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Anonymous Referee #1  

Received and published: 7 January 2019  

Very well written paper with clear conclusions. However, in some places the text is a bit terse/too 

condensed for a relative non-expert on this type of modelling to follow. A suggestion is to expand on 

some of the sentences a bit, esp. where I put comments. Minor comments are attached. Please also 

note the supplement to this comment: https://www.earth-surf-dynam-discuss.net/esurf-2018-

79/esurf-2018-79-RC1- supplement.pdf 

Page 2, line 9: Why elevation and not the constituency of the substrate? 

We will add detail to the sentence to reflect the fact that substrate, underlying geology, and other 

processes determine coastal elevation, which can then be used as an important parameter in determining 

land cover distribution.  Our suggested change is as follows: 

Because coastal land elevation is primarily governed by the substrate and/or underlying geology of the 

landscape as well as a product of the physical and biogeochemical processes acting on it, it serves as a 

central parameter in defining the distribution and configuration of ecosystems and their ability to evolve 

in response to processes driving change (Gesch, 2009; Kempeneers et al., 2009).  

Page 2, line 20:  Just “model skill” 

We will revise the text from “skillfulness” to “skill” as suggested. 

Page 2, line 26: Reduces? 

We will replace “refines” with “reduces” as suggested. 

Page 2, line 27: Don’t understand this part of the sentence.  If the error in these datasets has 

negligible impact on outcomes, why bother to look at them? 

The intent of this part of the sentence was to state that a secondary component of our hypothesis is that 

process uncertainty can play a much greater role in our model outcomes than data error, and we test this 

by determining whether data improvements will have a measurable impact on model outcomes.  In other 

words, if data improvements do not substantially change our predicted outcomes, we are able to 

demonstrate process uncertainty plays a greater role than data error in our predictions, and conversely, 

we can point out that data errors can be important if they obscure an important process threshold.  To 

reduce confusion, we propose to revise the sentence as follows to clarify our intent: 

We hypothesize that the relationship between these data inputs over such an extensive and diverse 

expanse reduces uncertainty in each parameter in our framework, and that that potential data error is 

sufficiently minor that it does not obscure important process thresholds that would in turn affect predicted 

outcomes. 

Page 5, line 27: This goes too fast—where and how should I read the graphs to conclude this? 

We will add detail to the sentence to break this down a bit, referencing specific parts of the figure 

throughout the sentence so that this is more easily digestible for the reader.  Please note our suggested 

revisions correspond to the revised version of the figure as attached to this document and would be 

submitted as part of the revised manuscript. 

https://www.earth-surf-dynam-discuss.net/esurf-2018-79/esurf-2018-79-RC1-%20supplement.pdf
https://www.earth-surf-dynam-discuss.net/esurf-2018-79/esurf-2018-79-RC1-%20supplement.pdf
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Figure 1a shows that when E data were used to predict LC, subaqueous environments were the most 

probable prediction for elevations lower than 0 m (as illustrated by the first four plots on the left). 

Page 5, line 28: OK on subaqueous, but I don’t understand why marsh is predicted for elevations 

between 5-10 meters. 

Both R1 and R2 have found this inconsistency in our plotted data.  We originally attributed this to 

elevation inaccuracies associated with vegetation in the marshes and alluded to this as such in the 

discussion.  However, these technical observations warranted a review of the original training dataset, 

wherein we found a minor data truncation issue that caused marshes in this elevation range to be 

disproportionately represented as compared with others.  We have rectified this issue and have remade 

corresponding tables (Supplemental Tables 3 and 4) and Figure 1 to demonstrate that the impacts of the 

truncation were relatively minor and have not substantially changed our results, interpretations of these 

results, or conclusions.  We are attaching these corrected tables and a revised Figure 1 to this document 

so that they may be compared with the originals to illustrate the changes, and we will make minor 

corrections to the corresponding areas in the manuscript that cites these numbers in resubmission.  

Specifically: 

When relying on the original prior LC distribution, the network had a corresponding accuracy rate of 

69%, and found beaches and rocky areas as more probable than another land cover type.  Here, beaches 

were most commonly confused with subaqueous and marsh land cover types, and rocky areas with 

subaqueous (Table S3a).  Uniformly distributed LC priors yielded slightly different predicted outcomes, 

wherein the network never found rocky and forested land cover types more probable than another land 

cover type, most commonly confusing them with subaqueous and developed land cover types respectively 

(Table S3b).  Overall, the accuracy rate in the inference relationship between E and LC was 56% when 

uniform LC prior distributions were used (Table 1). 

and 

The difference in prediction using the uniform-prior BN was that the 5-10 m range category was 

predicted, whereas this elevation was not more probable than another when original priors were used.  

