
Lentz et al., Response to Reviewers  Reviewer Comments 

Manuscript: esurf-2018-79  Author Response 

  Proposed Text Changes 

 

Anonymous Referee #1  

Received and published: 7 January 2019  

Very well written paper with clear conclusions. However, in some places the text is a bit terse/too 

condensed for a relative non-expert on this type of modelling to follow. A suggestion is to expand on 

some of the sentences a bit, esp. where I put comments. Minor comments are attached. Please also 

note the supplement to this comment: https://www.earth-surf-dynam-discuss.net/esurf-2018-

79/esurf-2018-79-RC1- supplement.pdf 

Page 2, line 9: Why elevation and not the constituency of the substrate? 

We have added detail to the sentence to reflect the fact that substrate, underlying geology, and other 

processes determine coastal elevation, which can then be used as an important parameter in determining 

land cover distribution.  We have modified the manuscript text as follows: 

Page 1, Line 33: Because coastal land elevation is primarily governed by the substrate and/or underlying 

geology of the landscape as well as a product of the physical and biogeochemical processes acting on it, it 

serves as a central parameter in defining the distribution and configuration of ecosystems and their ability 

to evolve in response to processes driving change (Gesch, 2009; Kempeneers et al., 2009).  

Page 2, line 20:  Just “model skill” 

We have revised the text from “skillfulness” to “skill” as suggested. 

Page 2, line 26: Reduces? 

We have replaced “refines” with “reduces” as suggested. 

Page 2, line 27: Don’t understand this part of the sentence.  If the error in these datasets has 

negligible impact on outcomes, why bother to look at them? 

The intent of this part of the sentence was to state that a secondary component of our hypothesis is that 

process uncertainty can play a much greater role in our model outcomes than data error, and we test this 

by determining whether data improvements will have a measurable impact on model outcomes.  In other 

words, if data improvements do not substantially change our predicted outcomes, we are able to 

demonstrate process uncertainty plays a greater role than data error in our predictions, and conversely, 

we can point out that data errors can be important if they obscure an important process threshold.  To 

reduce confusion, have revised the sentence as follows to clarify our intent: 

Page 2, Line 16: We hypothesize that the relationship between these data inputs over such an extensive 

and diverse expanse reduces uncertainty in each parameter in our framework, and that that potential data 

error is sufficiently minor that it does not obscure important process thresholds that would in turn affect 

predicted outcomes. 

Page 5, line 27: This goes too fast—where and how should I read the graphs to conclude this? 

We have added detail to the sentence to break this down a bit, referencing specific parts of the figure 

throughout the sentence so that this is more easily digestible for the reader.  Please note our revisions 

correspond to the revised version of the figure and have been submitted as part of the revised manuscript. 

https://www.earth-surf-dynam-discuss.net/esurf-2018-79/esurf-2018-79-RC1-%20supplement.pdf
https://www.earth-surf-dynam-discuss.net/esurf-2018-79/esurf-2018-79-RC1-%20supplement.pdf
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Page 5, Line 17: Figure 1a shows that when E data were used to predict LC, subaqueous environments 

were the most probable prediction for elevations lower than 0 m (as illustrated by the first four plots on 

the left). 

Page 5, line 28: OK on subaqueous, but I don’t understand why marsh is predicted for elevations 

between 5-10 meters. 

Both R1 and R2 have found this inconsistency in our plotted data.  We originally attributed this to 

elevation inaccuracies associated with vegetation in the marshes and alluded to this as such in the 

discussion.  However, these technical observations warranted a review of the original training dataset, 

wherein we found a minor data truncation issue that caused marshes in this elevation range to be 

disproportionately represented as compared with others.  We have rectified this issue and have remade 

corresponding tables (Supplemental Tables 3 and 4) and Figure 1 to demonstrate that the impacts of the 

truncation were relatively minor and have not substantially changed our results, interpretations of these 

results, or conclusions.  We have included corrected tables and a revised Figure 1 and have made minor 

corrections to the corresponding areas in the manuscript that cites these numbers in resubmission.  

Specifically: 

Page 5, Line 27: When relying on the original prior LC distribution, the network had a corresponding 

accuracy rate of 69%, and found beaches and rocky areas as more probable than another land cover type.  

Here, beaches were most commonly confused with subaqueous and marsh land cover types, and rocky 

areas with subaqueous (Table S3a).  Uniformly distributed LC priors yielded slightly different predicted 

outcomes, wherein the network never found rocky and forested land cover types more probable than 

another land cover type, most commonly confusing them with subaqueous and developed land cover 

types respectively (Table S3b).  Overall, the accuracy rate in the inference relationship between E and LC 

was 56% when uniform LC prior distributions were used (Table 1). 

and 

Page 6, Line 1: The difference in prediction using the uniform-prior BN was that the 5-10 m range 

category was predicted, whereas this elevation was not more probable than another when original priors 

were used.  The accuracy rate in the inference relationship between LC and E was 66% for the original 

prior distribution and 58% for the uniform priors (Table 1).  

and 

Page 7, Line 14: Assessing model skill in the E and LC relationship revealed an accuracy of 56% 

(uniform priors) to 69% (non-uniform priors), showing that including the regional LC bias helped to 

improve predictions (Table 1), and that the most commonly missed LC-E predictions occurred in 

elevations closest to mean sea level (-1 to 1 m).  
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Page 6, line 5: Where do I see that number in the tables? 

The accuracy rate was available in the accompanying table captions for the confusion matrices.  To make 

accuracy rates easier to find, have included a new table that summarizes all accuracy rates.  The new 

table (Table 1) included here and has been included as part of the revised manuscript. 

Table 1. Summary table of accuracy rates for all confusion matrices of land cover and elevation 

comparisons.  Accuracy rates are calculated by summing where predictions matched observations (the 

diagonal bolded terms in Tables S2-S4) and dividing by the total number of outcomes.   Confusion 

matrices are available in supplemental materials (Tables S2-S4). 

 

 

 

 

 

 

 

 

 

 

Page 6, line 8: Can you comment on why there are no predictions for beach, rocky and developed? 

When elevation is used to predict land cover, there are no predictions for beach and rocky in our BN with 

non-uniform priors (see attached; this is updated based on the truncation issue reported earlier), and no 

predictions for rocky and forest categories in our uniform BN.  In each case, these land cover categories 

had lower probabilities of occurring in any of specified elevation ranges with respect to another, 

therefore the BN consistently picked the land cover category that was most probable to occur with the 

elevation range selected.  In other words, the BN certainly makes probabilistic  predictions of these land 

cover categories, but, possibly due to binning (elevation bin ranges are wide), an elevation signature 

specific to these land cover categories is never found to be the most likely outcome.  A similar result can 

be seen when land cover data are used to predict elevation; under non-uniform land cover priors, the 5 to 

10 m range is never predicted because it has such a low probability of occurrence with respect to other 

ranges.   

