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Abstract. For over a century geomorphologists have attempted to unravel information about landscape evolution, and processes

that drive it, using river profiles. Many studies have combined new topographic datasets with theoretical models of channel

incision to infer erosion rates, identify rock types with different resistance to erosion, and detect potential regions of tectonic

activity. The most common metric used to analyse river profile geometry is channel steepness, or ks. However, the calculation

of channel steepness requires the normalisation of channel gradient by drainage area. This normalisation requires a power5

law exponent that is referred to as the channel concavity index. Despite the concavity index being crucial in determining

channel steepness, it is challenging to constrain. In this contribution we compare both slope–area methods for calculating

the concavity index and methods based on integrating drainage area along the length of the channel, using so-called “chi”

(χ) analysis. We present a new χ-based method which directly compares χ values of tributary nodes to those on the main

stem: this method allows us to constrain the concavity index in transient landscapes without assuming a linear relationship10

between χ and elevation. Patterns of the concavity index have been linked to the ratio of the area and slope exponents of

the stream power incision model (m/n): we therefore construct simple numerical models obeying detachment-limited stream

power and test the different methods against simulations with imposed m and n. We find that χ-based methods are better than

slope–area methods at reproducing imposed m/n ratios when our numerical landscapes are subject to either transient uplift or

spatially varying uplift and fluvial erodibility. We also test our methods on several real landscapes, including sites with both15

lithological and structural heterogeneity, to provide examples of the methods’ performance and limitations. These methods are

made available in a new software package so that other workers can explore how the concavity index across diverse landscapes,

with the aim to improve our understanding of the physics behind bedrock channel incision.

1 Introduction

Geomorphologists have been interested in understanding controls on the steepness of river channels for centuries. In his seminal20

Report on the Henry Mountains, Gilbert (1877) remarked that: “We have already seen that erosion is favored by declivity.

Where the declivity is great the agents of erosion are powerful; where it is small they are weak; where there is no declivity

they are powerless (p. 114).” Following Gilbert’s pioneering observations of landscape form, many authors have attempted to

quantify how topographic gradients (or declivities) relate to erosion rates. Landscape erosion rates are thought to respond to

tectonic uplift (Hack, 1960). Therefore, extracting erosion rate proxies from topographic data provides novel opportunities for25
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identifying regions of tectonic activity (e.g., Seeber and Gornitz, 1983; Snyder et al., 2000; Lague and Davy, 2003; Wobus

et al., 2006a; Cyr et al., 2010), and may even be able to highlight potentially active faults (e.g., Kirby and Whipple, 2012).

Analysing channel networks is particularly important for detecting the signature of external forcings from the shape of the

topography, as fluvial networks set the boundary conditions for their adjacent hillslopes, therefore acting as the mechanism by

which climatic and tectonic signals are transmitted to the rest of the landscape (e.g., Burbank et al., 1996; Whipple and Tucker,5

1999; Whipple, 2004; Hurst et al., 2013).

Channels do not yield such information easily, however. Any observer of rivers or mountains will note that headwater

channels tend to be steeper than channels downstream. Declining gradients along the length of the channel leads to river

longitudinal profiles that tend to be concave up. Therefore, the gradient of a channel cannot be related to erosion rates in

isolation: some normalising procedure must be performed. Over a century ago Shaler (1899) postulated that as channels gain10

drainage area their slopes would decline, hindering their ability to erode. Authors such as Hack (1957), Morisawa (1962),

and Flint (1974) expanded upon this idea in the early twentieth century by quantifying the relationship between slope and

drainage area, often used as a proxy for discharge. Flint (1974) found that channel gradient appeared to systematically decline

downstream in a trend that could be described by a power law:

S = ksA
−θ, (1)15

where θ is referred to as the concavity index since it describes how concave a profile is: the higher the value, the more rapidly

a channel’s gradient decreases downstream. Note that the term “concavity” is sometimes applied to river long profiles (e.g.,

Demoulin, 1998; Conway et al., 2015; Roy and Sinha, 2018) so most studies refer to θ, derived from slope–area data, as the

“concavity index” (c.f., Kirby and Whipple, 2012). The term ks is called the steepness index, as it sets the overall gradient of

the channel. If we take the logarithm of both sides of equation (1), we find a linear relationship in log[S]–log[A] space with a20

slope of θ and an intercept (the value of log[S] where log[A] = 0) of log[ks]:

log[S] =−θ log[A] + log[ks]. (2)

A number of studies (e.g., Ouimet et al., 2009; DiBiase et al., 2010; Scherler et al., 2014; Mandal et al., 2015; Harel et al.,

2016) have demonstrated that ks is positively correlated with erosion rate, mirroring the predictions of Gilbert (1877) over a

century earlier. Many authors have used channel steepness to examine fluvial response to climate, lithology, and tectonics (e.g.,25

Flint, 1974; Tarboton et al., 1989; Snyder et al., 2000; Kirby and Whipple, 2001; Lague and Davy, 2003; Kobor and Roering,

2004; Wobus et al., 2006a; Harkins et al., 2007; Cyr et al., 2010; DiBiase et al., 2010; Kirby and Whipple, 2012; Vanacker

et al., 2015).
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The noise inherent in S–A analysis prompted Leigh Royden and colleagues to develop a method that compares the elevations

of channel profiles, rather than slope (Royden et al., 2000). We can modify the Royden et al. (2000) approach to integrate

equation (1), since S = dz/dx where z is elevation and x is distance along the channel (e.g., Whipple et al., 2017), resulting in

z(x) = z(xb) +

(
ks

A0
θ

) x∫
xb

(
A0

A(x)

)θ
dx, (3)

where A0 is a reference drainage area, introduced to nondimensionalise the area term within the integral in equation (3). We5

can then define a longitudinal coordinate, χ:

χ=

x∫
xb

(
A0

A(x)

)θ
dx. (4)

χ has dimensions of length, and is defined such that at any point in the channel

z(x) = z(xb) +

(
ks

A0
θ

)
χ. (5)

Equation (5) shows that steepness of the channel (ks) is related to the slope of the transformed channel in χ–elevation space.10

In both equation (2) and equation (5), the numerical value of ks depends on the value chosen for the concavity index, θ. In

order to compare the steepness of channels in basins of different sizes, a reference concavity index is typically chosen (θref ),

which is then used to extract a normalised channel steepness from the data (Wobus et al., 2006a):

ksn,i =A
θref
i Si. (6)

where the subscript i is a data point. This data point often represents channel quantities that are smoothed: see discussion15

below.