The accuracy rate in the inference relationship between LC and E was 66% for the original prior 

distribution and 58% for the uniform priors (Table 1).  

and 

Assessing model skill in the E and LC relationship revealed an accuracy of 56% (uniform priors) to 69% 

(non-uniform priors), showing that including the regional LC bias helped to improve predictions (Table 

1), and that the most commonly missed LC-E predictions occurred in elevations closest to mean sea level 

(-1 to 1 m).  
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Page 6, line 5: Where do I see that number in the tables? 

The accuracy rate was available in the accompanying table captions for the confusion matrices.  To make 

accuracy rates easier to find, we will include a new table that summarizes all accuracy rates.  The new 

table (Table 1) included here and will be included as part of the revised manuscript. 

Table 1. Summary table of accuracy rates for all confusion matrices of land cover and elevation 

comparisons.  Accuracy rates are calculated by summing where predictions matched observations (the 

diagonal bolded terms in Tables S2-S4) and dividing by the total number of outcomes.   Confusion 

matrices are available in supplemental materials (Tables S2-S4). 

 

 

 

 

 

 

 

 

 

 

Page 6, line 8: Can you comment on why there are no predictions for beach, rocky and developed? 

When elevation is used to predict land cover, there are no predictions for beach and rocky in our BN with 

non-uniform priors (see attached; this is updated based on the truncation issue reported earlier), and no 

predictions for rocky and forest categories in our uniform BN.  In each case, these land cover categories 

had lower probabilities of occurring in any of specified elevation ranges with respect to another, 

therefore the BN consistently picked the land cover category that was most probable to occur with the 

elevation range selected.  In other words, the BN certainly makes probabilistic  predictions of these land 

cover categories, but, possibly due to binning (elevation bin ranges are wide), an elevation signature 

specific to these land cover categories is never found to be the most likely outcome.  A similar result can 

be seen when land cover data are used to predict elevation; under non-uniform land cover priors, the 5 to 

10 m range is never predicted because it has such a low probability of occurrence with respect to other 

ranges.   

The difference between the uniform and non-uniform results is due to the under-representation of certain 

land cover classes regionally.  For example, when non-uniform elevation priors are applied, beaches and 

rocky areas are most infrequent (Figure S1), and because other land cover types areas have a greater 

representation among all elevation ranges than these land cover types (Figure 1), it appears the model 

selects the (slightly) more regionally probable land cover class to occur.  Conversely, when uniform 

elevation priors are applied, the model identifies the (slightly) stronger relationship of the 1- 5 m 

elevation range and developed areas (rather than forests) and given that either land cover class in this 

Confusion Matrix Accuracy Rate 

C-CAP vs. DSL Land Cover comparison 85% 

Predicted vs. Observed Land Cover 

Elevation inputs; original distributions 

 77% 

Predicted vs. Observed Land Cover 

Elevation inputs; uniform distributions 

 65.5% 

Predicted vs. Observed Elevation  

Land Cover inputs; original distributions 

 66% 

Predicted vs. Observed Elevation  

Land cover inputs; uniform distributions 59% 
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scenario is equally likely, selects land cover based on the most probable (strongest) relationship with 

elevation. 

In response to the reviewer’s question, we will include mention of this lack of prediction of certain land 

cover types and the reasons behind it in a revised manuscript to enhance our discussion.  Our suggested 

changes include: 

In addition to missed predictions, in certain cases predictions were consistently never the most probable 

outcome than another for a few land cover types (specifically beaches and rocky under original E priors; 

rocky and forest under uniform priors (Tables S3) or elevation ranges (5-10 m elevations under original 

LC priors Table S4b).  For the original priors, this is due to the underrepresentation of certain classes 

(regional bias) in our training data, wherein beaches, rocky, and 5-10 m elevation ranges were infrequent 

when compared to other classes/bins.  In the case of uniform priors, our BN is detecting the slightly 

stronger relationship of some land cover types certain elevation ranges (e.g. developed in the 1 to 5 m 

range), thereby making other E-LC relationships never more probable than these.  Although bin 

reassignments that span smaller elevation ranges could help resolve more specific land cover signatures in 

our model, particularly for low-lying beaches and marshes, this would likely occur at the cost of increased 

prediction uncertainty as outcomes would span a larger number of bins. 