The difference between the uniform and non-uniform results is due to the under-representation of certain 

land cover classes regionally.  For example, when non-uniform elevation priors are applied, beaches and 

rocky areas are most infrequent (Figure S1), and because other land cover types areas have a greater 

representation among all elevation ranges than these land cover types (Figure 1), it appears the model 

selects the (slightly) more regionally probable land cover class to occur.  Conversely, when uniform 

elevation priors are applied, the model identifies the (slightly) stronger relationship of the 1- 5 m 

elevation range and developed areas (rather than forests) and given that either land cover class in this 

Confusion Matrix Accuracy Rate 

C-CAP vs. DSL Land Cover comparison 85% 

Predicted vs. Observed Land Cover 

Elevation inputs; original distributions 

 77% 

Predicted vs. Observed Land Cover 

Elevation inputs; uniform distributions 

 65.5% 

Predicted vs. Observed Elevation  

Land Cover inputs; original distributions 

 66% 

Predicted vs. Observed Elevation  

Land cover inputs; uniform distributions 59% 
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scenario is equally likely, selects land cover based on the most probable (strongest) relationship with 

elevation. 

In response to the reviewer’s question, we have included mention of this lack of prediction of certain land 

cover types and the reasons behind it in the revised manuscript to enhance our discussion.  Our changes 

include: 

Page 7, Line 19: In addition to missed predictions, in certain cases predictions were consistently never the 

most probable outcome than another for a few land cover types (specifically beaches and rocky under 

original E priors; rocky and forest under uniform priors (Tables S3) or elevation ranges (5-10 m 

elevations under original LC priors Table S4b).  For the original priors, this is due to the 

underrepresentation of certain classes (regional bias) in our training data, wherein beaches, rocky, and 5-

10 m elevation ranges were infrequent when compared to other classes/bins.  In the case of uniform 

priors, our BN is detecting the slightly stronger relationship of some land cover types certain elevation 

ranges (e.g. developed in the 1 to 5 m range), thereby making other E-LC relationships never more 

probable than these.  Although bin reassignments that span smaller elevation ranges could help resolve 

more specific land cover signatures in our model, particularly for low-lying beaches and marshes, this 

would likely occur at the cost of increased prediction uncertainty as outcomes would span a larger number 

of bins. 

Page 7, line 28: How does tidal stage at which the lidar was flown affect the results for beaches? 

All elevation data included in our model were vertically adjusted to mean high water (MHW) from the 

North American Vertical Datum of 1988.  This is a detail that was included in previous work, and that 

considering this comment, is also important to include in this paper.  We have added text to the Data and 

Methods section to clarify this adjustment.  Specifically: 

Page 3, Line 4: AE predictions were generated through implementation of a deterministic equation (see 

Figure S1).  First, SLR scenarios were combined with vertical land movement rates due to subsidence and 

other non-tectonic effects (using rates derived from a combination of GPS CORS stations in Sella et al., 

2007; and long-term tide gauge data in Zervas et al., 2013) to make projections relative (local).  Projected 

relative SLR values were then subtracted from elevation data, which were comprised of a combination of 

high-resolution elevation data from the National Elevation Dataset (NED, Gesch, 2007) supplemented 

where necessary with coarser resolution bathymetry from the National Oceanic and Atmospheric 

Administration National Geophysical Data Center’s Coastal Relief Model (National Oceanic and 

Atmospheric Administration, 2014) to predict adjusted land elevation (AE) relative to the projected sea 

level.   Before model integration, high resolution elevation data were converted to mean high water from 

North American Vertical Datum 1988 using VDatum conversion grids (National Ocean Service, 2012).  

Our intent in converting these data was to ensure that tidal impacts on our results were minimized; herein 

beaches submerged at high tide should still appear as beach in our model, albeit below 0 m.  As Figure 

1b shows, the most likely E category when beach is predicted is -1 to 0 m; conversely, when the -1 to 0 m 

range is selected in Figure 1a, we see beach is the most probable category when uniform priors (i.e. the 

regional bias) is removed.  Therefore, to the reviewer’s point, it does appear that a submerged tidal stage 

may have some influence on our results, such that beaches in our model are frequently found to be 

submerged.  We have added detail to the discussion section to reflect this insight including: 

Page 7, Line 4: However, beaches are more confidently predicted in the -1 to 0 m range than other land 

cover types (Figure 1b), suggesting a propensity of beaches in our model training data are shallowly 
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submerged.  Using first-return lidar instead of bare earth data in our model could be used to further 

distinguish the six LC types from one another via vegetation differences (e.g. Lee and Shan, 2003; Im et 

al., 2008; Reif et al., 2011) and better distinguish intertidal areas, which may allow refinement of marsh, 

beach, and forest classifications (e.g. Kepeneers et al., 2009; Sturdivant et al., 2017).   

and 

Page 7, Line 33: Results instead may suggest high-resolution (1/9 NED) E data captures a systematic 

offset in part due to MHW submergence from datum conversion (Lentz et al., 2015), particularly for 

marshes and beaches (Fig 3b).  In addition to elevation data that accounts for vegetation, as suggested 

earlier, seamless and continuous topographic and bathymetric data (Danielson et al., 2016) would 

constrain resolution error and better resolve distinctions between subaerial and subaqueous environments. 

Anonymous Referee #2 Received and published: 25 January 2019  

This manuscript presents a study of the skill and sensitivity of a model that predicts likelihood of 

response of low-lying areas to sea level rise. The researchers determine that data errors are most 

often found in areas of low elevation, but that seems to have little influence on the model’s skill due 

to correlations between land cover and elevation, the two data sets used as inputs to the model. In 

addition, model sensitivity appears to mimic uncertainty in process, which waves a flag for 

improving process-based models. The topic of this manuscript is of relevance to researchers in 

coastal science, applied coastal engineering, and those studying societal impacts of climate change. 

The manuscript is well-organized, but lacks critical details about how the model works, making the 

results border on irreproducible. This can be substantially improved by adding a paragraph that 

provides explicit details of how the model uses the elevation and land cover data sets to compute 

likelihood of dynamic response.  It appears that the Lentz et al. (2016) paper may provide more 

information about the model itself. If that is the case, I can appreciate that the authors chose not to 

be redundant by reiterating all of that information, but I, myself, found it difficult to read this 

paper as a standalone contribution. I acknowledge that researchers working on similar projects will 

likely have read the Lentz et al. (2016) paper, thereby making this manuscript more 

understandable.  

