15

wherewp(z, t) denotes the ensemble averaged particle velocity (sometimes referred to as the “drift speed”) and κz(z, t) denotes

the ensemble averaged particle diffusivity. Specifically, let r = z(t+dt)−z(t) denote a particle displacement during the small

interval of time dt. Then let fr(r;z, t) denote the probability density function of displacements r. The particle velocity wp(z, t)

is then defined kinematically as

wp(z, t) = lim
dt→0

a(z, t)
dt

∞∫

−∞

rfr(r;z, t)dr , (2)20

and the particle diffusivity κz(z, t) is defined as

κz(z, t) = lim
dt→0

a(z, t)
2dt

∞∫

−∞

r2fr(r;z, t)dr , (3)

where a(z, t) denotes the particle activity probability, effectively the proportion of time that particles are in motion (Furbish et

al., 2009a, 2009b, 2016, 2018a).

This formulation assumes Gaussian diffusion of particles. Interestingly, Culling (1963) first pointed to the idea that soil25

particles undergo Gaussian diffusion in association with particle concentration gradients, in response to small disturbances.

Culling developed his ideas from kinetic theory and statistical mechanics, borrowing the description of Brownian motion due

6
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to Einstein (1905) and the formulation of a particle diffusion-like equation due to Chandrasekhar (1943), both of which start

from the Master equation (Risken, 1984; Ebeling and Sokolov, 2005; Furbish et al 2009a, 2009b). Culling’s formulation has

for decades provided the inspiration for conceptualizing what now are referred to as “disturbance driven” particle motions

associated with bioturbation, freeze-thaw cycles, etc. (Darwin, 1881; Shaler, 1891; Eyles and Ho, 1970; Fleming and Johnson,

1975; Matsuoka and Moriwaki, 1992; Auzet and Ambroise, 1996; Harris et al., 1997; Matsuoka, 1998; Gabet, 2000; Anderson,5

2002; Reichman and Seabloom, 2002; Meysman et al., 2006; Wilkinson et al., 2009; Covey et al., 2010; Astete et al., 2015), and

numerous authors have applied some form of a diffusion equation to describe transport and mixing of soil particles (Cousins

et al., 1999; Furbish et al., 2009b, 2018a, 2018b; Covey et al., 2010; Johnson et al., 2014; Astete et al., 2015; Campforts et al.,

2016; Gray, 2018).

We emphasize that Eq. (1) is basically an advection-diffusion equation. As written, it is purely kinematic, as nothing is10

specified mechanically about the velocity wp(z, t) or the diffusivity κz(z, t). In this view, the ideas of particle advection and

diffusion are purely probabilistic constructs based on the first and second moments of the particle displacements r (Furbish et

al., 2016, 2018a), as in Eq. (2) and Eq. (3). As a description of the time evolution of the probability density fz(z, t) of particle

positions z, advection and diffusion in Eq. (1) refer to fluxes of probability. This means that, for a great number of particles

within the soil element XY h, each particle “carries” a small, finite amount of probability with it as it moves over z. Moreover,15

despite the fact that Eq. (1) has the continuous form of a continuum advection-diffusion equation, Eq. (1) does not necessarily

imply a continuum behavior. Only if conditions satisfy the continuum hypothesis can Eq. (1) be reinterpreted as an ordinary

advection-diffusion equation describing transport and mixing in an individual (continuum) realization. For rarefied conditions,

however, Eq. (1) represents the ensemble expected behavior, not necessarily what happens in an individual realization. We

elaborate this point below in relation to expected particle positions z, 10Be concentrations and OSL ages.20

We reemphasize a point made above, that currently it is not possible to directly measure particle displacements r and the

associated probability density fr(r;z, t) in the setting of a natural soil. Nor is it possible to directly calculate the activity

probability a(z, t). Thus, in the absence of a mechanical theory to describe these displacements, indirect measures of particle

mixing behavior as reflected by profiles of 10Be concentrations and particle OSL ages are particularly valuable. Namely, any

kinematic formulation of particle motions and mixing, specifically the underlying assumptions of the formulation, must be25

judged by its consistency with these profiles. In this vein, assuming Gaussian mixing is parsimonious, as an initial step, and

in the absence of evidence of non-Gaussian behavior (Furbish et al., 2018a). This is essentially the same strategy adopted in

early statistical mechanics, that the veracity of the fundamental assumption of equally probable microstates (Gibbs, 1902) only

can be “tested” against experimental outcomes (Tolman, 1938). Moreover, we suggest that a Gaussian formulation of mixing

possesses the right granularity to accommodate uncertainty that goes with field sampling of soils. That is, this formulation30

captures the essence of particle mixing behavior that can be tested within the current capabilities of field-based sampling and

measurements of 10Be concentrations and OSL ages.

7
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3.2 Expected 10Be concentrations

3.2.1 Conservation of 10Be atoms

Let fVp,np,z(Vp,np,z, t) denote the joint probability density function of particle volumes Vp, 10Be atom number concentrations

np and positions z. For particles with a given volume Vp and concentration np, and momentarily neglecting the production and

decay of 10Be atoms, the density fVp,np,z(Vp,np,z, t) satisfies a Fokker-Planck equation of the form5

∂fVp,np,z(Vp,np,z, t)
∂t

=− ∂

∂z

[
wp(z, t)fVp,np,x(Vp,np,x, t)

−κz(z, t)
∂fVp,np,z(Vp,np,z, t)

∂z

]
. (4)10

We now define a conditional joint probability density function of volumes Vp and concentrations np, namely,

fVp,np|z(Vp,np|z, t) =
fVp,np,z(Vp,np,z, t)

fz(z, t)
. (5)

Multiplying both sides of Eq. (5) by the product Vpnp, rearranging, and integrating with respect to Vp and np,

fz(z, t)

∞∫

0

∞∫

0

VpnpfVp,np|z(Vp,np|z, t)dnp dVp

15

=

∞∫

0

∞∫

0

VpnpfVp,np,z,t(Vp,np,z, t)dnp dVp . (6)

Note that the product Vpnp is equal to the number of 10Be atoms within a particle of volume Vp.

The double integral on the left side of Eq. (6) defines the expected value of the product Vpnp, that is, Vpnp(z, t). Thus,

fz(z, t)Vpnp(z, t)

20

=

∞∫

0

∞∫

0

VpnpfVp,np,z,t(Vp,np,z, t)dnp dVp . (7)

If, however, Vp and np are independent, then Vpnp(z, t) = V p(z, t)np(z, t). More formally, if the particles are small and within

a limited size range, we may assume that Vp and np are independent. In this case, fVp,np|z(Vp,np|z, t) = fVp|z(Vp|z, t)fnp|z(np|z, t),

and we rewrite Eq. (6) as

fz(z, t)

∞∫

0

VpfVp|z(Vp|z, t)dVp

∞∫

0

npfnp|z(np|z, t)dnp25

8
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=

∞∫

0

∞∫

0

VpnpfVp,np,z,t(Vp,np,z, t)dnp dVp . (8)

Evaluating the integrals on the left side of Eq. (8) then yields

fz(z, t)V p(z, t)np(z, t)

5

=

∞∫

0

∞∫

0

VpnpfVp,np,z,t(Vp,np,z, t)dnp dVp . (9)

where V p(z, t) is the expected (average) particle volume and np(z, t) is the expected particle 10Be concentration. We use these

results momentarily.

We now multiply Eq. (4) by the product Vpnp and integrate with respect to Vp and np, namely,

∞∫

0

∞∫

0

Vpnp

∂fVp,np,z(Vp,np,z, t)
∂t

dnp dVp10

=−
∞∫

0

∞∫

0

Vpnp
∂

∂z

[
wp(z, t)fVp,np,z(Vp,np,z, t)

−κz(z, t)
∂fVp,np,z(Vp,np,z, t)

∂z

]
dnp dVp . (10)

Noting that the random variables Vp and np are not functions of time t or position z, and using Leibniz’s rule, Eq. (10) may be15

written as

∂

∂t



∞∫

0

∞∫

0

VpnpfVp,np,z(Vp,np,z, t)dnp dVp




=− ∂

∂z


wp(z, t)

∞∫

0

∞∫

0

VpnpfVp,np,z(Vp,np,z, t)dnp dVp




20

+
∂

∂z

(
κz(z, t)

· ∂
∂z



∞∫

0

∞∫

0

VpnpfVp,np,z,t(Vp,np,z, t)dnp dVp



)
. (11)

9
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Using Eq. (7), this becomes

∂

∂t

[
fz(z, t)Vpnp(z, t)

]
=− ∂

∂z

[
wp(z, t)fz(z, t)Vpnp(z, t)

]

+
∂

∂z

(
κz(z, t)

∂

∂z

[
fz(z, t)Vpnp(z, t)

])
, (12)

and using Eq. (9),5

∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]

=− ∂

∂z

[
wp(z, t)fz(z, t)V p(z, t)np(z, t)

]

+
∂

∂z

(
κz(z, t)

∂

∂z

[
fz(z, t)V p(z, t)np(z, t)

])
. (13)10

We now turn to the production and decay terms to be added to Eq. (12) or Eq. (13).

3.2.2 Production and decay of 10Be atoms

In the absence of advection and diffusion, the joint probability density fVp,np,z(Vp,np,z, t) satisfies an advection equation with

respect to the np domain, namely,

∂fVp,np,z(Vp,np,z, t)
∂t

15

=−P (z, t)
∂fVp,np,z(Vp,np,z, t)

∂np
, (14)

where the advective “speed” P (z, t) = dnp/dt is the rate of production of 10Be atoms per unit particle volume. Multiplying

Eq. (14) by the product Vpnp and using the product rule leads to

Vpnp

∂fVp,np,z(Vp,np,z, t)
∂t

20

=−P (z, t)Vpnp

∂fVp,np,z(Vp,np,z, t)
∂np

=−P (z, t)
∂

∂np

[
VpnpfVp,np,z(Vp,np,z, t)

]

25

+P (z, t)VpfVp,np,z(Vp,np,z, t) . (15)

10
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Because the product VpnpfVp,np,z(Vp,np,z, t) represents a proportion of all 10Be atoms in the soil column, we may at this

point add the effect of radioactive decay, so that Eq. (15) becomes

Vpnp

∂fVp,np,z(Vp,np,z, t)
∂t

=−P (z, t)
∂

∂np

[
VpnpfVp,np,z(Vp,np,z, t)

]
5

+P (z, t)VpfVp,np,z(Vp,np,z, t)

−λVpnpfVp,np,z(Vp,np,z, t) , (16)

where λ denotes the decay constant.10

In turn, integrating Eq. (16) with respect to Vp and np, and using Eq. (9),

∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]

=−P (z, t)

∞∫

0

∞∫

0

∂

∂np

[
VpnpfVp,np,z(Vp,np,z, t)

]
dnp dVp

15

+P (z, t)

∞∫

0

∞∫

0

VpfVp,np,z(Vp,np,z, t)dnp dVp

−λ
∞∫

0

∞∫

0

VpnpfVp,np,z(Vp,np,z, t)dVp dnp . (17)

Assuming that fVp,np,z(Vp,∞,z, t) = 0, the first double integral on the right side of Eq. (17) is equal to zero. We then write

Eq. (17) as20

∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]

= P (z, t)

∞∫

0

Vp dVp

∞∫

0

fVp,np,z(Vp,np,z, t)dnp

−λ
∞∫

0

∞∫

0

VpnpfVp,np,z(Vp,np,z, t)dVp dnp25

= P (z, t)

∞∫

0

VpfVp,z(Vp,z, t)dVp

11
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−λ
∞∫

0

∞∫

0

VpnpfVp,np,z(Vp,np,z, t)dVp dnp . (18)

Using fVp,z(Vp,z, t) = fz(z, t)fVp|z(Vp|z, t) then leads to the result that

∂

∂t

[
fz(z, t)V p(z, t)np(z, t)

]

5

= P (z, t)fz(z, t)V p(z, t)−λfz(z, t)V p(z, t)np(z, t) . (19)

Thus, the production and decay terms to be added to Eq. (12) or Eq. (13) are given by the right side of Eq. (19).