1.1 Choosing a concavity index to extract channel steepness

The choice of the reference concavity index is important in determining the relative ksn values amongst different sections

in the channel network, which we illustrate in Figure 1. This figure depicts hypothetical slope–area data, which appear to

lie along a linear trend in slope–area space. Choosing a reference concavity index based on a regression through these data20

will result in the entire channel network having similar values of ksn. Based on the data in Figure 1, there is no evidence

that the correct concavity index is anything other than the one represented by the linear fit through the data. However, these

hypothetical data are in fact based on numerical simulations, presented in Section 3, in which we simulated a higher uplift rate

in the core of the mountain range. The correct concavity index is therefore lower than that indicated by the log[S]–log[A] data,
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and instead the data show a strong spatial trend in channel steepness (interpretation 2 in Fig. 1). The simplest interpretation

based on log[S]–log[A] data alone would have been entirely incorrect. This situation is analogous to the one described by

Kirby and Whipple (2001), where downstream reductions in uplift rates in the Siwalik Hills of India and Nepal resulted in

elevated apparent concavities. Conversely, if a single reference concavity index is chosen in an area with changing concavity

indices, then spurious patterns in in ksn may arise (e.g., Gasparini and Whipple, 2014). These examples highlight that selecting5

the correct concavity index is crucial if we are to correctly interpret channel steepness data.

Extracting a reliable reference concavity indices from slope–area data on real landscapes is challenging: topographic data

can be noisy, leading to a wide range of channel gradients for small changes in drainage area. The branching nature of river

networks also results in large discontinuities in drainage areas where tributaries meet, resulting in significant data gaps in S–A

space (Figure 2). Wobus et al. (2006a) made recommendations for preprocessing of slope–area data that are still used in many10

studies: first, the DEM is smoothed (although with improved DEMs this is now rare), then topographic gradient is measured

over either a fixed reach length or a fixed drop in elevation (Wobus et al. (2006a) recommends the latter), and then the data are

averaged in logarithmically spaced bins. More recently, authors have proposed alternative channel smoothing strategies (e.g.,

Aiken and Brierley, 2013; Schwanghart and Scherler, 2017): all these methods use some form of smoothing and averaging.

In order to circumvent these problems with S–A analysis, many authors have since used the integral approach (equation15

5) to analyse channel concavity indices. This method also aims to normalise river profiles for their drainage area, but rather

than comparing slope to area, integrates area along channel length (Royden et al., 2000; Perron and Royden, 2013). Perron and

Royden (2013) showed that the concavity index could be extracted from a channel by selecting the value of θref that results in

the most linear channel profile in χ–elevation space. However, if there are sections of the channel with difference ksn values,

this will hinder our ability to extract the θref value, as it is not appropriate to fit a single line throughout the entire profile20

(e.g., Mudd et al., 2014). Mudd et al. (2014) introduced a method to statistically determine the most likely concavity index by

computing the best fit series of linear segments using an algorithm that balanced fit of the data against over parametrisation

using the Akaike Information Criterion Akaike (1974). This method, however, requires a number of input parameters and also

performs computationally expensive segmentation on the χ–elevation data prior to calculating the concavity index (Mudd et al.,

2014).25

Perron and Royden (2013) suggested a second independent means to calculate the concavity index, which does not assume

linearity of the profiles in χ–elevation space, and may therefore be used in transient landscapes. This method is instead based

on searching for collinearity of tributaries with the main stem channel (e.g., Perron and Royden, 2013; Mudd et al., 2014),

and has since been used as a basis for other techniques that aim to minimise some quantitative description of scatter between

tributaries and the trunk channel (e.g., Goren et al., 2014; Hergarten et al., 2016).30

Although the collinearity test does not assume any linearity of profiles in χ-elevation space, it does rely on the assumption

that points in the channel network with the same value of χ will have the same elevation. Perron and Royden (2013) noted

that this will hold true if transient erosion signals propagate vertically through the network at a constant rate, which has

been predicted by some theoretical models of fluvial incision (e.g., Wobus et al., 2006b). Royden and Perron (2013) went

on to demonstrate that changes in erosion rates in channel networks would lead to distinct segments that migrate upstream,35
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which they termed "slope patches" where the local ks reflects local erosion rate. However, here we wish to avoid basing our

formulation on any theoretical models of fluvial incision, as this introduces assumptions regarding bedrock erosion processes.

Wang et al. (2017b) highlighted that slope–area analysis could be used to complement integral analysis where concavity

indices might vary spatially, since slope–area is agnostic with regard to these incision processes, but also found that integral-

based analyses have lower uncertainties than slope–area analysis. Therefore, here we use simple geometric relationships of5

knickpoint propagation to relate the collinearity test to channel concavity indices without relying on theoretical models of

fluvial incision, as set out in Section 1.2.

1.2 Connecting the concavity index to collinearity

Playfair (1802) noted that tributary valleys tended to join the principal valley at a common elevation, suggesting that, at their

outlets, the tributary streams must lower at the same rate as as the principal streams into which they drain. Therefore, any change10

in incision rate on the main stem channel will be transmitted to the upstream tributaries. Using simple geometric relationships,

Niemann et al. (2001) showed that a knickpoint should migrate upstream with a horizontal celerity (Ceh, in length per time)

of:

Ceh =
1

S2−S1
∆E, (7)

where S1 is the channel slope prior to disturbance, S2 is the channel slope after disturbance (e.g., due to a change in incision15

rate E), and ∆E is the difference between the incision rate before and after disturbance (which can be equated to uplift rates

U1 and U2 in units of length per time, ∆E = U2−U1). Wobus et al. (2006b) simply inserted equation (1) into equation (7)

so that the horizontal celerity is simply a function of drainage area, assuming that the concavity index is independent of rock

uplift rate:

Ceh =
U2−U1

ks2− ks1
Aθ. (8)20

Noting that vertical celerity is simply the horizontal celerity multiplied by the local slope after disturbance S2, Wobus et al.