This paper could be improved by some more detailed explanations and examples, particularly the 

Data and Methods section. Also, it would be helpful if the ‘nuts and bolts’ of the modeling were 

summarized, even if not fully detailed as I assume they are in the previous publications. If these 

improvements can be implemented, I would be happy to recommend this paper for publication, 

provided the specific comments below are considered and addressed as well.  

We have included more detail regarding how the model works in a revised submission.  Our comments to 

follow detail how we have incorporated more specific information in our revision.  In addition to these 

changes, we have revisited the entire manuscript to ensure that pertinent details important for the reader 

are available in the text, so it can be read as a standalone contribution.  We have revised the Previous 

Work section in Data and Methods to provide detail as suggested including the following: 
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Page 2, Line 22: 

2.1 Previous Work 

Lentz et al. (2015) mapped coastal response predictions—the probability of dynamic response or DP—

using a Bayesian network (BN) probabilistic modelling approach.  We define DP as the likelihood of land 

cover type to retain its existing state or transition to a new non-submerged state under the given SLR 

projection.  By this definition, coastal response is a binary outcome, in that if the coast does not respond 

dynamically to SLR, it will inundate, therefore DP equals one minus the probability of inundation.  A DP 

value of 0.5 indicated highest uncertainty in that either dynamic response or inundation had an equally 

likely probability of occurrence (Lentz et al., 2016).   

The study area was a 38,000 km2 region from Maine to Virginia, U.S.A., bounded by the 10-m elevation 

contour inland to -10 m offshore.  The BN (Figure S1) produced two probabilistic outcomes at a 30 x 30 

m resolution for future SLR scenarios in the 2020s, 2030s, 2050s, and 2080s: 1) adjusted land elevation 

(AE) relative to the projected sea level, and 2) dynamic response or DP.  As described in Lentz et al. 

(2015), the SLR scenarios were comprised of three components: ocean dynamics (generated from 24 

Coupled Model Intercomparison Project Phase 5 (CMIP5 models (Taylor et al., 2015), ice melt (as 

estimated by Bamber and Aspinall, 2013 for the two Antarctic Ice Sheets, and glaciers and ice caps as 

based on Marzion et al, 2012 and Radic et al., 2013), and global land water storage (as based on Church et 

al., 2013).  Percentiles of these three components were estimated and then aggregated to provide a SLR 

scenario and corresponding uncertainty.  The projected SLR scenario ranges for each decade used in our 

model are shown in Figure S1 as follows: 2020s (0 to 0.25 m); 2030s (0.25 to 0.5 m); 2050s (0.5 to 0.75 

m) and 2080s (0.75 to 2 m). 

AE predictions were generated through implementation of a deterministic equation (see Figure S1).  First, 

SLR scenarios were combined with vertical land movement rates due to subsidence and other non-

tectonic effects (using rates derived from a combination of GPS CORS stations in Sella et al., 2007; and 

long-term tide gauge data in Zervas et al., 2013) to make projections relative (local).  Projected relative 

SLR values were then subtracted from elevation data, which were comprised of a combination of high-

resolution elevation data from the National Elevation Dataset (NED, Gesch, 2007) supplemented where 

necessary with coarser resolution bathymetry from the National Oceanic and Atmospheric Administration 

National Geophysical Data Center’s Coastal Relief Model (National Oceanic and Atmospheric 

Administration, 2014) to predict adjusted land elevation (AE) relative to the projected sea level.   Before 

model integration, high resolution elevation data were converted to mean high water from North 

American Vertical Datum 1988 using VDatum conversion grids (National Ocean Service, 2012).  

Dynamic response probabilities (DP) were estimated by coupling the predicted AE ranges with expert 

knowledge on the response of generalized land cover types (six categories that respond distinctly to SLR 

ecologically or morphologically--subaqueous, marsh, beach, rocky, forest, and developed--as described in 

Lentz et al. (2015) and shown in Table S1).  Although the resulting predictions provided a robust 

accounting of uncertainty from some of the data inputs and knowledge of physical landscape change 

processes, the relative influence of these uncertainties on the predictions has not been explored explicitly. 

Specific Comments:  

Page 2, Line 3: “across increasing slopes” is confusing here – do the authors imply that as one 

moves landward from the shoreline, the topographic slope (dz/dx) increases necessarily? That is not 

the case.  
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We agree that topographic slope does not necessary increase from the shoreline and we have removed 

“across increasing slopes” from the sentence. 

Page 2, Line 4: “a relatively stable SLR rate”– do the authors mean “a relatively steady SLR rate”, 

meaning there has been little acceleration over the last few thousand years? Or do they mean that 

sea level reached its current elevation a few thousand years ago and has only begun rising again in 

the last few centuries (likely due to anthropogenic influence)? The word “stable” is misleading (to 

me, at least).  

We agree that “steady” is a better word choice than “stable” in this sentence given the concerns the 

reviewer has outlined; this change has been incorporated. 

Figures – much of the labeling is done in font so small that they are barely readable. Even changing 

the magnification on the computer screen results in pixilation. This aesthetic shortcoming 

undermines the value of the figures.  

The labeling in both the figures has been enlarged so that font is easily readable; we have also revised 

Figure 1 considering comments from R1, as well as to improve both readability and aesthetics.  The 

revised Figure 1 is in the revised manuscript. 

Page 2, Line 19: “The confidence of our probabilistic SLR predictions depends on. . . land cover 

and elevation data.” This doesn’t seem correct. It’s not SLR predictions themselves that depend on 

these inputs, but rather the inundation patterns resulting from SLR estimates that depend on LC 

and Elev., right? 

This is correct; we have replaced “probabilistic SLR predictions” with “probabilistic dynamic response 

outcomes” for clarity. 

 Page 2, Line 31: It is unclear what is meant by “coastal response outcomes”.  

The term “coastal response outcome” has been reworked to be more specifically defined to the overall 

probability of dynamic response.  Specifically: 

Page 2, Line 23: Lentz et al. (2015) mapped coastal response predictions—the probability of dynamic 

response or DP—using a Bayesian network (BN) probabilistic modelling approach.  We define DP as the 

likelihood of land cover type to retain its existing state or transition to a new non-submerged state under 

the given SLR projection.  By this definition, coastal response is a binary outcome, in that if the coast 

does not respond dynamically to SLR, it will inundate, therefore DP equals one minus the probability of 

inundation.  A DP value of 0.5 indicated highest uncertainty in that either dynamic response or inundation 

had an equally likely probability of occurrence (Lentz et al., 2016).   