3.3 Expected particle OSL ages

3.3.1 Conservation of OSL age

In principle, the experimentally determined OSL burial age of a particle is independent of its size. In addition, as previously10

mentioned, quartz particles targeted for single-grain OSL analysis have a relatively narrow range of sizes (0.35 – 0.425 mm).

For these reasons we may neglect particle volume in the following formulation.

Let fAp,z(Ap,z, t) denote the joint probability density function of particle OSL ages Ap and positions z. For particles with a

given age Ap, and momentarily neglecting the production of age, the density fAp,z(Ap,z, t) satisfies a Fokker-Planck equation

of the form15

∂fAp,z(Ap,z, t)
∂t

=− ∂

∂z

[
wp(z, t)fAp,z(Ap,z, t)

−κz(z, t)
∂fAp,z(Ap,z, t)

∂z

]
. (20)20

We now define a conditional joint probability density function of ages Ap, namely,

fAp|z(Ap|z, t) =
fAp,z(Ap,z, t)

fz(z, t)
. (21)

With Eq. (20) and Eq. (21) in place, we multiply both by Ap, integrate with respect to Ap, then follow the same steps as

presented in Section 3.2.1 above to give

∂

∂t

[
fz(z, t)Ap(z, t)

]
=− ∂

∂z

[
wp(z, t)fz(z, t)Ap(z, t)

]
25

+
∂

∂z

(
κz(z, t)

∂

∂z

[
fz(z, t)Ap(z, t)

])
, (22)

where Ap(z, t) is the expected particle OSL age. We now turn to the production term to be added to Eq. (22).

12
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3.3.2 Production of OSL age

In the absence of advection and diffusion, the joint probability density fAp,z(Ap,z, t) satisfies an advection equation with

respect to the Ap domain, namely,

∂fAp,z(Ap,z, t)
∂t

=−S ∂fAp,z(Ap,z, t)
∂Ap

, (23)

where the advective “speed” S = dAp/dt= 1 is the rate at which particles accumulate OSL age. We then multiple Eq. (23) by5

Ap, integrate with respect to Ap, then follow the same steps as presented in Section 3.2.2 above to give

∂

∂t

[
fz(z, t)Ap(z, t)

]
= Sfz(z, t) . (24)

Thus, the production term to be added to Eq. (22) is given by the right side of Eq. (24). We elaborate below in practical terms

the relation between the rate S and the radiation dose rate during particle motions within the soil.

3.3.3 Variance of OSL ages10

Because of its significance for sampling of particles for OSL analysis, here we consider the variance of particle OSL ages.

Let fAp,z(Ap,z, t) denote the joint probability density function of ages Ap and positions z. We now form the conditional

probability density function,

fAp|z(Ap|z, t) =
fAp,z(Ap,z, t)

fz(z, t)
. (25)

Multiplying by (Ap−Ap)2, rearranging, and integrating with respect to Ap,15

fz(z, t)

∞∫

0

(Ap−Ap)2fAp|z(Ap|z, t)dAp

=

∞∫

0

(Ap−Ap)2fAp,z(Ap,z, t)dAp . (26)

This yields

fz(z, t)m2(z, t) =

∞∫

0

(Ap−Ap)2fAp,z(Ap,z, t)dAp , (27)20

where m2(z, t) denotes the variance of particle OSL ages.

In turn, multiplying Eq. (20) by (Ap−Ap)2 and integrating with respect to Ap — recognizing that Ap is a function of

position and time and therefore judiciously applying the product rule and Leibniz’s rule — then leads to the conclusion that

∂

∂t
[fz(z, t)m2(z, t)] =− ∂

∂z
[wp(z, t)fz(z, t)m2(z, t)]

13
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+
∂

∂z

(
κz(z, t)

∂

∂z
[fz(z, t)m2(z, t)]

)

+2κz(z, t)fz(z, t)
[
∂Ap(z, t)

∂z

]2
. (28)

Thus the variance m2(z, t) satisfies a Fokker-Planck equation with a source-like term involving the average age Ap(z, t).5

Because this term depends on the structure of Ap(z, t), it therefore is indirectly associated with the production of OSL age.

However, it is straightforward to show that direct production of the variance m2(z, t) of OSL ages is zero.

3.4 Advection and diffusion

The Fokker-Planck equation is basically an advection-diffusion equation. But here we reemphasize that the 10Be concentration

np and the OSL ageAp are intensive properties of individual particles, and the volume Vp is an extensive property of individual10

particles. These quantities do not experience advection and diffusion as normally envisioned as occurring in a continuum. To be

clear, the particles experience advection and diffusion, and the quantities np, Vp and Ap are merely carried with the particles.

With respect to a soil column with dimensions XY h, let us assume a great number N of particles. Then the product

Nfz(z, t) = c(z, t) may be interpreted as the expected number concentration of particles. That is, c(z, t)XY dz represents the

expected number of particles within the volume XY dz between z and z+ dz at time t. We may then rewrite Eq. (1) as15

∂c(z, t)
∂t

=− ∂

∂z

[
wp(z, t)c(z, t)−κz(z, t)

∂c(z, t)
∂z

]
, (29)

which looks like a familiar advection-diffusion equation.

Similarly, Nfz(z, t)V p(z, t)np(z, t) = n(z, t) represents the expected number concentration of 10Be atoms, and fz(z, t)V p

represents the volumetric particle concentration. We may then rewrite Eq. (13) as

∂n(z, t)
∂t

=− ∂

∂z

[
wp(z, t)n(z, t)−κz(z, t)

∂n(z, t)
∂z

]
20

+P (z, t)−λn(z, t) , (30)

where P (z, t) now is interpreted as the production rate per unit volume of soil.

We write the product Nfz(z, t)Ap(z, t) as c(z, t)Ap(z, t), noting that c(z, t) now specifically refers to particles with finite

OSL age Ap. To simplify the notation, we denote the first moment of particle OSL ages as m1(z, t) =Ap(z, t). We may then25

rewrite Eq. (22) as

∂

∂t
[c(z, t)m1(z, t)]

=− ∂

∂z

(
wp(z, t)c(z, t)m1(z, t)

14
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−κz(z, t)
∂

∂z
[c(z, t)m1(z, t)]

)
+Sc(z, t) . (31)

For the variance m2(z, t),

∂

∂t
[c(z, t)m2(z, t)]

5

=− ∂

∂z

(
wp(z, t)c(z, t)m2(z, t)

−κz(z, t)
∂

∂z
[c(z, t)m2(z, t)]

)

+2κz(z, t)c(z, t)
[
∂m1(z, t)

∂z

]2
. (32)10

4 The steady one-dimensional problem

We now turn to a benchmark situation inspired by the pioneering work of Lal (1991) and Lal and Chen (2005) concerning

CRN profiles within rock, and within well mixed soils above rock, undergoing steady surface erosion. With reference to Figure

2, we imagine the idealized situation involving a one-dimensional vertical mean motion of particles through a soil column,

Figure 2. Schematic diagram of: (A) soil element with dimensions XY h. Particles move from the soil-saprolite interface (z = 0) into the

element at a steady rate W and are eroded from the surface (z = h). Particles experience a mean motion (gray arrows) with superimposed

mixing motions. (B) in situ 10Be production rate P (z). (C) idealized luminescence dose rate D as the sum of the external rate De(z) and the

contribution from cosmic rays Dc(z). Compare with Figure 1 in Mudd and Yoo (2010).

where steady surface erosion plus any chemical mass losses match the rate of soil production at the base of the column (e.g.,15

Mudd and Yoo, 2010; Dixon and Riebe, 2014; Granger and Riebe, 2014). Although idealized, given that surface erosion rates

generally are not steady (e.g., Small et al., 1997; Schaller et al., 2009), this benchmark nonetheless represents a valuable

starting point for assessing actual conditions in field settings, including the possibility of a sudden change in surface erosion

15

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-68
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 29 August 2018
c© Author(s) 2018. CC BY 4.0 License.



(Granger and Riebe, 2014), and as a contrast for two-dimensional transport by soil creep (Small et al., 1999; Anderson, 2015;

Furbish et al., 2018b). With respect to cosmogenic nuclides — 10Be in particular — previous formulations of this problem have

focused on two end-member cases: absence of soil particle mixing, and the so-called “well mixed” case (or “complete” mixing)

(e.g., Lal and Chen, 2005; Granger and Riebe, 2014), without reference to partial mixing or to the possible significance of the

vertical structure of mixing, that is, whether particle mixing is uniform or depth dependent. This contrasts with the idea that5

soil distrubances and associated mixing likely involve a systematic depth dependence (Humphreys and Field, 1998; Cousins et

al., 1999; Roering, 2004; Wilkinson et al., 2009). No analogous benchmark formulation exists for particle OSL ages.

We note that quartz enrichment (Small et al., 1999; Granger and Riebe, 2014) due to chemical weathering and mass loss

may occur during any transient approach to steady conditions; but under steady conditions this enrichment does not impact the

mechanical transport and mixing of quartz particles. In addition, we are for simplicity neglecting the vertical variation in soil10

bulk density that can occur with bioturbation (e.g., Furbish et al., 2009b, see Figure 4 therein).

In this steady problem, note that wp(z, t) =W and κz(z, t) = κz(z). We consider two forms of the particle diffusivity

κz(z). In the first case we consider uniform mixing such that κz(z)→Kz . In the second case we consider a linear variation

in mixing such that κz(z) =Kzz/h. This represents the first-order structure of a depth dependency in mixing which, although

currently not well constrained, appeals to the idea that disturbances leading to particle mixing systematically decline with15

depth (Humphreys and Field, 1998; Cousins et al., 1999; Roering, 2004; Wilkinson and and Humphreys, 2005; Wilkinson et

al., 2009; Johnson et al., 2014). These two cases provide a straightforward contrast for considering how the form of κz(z)

might influence the profiles of 10Be concentration and particle OSL age. Following Furbish et al. (2018a, 2018b), we define

a Péclet number as Pe =Wh/Kz . This provides a measure of the overall intensity of mixing. A large value of Pe represents

weak mixing, whereas a small value of Pe represents strong mixing.20

Following Furbish et al. (2018b), we assume that particles experience a constant radiation dose rate D (Figure 2) during

their motions within the soil column. Indeed, single-grain OSL systematics require assuming a constant natural dose rate in

order to calculate a burial age Ap from the measured particle luminescence and a regeneration curve created by subjecting the

particle to varying experimental “equivalent dose” values (Duller, 2008). But the natural dose rate that a particle experiences

may vary with its vertical position, and therefore with time, as the particle moves up and down within the soil column. This25

means that a particle will yield a luminescence signal, and thus an OSL age, that depends on its history of exposure to different

dose rates; but this particle history cannot be inferred in the experimental determination of its OSL age.