(2006b) showed that the vertical celerity (Cev) was not a function of drainage area:

Cev =
U2−U1

ks2− ks1
ks2. (9)

Thus, if we assume spatially homogeneous uplift and constant erodibility (i.e., channels with the same slope and drainage

area erode at the same rate) then the vertical celerity propagating up the principal stream and all tributaries will be a constant.25

Equation (9) is derived from purely geometric relationships, suggesting that collinearity can be used to estimate the concavity

index without assuming any theoretical models of fluvial incision under the assumption that the incision process will result in

local slope–area relationships reflecting equation (1).
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2 Calculation of concavity indices using collinearity

In this study we revisit commonly used methods for estimating the concavity index using both slope–area analysis and collinear-

ity methods based on integral analysis. Our objective is to determine the strengths and weaknesses of established methods

alongside several new methods developed for this study, as well as quantifying the uncertainties in the concavity index. We

present these methods in an open-source software package that can be used to constrain concavity indices across multiple5

landscapes. This information may give insight into the physical processes responsible for channel incision into bedrock, which

are as yet poorly understood.

2.1 Slope–area analysis

For slope–area analysis in this paper we forgo initial smoothing of the DEM and use a fixed elevation drop along a D8 drainage

pathway implemented using the network extraction algorithm of Braun and Willett (2013). We calculate the best-fit concavity10

indices using two different methods: i) concavity indices extracted from all slope–area (S–A) data (i.e., no logarithmic bins,

every tributary); and ii) concavity indices of contiguous channel profile segments with consistent S–A scaling within the log-

binned S–A data of the trunk stream, calculated using the statistical segmentation algorithm described in Mudd et al. (2014).

We report the different extracted concavity indices and their uncertainties in the results below.

2.2 Methods for calculating collinearity using integral analysis15

Here we present two new methods of identifying collinear tributaries in χ-elevation space in order to constrain the best fit

concavity indices from fluvial profiles. Rather than fitting segments to the profiles, which is computationally expensive, we

directly compare all the elevation data of the tributaries in each drainage basin to the main stem. This is not completely

straightforward, however: because the χ coordinate integrates area and channel distance it is very unlikely that a pixel on a

tributary channel shares a χ coordinate with any pixel on the main stem. Instead, for every tributary pixel we compare the20

tributary elevation with an elevation on the main stem at the same χ computed with a linear fit between the two pixels with

the nearest χ coordinates (Figure 3). We then calculate a maximum likelihood estimator (MLE) for each tributary. The MLE is

calculated with:

MLE =

N∏
i=1

exp

[
− r2i

2σ2

]
, (10)

where N is the number of nodes in the tributary, ri is the calculated residual between the elevation of tributary node i and25

the linear regression of elevation on the main stem,and σ is a scaling factor. If ri is zero for all nodes then MLE = 1 (i.e., MLE

varies between 0 and 1 with 1 being the maximum possible likelihood).

For a given drainage basin, we can multiply the MLE for each tributary to get the total MLE for the basin, and we can do

this for a range of concavity indices to calculate the most likely value of θ. Because equation (10) is a product of negative

exponentials, the value of the MLE will decrease as N increases, and in large datasets this results in MLE values below the30
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smallest number that can be computed, meaning that in large datasets MLE values can often be reported as zero. To counter this

effect we increase σ until all tributaries have non-zero MLE values. As σ is simply a scaling factor, this does not affect which

concavity index is calculated as the most likely value once all tributaries have non-zero MLEs (see supplementary information).

There are two disadvantages to using equation (10) on all points in the channel network. Firstly, because the MLE is cal-

culated as a product of exponential functions, each data point will reduce the MLE and so tributaries will influence MLE in5

proportion to their length. Secondly, because we use all data we cannot estimate uncertainty when computing the most likely

concavity index. Therefore, we apply a second method to the chi-elevation data that mitigates these two shortcomings by boot-

strap sampling the data. This method evaluates a fixed number of discrete points on each tributary, but the points are selected

randomly and this random selection is done iteratively, building up a population of MLE values for each concavity index.

For each iteration of the bootstrap method, we create a template of points in χ space, measured from the confluence of each10

tributary from the trunk channel (Figure 4). We start by selecting a maximum value of χ upstream of the tributary junction,

and then separate this space into NBS nodes. We create evenly spaced bins between the maximum value of χ in the template,

and then in each iteration randomly select one point in each bin. Using this template on each tributary, we calculate the

residuals between the tributary and the trunk channel using equation (10). If, for a given tributary, a point in the template is

located beyond the end of the tributary then the point is excluded from the calculation of MLE. Figure 4 provides a schematic15

visualisation of this method.

We repeat these calculations over many iterations and for each concavity index we compute the median MLE, the minimum

and maximum MLE, and the first and third quartile MLE. We approximate the uncertainty range by first taking the most likely

concavity index (having highest median MLE value amongst all concavity indices tested). We then find the span of concavity

indices whose third quartile MLE values exceed the first quartile MLE value of the most likely concavity indices (Figure 4).20

One complication of using collinearity to calculate the most likely concavity index is that occasionally one may find a

hanging tributary (e.g., Wobus et al., 2006b; Crosby et al., 2007), which could occur for a variety of reasons, such as the

presence of geologic structures or lithologic variability. A hanging tributary can skew the overall MLE values in a basin, so in

each basin we test the MLE and RMSE values in each tributary for outliers and iteratively remove these outlying tributaries,

testing for the most likely concavity index on each iteration. However, we find that eliminating outlying tributaries has a25

minimal effect on the calculated concavity index. The other primary complication is that one must assume a concavity index

prior to performing the chi transformation (equation 4) and thus slope–area analysis may be more suited to detecting changes

in concavity within basins (e.g., Wang et al., 2017b). We suggest here an alternative approach of calculating concavity using

χ methods in many small basins to look for any systematic changes. Before we can perform such analyses, however, we must

constrain our confidence in estimates of the concavity index.30

We also implement a disorder statistic (Goren et al., 2014; Hergarten et al., 2016; Shelef et al., 2018) that aims to quantify

differences in the χ–elevation patterns between tributaries and the trunk channel. Here we follow the method of Hergarten et al.
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(2016). The disorder statistic is calculated by first taking the χ–elevation pairs of every point in the channel network, ordered

by increasing elevation. We calculate the sum

S =

N∑
i=1

∣∣χs,i+1−χs,i
∣∣, (11)

where the the subscript s, i represents the ith χ coordinate that has been sorted by its elevation. The sum, S is minimal if

elevation and χ are related monotonically. However it scales with the absolute values of χ, which are sensitive to the concavity5

index (see equation 4), so following Hergarten et al. (2016) we scale the disorder metric, D, by the maximum value of χ in the

tributary network (χmax):

D =
1

χmax

( N∑
i=1

∣∣χs,i+1−χs,i
∣∣−χmax). (12)

The disorder metric relies on the use of all the data in a tributary network, meaning that only one value ofD can be calculated

for each basin. Therefore, we cannot estimate the uncertainty in concavity index using this statistic alone. Furthermore, the10

random sampling approach we take with the previous chi methods is not appropriate, as skipping nodes in the χ–elevation

sequence will lead to large values of S and substantially increase the disorder metric. We therefore employ a bootstrap approach

based on the analysis of entire tributaries within each basin. First, we find every combination of three tributaries plus the trunk

stream in the basin. For each combination, we then iterate through a range of concavity indices and calculate the disorder

metric. This allows us to find the concavity index that minimises the disorder metric for each combination, resulting in a15

population of best fit concavities, from which we calculate the median and interquartile range.