I see that on the first line of Page 3, the authors say that the “BN produced two outcomes. . .” for 

four different decades. Two outcomes of what? And for those decades, I assume the authors are 

implying that there are projected sea level elevations during those decades – what are they?  

The two outcomes are adjusted land elevation with respect to projected sea-level rise and dynamic 

response probabilities.  The projected sea level elevations are themselves probabilistic based on the 

decade for which they are predicted.  The ranges for these projections are shown in Figure S1.  We have 

modified the text to provide more specificity regarding these ranges and their time correspondence.  

Specifically: 
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Page 2, Line 31: The BN (Figure S1) produced two probabilistic outcomes at a 30 x 30 m resolution for 

future SLR scenarios in the 2020s, 2030s, 2050s, and 2080s: 1) adjusted land elevation (AE) relative to 

the projected sea level, and 2) dynamic response or DP.  As described in Lentz et al. (2015), the SLR 

scenarios were comprised of three components: ocean dynamics (generated from 24 Coupled Model 

Intercomparison Project Phase 5 (CMIP5 models (Taylor et al., 2015), ice melt (as estimated by Bamber 

and Aspinall, 2013 for the two Antarctic Ice Sheets, and glaciers and ice caps as based on Marzion et al, 

2012 and Radic et al., 2013)), and global land water storage (as based on Church et al., 2013).  Percentiles 

of these three components were estimated and then aggregated to provide a SLR scenario and 

corresponding uncertainty.  The projected SLR scenario ranges for each decade used in our model are 

shown in Figure S1 as follows: 2020s (0 to 0.25 m); 2030s (0.25 to 0.5 m); 2050s (0.5 to 0.75 m) and 

2080s (0.75 to 2 m). 

Bamber, J.L., and Aspinall, W.P.: An expert judgment assessment of future sea-level rise from the ice sheets: Nat.  

Clim. Change 3(4), 424–427, 2013. 

Marzion, B., Jarosch, A.H., and Hofer, M.: Past and future sea-level change from the surface mass balance of  

glaciers: The Cryosphere, 6(6), 1295–1322, 2012. 

Radić, V., Bliss, A., Beedlow, C.D., Hock, R., Miles, E., and Cogley, J.G.: Regional and global projections of  

twenty-first century glacier mass changes in response to climate scenarios from global climate models: 

Climate Dynam. 42 (1–2), 37–58, 2013. 

Taylor, K.E., Stouffer, R.J., and Meehl, G.A.: An overview of CMIP5 and the experiment design: B. Am. Math.  

Soc., 93(4), p. 485–498, 2012. 

 

As I read on, I see that the authors refer to the equation in the supplemental material, Figure S1, 

which tells us that adjusted elevation is present elevation minus sea level rise plus vertical land 

motion (VLM). How is VLM obtained?  

VLM was obtained by coupling GPS CORS station data (Sella et al., 2009) with long term tide gauge 

data (Zervas et al., 2013).  These point data were used to create an interpolated VLM surface, from which 

VLM rates were extracted at all point locations.  We have included these details and references to the 

citations below to provide the reader this context in a revised submission.  Specifically: 

Page 3, Line 4: AE predictions were generated through implementation of a deterministic 

equation (see Figure S1).  First, SLR scenarios were combined with vertical land movement rates 

due to subsidence and other non-tectonic effects (using rates derived from a combination of GPS 

CORS stations in Sella et al., 2007; and long-term tide gauge data in Zervas et al., 2013) to make 

projections relative (local).   

Sella, G.F., Stein, Seth, Dixon, T.H., Craymer, Michael, James, T.S., Mazzotti, Stephane, and Dokka, R.K., 2007,  

Observation of glacial isostatic adjustment in “stable” North America with GPS: Geophysical Research 

Letters, v. 34, no. 2, L02306, 6 p., http://dx.doi.org/10.1029/2006GL027081, GPS Data  

Zervas, Chris, Gill, Stephen, and Sweet, William, 2013, Estimating Vertical Land Motion from Long-Term Tide  

Gauge Records: National Oceanographic and Atmospheric Administration Technical Report NOS CO-OPS 

065, 30 p., Long Term Tide Data and Report. 

 

Also in Figure S1, it appears that coastal response can have one of two outcomes: “dynamic” or 

“inundate”. Is “dynamic” the right term here? Does it imply “non-inundate”?  

Coastal response predictions are themselves binary; the reviewer is correct in deducing that “dynamic” 

can also mean “non-inundate”.  Our text on page 2, lines 9-10 is an attempt to make this point as well, 

http://www.earth.northwestern.edu/people/seth/Texts/gpsgia.pdf
http://dx.doi.org/10.1029/2006GL027081
http://tidesandcurrents.noaa.gov/publications/Technical_Report_NOS_CO-OPS_065.pdf
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but given reviewer confusion, we have added additional detail the caption to make this point clear.  

Specifically: 

Page 2, Line 23: Lentz et al. (2015) mapped coastal response predictions—the probability of dynamic 

response or DP—using a Bayesian network (BN) probabilistic modelling approach.  We define DP as the 

likelihood of land cover type to retain its existing state or transition to a new non-submerged state under 

the given SLR projection.  By this definition, coastal response is a binary outcome, in that if the coast 

does not respond dynamically to SLR, it will inundate, therefore DP equals one minus the probability of 

inundation.  A DP value of 0.5 indicated highest uncertainty in that either dynamic response or inundation 

had an equally likely probability of occurrence (Lentz et al., 2016).   

and 

Caption for Figure S1: Diagram showing Bayesian network coastal response model, including data inputs 

(left) and predicted outcomes (right), including adjusted elevation (inundation model equivalent) and 

coastal response, wherein the response is binary such that dynamic implies “non-inundate”.   

Figure 1, Panel A: I don’t understand why the model predicts that everything within the 5-10m 

elevation bin is predicted to be “Marsh”. That seems to be an inaccurate prediction from the model. 