Page 7, line 28: How does tidal stage at which the lidar was flown affect the results for beaches? 

All elevation data included in our model were vertically adjusted to mean high water (MHW) from the 

North American Vertical Datum of 1988.  This is a detail that was included in previous work, and that 

considering this comment, is also important to include in this paper.  We will add text to the methods 

section to clarify this adjustment.  Specifically: 

AE predictions were generated through implementation of a deterministic equation (see Figure S1).  First, 

SLR scenarios were combined with vertical land movement rates due to subsidence and other non-

tectonic effects (using rates derived from a combination of GPS CORS stations in Sella et al., 2007; and 

long-term tide gauge data in Zervas et al., 2013) to make projections relative (local).  Projected relative 

SLR values were then subtracted from elevation data, which were comprised of a combination of high-

resolution elevation data from the National Elevation Dataset (NED, Gesch, 2007) supplemented where 

necessary with coarser resolution bathymetry from the National Oceanic and Atmospheric Administration 

National Geophysical Data Center’s Coastal Relief Model (National Oceanic and Atmospheric 

Administration, 2014) to predict adjusted land elevation (AE) relative to the projected sea level.   Before 

model integration, high resolution elevation data were converted to mean high water from North 

American Vertical Datum 1988 using VDatum conversion grids (National Ocean Service, 2012).  

Our intent in converting these data was to ensure that tidal impacts on our results were minimized; herein 

beaches submerged at high tide should still appear as beach in our model, albeit below 0 m.  As Figure 

1b shows, the most likely E category when beach is predicted is -1 to 0 m; conversely, when the -1 to 0 m 

range is selected in Figure 1a, we see beach is the most probable category when uniform priors (i.e. the 

regional bias) is removed.  Therefore to the reviewer’s point, it does appear that a submerged tidal stage 

may have some influence on our results, such that beaches in our model are frequently found to be 

submerged.  If we are invited to submit a revised manuscript, we will add detail to the discussion section 

to reflect this insight such as: 

However, beaches are more confidently predicted in the -1 to 0 m range than other land cover types 

(Figure 1b), suggesting a propensity of beaches in our model training data are shallowly submerged.  
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Using first-return lidar instead of bare earth data in our model could be used to further distinguish the six 

LC types from one another via vegetation differences (e.g. Lee and Shan, 2003; Im et al., 2008; Reif et 

al., 2011) and better distinguish intertidal areas, which may allow refinement of marsh, beach, and forest 

classifications (e.g. Kepeneers et al., 2009; Sturdivant et al., 2017).   

and 

Results instead may suggest high-resolution (1/9 NED) E data captures a systematic offset in part due to 

MHW submergence from datum conversion (Lentz et al., 2015), particularly for marshes and beaches 

(Fig 3b).  In addition to elevation data that accounts for vegetation, as suggested earlier, seamless and 

continuous topographic and bathymetric data (Danielson et al., 2016) would constrain resolution error and 

better resolve distinctions between subaerial and subaqueous environments. 

Anonymous Referee #2 Received and published: 25 January 2019  

This manuscript presents a study of the skill and sensitivity of a model that predicts likelihood of 

response of low-lying areas to sea level rise. The researchers determine that data errors are most 

often found in areas of low elevation, but that seems to have little influence on the model’s skill due 

to correlations between land cover and elevation, the two data sets used as inputs to the model. In 

addition, model sensitivity appears to mimic uncertainty in process, which waves a flag for 

improving process-based models. The topic of this manuscript is of relevance to researchers in 

coastal science, applied coastal engineering, and those studying societal impacts of climate change. 

The manuscript is well-organized, but lacks critical details about how the model works, making the 

results border on irreproducible. This can be substantially improved by adding a paragraph that 

provides explicit details of how the model uses the elevation and land cover data sets to compute 

likelihood of dynamic response.  It appears that the Lentz et al. (2016) paper may provide more 

information about the model itself. If that is the case, I can appreciate that the authors chose not to 

be redundant by reiterating all of that information, but I, myself, found it difficult to read this 

paper as a standalone contribution. I acknowledge that researchers working on similar projects will 

likely have read the Lentz et al. (2016) paper, thereby making this manuscript more 

understandable.  