With respect to the source S = dA/dt= 1 of particle OSL aging in Eq. (31), we are essentially assuming, as described

above, that particles experience a uniform radiation dose rate during their motions within the soil column. Namely, assuming

homogeneous soil material and moisture content, the external dose rate De(z) supplied by the radioactive decay of elements30

within the surrounding soil is uniform below ∼30 cm (or less (Aitken et al., 1985)) and declines toward the soil surface

because of the incomplete gamma dose field at shallow depths (Figure 2C). The dose rate Dc(z) due to cosmic rays (varying

with latitude and altitude) declines nonlinearly below the soil surface (Prescott and Hutton, 1988, 1994). The total dose rate

D(z) equals the sum of the external and cosmic rates. In general, the cosmic contribution tends to offset the decline of the

16
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external rate. But this depends on the relative magnitudes of these two contributions, where the magnitude of the external rate

is determined by the mineral content of the soil, and the associated concentration of radioactive elements.

If the magnitude of the cosmic dose rate is similar to that of the external dose rate near the soil surface, then the total dose

rate is approximately uniform (Figure 2C). If, however, the cosmic rate does not fully offset the decrease in the external rate,

we nonetheless suggest that the assumption of a uniform dose rate is a reasonable starting point for comparison with deviations5

in OSL age profiles that might be expected from a nonuniform dose rate, particularly under conditions of moderate to strong

particle mixing, whose effects likely mask spatial variations in the total dose rate (e.g., Furbish et al., 2018b). That is, this

is a parsimonious assumption — that the effects of mixing of ages outweigh any consequence of a nonuniform dose field.

Previous studies using luminescence to examine soil mixing show relatively uniform total dose rates (e.g., Heimsath et al.,

2002, Johnson et al., 2014).10

In order to present our results below in a manner that highlights the effects of differences in the intensity and depth depen-

dence of particle mixing, it is convenient to define the following dimensionless quantities denoted by circumflexes:

ẑ =
z

h
, ĉ(ẑ) =

c(z)
c(h)

, n̂(ẑ) =
n(z)
n(h)

and m̂j(ẑ) =
(
W

h

)j

mj(z) . (33)15

Here, ẑ denotes the dimensionless height within the soil column above the soil-saprolite interface, n̂(ẑ) denotes the dimen-

sionless concentration of 10Be atoms relative to the concentration at the soil surface, ĉ(ẑ) denotes the dimensionless number

concentration of particles with finite OSL ages relative to the concentration at the soil surface, and m̂j(ẑ) denotes the jth

moment (j = 1,2) of OSL ages relative to the mean residence time, h/W , of target quartz particles.

The analytical results presented in the next two sections involving n̂(ẑ) and m̂j(ẑ) are derived in the appendixes of this paper.20

As described therein, each of the statements of conservation above must satisfy specific boundary conditions that depend on

uniform versus nonuniform particle mixing. Here are key constraints. The 10Be flux across the soil surface equals the flux into

the soil column across the soil-saprolite interface plus the total production of 10Be within the column. The flux of particles

with finite OSL age across any surface normal to z is zero, and the concentration of these particles at the surface is equal to

the concentration of OSL sensitive particles entering the base of the column, although these take on finite OSL ages only after25

they reach the surface and are bleached. The expected OSL age at the soil surface is zero, and a diffusive flux of age across

the surface matches the total production of age within the column. Particles with finite OSL age cannot be imported to the soil

column. We defer commenting on the results presented next until we present our numerical simulations in Section 5.

4.1 Expected 10Be concentrations

Assuming that 10Be production is due to spallation (e.g., Gosse and Phillips, 2001), the production rate P (z) in Eq. (30) is30

(Lal, 1991; Small et al., 1999)

P (z) = P0e
−(h−z)/ls , (34)
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where P0 is the 10Be production rate at the surface and ls is the e-folding attenuation length of the soil. Neglecting the decay

of 10Be with its half-life of ∼ 106 years, then for steady conditions Eq. (30) becomes

d
dz

[
Wn(z)−κz(z)

dn(z)
dz

]
= P0e

−(h−z)/ls . (35)

For uniform mixing with κz(z)→Kz , the solution of Eq. (35) is (Appendix A)

n̂(ẑ) = e−Pe(1−ẑ)5

+
Pels

Pels − 1

[
e−h(1−ẑ)/ls − e−Pe(1−ẑ)

]
, (36)

where Pels =Wls/Kz is a secondary Péclet number. In turn, for nonuniform mixing with κz(z) =Kzz/h, the solution of Eq.

(35) is

n̂(ẑ) = ẑPe + Pe

[(
−hẑ
ls

)Pe

Γ
(
−Pe,−hẑ

ls

)
10

−
(
− h
ls

)Pe

Γ
(
−Pe,− h

ls

)
ẑPe

]
e−h/ls , (37)

where Γ denotes the incomplete gamma function. Note that Eq. (37) has real and imaginary parts. Only the real part is physically

meaningful in this problem.

4.2 Expected particle OSL ages15

Recall that the number concentration c(z, t) in Eq. (31) specifically refers to particles with finite OSL age. For steady conditions

Eq. (1) becomes

d
dz

[
Wc(z)−κz(z)

dc(z)
dz

]
= 0 . (38)

Using this, Eq. (31) is simplified to

d
dz

[
−κz(z)c(z)

dm1(z)
dz

]
= Sc(z) . (39)20

For the variance m2(z),

d
dz

[
−κz(z)c(z)

dm2(z)
dz

]

−2κz(z)c(z)
[

dm1(z)
dz

]2
= 0 . (40)
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Note that Eq. (39) and Eq. (40) involve only diffusion, not advection. Advection and diffusion of particles possessing finite

OSL ages involve the transport and mixing of OSL ages, thus influencing the age moments. But because upward advection of

these particles is balanced by downward diffusion under steady conditions, this balance sets the OSL age structure wherein

diffusion maintains the steady, finite values of the age moments in the presence of production of OSL age.

For uniform mixing with κz(z)→Kz , the solution of Eq. (38) is (Appendix B)5

ĉ(ẑ) = e−Pe(1−ẑ) . (41)

For nonuniform mixing with κz(z) =Kzz/h, the solution of Eq. (38) is

ĉ(ẑ) = ẑPe . (42)

In turn, using these results for ĉ(ẑ), for uniform mixing the solution of Eq. (39) is (Appendix C)

m̂1(ẑ) = S(1− ẑ) +
Se−Pe

Pe

[
1− ePe(1−ẑ)

]
, (43)10

and for nonuniform mixing the solution of Eq. (39) is (Appendix C)

m̂1(ẑ) =
SPe

1 + Pe
(1− ẑ) . (44)

For the variance m̂2 the solution of Eq. (40) for uniform mixing is (Appendix D)

m̂2(ẑ) =
2S2

Pe
(1− ẑ)

15

+
4S2

Pe2

[
(1 + Pe)e−Pe − (1 + Pe ẑ)e−Peẑ

]

+
S2

Pe2

(
e−2Pe − e−2Peẑ

)
. (45)

and for nonuniform mixing the solution of Eq. (40) is (Appendix D)

m̂2(ẑ) =
S2Pe2

(2 + Pe)(1 + Pe)2
(
1− ẑ2

)
. (46)20

Also for reference below, the column-averaged particle OSL age M̂1 within the soil is

M̂1 =

1∫

0

ĉ(ẑ)m̂1(ẑ)dẑ . (47)

For uniform mixing, Eq. (41) and Eq. (43) lead to

M̂1 =
S

Pe2

(
1− e−2Pe

)
− 2Se−Pe

Pe
. (48)

For nonuniform mixing, Eq. (42) and Eq. (44) lead to25

M̂1 =
SPe

1 + Pe

(
1

1 + Pe
− 1

2 + Pe

)
. (49)

We comment further on the results above after presenting our numerical simulations.
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5 Numerical simulations

We now turn to numerical simulations of particles undergoing random-walk motions within the soil column, during which they

accumulate 10Be atoms within the production field, and undergo OSL “aging” following their most recent encounters with the

soil surface. These simulations have two purposes.

First, the random-walk motions implied by the probabilistic formulations above are in principle straightforward to imple-5

ment numerically, and it is important to demonstrate that such computational results match the analytical results presented.

In doing this, the simulations reveal important information that is not readily apparent in the analytical results. This includes

an illustration of the variability in 10Be concentrations and OSL ages of individual particles, in contrast to expected values at

positions z, with important implications for interpreting field-based measurements, and the nature of the terms in Eq. (14) and

Eq. (23) describing production of 10Be atoms and particle OSL age.10

Second, numerical simulations of particle motions within soils offer important opportunities to examine phenomena that

cannot readily be treated analytically, for example, effects of particle residence times on mineral weathering, or effects of a

nonuniform radiation dose rate. So, spinning our first objective around, any numerical simulation of random walk motions must

be able to correctly reproduce benchmark (analytical) solutions before being applied to more complex situations, for example,

two-dimensional motions and unsteady conditions. The simulations presented here highlight important aspects involved.15

Following Furbish et al. (2018a, 2018b), we adopt a straightforward Eulerian-Lagrangian algorithm to simulate particle

motions in a mass conserving manner. Particles are numerically introduced to the base of the soil column (z = 0), then undergo

a mean upward motion equal to W with superimposed Gaussian fluctuations. For uniform mixing the particle diffusivity is set

as κz =Kz , and the random walk becomes

z(t+ ∆t) = z(t) +W∆t+Rz(a) , (50)20

where ∆t denotes the time step and Rz(a) is a Gaussian random variable with argument a= (2Kz∆t)1/2. For nonuniform

mixing with κ(z) =Kzz/h, the random walk becomes

z(t+ ∆t) = z(t) +W∆t+Rz(a) +κ′z∆t , (51)

with argument a= [2κz(z+0.5κ′z∆t)∆t]1/2, where κ′z = ∂κz(z)/∂z. This yields a mass conserving behavior, that is, one that

prevents particles from unrealistically drifting from sites with high particle diffusivity to sites with low diffusivity. Moreover,25

this algorithm has been shown to work for variations in diffusivity that are not linear (e.g., Legg and Raupach, 1982; Hunter

et al., 1993; Visser, 1997). The theoretical basis of Eq. (51) and its relation to the Fokker-Planck equation are covered in these

references and in Appendix G of Furbish et al. (2018a).