See earlier comments in response to R1 that address this point. 
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Proposed Figure Revisions and Supplemental Table Revisions: 

 

Figure 1. Updated probability distributions after training between elevation and land cover datasets with 

non-uniform (dark) and uniform (light) priors (the latter to limit regional LC bias), a) showing land cover 

distributions under selected elevation ranges and b) showing elevation distributions under selected land 

cover types. Land cover categories (Table S1) abbreviated as follows: S = subaqueous; M = marsh; B = 

beach; R = rocky; F = forest; and D = developed. 
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Predicted (m)   

  

Actual Water Marsh Beach Rocky Forest Developed Total 

User's 

accuracy 

(%) 

Water 22091861 1591392 0 0 446390 12107 24141750 91.5 

Marsh 1290019 2918228 0 0 1890412 25752 6124411 47.6 

Beach 1048226 450741 0 0 174218 21048 1694233 0 

Rocky 62315 22883 0 0 15976 1240 102414 0 

Forest 147539 1420429 0 0 4016932 80731 5665631 70.9 

Developed 139712 925392 0 0 3352471 90485 4508060 2 

Ground truth 24779672 7329065 0 0 9896399 231363 42236499 
 

Producer's 

accuracy (%) 89.2 39.8 
  

40.6 39.1 
  

Table S3a. Confusion matrix showing comparison between predicted land cover and measured 

(observed) land cover when elevation data are used as inputs with original distributions, with 

user’s error (accuracy) and producer’s error (reliability).  The overall accuracy rate for this 

comparison is 69%. 

 
Predicted (m) 

   

Actual Water Marsh Beach Rocky Forest Developed Total 

User's 

accuracy 

(%) 

Water 16530433 1591392 5561428 0 0 458497 24141750 68.5 

Marsh 60470 2918228 1229549 0 0 1916164 6124411 47.6 

Beach 217137 450741 831089 0 0 195266 1694233 49.1 

Rocky 35964 22883 26351 0 0 17216 102414 0.0 

Forest 11445 1420429 136094 0 0 4097663 5665631 0.0 

Developed 26099 925392 113613 0 0 3442956 4508060 76.4 

Ground truth 16881548 7329065 7898124 0 0 10127762 42236499 

 
Producer's 

accuracy (%) 97.9 39.8 10.5 
  

34 
  

Table S3b. Confusion matrix showing comparison between predicted land cover and measured 

(observed) land cover when elevation data are used as inputs with uniform distributions, with user’s error 

(accuracy) and producer’s error (reliability).  The overall accuracy rate for this comparison is 56%. 
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Predicted (m) 

  

Actual (m) 

-10 to -1 -1 to  0 0 to 1 1 to 5 5 to 10 

Total 

User's 

accuracy 

(%) 

-10 to -1 16566397 217137 60470 37544 0 16881548 98.1 

-1 to 0 5587779 831089 1229549 249707 0 7898124 10.5 

0 to 1 1614275 450741 2918228 2345821 0 7329065 39.8 

1 to 5 462366 174218 1890412 7369403 0 9896399 74.5 

5 to 10 13347 21048 25752 171216 0 231363 0 

Ground truth 24244164 1694233 6124411 10173691 0 42236499   

Producer's 

accuracy 

(%) 68.3 49.1 47.6 72.4 
   

Table S4a. Confusion matrix showing comparison between predicted elevations and measured (observed) 

elevations when land cover data are used as inputs with original distributions, with user’s error (accuracy) 

and producer’s error (reliability).  The overall accuracy rate for this comparison is 66%. 

 
Predicted (m) 

  

Actual (m) 

-10 to -1 -1 to  0 0 to 1 1 to 5 5 to 10 

Total 

User's 

accuracy 

(%) 

-10 to -1 16530433 217137 60470 11445 62063 16881548 97.9 

-1 to 0 5561428 831089 1229549 136094 139964 7898124 10.5 

0 to 1 1591392 450741 2918228 1420429 948275 7329065 39.8 

1 to 5 446390 174218 1890412 4016932 3368447 9896399 40.6 

5 to 10 12107 21048 25752 80731 91725 231363 39.6 

Ground 

truth 24141750 1694233 6124411 5665631 4610474 42236499   

Producer's 

accuracy 

(%) 68.5 49.1 20.1 70.9 73.1 
  

 

Table S4b. Confusion matrix showing comparison between predicted elevations and measured 

(observed) elevations when land cover data are used as inputs with uniform distributions, with user’s error 

(accuracy) and producer’s error (reliability).  The overall accuracy rate for this comparison is 58%. 
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Abstract. Understanding land loss or resilience in response to sea-level rise (SLR) requires spatially extensive and continuous 

datasets to capture landscape variability.   We investigate sensitivity and skill of a model that predicts dynamic response likelihood 

to SLR across the northeastern U.S. by exploring several data inputs and outcomes.  Using elevation and land cover datasets, we 

determine where data error is likely, quantify its effect on predictions, and evaluate its influence on prediction confidence.  Results 10 

show data error is concentrated in low-lying areas with little impact on prediction skill, as the inherent correlation between the 

datasets can be exploited to reduce data uncertainty using Bayesian inference.  This suggests the approach may be extended to 

regions with limited data availability and/or poor quality.  Furthermore, we verify that model sensitivity in these first-order 

landscape change assessments is well-matched to larger coastal process uncertainties, for which process-based models are 

important complements to further reduce uncertainty. 15 

1 Introduction  

Estimates of global sea-level rise (SLR) predict increases between 0.3 by 1.2 meters by 2100 (Church et al., 2013; Kopp et al., 

2014), while Northeastern and Mid-Atlantic U.S. SLR projections are higher than the global average due to a variety of factors 

including subsidence, static equilibrium effects and changing ocean dynamics (Goddard et al., 2015; Mitrovica et al., 2011; Kopp, 

et al., 2014; Sella et al., 2009; Slangen et al., 2014; Sweet et al., 2017a,b; Yin & Goddard, 2013; Yin et al., 2009; Zervas et al., 20 

2013).  SLR impacts such as high tide flooding, barrier island narrowing, and salt marsh degradation have been increasingly 

observed along the U.S. East Coast (e.g. Cahoon et al., 2009; Ezer & Atkinson, 2014; Kirwan & Megonigal, 2013; Sweet & Park, 

2014).  The northeastern U.S. coast (Figure 1) is a diverse landscape, with major shipping ports, heavily populated cities, and 

extensive natural areas that provide a variety of habitat and ecosystem services.  Understanding and assessing how coastal 

landscapes such as this respond to SLR is central to refining adaptive management strategies (Fishman et al., 2014) and identifying 25 

areas that provide buffering or mitigation to support long-term management targets (Pelletier et al., 2015).   