3 Testing on numerical landscapes

In real landscapes, we can only approximate the concavity index based on topography. However, we can create simulations

where we fix a known concavity index and see if our methods reproduce this value. To do this we rely on simple simulations

driven by the general form of the stream power incision model, first proposed by Howard and Kerby (1983):20

E =KAmSn, (13)

where E is the long-term fluvial incision rate, A is the upstream drainage area, S is the channel gradient, K is the erodibility

coefficient, which is a measure of the efficiency of the incision process, and m and n are exponents. A number of variations

of this equation are possible: some authors have proposed, for example, modifications that involve erosion thresholds (e.g.,

Tucker and Bras, 2000) or modulation by sediment fluxes (e.g., Sklar and Dietrich, 1998). However, Gasparini and Brandon25

(2011) showed that many of the modified versions of equation (13) could be captured simply by modifying the exponents m

and n.
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We have chosen this model because it can be related to the concavity index and therefore can be used to test the different

methods under idealised conditions. We can relate the stream power incision model to equation (1) by rearranging equation (13)

to solve for channel slope, and relating it to local erosion rate, E:

S =

(
E

K

)1/n

A−m/n. (14)

Comparing equations (1) and (14) reveals that the ratio between area and slope exponents in the stream power incision5

model, m/n, is therefore equivalent to θ from equation (1). The channel steepness index, ks, is related to erosion rate by:

ks =

(
E

K

)1/n

. (15)

The stream power incision model also makes predictions about how tectonic uplift can be translated into local erosion rates

(e.g., Whipple and Tucker, 1999), and the predicted relationship between the channel steepness index and uplift has been

exploited by a number of studies to identify areas of tectonic activity (e.g., Kirby et al., 2003; Wobus et al., 2006a; Kirby and10

Whipple, 2012). Furthermore, many workers have used the framework of the stream power incision model to extract uplift

histories (Pritchard et al., 2009; Roberts and White, 2010; Fox et al., 2014; Goren et al., 2014). However, the ability of these

studies to extract information from channel profiles is dependent on the both the m/n ratio, equivalent to θ, and the slope

exponent, n, which are key unknowns within these theoretical models of fluvial incision. The m/n ratio is frequently assumed

to be equal to 0.5, with n assumed to be unity, despite recent compilations of data from multiple landscapes showing that this15

may not be the case (e.g., Lague, 2014; Harel et al., 2016; Clubb et al., 2016), and numerical modelling studies showing that

m/n = 0.5 leads to unrealistic relief structures (Kwang and Parker, 2017).

To test the relative efficacy of our methods for calculating concavity indices we first run each method on a series of nu-

merically simulated landscapes in which the m/n ratio is prescribed. We employ a simple numerical model, following Mudd

(2016), where channel incision occurs based on equation (13). For computational efficiency, we do not include any other pro-20

cesses (e.g., hillslope diffusion) within our model. The elevation of the model surface therefore evolves over time according

to:

∂z

∂t
= U −KAmSn, (16)

where U is the uplift rate. Fluvial incision is solved using the algorithm of Braun and Willett (2013), where the drainage area

is computed using the D8 flow direction algorithm to improve speed of computation and the topographic gradient is calculated25

in the direction of steepest descent. In our model, we perform a direct numerical solution of equation (16) where n = 1 and use

Newton-Raphson iteration where n 6= 1. These simulations are performed using the MuddPILE numerical model (Mudd et al.,

2017), first used by Mudd (2016). We set the north and south boundaries of the model domain to fixed elevations, whereas the

east and west boundaries are periodic. Our model domain is 30 km in the X direction and 15 km in the Y direction, with a grid
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resolution of 30 m. This allows us to test the methods of estimating m/n on several drainage basins in each model domain,

and at a resolution comparable to that of globally-available digital elevation models (DEMs).

3.1 Transient landscapes

In order to test the methods’ ability to identify the correct m/n value, we ran a series of numerical experiments with varying

m/n ratios: m/n= 0.5, m/n= 0.35, and m/n= 0.65. For each ratio, we also performed simulations with varying values of5

n, as the n exponent has been shown to impact the celerity of transient knickpoint propagation through the channel network

(Royden and Perron, 2013). Crucially, Royden and Perron (2013) showed that when n is not unity, upstream propagating

knickpoints will erase information about past base level changes encoded in the channel profiles. This may cloud selection

of the correct m/n ratio, but Lague (2014) and Harel et al. (2016) have suggested many, if not most, natural landscapes have

evidence for an n exponent that is not unity. Therefore we ran simulations with n= 1, n= 2, n= 1.5, and n= 0.66 for each10

m/n ratio, varying m accordingly (see supplementary information for details of each model run).

We initialised the model runs using a low relief surface that is created using the diamond-square algorithm (Fournier et al.,

1982). We found this approach resulted in drainage networks that contained more topological complexity than those initiated

from simple sloping or parabolic surfaces. Our aim was to test the ability of each method to extract the correct m/n ratio

without assuming that the landscapes were in steady state: therefore each simulation was forced with varying uplift through15

time, to ensure that the channel networks were transient.

Each model was run with a baseline uplift rate of 0.5 mm yr−1, which was increased by a factor of four for a period of 15,000

years, then decreased back to the baseline for another 15,000 years. For the runs with n= 2 the cycles were set to 10,000 years,

which was necessary to preserve evidence of transience, as knickpoints propagate more rapidly through the channel network

as n increases. Relief is very sensitive to model parameters and we found in numerical experiments that basin geometry was20

sensitive to relief, mirroring the results of Perron et al. (2008). We wanted modelled landscapes to have comparable relief

and similar basin geometry across our simulations, to ensure similar landscape configurations for different values of m, n and

m/n. We therefore calculated the χ coordinate and solved equation (5) to find the K value for each modelled landscape that

produced a relief of 200 meters at the location with the greatest χ value given an uplift rate of 0.5 mm yr−1.