Each particle accumulates 10Be atoms as a function of its local position z, and it accumulates a numerical OSL age from the

time of its last encounter with the soil surface. We spin up each simulation to a steady-state condition, where the rate at which30

particles exit the soil column is equal to the rate at which they are introduced at the base, and particles within the column are

distributed uniformly over the thickness h. The total spin-up time involves at least four e-folding residence times h/W . At

20

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-68
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 29 August 2018
c© Author(s) 2018. CC BY 4.0 License.



steady state, the total number of particles within the column is NT ≈Nc(h/W )/∆t, where Nc is the number of particles in

the cohort introduced at each time step. We use a minimum of NT ≈ 10,000 for the 10Be simulations.

The lower boundary (z = 0) is treated as a reflecting boundary. For each particle reaching the upper boundary (z = h), it

either may leave the column with a specified probability that ensures global particle conservation, or it is reflected. In the case

of particle OSL ages, the numerical age of an individual particle is set to zero if it is reflected at z = h. The effect of this is5

to correctly mimic the boundary condition in the formulation above, that m̂j = 0 at ẑ = 1. In actuality, however, bleaching of

particles can occur just below the soil surface with light penetration (to a few particle diameters) and with heating from fires at

the surface (Wilkinson and Humphreys, 2005; Duller, 2008), such that actual values m̂j = 0 occur below the soil surface.

All simulated NT particles at steady state possess a 10Be value. But only a proportion of these NT particles possess finite

OSL ages at steady state, as not all of them reach the surface to subsequently take on finite OSL ages. We cannot know this10

proportion a priori. Thus, it is important to insist on global particle conservation in the simulations, involving verification of

a specified NT together with a uniform distribution of particle positions z. In addition, we increase NT (up to 20,000) and

the total spin-up time (up to six residence times h/W ) for the OSL simulations to ensure that a sufficiently large number of

particles is included in our calculations of expected values. However, this is not entirely possible with large Péclet number Pe ,

as described below.15

5.1 10Be concentrations

The simulated, expected 10Be concentrations closely match the theoretical results for different values of the Péclet number

Pe involving both uniform mixing (Figure 3) and nonuniform mixing (Figure 4). These profiles show that with weak mixing

(large Pe), the expected concentration approaches the original exponential solution provided by Lal (1991). With strong mixing

(small Pe), the expected concentration becomes increasingly uniform over the soil column, approaching the concentration at20

the soil surface. With uniform mixing (Figure 3), the concentration n̂(0) may be finite, as diffusion effectively moves particles

downward to the soil-saprolite interface. With nonuniform mixing (Figure 4), the concentration n̂(0) is anchored by the value

within the saprolite, as diffusion weakens downward then vanishes at the soil-saprolite interface.

With both uniform and nonuniform mixing, the distribution fn̂p(n̂p, ẑ) of 10Be concentrations n̂p of individual particles

within any small interval dẑ systematically varies with vertical position and the Péclet number Pe (Figure 5). Notably, this25

distribution at any ẑ is approximately symmetrical about the expected value for large Pe , and becomes increasingly skewed

with decreasing Pe . The expected concentration n̂(ẑ) at small Pe thus is strongly influenced by the tail of this distribution,

that is, by particles possessing concentrations much larger than the modal concentration.

5.2 Particle OSL ages

The simulated, expected OSL ages closely match the theoretical results for different values of the Péclet number Pe involving30

both uniform mixing (Figure 6) and nonuniform mixing (Figure 7), where we note that the simulations yield meaningful results

only near the surface for large Péclet number Pe . (Because the concentration ĉ(ẑ) of particles with finite OSL ages declines

rapidly with depth for large Pe (Appendix B), achieving reasonable numerical values of the expected age m̂1(ẑ) over the
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Figure 3. Plot of dimensionless 10Be concentration n̂= n(z)/n(h) versus dimensionless height ẑ = z/h showing simulated particle con-

centrations n̂p (gray dots) for Pe = 100,10,1,0.1, and estimates of expected concentrations n̂ averaged within 0.1h intervals (black circles)

with one standard deviation bars. Simulations represent uniform mixing with κz =Kz . Right solid line is the theoretical result, and left solid

line represents the absence of mixing.

entire soil thickness would require unreasonably large computational memory and time.) These profiles show that with weak

mixing (large Pe), the expected particle OSL age increases linearly, or approximately linearly, with depth. With strong mixing

(small Pe), the expected age becomes increasingly uniform and close to zero over the soil column. With uniform mixing, the

diffusive flux of age must vanish at the soil-saprolite interface, so with finite diffusivity Kz , the slope dm̂1/dẑ|ẑ=0 = 0. With

nonuniform mixing, the diffusive flux of age likewise vanishes at the soil-saprolite interface as the diffusivity goes to zero. But5

the magnitude of the slope dm̂1/dẑ is finite near this interface in order to compensate the decreasing diffusivity.

With both uniform and nonuniform mixing, the distribution fÂp
(Âp, ẑ) of particle OSL ages within any small interval dẑ

mostly is highly skewed (Figure 8). This skew increases with decreasing Péclet number Pe . Particularly with nonuniform

mixing, the expected OSL age m̂1(ẑ) thus is strongly influenced by the tail of this distribution, that is, by particles possessing

finite ages much larger than the modal age.10
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Figure 4. Plot of dimensionless 10Be concentration n̂= n(z)/n(h) versus dimensionless height ẑ = z/h showing simulated particle con-

centrations n̂p (gray dots) for Pe = 100,10,1,0.1, and estimates of expected concentrations n̂ averaged within 0.1h intervals (black circles)

with one standard deviation bars. Simulations represent nonuniform mixing with κz =Kzz/h. Right solid line is the theoretical result, and

left solid line represents the absence of mixing.

The simulated second moment m̂2(ẑ) of OSL ages reasonably matches the theoretical results for different values of the

Péclet number Pe for both uniform and nonuniform mixing. Focusing on the example of Pe = 1 (Figure 9), the variance

m̂2(ẑ) rapidly increases with depth from zero at the soil surface, then becomes relatively uniform with increasing depth. With

both uniform and nonuniform mixing, the variance at any position ẑ generally decreases with decreasing Pe (Figures 6 and 7).

We note that, whereas in any individual simulation the numerical estimates of the expected OSL ages m̂1(ẑ) closely match the5

theoretical values with large NT for small Pe (Figures 6 and 7) — a consequence of the central limit theorem — numerical

estimates of the variance m̂2(ẑ) may fluctuate about the theoretical values from one simulation to the next (Figure 9).

The simulations suggest that particle OSL ages within the entire soil column are distributed approximately exponentially for

both uniform and nonuniform mixing (Figure 10), where the column-averaged age M̂1 varies systematically with the Péclet

number Pe . Interestingly, based on Eq. (48) and Eq. (49), the average M̂1 increases from zero at Pe→ 0, reaches a maximum10

of M̂1 ∼ 0.1 near Pe ∼ 1, then declines again with increasing Pe (Figure 11), consistent with the simulations (Figure 10). For
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Figure 5. Example histograms representing the distribution fn̂p(n̂p, ẑ) using simulated values of n̂p from Figure 4 (Pe = 1) over the intervals

(A) 0.9ẑ− 1.0ẑ, (B) 0.5ẑ− 0.6ẑ and (C) 0.1ẑ− 0.2ẑ. Analogous histograms associated with uniform mixing show a similar structure.

Pe→ 0, small values of M̂1 reflect the idealized condition of complete mixing, where particles that reach the soil surface and

are bleached and then move downward rather than being eroded, nonetheless frequently return to the soil surface due to strong

mixing. For large Pe , small values of M̂1 reflect that particles with finite OSL age tend to remain near the soil surface due to

the strong effect of upward advection, and thus frequently return to it, many exiting by erosion before accumulating large ages.

Relatively large values of M̂1 at intermediate Pe reflect the effects of an approximate balance between upward advection and5

downward diffusion of particles with finite OSL age, such that particles return to the soil surface less frequenty. We emphasize

that the maximum value of M̂1 is a fraction of the mean residence time h/W .

6 Discussion and Conclusions

6.1 Implications of rarefied transport conditions

We emphasize that, in contrast to continuum formulations of advection and diffusion of material (e.g., mass) measured as10

an intensive quantity (e.g., concentration) of the continuum, the extensive and intensive particle properties Vp, np and Ap

“belong” to the particles, not to the bulk soil. For this reason, a formulation of advection and diffusion of 10Be concentrations

and expected particle OSL ages based on the Fokker-Plank equation provides a satisfactory way to parse the behavior of the

particle-centric quantities Vp, np and Ap. In the case of 10Be, the formulation describes the behavior of the expected value

of individual particle concentrations at a position z. When this is combined with the expected particle volume and number15
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Figure 6. Plot of dimensionless OSL age Âp = (W/h)Ap versus dimensionless height ẑ = z/h showing simulated particle ages Âp (gray

dots) for Pe = 100,10,1,0.1, and estimates of expected values m̂1 averaged within 0.1h intervals (black circles) with one standard deviation

bars. Simulations represent uniform mixing with κz =Kz . Solid line is the theoretical result.

concentration, the expected 10Be concentration n(z, t) then may be considered an intensive property of the soil at position z.

As a consequence, the expected concentration n(z, t) satisfies what looks like an ordinary advection-diffusion equation with

production and decay terms — although this does not necessarily imply a continuum behavior (Section 3.1).

In the case of particle OSL ages, the formulation similarly describes the behavior of the expected value (and the variance) of

individual particle OSL ages at a position z. By definition, our interest is in this expected particle OSL age, as this is what is5

determined from single-grain OSL measurements. It therefore does not make sense to define OSL age as an intensive property

of the soil by combining the expected particle OSL age with the expected particle number concentration (resulting in a “total”

OSL age at position z). Moreover, by maintaining this distinction, the formulation reveals that the expected particle OSL age

(and the variance) satisfy a diffusion-like equation, not an advection-diffusion equation. This is in contrast to the idea that the

“age” of a fluid parcel moving through a continuum domain satisfies an advection-diffusion equation with a production term10

equal to unity, as described in oceanographic and hydrological applications (England, 1995; Goode, 1996). This is important

because, unlike a continuum material, the expected number concentration c(z, t) of particles possessing a finite OSL age
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Figure 7. Plot of dimensionless OSL age Âp = (W/h)Ap versus dimensionless height ẑ = z/h showing simulated particle ages Âp (gray

dots) for Pe = 100,10,1,0.1, and estimates of expected values m̂1 averaged within 0.1h intervals (black circles) with one standard deviation

bars. Simulations represent nonuniform mixing with κz =Kzz/h. Solid line is the theoretical result.

generally is not uniform over z (Appendix B). That is, this concentration does not mimic a uniform continuum domain within

which particle OSL age is transported.