 

Coastal environments are products of a complex interplay of exposure and processes, substrate and sediment supply, tidal ranges, 

and geomorphology (e.g. Davies, 1964; FitzGerald et al., 2008; Hayes, 1979).  As illustrated by Carter (1988), a robust body of 

literature documents the ecologic transition of these environments from the shoreline across increasing slopes and over geomorphic 30 

features (e.g. dunes and bluffs) landward.  In fact, a relatively stable steady SLR rate over the last few thousand years is central to 

our modern coastal configuration, including the development of barrier islands and wetlands (e.g., Redfield, 1972; Field & Duane, 

1976; Shennan & Horton, 2002), as well as settlement patterns (McGranahan et al., 2007; Liu et al., 2015; Kane et al., 2017).  

Elevation Because coastal land elevation is primarily governed by the substrate and/or underlying geology of the landscape as well 

as a product of the physical and biogeochemical processes acting on it, it serves as a central is a key parameter in defining the 35 
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et al, 2012 and Radic et al., 2013)), and global land water storage (as based on Church et al., 2013).  Percentiles of these three 

components were estimated and then aggregated to provide a SLR scenario and corresponding uncertainty.  The projected SLR 

scenario ranges for each decade used in our model are shown in Figure S1 as follows: 2020s (0 to 0.25 m); 2030s (0.25 to 0.5 m); 

2050s (0.5 to 0.75 m) and 2080s (0.75 to 2 m). 

 5 

AE predictions were generated through implementation of a deterministic equation (see Figure S1) by combining).  First, SLR 

scenarios from global climate models using IPCC RCPs 4.5 and 8.5 (IPCC, 2013),were combined with vertical land movement 

rates due to subsidence and other non-tectonic effects, and  (using rates derived from a combination of GPS CORS stations in Sella 

et al., 2007; and long-term tide gauge data in Zervas et al., 2013) to make projections relative (local).  Projected relative SLR 

values were then subtracted from elevation data, which were comprised of a combination of high-resolution elevation data (Lentz 10 

et al., 2015from the National Elevation Dataset (NED, Gesch, 2007) supplemented where necessary with coarser resolution 

bathymetry from the National Oceanic and Atmospheric Administration National Geophysical Data Center’s Coastal Relief Model 

(National Oceanic and Atmospheric Administration, 2014) to predict adjusted land elevation (AE) relative to the projected sea 

level.  Second, dynamic Before model integration, high resolution elevation data were converted to mean high water from North 

American Vertical Datum 1988 using VDatum conversion grids (National Ocean Service, 2012).  15 

 

Dynamic response probabilities (DP)—the likelihood of an environment to retain its existing state or transition to a new non-

submerged state under the given SLR projections—) were estimated by coupling the predicted AE ranges with expert knowledge 

on the response of generalized land cover types (six categories that respond distinctly to SLR ecologically or morphologically --

subaqueous, marsh, beach, rocky, forest, and developed--as described in Lentz et al. (2015) and shown in Table S1).  Because the 20 

two response types (inundation and dynamic response) are end members, DP equals one minus the probability of inundation. A 

DP value of 0.5 indicated highest uncertainty in that either response had an equally likely probability of occurrence (Lentz et al., 

2016).  Although the resulting predictions provided a robust accounting of uncertainty from some of the data inputs and knowledge 

of physical landscape change processes, the relative influence of these uncertainties on the predictions has not been explored 

explicitly. 25 

2.2 Sensitivity and Skill Assessment 

We assessed the role of potential error in elevation (E) and land cover (LC) datasets on predicted outcomes.  Beaches and estuarine 

wetlands exist near sea-level; likewise, forests require elevations that provide adequate vadose zone thickness. While this 

correlation between E and LC allows one to be probabilistically predicted from the other, doing so also results in error correlation. 

Model elevation data came from the National Elevation Dataset (1/9 arc second or 1/3 arc second; U.S. Geological Survey, 2015) 30 

and Coastal Relief Model (as described in Lentz et al. 2015).  The expected errors in E from these data were included in previous 

predictions (Lentz et al., 2016), but their effect on predictions was not specifically addressed.  Furthermore, the LC values (from 

McGarrigal et al., 2017) were not treated as uncertain, which was inconsistent with the treatment of all the other relationships in 

the Lentz et al. (2016) analysis.  Better understanding of E and LC error helps to constrain it and identify where better data may 

improve predictions.  Conversely, knowing where data have lower error helps to identify where process uncertainty is highest, 35 

which can help prioritize future research efforts. 

 

We expanded our testing to determine 1) how our LC dataset compares with other LC data and previous error quantification results, 

2) how E uncertainty is refined by LC information, and 3) where error in LC and E datasets is most likely to affect our predictions.  
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As described in Lentz et al. (2016), inference training (Bayes rule) was applied in the model to capture the correlation between E 

and LC in the form:  

P(𝐸𝑖|𝐿𝐶𝑗) = P(𝐿𝐶𝑗|𝐸𝑖)𝑥 P(𝐸𝑖)/𝑃(𝐿𝐶𝑗) ,         (1) 

where we evaluate the ith outcome in the first term on the right as the probabilistic relationship conditioned on inputs from the j th 

spatial location.  Using this relationship, LC, entered with total certainty (such that P(LC j) is 1.0 if LCj corresponds to the land 5 

cover data at a particular location or P(LCj) = 0.0 if it does not), updates the prior E, entered with known uncertainty, based on the 

values of the digital elevation model over the entire modelling domain (Figure 2)..  Similarly, E data are used to establish 

conditional probabilities of LC.  By assessing potential E and LC error using a BN that implements equation 1 (Figure S1), we can 

evaluate model skill in reducing error.   

2.2.1 Land Cover Data Comparison 10 

As noted in Lentz et al. (2015), the 2010 land cover data in the model (hereafter DSL, after McGarrigal et al., 2017) combine a 

variety of sources to capture detailed ecosystems information.  To better evaluate land cover data error, we compared land cover 

data with the 2010 Coastal Change Analysis Program (CCAP) land cover dataset which has a quantified error,  (NOAA 2017, 

https://www.coast.noaa.gov/dataregistry/search/collection/info/ccapregional) and were thus used as our “observed” data source.  

Although the DSL land cover data contain much more detailed ecosystems information than CCAP (19 classes in CCAP vs. 197 15 

classes in DSL), our generalization of DSL data into six classes (Table S1) allowed us to similarly generalize CCAP data and 

compare the two data sets in terms of user’s error (accuracy, or how often the LC type in the DSL data would be the same in the 

CCAP or “observed” data) and producer’s error (reliability, or how often the LC type in the CCAP or “observed” data would be 

the same in the DSL data).  When generalizing the two datasets for purposes of comparison, we further grouped together beach 

and rocky categories, as both exposed bedrock and beach/dune categories are included in the CCAP "bare land" category (Table 20 

S1).  Data grids were compared using ArcGIS software’s Combine tool (ESRI, 2016). 