We analysed these model runs using each of the methods of estimating the best fit m/n outlined in Section 2.2. We extracted25

a channel network from each model domain using a contributing area threshold of 9× 105 m2. We performed a sensitivity

analysis of the methods to this contributing area threshold (see supplementary information), and found that the estimated

best-fit m/n ratios were insensitive to the value of the threshold.

Drainage basins were selected by setting a minimum and maximum basin area, 9×106 and 4.5×107 m2 respectively; these

values were chosen so extracted basins represented a good balance between the number of extracted basins and the number of30

tributaries in each basin. Nested basins were removed, as were basins that bordered the edge of the model domain. We exclude

basins on the domain boundaries as the calculation of the χ coordinate for the integral profile analysis is dependent on drainage

area, which may not be realistic at the edge of the domain. Elimination of basins on the edge of the DEM is essential for real

landscapes, as a basin beheaded by raster clipping will have incorrect χ values and we wanted to ensure both simulations and
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analyses on real basins used the same extraction algorithms. For each basin, we identified the best fit concavity index predicted

in five ways (as described in the methods section): i) by regression of all χ-elevation data; ii) using χ-elevation data processed

by our method of sampling points with the bootstrap method; iii) by minimising the disorder metric from χ-elevation data,

using a similar technique to Hergarten et al. (2016); iv) regressing all slope–area data; and v) regressions through slope–area

data for individual segments of the main stem. For all but the final method the analyses use all tributaries in the basins.5

Figure 5 shows the spatial distribution of the predicted m/n ratio for a series of basins from these cyclic model runs, where

m/n = 0.35, 0.5, and 0.65, and n = 1. We also plot the m/n ratio predicted for each basin from all methods with varying values

of n, an example of which is shown in Fig. 6. Our modelling results show that for each value of m/n ratio tested, the method

using all χ data identifies the correct ratio for every basin in the model domain. The bootstrap approach provides an estimate of

the error on the best-fit m/n ratio for each basin: Fig. 6 shows that there is no error on the predicted m/n ratio, meaning that an10

identical m/n ratio is predicted with each iteration of the bootstrap approach. The slope–area methods, in contrast, show more

variation in the predicted m/n ratio for each value of m/n and n tested (Figs. 5 and 6). Furthermore, the segmented slope–area

data show a higher uncertainty in the predicted m/n ratio compared to the other methods. The results of the model runs for all

values of m/n and n are presented in the supplementary information.

3.2 Spatially heterogeneous landscapes15

Alongside these temporally transient scenarios, we also wished to test the ability of each method to identify the correct m/n

ratio in spatially heterogeneous landscapes, simulating the majority of real sites where lithology, climate, or uplift are generally

non-uniform. Therefore we performed additional runs where m/n = 0.5, n = 1, but U and K varied in space. We generated the

model domains using the same diamond-square initial condition as the spatially homogeneous runs. For the run with spatially

varying K, we calculate the steady-state value of K required to produce a surface with a relief of 400 m and an uplift rate of 120

mm yr−1 using the same method as for the previous runs. From this baseline value of K, we calculated a maximum K value

which is five times that of the baseline. We then created ten "patches" within the initial model domain where K was assigned

randomly between the baseline and the maximum. These are rectangular in shape with K values that taper to the baseline K

over ten pixels. We acknowledge this pattern is not very realistic, but emphasise that the aim is not to recreate real landscapes

but rather to confuse the algorithms for quantifying the concavity index. This allows us to test if they can still detect modelled25

concavity indices even if we violate some of the assumptions implicit in our theoretical framework.

For the spatially varying uplift run, we varied uplift in the N-S direction by modelling it as a half sine wave:

U = UA sin((πy)/L) +Umin, (17)

where y is the northing coordinate and L is the total length of the model domain in the y direction, UA is an uplift amplitude,

set to 0.2 mm/yr, and Umin is a minimum uplift, expressed at the North and South boundaries, of 0.2 mm/yr. Both scenarios,30

with spatially varying erodibility and uplift, were run to approximately steady state: the maximum elevation change between

15,000 year printing intervals was less than a millimeter.
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Inherent in each collinearity-based method of quantifying the most likely m/n ratio is the assumption that U and K do not

vary in space (Perron and Royden, 2013): our spatially heterogeneous experiments therefore violate basic assumptions of the

integral method. These conditions, however, are likely true in virtually all natural landscapes. Therefore, our aim here was to

test if we could recover m/n ratios from numerical landscapes that are more similar to real landscapes than those with spatially

homogeneous U and K.5

Figure 7 shows the distribution of predicted m/n ratios for the runs with spatially varying K and U from both the integral

bootstrap approach and the slope–area method. In comparison to our model runs where K and U were uniform, each method

performs worse at identifying the correct m/n ratio of 0.5. However, in both model runs the integral methods identified the

correct ratio in a higher proportion of the drainage basins than the slope–area methods. Furthermore, the distribution of m/n

predicted by the integral methods reach a peak at the correct m/n ratios of 0.5, suggesting that even in spatially heterogeneous10

landscapes the methods can still be applied. Our run with the random distribution of erodibility patches shows that the correct

calculation of the m/n ratio is highly dependent on the spatial continuity of K: in basins contained within a single patch (e.g.,

basins 4, 5, and 6), the integral profile method correctly identified the m/n ratios. Figure 8 shows example χ-elevation plots at

varying m/n ratios for basin 2, which encompasses several patches with varying K values. Within this basin, tributaries that

drain a patch with the same K value are still collinear in χ-elevation space. Based on these results, we suggest that, in real15

landscapes, monolithologic catchments should be analysed wherever possible in order to select an appropriate concavity index.

4 Constraining concavity indices in real landscapes

Our numerical modelling results suggest that the integral profile analysis is most successful in identifying the correct concavity

index out of the entire range of m/n and n values tested. However, these modelling scenarios cannot capture the range of com-

plex tectonic, lithologic, and climatic influences present in nature. Therefore, we repeat our analyses on a range of different20

landscapes with varying climates, relief structures, and lithologies, to provide some examples of the variation in the concavity

index predicted using each method. For each field site, topographic data were obtained from OpenTopography, using the seam-

less DEM generated from NASA’s Shuttle Radar Topography Mission (SRTM) at a grid resolution of 30 m. The supplemental

materials contain metadata for each site so readers can extract the same topographic data used here.