An essential lesson is this. When the quantity of interest can be expressed as a total value within an interval dz, as with the

total number of 10Be atoms, then this quantity may be treated as an intensive property of the bulk soil. When the quantity of

interest is an expected value within dz, as with the moments mj(z) of particle OSL age, then this quantity cannot be expressed5

as an intensive property of the bulk soil, and its behavior must be coupled with that of the expected concentration c(z) of the

particles possessing the property. Similar quantities include, for example, particle size (in relation to descriptions of vertical

sorting (Campforts et al., 2016)) and particle age as measured from the time of entry into the mechanically active soil column (in

relation to studies of particle weathering (White and Brantley, 2003; Mudd and Furbish, 2006; Almond et al., 2007; Anderson

et al., 2007; Yoo and Mudd, 2008; Mudd and Yoo, 2010; Ferrier et al., 2016)). In contrast, there is a growing interest in the10

use and interpretation of the total OSL intensity of bulk soil samples as measured by portable OSL readers (Muñoz-Salinas et

al., 2010; Sanderson and Murphy, 2010; Stang et al., 2012; Munyikwa and Brown, 2014; Gray et al., 2017; Gray, 2018; Porat
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Figure 8. Example histograms representing the distribution fÂp
(Âp, ẑ) using simulated values of Âp from Figure 7 (Pe = 1) over the

intervals (A) 0.9ẑ− 1.0ẑ, (B) 0.5ẑ− 0.6ẑ and (C) 0.1ẑ− 0.2ẑ. Analogous histograms associated with uniform mixing show a similar

structure.

Figure 9. Plot of dimensionless variance m̂2 = (W/h)2m2 versus dimensionless height ẑ = z/h showing values obtained from simulations

(Pe = 1) for uniform mixing (black circles) and nonuniform mixing (gray circles) compared with theoretical values (black and gray lines).
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Figure 10. Exceedance probability plots of dimensionless particle OSL age Âp = (W/h)Ap for (A) uniform mixing and (B) nonuniform

mixing for Péclet numbers Pe = 10, 1 and 0.1.

Figure 11. Plot of dimensionless column-averaged OSL age M̂1 = (W/h)M1 versus Péclet number Pe =Wh/Kz for uniform and nonuni-

form mixing.

et al., 2018). The luminescence intensities of individual particles — decidedly a random variable (Gray, 2018) — contribute

to the total measured intensity. Thus, because the quantity of interest is the total intensity rather than expected moments of

individual particle intensities, the total intensity can be formulated as being an intensive property of the bulk soil (Gray et al.,

2017; Gray, 2018).

Throughout we have emphasized that 10Be concentrations and OSL ages are to be considered expected values. Moreover,5

this expectation is defined with respect to an interval z to z+ dz in a soil element with finite areal dimension XY , and it
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formally is an ensemble average, rather than the expected value associated with an individual realization. The significance of

this bears on the practical issue of sampling soil material for measurements of 10Be and particle OSL age, in view of the fact

that disturbance driven particle motions in soils are patchy and intermittent at many scales, where most particles are at rest most

of the time. Namely, vertical profiles of soil properties measured in an individual soil pit (where XY is on the order of 1 × 1

m) reflect a “snapshot” of possible conditions (Furbish et al., 2009b). This snapshot represents the recent history of transport5

and mixing, one that is much shorter than the typical soil particle residence time, W/h.

We cannot avoid this issue of legacy (or “inheritance”), namely, the likelihood that what is being measured reflects only the

recent history of transport and mixing as opposed to conditions consistent with an imagined behavior averaged over longer

timescales, as represented by the expected profiles in Figures 3, 4, 6 and 7 above. In the case of measured profiles of 10Be

concentrations and particle OSL ages, this has two parts. Consider a profile that reflects an expected steady-state condition10

(Figures 3, 4, 6 or 7). Disturbances that contribute to the mixing motions consistent with the profile may occur at different

length scales and with different frequencies. To the extent that this mixing is adequately characterized as being diffusive, then

we may define a relaxation timescale as T = r2/κ∼ r2/〈r2〉f , where now the mixing motion r is a measure of the length

scale of disturbance, f denotes a characteristic frequency of disturbance, and the angle brackets denote ensemble averaging.

With r2 in the numerator and 〈r2〉 in the denominator, this expression highlights the duality of disturbances, that these provide15

mixing motions, yet this mixing is responsible for diffusive smoothing of disturbance produced irregularities about the expected

profile state. This is in marked contrast to, say, classic molecular diffusion, where molecular motions smooth irregularities, but

are not the source of disturbances to the expected state. Thus, for a given ensemble averaged disturbance magnitude 〈r2〉1/2,

the relaxation time T goes with the square of the scale of disturbance and inversely with the characteristic frequency of

disturbances. For a given frequency f , effects of big disturbances tend to persist whereas effects of small disturbances do not.20

In either case, this persistence decreases with increasing disturbance frequency f (i.e., decreasing Péclet number Pe).

We now take the ensemble average of relaxation timescales T over all disturbance length scales, namely, 〈T 〉 ∼ 1/f . This

indicates that the overall relaxation in response to a range of disturbance scales goes simply with the reciprocal of the distur-

bance frequency f . Thus, regardless of the mixture of disturbance scales involved, the disturbance frequency has a dominant

role in setting the relaxation timescale. Then, for example, if disturbances and mixing motions are consistently small and rel-25

atively uniform in comparison to the size of the soil pit (and the size of individual soil samples), and if the frequency of the

disturbances is sufficiently high, then one might anticipate observing at any instant only small variations about the expected

steady-state profile. If, however, disturbances are infrequent and patchy at the scale of the soil pit or larger, then one might

anticipate a greater likelihood of observing conditions unlike the expected profile.

This points to the need to avoid over-interpreting the forms of profiles from individual soil pits in terms of what these forms30

might reflect about the vertical structure of mixing (e.g., uniform versus depth dependent mixing). Unfortunately, this issue is

exacerbated by the reality that digging soil pits and sampling for 10Be concentrations and particle OSL ages is quite laborious,

and subsequent analytical analyses are prohibitively expensive. In addition, in choosing soil pit sites, we often avoid sites with

evidence of recent disturbance. On the one hand, this strategy may obviate the sampling of conditions that likely deviate from

averaged conditions; but on the other hand, it neglects observing profile irregularities that reflect the full range of disturbance35
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scales. Connecting sampling strategies (e.g., involving multiple soil pits, choosing sampling intervals within individual pits,

etc.) with appropriate averaging relative to scales of disturbances and mixing remains an important open question.

Momentarily assuming that mixing conditions are reasonably reflected by the expected particle OSL age profile m̂1(ẑ), then

the results above bear on the practical question of variability in these expected ages as a consequence of small sample sizes. As

a point of reference, Heimsath et al. (2002) sampled an average of 41 quartz grains from each of one to three vertical positions5

within four soil pits. Of the total 10 samples, on average 19 grains had finite OSL ages. Johnson et al. (2014) analyzed 42–49

grains from each of five intervals in a single soil pit. Considering only grains with finite OSL ages, the sample size Ns from

each vertical interval is about 20 – 50 in these examples. Regardless of the form of the distribution of finite particle OSL ages

with variance σ2 within each interval (Figure 8), the central limit theorem suggests that the standard error se of the estimate of

the mean is se ≈ σ/
√
Ns, or, in dimensionless form, ŝe ≈ σ̂/

√
Ns.10

Let is assume that within a small interval of ẑ, σ̂2 = m̂2(ẑ) from Eq. (45) or Eq. (46). We may then write

ŝe(ẑ)≈±
√
m̂2(ẑ)
Ns

. (52)

This yields an estimate of ŝe(ẑ) depending on the intensity and structure of mixing in relation to the sample size Ns, and

represents uncertainty in the mean value m̂1(ẑ) that is in addition to analytical uncertainty associated with single-grain OSL

age estimates. The standard errors ŝe(ẑ) for uniform and nonuniform mixing are similar, although nonuniform mixing generally15

yields smaller values of ŝe(ẑ). The well-known formula Eq. (52) suggests that, in order to obtain a standard error ŝe(ẑ) of

specified magnitude within a small interval at position ẑ requires that Ns ≈ m̂2(ẑ)/s2e. Because m̂2(ẑ) increases with depth

(Figure 9), uncertainty in the estimate of the expected value m̂1(ẑ) increases with depth for a given sample size Ns, as directly

reflected in the data of Heimsath et al. (2002) and Johnson et al. (2014). Stated another way, there may be value in judiciously

varying Ns with depth when faced with a research budget that limits the total number of single-grain OSL age analyses.20

We note, however, that this uncertainty associated with sample size cannot be distinguished from effects of any legacy of

disturbances as described above.

The results of the numerical simulations as depicted in Figures 3, 4, 6 and 7 provide an important perspective on the nature

of production of 10Be and OSL age in relation to particle transport and mixing, and the associated structuring of the profiles

n(z) and m1(z). We note that the points in Figures 3 and 4 represent large samples drawn from the joint probability density25

fnp,z(np,z, t), and the points in Figures 6 and 7 represent samples drawn from the joint probability density fAp,z(Ap,z, t).

With respect to fnp,z(np,z, t), at any instant a particle within the np−z domain only can move in the positive np direction due

to its accumulation of 10Be atoms (neglecting decay). Similarly, with respect to fAp,z(Ap,z, t), a particle within the Ap− z
domain only can move in the positive Ap direction due to its accumulation of OSL age. This means that the distribution

fnp(np,z) or fAp(Ap,z) at any position z as depicted in Figures 5 and 8 is at all instants being uniformly advected in the30

positive np or Ap direction. In both cases, particles at any instant may move in either the positive or negative z direction due

to their random-walk motions.
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Combining Eq. (4) and Eq. (14), neglecting particle volume and the decay of 10Be, and assuming steady conditions,

− ∂

∂z
(qA + qD)−P (z)

∂fnp,z(np,z)
∂np

= 0 , (53)

where qA and qD denote the advective and diffusive parts of the flux. Similarly, combining Eq. (20) and Eq. (23),

− ∂

∂z
(qA + qD)−S ∂fAp,z(Ap,z)

∂Ap
= 0 . (54)

These highlight how production at any position within the np− z or Ap− z domain is exactly balanced by the local, com-5

bined effects of particle advection and diffusion. Consider the density fnp,z(np,z). With reference to Figure 5, at all locations

(np,z) where the derivative ∂fnp,z(np,z)/∂np < 0, the effect of production is to increase the 10Be content at these loca-

tions in proportion to the production rate P (z) and the magnitude of this derivative; and at locations where the derivative

∂fnp,z(np,z)/∂np > 0 the effect of production is to decrease the 10Be content at these locations. The variation in qA and qD

with respect to z must be such that their combined divergence balances these effects of production. In turn, consider the den-10

sity fAp,z(Ap,z). With reference to Figure 8, at all locations (Ap,z) where the derivative ∂fAp,z(Ap,z)/∂Ap < 0 the effect

of particle aging is to increase the OSL age content at these locations in proportion to the magnitude of this derivative; and at

locations where the derivative ∂fAp,z(Ap,z)/∂Ap > 0 the effect of particle aging is to decrease the OSL age content at these

locations. Variations in qA and qD with respect to z must then compensate these effects.