This paper could be improved by some more detailed explanations and examples, particularly the 

Data and Methods section. Also, it would be helpful if the ‘nuts and bolts’ of the modeling were 

summarized, even if not fully detailed as I assume they are in the previous publications. If these 

improvements can be implemented, I would be happy to recommend this paper for publication, 

provided the specific comments below are considered and addressed as well.  

We will be sure to include more detail regarding how the model works in a revised submission.  Our 

comments to follow detail how we will incorporate more specific information in our revision.  In addition 

to these changes, we will revisit the entire manuscript to ensure that pertinent details important for the 

reader are available in the text, so it can be read as a standalone contribution.  We will revise the 

Previous Work section in Data and Methods to provide detail as suggested including the following: 

2.1 Previous Work 

Lentz et al. (2015) mapped coastal response predictions—the probability of dynamic response or DP—

using a Bayesian network (BN) probabilistic modelling approach.  We define DP as the likelihood of land 

cover type to retain its existing state or transition to a new non-submerged state under the given SLR 
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projection.  By this definition, coastal response is a binary outcome, in that if the coast does not respond 

dynamically to SLR, it will inundate, therefore DP equals one minus the probability of inundation.  A DP 

value of 0.5 indicated highest uncertainty in that either dynamic response or inundation had an equally 

likely probability of occurrence (Lentz et al., 2016).   

The study area was a 38,000 km2 region from Maine to Virginia, U.S.A., bounded by the 10-m elevation 

contour inland to -10 m offshore.  The BN (Figure S1) produced two probabilistic outcomes at a 30 x 30 

m resolution for future SLR scenarios in the 2020s, 2030s, 2050s, and 2080s: 1) adjusted land elevation 

(AE) relative to the projected sea level, and 2) dynamic response or DP.  As described in Lentz et al. 

(2015), the SLR scenarios were comprised of three components: ocean dynamics (generated from 24 

Coupled Model Intercomparison Project Phase 5 (CMIP5 models (Taylor et al., 2015), ice melt (as 

estimated by Bamber and Aspinall, 2013 for the two Antarctic Ice Sheets, and glaciers and ice caps as 

based on Marzion et al, 2012 and Radic et al., 2013), and global land water storage (as based on Church et 

al., 2013).  Percentiles of these three components were estimated and then aggregated to provide a SLR 

scenario and corresponding uncertainty.  The projected SLR scenario ranges for each decade used in our 

model are shown in Figure S1 as follows: 2020s (0 to 0.25 m); 2030s (0.25 to 0.5 m); 2050s (0.5 to 0.75 

m) and 2080s (0.75 to 2 m). 

AE predictions were generated through implementation of a deterministic equation (see Figure S1).  First, 

SLR scenarios were combined with vertical land movement rates due to subsidence and other non-

tectonic effects (using rates derived from a combination of GPS CORS stations in Sella et al., 2007; and 

long-term tide gauge data in Zervas et al., 2013) to make projections relative (local).  Projected relative 

SLR values were then subtracted from elevation data, which were comprised of a combination of high-

resolution elevation data from the National Elevation Dataset (NED, Gesch, 2007) supplemented where 

necessary with coarser resolution bathymetry from the National Oceanic and Atmospheric Administration 

National Geophysical Data Center’s Coastal Relief Model (National Oceanic and Atmospheric 

Administration, 2014) to predict adjusted land elevation (AE) relative to the projected sea level.   Before 

model integration, high resolution elevation data were converted to mean high water from North 

American Vertical Datum 1988 using VDatum conversion grids (National Ocean Service, 2012).  

Dynamic response probabilities (DP) were estimated by coupling the predicted AE ranges with expert 

knowledge on the response of generalized land cover types (six categories that respond distinctly to SLR 

ecologically or morphologically--subaqueous, marsh, beach, rocky, forest, and developed--as described in 

Lentz et al. (2015) and shown in Table S1).  Although the resulting predictions provided a robust 

accounting of uncertainty from some of the data inputs and knowledge of physical landscape change 

processes, the relative influence of these uncertainties on the predictions has not been explored explicitly. 