4.1 An example of a relatively uniform landscape: Loess Plateau, China25

In order to demonstrate the ability of the methods to constrain concavity indices in a relatively homogeneous landscape, we

first analyse the Loess Plateau in northern China. The channels of the Loess Plateau are incising into wind-blown sediments

that drape an extensive area of over 400,000 km2 (Zhang, 1980), and can exceed 300 m thickness (Fu et al., 2017). The plateau

is underlain by the Ordos block, a succession of non-marine Mesozoic sediments which has undergone stable uplift since the

Miocene (Yueqiao et al., 2003; Wang et al., 2017a). Although there have been both recent (Wang et al., 2016) and historic30

(Wang et al., 2006) changes in sediment discharge from the plateau, the friable substrate means that channel networks and

channel profiles might be expected to adjust quickly to perturbations in erosion rate. Indeed, Willett et al. (2014) suggested,
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based on differences in the χ coordinate across drainage divides, that the channel networks in large portions of the plateau

are geomorphically stable. The stable tectonic setting and homogeneous, weak substrate of the Loess Plateau makes an ideal

natural laboratory for testing our methods on relatively homogeneous channel profiles.

We ran each of the methods on an area of the Loess Plateau approximately 11,000 km2 in size near Yan’an, in the Chinese

Shaanxi province (Figure 9a). We find relatively good agreement between both the chi and slope–area methods of estimating5

the most likely concavity index. Figure 9b shows the probability distribution of concavities determined from the population

of the most likely concavities from each basin (i.e., it does not include underlying uncertainty in each basin), but the peaks

of these curves lie at a θ ≈ 0.45 using both the disorder method and the bootstrap method, 0.4 using all slope–area data, and

at approximately 0.5 using the all χ data method. This level of agreement gives the worker some confidence that channel

steepness analyses in this area of the Loess Plateau using reference concavities between 0.4 and 0.5 should give an accurate10

representation of the relative steepness of the channels.

As well as determining the best-fit concavity index for the landscape as a whole, we can also examine the channel networks

in individual basins: Figure 9c shows the χ-elevation profiles for an example basin. In this basin the tributaries are well

aligned with the trunk channel at the most likely θ of 0.45, both using all the chi data and with the bootstrap approach. In

our explorations of different landscapes, the Loess Plateau is the landscape that most resembles the idealised landscapes that15

we find in our model simulations. The Loess Plateau is notable for the homogeneity of its substrate over a large area; most

locations on Earth are not as homogeneous.

4.2 An example of lithologic variability: Waldport Oregon, USA

Many studies analysing the steepness of channel profiles are focused in areas where external factors, such as lithology or

tectonics, are not uniform. Here we select an example of a landscape with two dominant lithologic types in a location along the20

Oregon Coast near the town of Waldport, Oregon (Fig. 10). The Oregon Coast Ranges are dominated by the Tyee Formation,

made up primarily of turbidites deposited during the Eocene (Heller et al., 1987). In addition to these sedimentary units,

our selected landscape also contains the Yachats Basalt, which erupted mostly as subareal flows between 3 and 9 meters in

thickness during the late Eocene (Davis et al., 1995). Erosion rates inferred from 10Be concentrations in stream sediments are

between 0.11 to 0.14 mm per year (Heimsath et al., 2001; Bierman et al., 2001), similar to rock uplift rates of 0.05-0.35 mm25

per year inferred from marine terraces (Kelsey et al., 1994). Short term erosion rates derived from stream sediments fall into

the range of 0.07 to 0.18 mm per year (Wheatcroft and Sommerfield, 2005), leading a number of authors to suggest that the

Coast Ranges are in topographic steady state, where uplift is balanced by erosion (e.g., Reneau and Dietrich, 1991). Thus our

site contains a clear lithologic contrast but has been selected to minimise spatial variations in uplift or erosion rates.

We find that whereas basins developed on basalt have a relatively uniform concavity index of approximately 0.7, the most30

likely concavity indices in the sandstone show considerably more scatter (Figure 10b), with a lower average θ. We present

these data as an example of spatially varying concavity indices as as a function of lithology. This is consistent with results of

VanLaningham et al. (2006), who found high concavities in volcanic rocks around Waldport but lower elsewhere, and found

high values of the concavity index in sedimentary rock but with a higher degree of scatter along the Oregon Coast range.
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Whipple and Tucker (1999) suggested that the concavity index is controlled primarily by discharge–drainage area and

channel width–drainage area relationships, which may be influenced by lithology, but other authors have found systematic

variations in concavity indices with lithology (e.g., Duvall et al., 2004; VanLaningham et al., 2006; Lima and Flores, 2017).

Lima and Flores (2017) suggested that the thickness of basalt flows could influence concavity indices, with different knickpoint

propagation mechanisms in massive versus thinly bedded flows. Duvall et al. (2004) suggested that having hard rocks in5

headwaters and weak below might influence concavity indices, which may be tested by comparing concavity indices in both

monolithologic basins and basins with mixed lithology. The χ profiles in basin 17 (Figure 10c) are notable because this basin

features two bedrock types: basalt in the lower reaches and sandstone in the headwaters. If the selected concavity index is too

high, tributaries will fall below the trunk channel in chi–elevation space. In Figure 10c, θ is chosen to reflect the typical value

of the basalt basins, and tributary channels in the sandstone fall below the trunk channel, meaning that changes in the concavity10

index can be seen within basins. We therefore suggest that workers must be cautious when using a reference concavity index

in determining channel steepness indices in basins with heterogeneous lithology.