We normally envision that local production of a quantity implies a local increase in the quantity. But this is not necessarily so15

when viewed in the np−z or Ap−z domain. Only when the production is averaged via integration over the np or Ap domain,

as in Sections 3.2.2 and 3.3.2, does a production term emerge as normally envisioned. This point further highlights a key

idea underlying the formulation, that extensive and intensive particle properties are not in themselves subject to advection and

diffusion, but rather, are merely carried with the particles as these undergo advection and diffusion with respect to z. Indeed,

the production terms in Eq. (53) and Eq. (54) represent only advection over the np and Ap domains, not diffusion (mixing)20

over these domains.

The numerical simulations suggest that the overall particle OSL age distribution is approximately exponential (Figure 10),

consistent with field data (see data of Heimsath et al. (2002) as described by Furbish et al. (2018b)). This result awaits a

theoretical explanation. Meanwhile, as described by Furbish et al. (2018b), the distribution fTr
(Tr) of the return times Tr

between successive encounters of a particle with the soil surface is expected to be a power-law distribution with an undefined25

mean (Redner, 2001) for the idealized situation involving uniform Gaussian mixing in a vertically unbounded domain, in the

absence of upward advection. Because the OSL age of a particle increases at the same rate as its (eventual) return time, the

distribution of OSL ages also is likely to be a power-law distribution in this situation. However, upward advection (with surface

erosion) combined with a finite soil thickness have the effect of strongly tempering this distribution, yielding an approximate

exponential form. Further tempering is provided with nonuniform mixing, where diffusion decreases with depth then vanishes30

at the soil-saprolite interface. This behavior of particle OSL ages is entirely analogous to the exponential tempering of the

power-law distribution of residence times of particles undergoing burial and exhumation in a stream channel, where a finite

sediment thickness limits the depth of burial. At long times the particles fully explore the accessible thickness, and a finite

(unchanging) average residence time emerges (Voepel et al., 2013).

31

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2018-68
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 29 August 2018
c© Author(s) 2018. CC BY 4.0 License.



The emergence of a maximum average OSL age M̂1 at an intermediate Péclet number Pe ∼ 1 (Figure 11) is in direct

contrast with the two-dimensional case involving downslope transport by creep without surface erosion (Furbish et al., 2018b),

where the average OSL age monotonically decreases with decreasing Pe . In this case, at large Pe , OSL particles remain near

the surface (as in the one-dimensional case), but they can accumulate large ages before exiting the soil mantle downslope.

Moreover, in the one-dimensional case, that the average OSL age is a fraction of the mean particle residence time lends support5

to the idea of defining two distinct populations of OSL tracers (Heimsath et al., 2002; Furbish et al., 2018b), those with finite

age and those that are saturated, having an “infinite” age, inasmuch as the mean residence time is much smaller than the

determinable OSL age limit (Murray and Olley, 2002).

That the numerical simulations mimic analytical solutions for the benchmark situation of a one-dimensional mean motion

involving both uniform and nonuniform mixing with varying mixing intensities lends confidence in applying the numerics to10

more complicated situations. Such situations might be motivated by questions concerning consequences of transient conditions

of surface erosion and soil production, aeolian inputs to the soil, particle weathering in relation to particle aging, accumulation

of luminescence signals with nonuniform dose rates, and the structuring of tracer particles under depositional conditions. Our

experience suggests the need to implement the numerics of boundary conditions carefully, ensuring consistency with global

particle conservation.15

Here we return to our starting point. Our use of the Fokker-Planck equation assumes Gaussian diffusion of tracer particles.

As described above, this is a parsimonious choice whose consequences, and veracity, must be judged by its consistency with

measurable outcomes of mixing, including profiles of CRN concentrations and OSL ages as emphasized here, but possibly to

include other soil properties. We suggest that a Gaussian model of particle mixing is robust inasmuch as this mixing behavior

is insensitive to the form of the probability distribution of particle displacements, fr(r), so long as this distribution is not20

heavy-tailed. We further emphasize that the effective particle diffusivity may actually represent motions involving a mixture of

characteristic length scales and associated frequencies of occurrence in settings involving both biotic and abiotic disturbances.

We also acknowledge that it may be more appropriate to consider some disturbances, for example, macro-disturbances by tree

throw and fossorial animals, as having the effect of “stirring” rather than mixing, where homogenization occurs at length scales

comparable to the mechanically active soil thickness (see next section). This points to the need for a clearer understanding of25

the spatiotemporal structure of mixing motions in adopting more sophisticated (i.e., non-Gaussian) models of mixing behavior.

The goal is to understand the information content of tracers aimed at constraining mechanical formulations of transport and

mixing, notably in relation to soil creep. The one-dimensional benchmark situation described here is a key starting point due

to the lessons it offers.

6.2 Assessing the intensity and depth dependence of mixing30

Here we focus on results for the one-dimensional benchmark case (Section 4, Figure 2) — specifically the profiles of expected
10Be concentrations and particle OSL ages — to suggest constraints on assessing the intensity and depth dependence of mixing.

For ease of comparison, we collect these profiles from Figures 3 and 4, and from Figures 6 and 7, and combine them in Figures

12 and 13.
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Figure 12. Plot of dimensionless expected concentration n̂(ẑ) = n(z)/n(h) of 10Be atoms versus dimensionless height ẑ = z/h with uni-

form mixing (solid lines) and nonuniform mixing (dashed lines) as these vary with the Péclet number Pe =Wh/Kz .

Figure 13. Plot of dimensionless expected particle OSL age Âp(ẑ) = (W/h)Ap(z) versus dimensionless height ẑ = z/h with uniform

mixing (solid lines) and nonuniform mixing (dashed lines) as these vary with the Péclet number Pe =Wh/Kz .

As described above, these profiles systematically vary with the Péclet number, Pe =Wh/Kz . In the case of 10Be concen-

trations, the profile converges to the exponential solution provided by Lal (1991) for weak mixing (large Pe), and it converges
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to a uniform value equal to the surface concentration for strong mixing (small Pe). In the case of expected particle OSL ages,

the profiles vary approximately linearly with depth, and converge to a uniform value close to zero for strong mixing.

Not surprisingly, with weak mixing the 10Be and OSL profiles for uniform and nonuniform mixing are virtually indistin-

guishable (Figures 12 and 13), as the profiles in this case are mostly determined by the mean motion. Similarly, with strong

mixing the 10Be profiles are not markedly different except near the base of the soil column, and the OSL age profiles are nearly5

the same. Significant differences in the profiles appear only in the presence of intermediate mixing intensities. The essence of

these differences at intermediate intensities (Pe ∼ 1) arises from how rapidly the particle diffusivity decreases with increasing

depth (Sections 5.1 and 5.2). Thus, the forms of the profiles might change in detail in the presence of a more complicated (e.g.,

nonlinear) mixing structure. Nonetheless, these results suggest that 10Be and OSL age profiles may help constrain the mixing

structure in the presence of intermediate mixing intensities, albeit depending on the resolution of measurements.10

These profiles highlight that uniform particle mixing is not synonymous with the idea of complete mixing, and why a uniform

profile of 10Be concentration or particle OSL age does not necessarily indicate the presence of uniform mixing. Whereas

“uniform mixing” refers to the mixing structure wherein the statistical qualities of particle random walks are independent of

vertical position, “complete mixing” refers to an idea from reservoir theory (Bolin and Rodhe, 1973), that particle mixing

within a specified control volume is sufficiently thorough that the probability of a particle exiting the volume is independent15

of its residence time in the volume (Bolin and Rodhe, 1973; Furbish et al., 2018a) — an idea that is strongly conditioned

by the geometry of particle motions, specifically, the proximity of the inflow and outflow locations relative to the particle

trajectories, and the degree of mixing between these locations (Bolin and Rodhe, 1973). Both uniform and nonuniform mixing

yield uniform 10Be and OSL profiles in the limit of Pe→ 0. That said, complete particle mixing within soils is mechanically

unlikely, a point that is consistent with available 10Be and OSL data concerning creeping soils (Furbish et al., 2018a, 2018b),20

and deserving reexamination in interpreting 10Be profiles with respect to surface ages and denudation rates (Schaller et al.,

2009). This point also is consistent with the idea of depth dependent mixing (Humphreys and Field, 1998; Cousins et al., 1999;

Roering, 2004; Wilkinson and and Humphreys, 2005; Wilkinson et al., 2009; Johnson et al., 2014; Gray, 2018), in which the

local intensity of mixing declines with depth.

Here we step back and look at published data. We first note that, whereas our benchmark case involves a steady one-25

dimensional mean motion, available field-based measurements of 10Be concentrations and OSL particle ages mostly pertain to

transient conditions or involve two-dimensional downslope soil transport. One cannot make a direct comparison between tracer

profiles sampled on sloping surfaces and the one-dimensional results depicted in Figures 12 and 13. For example, the upper

boundary conditions examined here are quite different from those in the two-dimensional case. One effect of these differences

is directly reflected by the column-averaged OSL age as this varies non-monotonically with the Péclet number Pe (Figures 1030

and 11) versus the monotonic variation of this quantity with Pe for two-dimensional particle motions (Furbish et al., 2018b,

Figure 6 therein). Nonetheless, in comparing our results with those presented in Furbish et al. (2018b, Figures 4 and 5 therein),

it is clear that the basic forms of profiles resulting from one-dimensional and two-dimensional transport systematically vary in

like manner with the intensity of mixing, as characterized by the Péclet number Pe .
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As an important backdrop to the benchmark case examined here, 10Be profiles from a flight of five marine terraces near Santa

Cruz, California, illustrate the continued accumulation of 10Be atoms with increasing terrace age within the mixed soil and

underlying undisturbed material, under the condition of negligible surface erosion (Perg et al., 2001, Figures 2 and 4 therein;

Granger and Riebe, 2014, Figure 9 therein). Near-surface concentrations are relatively uniform, and in three cases (terraces 1, 3

and 5) decline toward the value at the base of the assumed mixing depth, suggesting Pe ∼ 1 and likely an associated decline in5

mixing intensity. Concentrations are mostly centered about a vertically averaged value that is less than the surface concentration

that would occur with steady surface erosion. Similarly, as noted by Furbish et al. (2018b), uniform concentrations of 10Be

in weakly developed soils on the crests of moraines near Pinedale, Wyoming, suggest well mixed conditions near the surface

(Schaller et al., 2009), although there is inconsistency with expected concentrations based on the formulation of Lal and Chen

(2005) for the well mixed case; there also is uncertainty in the calculated lowering rates and mixing depths, and the sites may10

represent transient conditions.

Relatively uniform 10Be profiles from hillslopes in the Great Smokey Mountains reflect strongly mixed conditions at the

sample locations (Jungers et al., 2009, Figure 7 therein; reproduced in Anderson, 2015, Figure 14 therein), likely due to effects

of tree throw and other bioturbation events that stir the soil over much of its ∼60 cm thickness. Within the context of the

analysis above, these conditions suggest that Pe < 1. Similarly, five profiles sampled on hillslopes at Gordon Gulch, Colorado,15

display a mixture of conditions, varying from relatively uniform concentrations (Pe < 1) to an approximately linear variation

with depth (Pe > 1) (Foster et al., 2015, Figure 7 therein; reproduced in Anderson, 2015, Figure 14 therein). In turn, three

profiles measured along a 100 m catena flow line in a soil developed from granitic bedrock on Osborn Mountain, Wyoming

(Small et al., 1999, Figure 6 therein; reproduced in Anderson, 2015, Figure 14 therein), reflect conditions consistent with

Pe & 1 (Furbish et al., 2018b), where relatively uniform concentrations in the upper parts of the profiles then decrease in the20

lower one third.