Specific Comments:  

Page 2, Line 3: “across increasing slopes” is confusing here – do the authors imply that as one 

moves landward from the shoreline, the topographic slope (dz/dx) increases necessarily? That is not 

the case.  

We agree that topographic slope does not necessary increase from the shoreline and we will remove 

“across increasing slopes” from the sentence. 

Page 2, Line 4: “a relatively stable SLR rate”– do the authors mean “a relatively steady SLR rate”, 

meaning there has been little acceleration over the last few thousand years? Or do they mean that 

sea level reached its current elevation a few thousand years ago and has only begun rising again in 
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the last few centuries (likely due to anthropogenic influence)? The word “stable” is misleading (to 

me, at least).  

We agree that “steady” is a better word choice than “stable” in this sentence given the concerns the 

reviewer has outlined; this change will be incorporated. 

Figures – much of the labeling is done in font so small that they are barely readable. Even changing 

the magnification on the computer screen results in pixilation. This aesthetic shortcoming 

undermines the value of the figures.  

The labeling in both the figures will be enlarged so that font is easily readable; we have also revised 

Figure 1 considering comments from R1, as well as to improve both readability and aesthetics.  The 

revised Figure 1 is included at the end of this document and will be included in the revised manuscript. 

Page 2, Line 19: “The confidence of our probabilistic SLR predictions depends on. . . land cover 

and elevation data.” This doesn’t seem correct. It’s not SLR predictions themselves that depend on 

these inputs, but rather the inundation patterns resulting from SLR estimates that depend on LC 

and Elev., right? 

This is correct; we will replace “probabilistic SLR predictions” with “probabilistic dynamic response 

outcomes” for clarity. 

 Page 2, Line 31: It is unclear what is meant by “coastal response outcomes”.  

The term “coastal response outcomes “ will be reworked to be more specifically defined to the overall 

probability of dynamic response.  Specifically: 

Lentz et al. (2015) mapped coastal response predictions—the probability of dynamic response or DP—

using a Bayesian network (BN) probabilistic modelling approach.  We define DP as the likelihood of land 

cover type to retain its existing state or transition to a new non-submerged state under the given SLR 

projection.  By this definition, coastal response is a binary outcome, in that if the coast does not respond 

dynamically to SLR, it will inundate, therefore DP equals one minus the probability of inundation.  A DP 

value of 0.5 indicated highest uncertainty in that either dynamic response or inundation had an equally 

likely probability of occurrence (Lentz et al., 2016).   

I see that on the first line of Page 3, the authors say that the “BN produced two outcomes. . .” for 

four different decades. Two outcomes of what? And for those decades, I assume the authors are 

implying that there are projected sea level elevations during those decades – what are they?  

The two outcomes are adjusted land elevation with respect to projected sea-level rise and dynamic 

response probabilities.  The projected sea level elevations are themselves probabilistic based on the 

decade for which they are predicted.  The ranges for these projections are shown in Figure S1.  We will 

modify the text to provide more specificity regarding these ranges and their time correspondence.  

Specifically, we propose the following: 

The BN (Figure S1) produced two probabilistic outcomes at a 30 x 30 m resolution for future SLR 

scenarios in the 2020s, 2030s, 2050s, and 2080s: 1) adjusted land elevation (AE) relative to the projected 

sea level, and 2) dynamic response or DP.  As described in Lentz et al. (2015), the SLR scenarios were 

comprised of three components: ocean dynamics (generated from 24 Coupled Model Intercomparison 

Project Phase 5 (CMIP5 models (Taylor et al., 2015), ice melt (as estimated by Bamber and Aspinall, 
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2013 for the two Antarctic Ice Sheets, and glaciers and ice caps as based on Marzion et al, 2012 and 

Radic et al., 2013)), and global land water storage (as based on Church et al., 2013).  Percentiles of these 

three components were estimated and then aggregated to provide a SLR scenario and corresponding 

uncertainty.  The projected SLR scenario ranges for each decade used in our model are shown in Figure 

S1 as follows: 2020s (0 to 0.25 m); 2030s (0.25 to 0.5 m); 2050s (0.5 to 0.75 m) and 2080s (0.75 to 2 m). 

Bamber, J.L., and Aspinall, W.P.: An expert judgment assessment of future sea-level rise from the ice sheets: Nat.  