2.2.2 Model Skill 

Our training dataset included E and LC data at ~42,000,000 grid cells throughout the U.S. northeast.  We tested our BN (developed 

with Netica software; Norsys, 2014) and trained on these datasets, to predict E values from LC data, and LC data from E values, 

by assessing posterior probability distributions in our BN, and evaluating the error rate between predictions and observations.  To 25 

perform this test, we built a separate two-variable BN to implement equation 1 consisting only of E and LC data (Figure 1).  The 

network was trained on the full elevation and DSL land cover dataset using equation 1, and an error rate was calculated based on 

the number of times the network predicted a value for a dataset that did not match the observed value at a given location.  To test 

the extension of the inference relationship to situations where E or LC data inputs may be unavailable or limited, the modified BN 

was used to predict an E value (or LC, as the BNs can be run as both forward and inverse models) as if it were unobserved given 30 

only the (uniformly distributed) LC data (or E value) as an input, and the corresponding posterior probabilities were observed. 

2.2.3 Mismatch Error 

Some errors were expected from inconsistencies between the LC data and the E data, such as where subaqueous categories (Figure 

1) co-occurred with elevations above 0 m (referenced to Mean High Water, or MHW in our model), and elevations below 0 m co-

occurred with a land cover category other than subaqueous.  These mismatches might be due to classification or elevation error, 35 

datum changes, or changes over time.  To evaluate the impact of these mismatches, we focused on an area contained within the 

https://www.coast.noaa.gov/dataregistry/search/collection/info/ccapregional
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highest resolution and continuous elevation boundary contours (-1 to 10 m from the 1/3 NED), using about half our points 

(~22,000,000), as we anticipated mismatch errors farther offshore than -1 m would be low (i.e. below 0 m and subaqueous).  We 

classified mismatches by: 1) E data resolution (1/3 and where available, 1/9 arc-second data from the National Elevation Dataset) 

and 2) LC type to determine whether errors might be explained systematically due to inputs.   

 5 

Once identified, we examined the effects of mismatches on the accuracy of predicted outcomes.  First, our model was used to 

identify corresponding DP likelihood among LC types and the low-lying E ranges most commonly mistaken with one another (-1 

to 0 and 0 to 1 m).  Rather than evaluate a specific time step, we made input parameters defining relative SLR uniform (vertical 

land movement and projected sea level, as in Figure S1) to assess overarching impacts on predictions.  Mismatches were also 

compared geospatially with measured land cover shifts in the 2001 to 2010 CCAP change data (NOAA, 2013) to assess where E 10 

and LC data inputs, due to slightly differing dates in their data collection (Lentz et al., 2015) may have captured dynamic state 

shifts due to process-based changes (e.g. movement of sand bodies around inlets or marsh erosion/inundation; Gomez et al., 2016).   

3 Results 

3.1 Land Cover Error 

Our LC error assessment found 15% error between CCAP and DSL data; this value is the same as the published 15% error for the 15 

CCAP dataset (Table S21 and McCombs et al., 2016).  Overall, error was highest inA confusion matrix (Table S2) reveals which 

LC classes were most commonly mistaken; most frequent were bare land misclassified as subaqueous, and marsh categories.  

misclassified as non-marsh vegetation. 

In addition to having the lowest number of pixels of all the land cover classes, user’s error and producer’s accuracy were lowest 

for the bare land category (49% and 21% respectively); the least number of correctly classified pixels were in the bare land class 20 

when compared with the ground truth (CCAP) class.  The bare land class also had the least number of pixels when compared with 

all other LC categories. A confusion matrix (Table S2) reveals which LC classes were most commonly mistaken; most frequent 

were bare land misclassified as subaqueous, and marsh misclassified as non-marsh vegetation. 

 

3.2 Model Skill 25 

The two-parameter BN showed that for this implementation, LC was nearly as useful for constraining E as the other way around 

(Figure 1; Tables S3-S4).  WhenFigure 1a shows that when non-uniform E data were used to predict LC (Figure 1a),, subaqueous 

environments were the most probable prediction for elevations lower than 0 m. (as illustrated by the top four plots on the left).  

This result reflects, in part, the dominance of subaqueous environments in our data set and therefore strong prior probability that 

any location below this elevation would be covered by water (Figure S1).  Additionally, we developed a modified BN with uniform 30 

prior distributions of LC (Figure 1a) and E (Figure 1b) to re-evaluate the inference relationship as ifunder an assumption that all 

prior states of the nodes were equally probable, which limits prediction bias from the lower percentage representation of certain 

land cover categories in the region.   

 

Generally (for both original and uniform-prior BNs), elevation signatures specific to different land cover types were observed, 35 

with subaqueous, marsh, and beach environments appearing at low-lying elevations, and developed and forested areas showing a 

predominance for higher elevation settings (Figure 1a).  When relying on the original prior LC distribution, the network failed to 
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predict correctly three LC types from E data: beaches, rocky, and developed areas, and had a corresponding accuracy rate of 

69%.%, and found, given low-lying elevation as a constraint,  beaches and rocky areas were not more probable than another land 

cover type.  Here, beaches were most commonly confused with subaqueous and marsh land cover types, developed areas with 

forests, and rocky areas with subaqueous (Table S3a).  Uniformly distributed LC priors yielded slightly different predicted 

outcomes, wherein the network failed to predictnever found rocky and forested land cover types more probable than another land 5 

cover type, most commonly confusing them with subaqueous and developed land cover types respectively (Table S3b).  Overall, 

the accuracy rate in the inference relationship between E and LC was 5756% when uniform LC prior distributions were used. 

(Table 1).   

 

When land cover data were used to predict elevation (Figure 1b), a consistent dependence of the E distribution on the LC data was 10 

seen, with E increasing as LC traversed submerged, marsh, beach, rocky, and forested environments.  Overall, accuracy and 

reliability were lowest for the -1 to 0 m and 0 to 1 m ranges with both original and uniform prior distributions of E (Tables S4a 

and S4b).  The difference in prediction using the uniform-prior BN was relatively small for all inputs except marsh.  In the marsh 

case, the most likely elevation switches from 0-1 m to 5-10 m, which may be in part explained by the fact that when uniform priors 

were used, the network failed to predict correctly the 0 to 1 m range (most commonly confused with the 1 to 5 m and 5 to 10 m 15 

ranges, Table S4b).that the 5-10 m range category was predicted, whereas this elevation was not more probable than another when 

original priors were used.  The accuracy rate in the inference relationship between LC and E was 66% for the original prior 

distribution and 5958% for the uniform priors. (Table 1).  