An OSL age profile Ap(z) based on single quartz grains collected from a bioturbated soil developed on a basalt flow on

the Denna Plain in northeast Queensland, Australia (Johnson et al., 2014, Figure 2 therein; Furbish et al., 2018b, Figure 10

therein), most closely matches the benchmark case described here. This profile suggests an approximately linear increase in

OSL ages with depth, as in Figure 13. In addition, the sampled quartz grains likely were added to the soil at its surface, a25

boundary condition that is consistent with the theoretical formulation (Furbish et al., 2018b; Appendixes B and C). Moreover,

the OSL ages are only a fraction of the estimated mean residence time at this site, consistent with moderate to strong mixing

(Furbish et al., 2018b). Although mixing at this site likely varies with depth, the similarity between profiles in Figure 13

suggests that the mixing structure cannot be distinguished. Similarly, the OSL age profiles Ap(z) reported by Heimsath et al.

(2002, Figure 1 therein; Furbish et al., 2018b, Figure 8 therein) based on single grains of quartz collected from a hillslope30

with nonuniform soil thickness over granitic bedrock in the Nunnock River catchment, Australia, suggest an approximately

linear increase in OSL ages with depth. Although involving downslope transport, the profiles are consistent with strong mixing

(small Pe), possibly including macro-disturbances (Heimsath et al., 2002). Moreover, the distribution of all particle OSL ages

is approximately exponential with an average age that is much smaller than the calculated mean soil residence time, consistent

with strong mixing (Furbish et al., 2018b; Figure 10).35
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In all cases summarized above, the profiles suggest moderate (Pe & 1) to strong (Pe < 1) mixing. Distinguishing between

uniform and non-uniform mixing likely will require higher resolution sampling than reported in these cases. Our own bias is

that many if not most settings with significant mixing by bioturbation or the effects of freezing and thawing likely involve

depth dependent mixing. At least for the one-dimensional case examined here, CRN profiles are capable of revealing mixing

intensity and possibly mixing structure for Pe ∼ 1. In contrast, OSL profiles are capable of revealing mixing intensity, but not5

likely mixing structure.

To our knowledge there are no available measurements of profiles of 10Be concentrations and OSL ages taken together. We

suggest that there is merit in doing just this as a means to provide a more demanding test of formulations of transport and

mixing (Furbish, 2003; Roering et al., 2004). We also reiterate that our results provide an analytical benchmark for assessing

the veracity of emerging numerical methods aimed at simulating particle transport and mixing, to include Eulerian-Lagrangian10

descriptions of particle motions that might incorporate individual detrital grain CRN concentrations (Codilean et al., 2010) as

well as fully treating the effects of a nonuniform radiation dose field. This includes simulations that start from probabilistic,

physically based formulations of total luminescence intensities as measured by portable OSL readers (Gray et al., 2017; Gray,

2018), as an addition to multi-grain and single-grain analyses aimed at extracting particle burial ages. Such measurements

may be capable of revealing mixing structure, as well as intensity, from relatively high resolution sampling since particles15

involved in accumulating luminescence signals are likely to be more uniformly distributed within the soil column relative to

those possessing finite OSL ages (Appendix B).

Code availability. The code for simulating particle motions is written for Matlab, and is available by request from any of the authors.

Appendix A: Conservation of expected number concentration of 10Be atoms

Assuming 10Be production is due to spallation (Gosse and Phillips, 2001), the number concentration n(z, t) of 10Be atoms20

satisfies a Foker-Planck-like equation, namely,

∂n(z, t)
∂t

=− ∂

∂z

[
w(z, t)n(z, t)−κz(z, t)

∂n(z, t)
∂z

]

+P0e
−(h−z)/ls −λn(z, t) , (A1)

where w(z, t) denotes the ensemble averaged particle velocity and κz(z, t) denotes the ensemble expected particle diffusiv-25

ity (Furbish et al., 2009b, 2018a, 2018b). For steady conditions involving a one-dimensional mean motion, ∂n(z, t)/∂t= 0,

n(z, t)→ n(z) and w(z, t)→W . Assuming that the half-life of 10Be is much greater than the mean residence time, h/W , of

target quartz particles, then Eq. (A1) becomes

d
dz

[
Wn(z)−κz(z)

dn(z)
dz

]
= P0e

−(h−z)/ls . (A2)
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We first rewrite Eq. (A2) in terms of the flux qz(z) =Wn(z)−dn(z)/dz, namely,

dq(z)
dz

= P0e
−h/lsez/ls . (A3)

Vertically integrating Eq. (A3) over the soil thickness,

h∫

0

dq(z)
dz

dz = P0e
−h/ls

h∫

0

ez/ls dz . (A4)

With fixed boundaries, this yields5

qz(h) = qz(0) +P0ls

(
1− e−h/ls

)
. (A5)

This says that the flux qz(h) of 10Be atoms across the soil surface and removed by erosion is equal to the rate at which atoms

enter the soil column at its base, qz(0) =Wn(0), plus the total rate at which they are produced within the column. In this

steady problem, no information is available regarding the vertically averaged concentration.

In this problem, the concentration n(0) at the soil-saprolite interface is obtained by solving the purely adective form of Eq.10

(A2) and using the boundary condition that n(−∞) = 0. The result is

n(0) =
P0ls
W

e−h/ls . (A6)

In turn, the flux qz(0) is

qz(0) = P0lse
−h/ls , (A7)

and the flux qz(h) is15

qz(h) = P0ls . (A8)

As described below, the concentration n(h) at the soil surface depends on what is assumed about the contributions to the flux

qz(h) at this surface. We now consider how the concentration profile n(z) differs with uniform versus nonuniform mixing.

A1 Uniform mixing

With uniform mixing (κz =Kz), we start by integrating Eq. (A3) to give20

qz(z) = P0lse
−h/lsez/ls +C1 . (A9)

The lower boundary condition, Eq. (A7), then gives C1 = 0. Using this result together with qz(z) =Wn(z)−Kzdn(z)/dz

then leads to

dn(z)
dz

− W

Kz
n(z) =−P0ls

Kz
e−h/lsez/ls . (A10)
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We now simplify the notation and rewrite Eq. (A10) as

dn(z)
dz

−An(z) =−Bez/ls , (A11)

with

A=
W

Kz
and B =

P0ls
Kz

e−h/ls . (A12)

A general solution of Eq. (A11) is5

n(z) =
Bls

Als− 1
ez/ls +C1e

Az . (A13)

At this point we assume that the upper boundary flux is purely advective. Physically this means we are imagining that the

rate of surface erosion E, being externally imposed, removes 10Be atoms at a rate En(h) =Wn(h). This is consistent with

the requirement that the rate of quartz particle removal at the surface is equal to the rate at which quartz particles enter the soil

at the soil-saprolite interface, independent of their 10Be concentration. Then, from Eq. (A8), qz(h) = P0ls =Wn(h) so that10

n(h) = P0ls/W . Using this boundary condition,

C1 =
P0ls
W

e−Ah− Bls
Als− 1

eh/lse−Ah . (A14)

Substituting this into Eq. (A13) then doing algebra yields

n(z) =
P0ls
W

e−W (h−z)/Kz

15

+
P0l

2
s

Kz

1
Wls/Kz − 1

[
e−(h−z)/ls − e−W (h−z)/Kz

]
. (A15)

With dimensionless height ẑ = z/h, dimensionless concentration n̂(ẑ) = n(z)/n(h), primary Péclet number Pe =Wh/Kz

and secondary Péclet number Pels =Wls/Kz , Eq. (A15) becomes

n̂(ẑ) = e−Pe(1−ẑ)

20

+
Pels

Pels − 1

[
e−h(1−ẑ)/ls − e−Pe(1−ẑ)

]
, (A16)

which is Eq. (36) in the text.

A2 Nonuniform mixing

With nonuniform mixing (κz(z) =Kzz/h) we start with Eq. (A9) withC1 = 0 together with qz(z) =Wn(z)−Kz(z/h)dn(z)/dz

to give25

dn(z)
dz

− Wh

Kzz
n(z) =−P0lsh

Kz
e−h/ls

ez/ls

z
. (A17)
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We now simplify the notation and rewrite Eq. (A17) as

dn(z)
dz

− A

z
n(z) =−Be

z/ls

z
, (A18)

with

A=
Wh

Kz
and B =

P0lsh

Kz
e−h/ls . (A19)

A general solution of Eq. (A18) is5

n(z) =B

(
− z
ls

)A

Γ
(
−A,− z

ls

)
+C1z

A . (A20)

where Γ is the incomplete gamma function. Using the advective boundary condition n(h) = P0ls/W ,

C1 =
P0ls
W

h−A−B
(
− h
ls

)A

Γ
(
−A,− h

ls

)
h−A . (A21)

Substituting this into Eq. (A20) then doing algebra yields

n(z) =
P0ls
W

( z
h

)Wh/Kz

10

+
P0lsh

Kz

[(
− z
ls

)Wh/Kz

Γ
(
−Wh

Kz
,− z
ls

)

−
(
− h
ls

)Wh/Kz

15

·Γ
(
−Wh

Kz
,− h
ls

)( z
h

)Wh/Kz
]
e−h/ls . (A22)

With dimensionless height ẑ = z/h, dimensionless concentration n̂(ẑ) = n(z)/n(h) and Péclet number Pe =Wh/Kz , Eq.

(A22) becomes

n̂(ẑ) = ẑPe + Pe
[(
−hẑ
ls

)Pe

Γ
(
−Pe,−hẑ

ls

)

20
(
− h
ls

)Pe

Γ
(
−Pe,− h

ls

)
ẑPe
]
e−h/ls , (A23)

which is Eq. (37) in the text. Note that Eq. (A23) has real and imaginary parts. Only the real part is physically meaningful in

this problem.

Like the results in Section A1 above, the concentration gradient at the soil surface, [dn(z)/dz]h = 0, as a consequence of

assuming an advective boundary condition.25
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Appendix B: Conservation of particles with finite OSL age

The number concentration c(z, t) of particles with finite OSL age satisfies a Fokker-Planck-like equation, namely,

∂c(z, t)
∂t

=− ∂

∂z

[
w(z, t)c(z, t)−κz(z, t)

∂c(z, t)
∂z

]
, (B1)

where w(z, t) denotes the ensemble averaged particle velocity and κz(z, t) denotes the ensemble expected particle diffusivity.