4.3 An example of a tectonically active site: Gulf of Evia, Greece

The steepness of channel profiles and presence of steepened reaches (knickpoints) in tectonically active areas can reveal spatial

patterns in the distribution of erosion and/or uplift (e.g., Densmore et al., 2007; DiBiase et al., 2010; Vanacker et al., 2015)15

and has the potential to allow identification of active faults (e.g., Kirby and Whipple, 2012). However, these systematic spatial

patterns in channel steepness may challenge our ability to constrain the concavity index. Our third example is in a tectonically-

active landscape where we have found spatial variations in the most likely concavity index between catchments proximal to

active normal faults. We explore a series of basins draining across faults in the Sperchios Basin, Gulf of Evia, Greece (Figure

11), predominantly cut into clastic sediments (Eliet and Gawthorpe, 1995). Previous work (Whittaker and Walker, 2015) has20

demonstrated that catchment morphology reflects interaction with these faults. The rivers are typically characterised by convex

longitudinal profiles that commonly have two knickpoints. The upper set of knickpoints are attributed to the initiation of faulting

and the resulting growth of topography. The lower set of knickpoints are interpreted as the result of subsequent increase (3-5×)

in throw rate due to fault linkage (Whittaker and Walker, 2015). The elevations of each group of knickpoints both scale with

footwall relief, suggesting that fault throw rates scale with fault segment length. The Gulf of Evia therefore represents a natural25

experiment where uplift and erosion rates are expected to vary both temporally and spatially.

Steep, smaller catchments tend to drain across the footwalls of these faults, whilst larger catchments drain the landscape

behind the faults, through the relay zones between fault segments. We derived the best-fit concavity index for each catchment

following each of the five methods (Figure 12). Given the presence of knickpoints along the river profiles, it is not appropriate

to derive the concavity index by linear regression of all log[S]–log[A] data. We find that the concavity index estimated from30

segmented slope–area analysis is highly variable between catchments (Figure 12, inset), with a tendency toward abnormally

large values, exceeding the upper range of values typically predicted by incision models (Whipple and Tucker, 1999). Values

of θ derived using the χ methods are predicted to be relatively low, typically 0.1-0.6 (Figure 12), and whilst the χ methods do
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not agree perfectly, they do co-vary, and are for the most part within uncertainty of each other (with the exception of basins 1

and 20).

A number of authors have suggested that in both highly transient and rapidly eroding landscapes processes other than fluvial

plucking or abrasion become important in shaping the channel profile, such as debris flows and plunge pool erosion (Stock

and Dietrich, 2003; Haviv et al., 2010; DiBiase et al., 2015; Scheingross Joel S. and Lamb Michael P., 2017). Recent work5

has suggested that retreat of vertical waterfalls may result in similar concavities to fluvial incision processes operating in lower

gradient settings (Shelef et al., 2018), whereas debris flows have been shown to lead to channels with low concavity indices

(Stock and Dietrich, 2003). The lowest values of θ = 0.1 at the Evia site typically occur for the small, steep catchments draining

across the footwalls of the fault segments (e.g., Basin 10, Figure 13), with higher θ values typical for catchments that do not

cross faults, or those that cross relay zones (e.g., Basin 7, Figure 13). Plots of χ-elevation such as in Figure 13 demonstrate that10

there can be considerable variability in the morphology of tributaries as they respond to adjustment in the trunk channel.

Our aim here is not to provide a comprehensive examination of the topography and tectonic evolution of the Sperchios

Basin (see Whittaker and Walker, 2015) but to demonstrate the impact of tectonic transience on our ability to quantify the

concavity index. Low concavity indices in steep small catchments draining across the faults may reflect the contribution of

debris flow processes to valley erosion at smaller drainage areas, which tends to lead to lower apparent concavity indices in the15

topography (Stock and Dietrich, 2003). Additionally, these catchments may in effect behave as fluvial hanging valleys (Wobus

et al., 2006b). Concavity indices derived using the bootstrap points method are in all cases equal to or lower than values derived

using all χ data. This is noteworthy because of the difference in how tributaries are weighted between the two techniques. Using

all χ data, longer tributaries have more influence on the calculation of the most likely concavity index, whereas the bootstrap

points methods weights each tributary equally (since the same number of points are sampled on each tributary). Thus, if the20

steepness of the channels at low drainage area is influenced by debris flow processes (Stock and Dietrich, 2003), we would

expect this to be more influential on the derived concavity index when using the bootstrap points method, resulting in lower θ

values.

Finally, it is recognised that transient landscapes are likely settings for drainage network reorganisation (Willett et al., 2014).

In the absence of lithologic variability, climate gradients and tectonic transience, gradients in χ in the channel network between25

adjacent drainage basins are predicted to indicate locations where drainage divides are migrating (toward the catchment with

higher χ) and drainage network reorganisation is ongoing (Willett et al., 2014). On the other hand, numerical simulations

suggest that spatial variability in uplift are more important that temporal gradients in uplift rates (Whipple et al., 2016). Rivers

draining across normal fault systems are often routed through the relay zones between fault tips, where uplift rates are lowest,

capturing and rerouting much of the drainage area above the footwall (e.g., Paton, 1992). In the Sperchios Basin this has30

resulted in strong gradients in χ across topographic divides (Figure 14), particularly between the large catchments draining the

landscape behind the footwall (which have likely been gaining drainage area), and the short, steep catchments draining across

the footwall (which have likely been truncated).

Our analysis of the topography in the Sperchios Basin, whilst not exhaustive, highlights that river profiles and the result-

ing concavities (and/or ksn) derived from topography are not alone sufficient to interpret the history of landscape evolution,35
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but must be considered alongside other observational data and in the context of a process-based understanding of landscape

evolution and tectonics.

5 Conclusions

For over a century, geomorphologists have sought to link the steepness of bedrock channels to erosion rates, but any attempt

to do so requires some form of normalisation. This normalisation is required because in addition to topographic gradient, the5

relative efficacy of incision processes is thought to correlate with other landscape properties that are a function of drainage area,

such as discharge or sediment flux. Theory developed over the last four decades suggest that the concavity index may be used

to normalise channel gradient, and over the last two decades many authors have compared the steepness of channels normalised

to a reference concavity index derived from slope–area data (e.g., Snyder et al., 2000; Kirby and Whipple, 2001). In recent

years an integral method of channel analysis has also been developed (e.g., Perron and Royden, 2013) that can complement10

slope–area analysis and via alignment of tributaries provide an independent test of the concavity index.