Clim. Change 3(4), 424–427, 2013. 

Marzion, B., Jarosch, A.H., and Hofer, M.: Past and future sea-level change from the surface mass balance of  

glaciers: The Cryosphere, 6(6), 1295–1322, 2012. 

Radić, V., Bliss, A., Beedlow, C.D., Hock, R., Miles, E., and Cogley, J.G.: Regional and global projections of  

twenty-first century glacier mass changes in response to climate scenarios from global climate models: 

Climate Dynam. 42 (1–2), 37–58, 2013. 

Taylor, K.E., Stouffer, R.J., and Meehl, G.A.: An overview of CMIP5 and the experiment design: B. Am. Math.  

Soc., 93(4), p. 485–498, 2012. 

 

As I read on, I see that the authors refer to the equation in the supplemental material, Figure S1, 

which tells us that adjusted elevation is present elevation minus sea level rise plus vertical land 

motion (VLM). How is VLM obtained?  

VLM was obtained by coupling GPS CORS station data (Sella et al., 2009) with long term tide gauge 

data (Zervas et al., 2013).  These point data were used to create an interpolated VLM surface, from which 

VLM rates were extracted at all point locations.  We will include these details and references to the 

citations below to provide the reader this context in a revised submission.  Specifically: 

AE predictions were generated through implementation of a deterministic equation (see Figure 

S1).  First, SLR scenarios were combined with vertical land movement rates due to subsidence 

and other non-tectonic effects (using rates derived from a combination of GPS CORS stations in 

Sella et al., 2007; and long-term tide gauge data in Zervas et al., 2013) to make projections 

relative (local).   

Sella, G.F., Stein, Seth, Dixon, T.H., Craymer, Michael, James, T.S., Mazzotti, Stephane, and Dokka, R.K., 2007,  

Observation of glacial isostatic adjustment in “stable” North America with GPS: Geophysical Research 

Letters, v. 34, no. 2, L02306, 6 p., http://dx.doi.org/10.1029/2006GL027081, GPS Data  

Zervas, Chris, Gill, Stephen, and Sweet, William, 2013, Estimating Vertical Land Motion from Long-Term Tide  

Gauge Records: National Oceanographic and Atmospheric Administration Technical Report NOS CO-OPS 

065, 30 p., Long Term Tide Data and Report. 

 

Also in Figure S1, it appears that coastal response can have one of two outcomes: “dynamic” or 

“inundate”. Is “dynamic” the right term here? Does it imply “non-inundate”?  

Coastal response predictions are themselves binary; the reviewer is correct in deducing that “dynamic” 

can also mean “non-inundate”.  Our text on page 2, lines 9-10 is an attempt to make this point as well, 

but given reviewer confusion, we will add additional detail the caption to make this point clear.  

Specifically: 

Lentz et al. (2015) mapped coastal response predictions—the probability of dynamic response or DP—

using a Bayesian network (BN) probabilistic modelling approach.  We define DP as the likelihood of land 

cover type to retain its existing state or transition to a new non-submerged state under the given SLR 

projection.  By this definition, coastal response is a binary outcome, in that if the coast does not respond 

http://www.earth.northwestern.edu/people/seth/Texts/gpsgia.pdf
http://dx.doi.org/10.1029/2006GL027081
http://tidesandcurrents.noaa.gov/publications/Technical_Report_NOS_CO-OPS_065.pdf
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dynamically to SLR, it will inundate, therefore DP equals one minus the probability of inundation.  A DP 

value of 0.5 indicated highest uncertainty in that either dynamic response or inundation had an equally 

likely probability of occurrence (Lentz et al., 2016).   

and 

Caption for Figure S1: Diagram showing Bayesian network coastal response model, including data inputs 

(left) and predicted outcomes (right), including adjusted elevation (inundation model equivalent) and 

coastal response, wherein the response is binary such that dynamic implies “non-inundate”.   

Figure 1, Panel A: I don’t understand why the model predicts that everything within the 5-10m 

elevation bin is predicted to be “Marsh”. That seems to be an inaccurate prediction from the model. 