For steady conditions involving a one-dimensional mean motion, ∂c(z, t)/∂t= 0, c(z, t)→ c(z), w(z, t)→W , and Eq. (B1)5

becomes

d
dz

[
Wc(z)−κz(z)

dc(z)
dz

]
= 0 . (B2)

Moreover, the particle flux must be zero across any surface normal to z, so

Wc(z)−κz(z)
dc(z)

dz
= 0 . (B3)

Under steady conditions the total number of particles with finite (measurable, non-saturated) OSL age within the soil element10

remains fixed. A particle entering the soil cannot attain a finite OSL age until it reaches the surface and is bleached, and then

becomes buried and exposed to the dose field. Thus, even though particles that eventually possess a finite OSL age continuously

enter the element through its lower boundary, this boundary must be considered a zero flux boundary, as no particle with finite

age can be added to the soil. Particles at the soil surface with zero OSL age are removed by erosion. The erosion rate matches

W , so the rate of loss of particles is exactly balanced by the rate at which particles reach the surface and become OSL15

particles (with an OSL age of zero), many of which then take random walks downward. Thus, the upper boundary also must

be considered a zero flux boundary with fixed concentration c(h).

With uniform mixing (κz =Kz) we integrate Eq. (B3) to obtain

c(z) = C1e
Wz/Kz , (B4)

with constant of integration C1. The boundary condition c(h) = C1e
Wh/Kz then leads to the solution20

c(z) = c(h)e−W (h−z)/Kz . (B5)

The boundary condition c(h) should be equal to the concentration of OSL sensitive particles entering the base of the soil

element, but which only take on finite OSL ages once they reach the surface and are bleached. With nonuniform mixing

(κz(z) =Kzz/h) we integrate Eq. (B3) to obtain

c(z) = c(h)
( z
h

)Wh/Kz

(B6)25

With dimensionless height ẑ = z/h, dimensionless concentration ĉ(ẑ) = c(z)/c(h) and Péclet number Pe =Wh/Kz , Eq.

(B5) and Eq. (B6) become

ĉ(ẑ) = e−Pe(1−ẑ) (B7)
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and

ĉ(ẑ) = ẑPe , (B8)

which are Eq. (41) and Eq. (42) in the text. These results (Figure B1) are used next in obtaining the expected OSL age A(z) of

Figure B1. Plot of dimensionless OSL particle concentration ĉ(ẑ) = c(z)/c(h) versus dimensionless height ẑ = z/h with uniform mixing

(solid lines) and nonuniform mixing (dashed lines) as these vary with the Péclet number Pe =Wh/Kz .

particles.

Appendix C: Conservation of expected particle OSL age5

Let m1(z, t) denote the expected (average) finite OSL age of particles within the small interval z to z+ dz in a soil element

with dimensions XY h. With a total of N such particles within the element, the product Nc(z, t)m1(z, t)XY dz represents the

total (collective) OSL age of particles within dz. The product c(z, t)m1(z, t) satisfies a Fokker-Planck-like equation, namely,

∂

∂t
[c(z, t)m1(z, t)]

10

=− ∂

∂z

(
w(z, t)c(z, t)m1(z, t)

−κz(z, t)
∂

∂z
[c(z, t)m1(z, t)]

)
+Sc(z, t) , (C1)

where w(z, t) denotes the ensemble averaged particle velocity, κz(z, t) denotes the ensemble expected particle diffusivity, and

S is a source term. For steady conditions in both c andm1 involving a one-dimensional mean motion, (∂/∂t)[c(z, t)m1(z, t)] =15
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0, c(z, t)→ c(z), m1(z, t)→m1(z), w(z, t)→W , and Eq. (C1) becomes

d
dz

(
Wc(z)m1(z)−κz(z)

d
dz

[c(z)m1(z)]
)

= Sc(z) , (C2)

We now rewrite Eq. (C2) as5

d
dz

(
m1(z)

[
Wc(z)−κz

dc(z)
dz

]

−κz(z)c(z)
dm1(z)

dz

)
= Sc(z) . (C3)

Using (B3), this reduces to

d
dz

[
−κz(z)c(z)

dm1(z)
dz

]
= Sc(z) . (C4)10

indicating that the flux qz(z) =−κz(z)c(z)dm1(z)/dz of particle OSL age involves only diffusion. That is, OSL age is not

advected. In this problem, particles are advected, carrying their OSL age with them; but particle advection is balanced by

particle diffusion.

We now write Eq. (C4) as

dqz(z)
dz

= Sc(z) . (C5)15

Vertically integrating,

h∫

0

dqz(z)
dz

dz = S

h∫

0

c(z)dz . (C6)

With fixed boundaries, this yields

qz(h)− qz(0) = Sch. (C7)

where the overbar denotes a vertically averaged quantity. Moreover, note that qz(0) = 0, as particles with a finite OSL age20

cannot be imported to the soil element. Thus,

qz(h) =−κz(h)c(h)
[

dm1(z)
dz

]

z=h

= Sch. (C8)

This indicates that OSL age is diffused “through” the soil surface at a rate equal to its total production within the soil column.
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C1 Uniform mixing

With uniform mixing (κz =Kz) we write

qz(h) = S

h∫

0

c(z)dz . (C9)

Using Eq. (B5), this becomes

qz(h) = Sc(h)e−Wh/Kz

h∫

0

eWz/Kz dz . (C10)5

Evaluating the integral then gives

qz(h) =
Sc(h)Kz

W

(
1− e−Wh/Kz

)
. (C11)

More generally,

qz(z) = Sc(h)e−Wh/Kz

∫
eWz/Kz dz . (C12)

Evaluating the integral,10

qz(z) =
Sc(h)Kz

W
e−Wh/KzeWz/Kz +C1 . (C13)

Using the boundary condition obtained above for qz(h),

C1 =−Sc(h)Kz

W
e−Wh/Kz . (C14)

Using this result and qz(z) =−Kzc(z)dm1(z)/dz with c(z) given by Eq. (B5), we obtain

dm1(z)
dz

=− S

W
+
S

W
e−Wz/Kz . (C15)15

Integrating and using the boundary condition that m1(h) = 0 then yields

m1(z) =
S

W
(h− z)

+
SKz

W 2

(
e−Wh/Kz − e−Wz/Kz

)
. (C16)

With dimensionless height ẑ = z/h, dimensionless OSL age m̂1(ẑ) = (W/h)m1(z) and Péclet number Pe =Wh/Kz , Eq.20

(C16) becomes

m̂1(ẑ) = S(1− ẑ) +
Se−Pe

Pe

[
1− ePe(1−ẑ)

]
, (C17)

which is Eq. (43) in the text.
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C2 Nonuniform mixing

With nonuniform mixing (κz(z) =Kzz/h) we use Eq. (B6) and write

qz(h) = Sc(h)h−Pe

h∫

0

zPe dz . (C18)

Evaluating the integral then gives

qz(h) =
Sc(h)h
1 + Pe

. (C19)5

More generally,

qz(z) = Sc(h)h−Pe

∫
zPe dz . (C20)

Evaluating the integral,

qz(z) =
Sc(h)h−Pe

1 + Pe
z1+Pe +C1 . (C21)

Using Eq. (C19), C1 = 0. Then using qz(z) =−Kz(z/h)c(z)dm1(z)/dz together with Eq. (C19) we obtain10

dm1(z)
dz

=− Sh

Kz(1 + Pe)
. (C22)

Integrating and using the boundary condition that m1(h) = 0 then yields

m1(z) =
Sh2

Kz(1 + Pe)

(
1− z

h

)
. (C23)

With dimensionless height ẑ = z/h, dimensionless OSL age m̂1(ẑ) = (W/h)m1(z) and Péclet number Pe =Wh/Kz , Eq.

(C23) becomes15

m̂1(ẑ) =
SPe

1 + Pe
(1− ẑ) , (C24)

which is Eq. (44) in the text.

Appendix D: Variance of OSL ages

For a set of particles possessing finite OSL ages within any interval dz, their rate of “aging” is fixed, independent of age. This

means that the average OSL age increases at this fixed rate, whereas the second and higher moments do not change. Thus,20

direct production of the variance m2 of OSL ages is zero.

For steady conditions we start with Eq. (40) in the text, namely,

d
dz

[
−κz(z)c(z)

dm2(z)
dz

]

−2κz(z)c(z)
[

dm1(z)
dz

]2
= 0 . (D1)25

In the following we go directly to nondimensional forms of this.
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D1 Uniform mixing

With κz =Kz and q̂ = [h/Kzc(h)(h/W )2]q we start with

dq̂
dẑ

=
d
dẑ

(
−ĉdm̂2

dẑ

)
= 2ĉ

(
dm̂1

dẑ

)2

. (D2)

Taking the derivative of Eq. (C17), squaring the result and using ĉ= e−PeePeẑ then leads to

dq̂
dẑ

= 2S2e−PeePeẑ − 4S2e−Pe + 2S2e−Pee−Peẑ . (D3)5

Integrating this with respect to ẑ from ẑ = 0 to ẑ = 1 and noting that q̂(0) = 0,

q̂(1) =
2S2

Pe
− 4S2e−Pe − 2S2e−2Pe

Pe
. (D4)

More generally,

q̂(ẑ) =
2S2e−Pe

Pe
ePeẑ − 4S2e−Pe ẑ

10

−2S2e−Pe

Pe
e−Peẑ +C1 . (D5)

Using Eq. (D5) gives C1 = 0. With q̂ =−ĉdm̂2/dẑ, and again using ĉ= e−PeePeẑ ,

dm̂2

dẑ
= 4S2ẑe−Peẑ − 2S2

Pe
+

2S2

Pe
e−2Peẑ . (D6)

Integrating with respect to ẑ and evaluatinng the constant of integration with the condition that m̂2(1) = 0 then yields

m̂2(ẑ) =
2S2

Pe
(1− ẑ) +

4S2

Pe2

[
(1 + Pe)e−Pe15

−(1 + Pe ẑ)e−Peẑ
]

+
S2

Pe2

(
e−2Pe − e−2Peẑ

)
, (D7)

which is Eq. (45) in the text.

D2 Nonuniform mixing

With q̂ = [h/Kzc(h)(h/W )2]q we start with20

dq̂
dẑ

=
d
dẑ

(
−ẑĉdm̂2

dẑ

)
= 2ẑĉ

(
dm̂1

dẑ

)2

. (D8)

With ĉ= ẑPe then ẑĉ= ẑ1+Pe . Using this and taking the derivative of Eq. (C24) with respect to ẑ and squaring the result leads

to

dq̂
dẑ

=
2S2Pe2

(1 + Pe)2
ẑ1+Pe . (D9)
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Integrating this with respect to ẑ from ẑ = 0 to ẑ = 1 and noting that q̂(0) = 0,

q̂(1) =
2S2Pe2

(2 + Pe)(1 + Pe)2
. (D10)

More generally,

q̂(z) =
2S2Pe2

(2 + Pe)(1 + Pe)2
ẑ2+Pe +C1 . (D11)

Using Eq. (D10) gives C1 = 0. With q̂ =−ẑĉdm̂2/dẑ, and again using ẑĉ= ẑ1+Pe ,5

dm̂2

dẑ
=− 2S2Pe2

(2 + Pe)(1 + Pe)2
ẑ . (D12)

Integrating with respect to ẑ and evaluating the constant of integration with the condition that m̂2(1) = 0 then yields

m̂2(ẑ) =
S2Pe2

(2 + Pe)(1 + Pe)2
(1− ẑ2) , (D13)

which is Eq. (46) in the text.
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