In this contribution we have developed a suite of methods to quantify the most likely concavity index using both slope–area

analysis and the integral method. In addition to traditional slope–area methods, we also present methods of analysing χ-

transformed channel networks that do not require the profiles to be linear from source to outlet, but constrain concavity based

collinearity of each tributary and the trunk channel. In a second method we quantify uncertainty on the predicted value of θ15

using a subset of points on the tributary network that are randomly assigned within a bootstrap sampling framework. We also

test a similar disorder metric that is a minimum when tributaries and trunk channel are most collinear. We test these methods

against idealised, modelled landscapes that obey the stream power incision model but have been subject to transient uplift, as

well as spatially varying uplift and erodibility, where the concavity index is imposed through the ratio of the exponents m and

n.20

We find that χ-based methods are best able to reproduce the concavity indices imposed on the model runs. We recommend

users calculate the most likely concavity indices using the bootstrap and disorder methods as these provide estimates of un-

certainty, although the disorder method is the most tightly constrained of the χ-based methods. The most likely concavities

determined from χ-based methods on transient landscapes have low uncertainty because the transient models do not violate

any assumptions underlying χ-based methods. The spatially variable model runs, where assumptions of the χ method are vio-25

lated, still perform better than slope–area analysis in extracting the correct concavity index. This gives us some confidence that

in real landscapes, where non-uniform uplift and spatially varying erodibility are likely pervasive, calculated concavities may

still reveal useful information about the incision processes. Thus we hope future workers can calculate reliable, reproducible

concavity indices for many small basins in regions with spatially varying uplift, climate or lithology to test if patterns in the

concavity index can be linked to variations in these landscape properties.30
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Code and data availability. Code used for analysis is located in the LSDTopoTools github repository: https://github.com/LSDtopotools/

LSDTopoTools_ChiMudd2014, and scripts for visualising the results can be found at https://github.com/LSDtopotools/LSDMappingTools.

We have also provided documentation detailing how to install and run the software which can be found at https://lsdtopotools.github.io/

LSDTT_documentation. As part of the supplementary information we have also provided example parameter files which can be used to

reproduce the results of all analyses performed in this study.5
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Figure 1. Sketch illustrating the effect of choosing different reference concavities. The data can be well fitted with a single regression,

suggesting that all parts of the channel network have similar values of ksn (interpretation 1). However, if a lower θref is chosen, the ksn

values will be systematically higher for channels at lower drainage area (interpretation 2). This sketch is based on data from a numerical

simulation where the latter situation has been imposed via higher uplift rates in the core of the mountain range, showing the potential for

incorrect concavities to be extracted from slope–area data alone.
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Figure 2. A typical slope–area plot. This example is from a basin near Xi’an, China, with an outlet at approximately 34°26’23.9"N

109°23’13.4"E. The data is taken from only the trunk channel. The slope–area data typically contains gaps due to tributary junctions, as

well as wide ranges in slope for the reaches between junctions due to topographic noise inherent in deriving slope values. The result is a high

degree of scatter in the data. These data are produced by averaging slope values over a fixed vertical interval of 20 m.
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Figure 3. Sketch illustrating the methodology of the χ method using all profile data. In panel a., the chi profiles of both the trunk channel

and a tributary are shown. We take the chi coordinate of the nodes on the tributary channel and then project them onto a linear fit of the

trunk channel to determine the residuals between tributary and trunk channel. We do this for all nodes and for all concavity indices. For each

concavity index, the residuals are then used to calculate a maximum likelihood estimator (MLE), which varies as a function of the concavity

index (panel b.). The highest value of MLE is used to select the likely θ.
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Figure 4. Sketch showing how we compute residuals for our χ bootstrap method of determining the maximum likelihood estimator (MLE)

of θ, and then use the uncertainty in MLE values to compute the uncertainty in θ.
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Figure 5. Shaded relief plots of the model runs with temporally varying uplift, with drainage basins plotted by the best fit θ predicted from

the χ bootstrap analysis (first column), and slope–area analysis (second column). Each row represents a model run with a different m/n

ratio. The basins are coloured by the predicted θ, where darker colours indicate a higher concavity index. The extracted channel network for

each basin is shown in blue.
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Figure 6. Plots showing the predicted best fit θ for each basin and each method for m/n= 0.5, where n= 1, n= 2, n= 1.5, and n= 0.66.

The χ methods are shown in reds and the slope–area methods are shown in blues.
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Figure 7. Results of the model runs with spatially varying erodibility (K, left column) and uplift (U , right column). The rectangular patches

of low relief are areas of high erodibility in the left column. The top four panels show the spatial pattern of predicted θ from the χ bootstrap

analysis and the slope–area analysis, where the basins are coloured by θ (darker colours = higher concavity index). The bottom two panels

show density plots of the distribution of θ for each method, where the dashed line marks the correct θ = 0.5.
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Figure 8. Example χ-elevation plots for the model run with spatially varying erodibility, where points are coloured byK. Them/n increases

in each plot from 0.2 to 0.9. Tributaries with the same K value are collinear in χ-elevation space.
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Figure 9. Exploration of the most likely concavity indices in the Loess Plateau, China, UTM Zone 49N. Basins with the most likely concavity

index determined by the disorder method are displayed in panel a.; the basin number is followed by the most likely concavity index in the

basin labels. The probability density of best fit concavity index for all the basins (i.e., not the uncertainty within individual basins but rather

the probability distribution of the best fit concavity indices of all the basins) b.. In basin 1, the most likely concavity index determined by the

boostrap and disorder methods is 0.45 and the χ–elevation plot for this concavity index is shown in panel c.
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Figure 10. Exploration of the most likely concavity index near Waldport, Oregon, UTM Zone 10N. Basins numbers and the underlying

lithology is displayed in panel a.. The most likely concavity index determined by the bootstrap method as a function of the percent of each

basin in the different lithologies is shown in panel b. Panel c. shows the χ–elevation plot for a basin that has two bedrock types; the channel

pixels are coloured by lithology. The plot uses the typical concavity index for basalt (0.7).
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Figure 11. Basins analysed near the Gulf of Evia, Greece, UTM Zone 34N, that interact with active normal faults previously studied by

Whittaker and Walker (2015).
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Figure 12. The predicted best fit θ determined using the χ methods (red points) and slope–area methods (blue points shown in inset). Basin

numbers correspond to those plotted in Figure 11.
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Figure 13. Profile χ–elevation plots associated with best fit θ for Basin 7, a large catchment with many tributaries draining across a relay

zone between normal fault segments (left column), and Basin 10, a small, steep catchment draining directly across the footwall segment of a

normal fault with few tributaries (right column). Note that MLE values depend on both the number of nodes and the vertical offset from the

trunk channel.
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Figure 14. Spatial distribution of the χ coordinate in the channel network calculated using A0 = 1 m2; θ = 0.45. Gradients in χ across

topographic divides (black) can indicate planform disequilibrium such that the drainage network may be reorganising. Divides will tend to

migrate from low values of χ towards high values in the channel network.
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