See earlier comments in response to R1 that address this point. 
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Proposed Figure Revisions and Supplemental Table Revisions: 

 

Figure 1. Updated probability distributions after training between elevation and land cover datasets with 

non-uniform (dark) and uniform (light) priors (the latter to limit regional LC bias), a) showing land cover 

distributions under selected elevation ranges and b) showing elevation distributions under selected land 

cover types. Land cover categories (Table S1) abbreviated as follows: S = subaqueous; M = marsh; B = 

beach; R = rocky; F = forest; and D = developed. 
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Predicted (m)   

  

Actual Water Marsh Beach Rocky Forest Developed Total 

User's 

accuracy 

(%) 

Water 22091861 1591392 0 0 446390 12107 24141750 91.5 

Marsh 1290019 2918228 0 0 1890412 25752 6124411 47.6 

Beach 1048226 450741 0 0 174218 21048 1694233 0 

Rocky 62315 22883 0 0 15976 1240 102414 0 

Forest 147539 1420429 0 0 4016932 80731 5665631 70.9 

Developed 139712 925392 0 0 3352471 90485 4508060 2 

Ground truth 24779672 7329065 0 0 9896399 231363 42236499 
 

Producer's 

accuracy (%) 89.2 39.8 
  

40.6 39.1 
  

Table S3a. Confusion matrix showing comparison between predicted land cover and measured 

(observed) land cover when elevation data are used as inputs with original distributions, with 

user’s error (accuracy) and producer’s error (reliability).  The overall accuracy rate for this 

comparison is 69%. 

 
Predicted (m) 

   

Actual Water Marsh Beach Rocky Forest Developed Total 

User's 

accuracy 

(%) 

Water 16530433 1591392 5561428 0 0 458497 24141750 68.5 

Marsh 60470 2918228 1229549 0 0 1916164 6124411 47.6 

Beach 217137 450741 831089 0 0 195266 1694233 49.1 

Rocky 35964 22883 26351 0 0 17216 102414 0.0 

Forest 11445 1420429 136094 0 0 4097663 5665631 0.0 

Developed 26099 925392 113613 0 0 3442956 4508060 76.4 

Ground truth 16881548 7329065 7898124 0 0 10127762 42236499 

 
Producer's 

accuracy (%) 97.9 39.8 10.5 
  

34 
  

Table S3b. Confusion matrix showing comparison between predicted land cover and measured 

(observed) land cover when elevation data are used as inputs with uniform distributions, with user’s error 

(accuracy) and producer’s error (reliability).  The overall accuracy rate for this comparison is 56%. 
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Predicted (m) 

  

Actual (m) 

-10 to -1 -1 to  0 0 to 1 1 to 5 5 to 10 

Total 

User's 

accuracy 

(%) 

-10 to -1 16566397 217137 60470 37544 0 16881548 98.1 

-1 to 0 5587779 831089 1229549 249707 0 7898124 10.5 

0 to 1 1614275 450741 2918228 2345821 0 7329065 39.8 

1 to 5 462366 174218 1890412 7369403 0 9896399 74.5 

5 to 10 13347 21048 25752 171216 0 231363 0 

Ground truth 24244164 1694233 6124411 10173691 0 42236499   

Producer's 

accuracy 

(%) 68.3 49.1 47.6 72.4 
   

Table S4a. Confusion matrix showing comparison between predicted elevations and measured (observed) 

elevations when land cover data are used as inputs with original distributions, with user’s error (accuracy) 

and producer’s error (reliability).  The overall accuracy rate for this comparison is 66%. 

 
Predicted (m) 

  

Actual (m) 

-10 to -1 -1 to  0 0 to 1 1 to 5 5 to 10 

Total 

User's 

accuracy 

(%) 

-10 to -1 16530433 217137 60470 11445 62063 16881548 97.9 

-1 to 0 5561428 831089 1229549 136094 139964 7898124 10.5 

0 to 1 1591392 450741 2918228 1420429 948275 7329065 39.8 

1 to 5 446390 174218 1890412 4016932 3368447 9896399 40.6 

5 to 10 12107 21048 25752 80731 91725 231363 39.6 

Ground 

truth 24141750 1694233 6124411 5665631 4610474 42236499   

Producer's 

accuracy 

(%) 68.5 49.1 20.1 70.9 73.1 
  

 

Table S4b. Confusion matrix showing comparison between predicted elevations and measured 

(observed) elevations when land cover data are used as inputs with uniform distributions, with user’s error 

(accuracy) and producer’s error (reliability).  The overall accuracy rate for this comparison is 58%. 

 