3.3 Mismatch Error 

We define a mismatch as a location where the subaqueous LC type co-occurred with elevations above 0 m, or where the remaining 20 

LC types co-occurred with elevations below 0 m.  The mismatch assessment (Figure 2a) showed that land-water mismatches affect 

15% of the reduced (>19,000 km2) prediction area (Figure 2b) and the most commonly occurring mismatches (Figure 2c) were 

among dynamic environments (subaqueous, marshes and beaches) at low elevations (-1 to 1 m).  More than half of the mismatch 

data were comprised of LC categories other than subaqueous below 0 m.  Of these, nearly all environments were found in the -1 

to 0 bin, wherein marshes were the dominant environment type (35% of mismatch), followed by beaches (8% of mismatch).  The 25 

remaining LC types (rocky, forest, developed) comprised <6% of the observed mismatch area combined.  The cumulative 

probability of the subaqueous category falling in a positive E range (0 to 1 or 1 to 5 m) made up the remainder of the mismatch 

data (42%), with nearly 78% of these falling within the 0 to 1 m range. 

 

Mismatches helped to highlight what may be systematic offsets with the E and LC data inputs.  The most common mismatches 30 

were nearly evenly divided between 1/3 and 1/9 arc-second NED datasets, however mismatch error was more dominantly 

comprised of elevation data below 0 m sourced to the 1/9 arc-sec NED, and error sourced to the 1/3 arc-second dataset most 

commonly came from the subaqueous category falling in a positive E range.  Mismatch error was also nearly three times as likely 

to occur in marshes or subaqueous categories as in any other LC category (Figure 2b).  In sum, mismatches were most concentrated 

in low-lying ranges for coastal areas 1) comprised of LC categories (beaches, marshes) most commonly misclassified in the LC 35 

comparison (Section 3.1) and 2) where land cover was most inaccurate and unreliable when used in predicting elevation (-1 to 1 

m, Section 3.2).  Using uncertainty terminology as in Mastrandrea et al., 2010, mismatched beaches had a likely DP (P > 0.66) in 

both -1 to 0 and 0 to 1 m bins (Figure 2d), whereas the DP for the remaining mismatched land cover categories between -1 to 1 m 

were as likely as not (0.33 < P < 0.66; marshes, forests) to unlikely (P > 0.33; rocky, developed).   
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4 Discussion 

The high overall agreement between CCAP and DSL data when reclassified (Table S1) indicates DSL data have at most moderate 

error.  Although the elevation data have a stated, calculated error that was integrated directly in our model, a similar error estimate 

was not available for the land cover (DSL) data (although our probabilistic framework allows this to be incorporated if available).  

Comparing the DSL land cover dataset to a dataset with a known error value (CCAP), revealed an identical error rate (15%) to that 5 

determined for CCAP alone (McCombs et al., 2016).  Although we cannot confirm that this error resides solely with the CCAP 

data, the updated and more detailed information in the DSL data, as well as the similarity in error rate with the published CCAP 

error, suggests that entering the DSL data as if they are known with certainty is an appropriate assumption for most of our LC 

categories.   

 10 

The land cover comparison also showed that bare land and marsh categories are those most commonly classified as another 

category (subaqueous and non-marsh vegetation respectively).  The greatest error in the comparison--the bare land category--might 

be—is in part explained by the substantial under-representation of beaches in both datasets when compared with other LC types.  

Here our Due to this under-representation, beaches are never the most probable land cover type predicted from E when original 

prior distributions are applied (Table 3a).  Our uniform prior test provides insight as to the influencedemonstrates that in spite of 15 

this regional bias; when the beach LC type is, there is also ambiguity in the E-LC relationship in with regards to beaches and 

marshes in our model; when either marshes are beaches are predicted from E with a uniform prior, it matchesthey match the 

observed LC (user’s accuracy) 1347-49% of the time respectively (Table S3b), demonstrating considerable ambiguity in the E-LC 

relationship.  Using).  However, beaches are more confidently predicted in the -1 to 0 m range than other land cover types (Figure 

1b), suggesting a propensity of beaches in our model training data are shallowly submerged.  Incorporating first-return lidar instead 20 

of bare earth data in our model could be used to further distinguish the six LC types from one another via vegetation differences 

(e.g. Lee and Shan, 2003; Im et al., 2008; Reif et al., 2011) and better distinguish intertidal areas, which may allow refinement of 

marsh, beach, and forest classifications (e.g. Kepeneers et al., 2009; Sturdivant et al., 2017).   

 

Testing our two-node BN revealed that Bayesian inference can be used to fill data gaps or enhance data quality.  Applying both 25 

non-uniform and uniform priors (the latter to remove the regional land cover biases specific to the northeastern U.S.) showed that 

land cover-specific elevation signatures are present. Notable distinctions were between elevation end members (very high or very 

low relief; subaqueous, forests, developed) and mid-range (moderate relief; marshes, beaches, rocky) areas.  A high marsh signature 

was also present, however, making this LC type more difficult to distinguish from forest and developed LC types based on 

elevation.  Assessing model skill in the E and LC relationship revealed an accuracy of 5756% (uniform priors) to 69% (non-30 

uniform priors), showing that including the regional LC bias helped to improve predictions, (Table 1), and that the most commonly 

missed LC-E predictions occurred in elevations closest to mean sea level (-1 to 1 m).   

 

In addition to missed predictions, our testing revealed that some E ranges and LC categories were never the most probable outcome. 

This was true for several land cover types (specifically beaches and rocky under original E priors; rocky and forest under uniform 35 

priors (Tables S3) and one elevation range (5-10 m elevations under original LC priors, Table S4b).  For the original priors, we 

attribute this to the under-representation of certain classes (regional bias) in our training data, wherein beaches, rocky, and 5-10 m 

elevation ranges were infrequent when compared to other classes/bins.  In the case of uniform priors, our BN is detecting the 

slightly stronger relationship of some land cover types in certain elevation ranges (e.g. developed in the 1 to 5 m range), thereby 

making other E-LC relationships never more probable than these.  Although bin reassignments that span smaller elevation ranges 40 
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could help resolve more specific land cover signatures in our model, particularly for low-lying beaches and marshes, this would 

likely occur at the cost of increased prediction uncertainty as outcomes would span a larger number of bins. 

 

Our mismatch analysis revealed LC and E mismatches are uncommon and found at low elevations (-1 to 1 m) in dynamic 

environments (beaches, marshes, and subaqueous categories).  Mismatches were most infrequent among typically higher elevation 5 

environments (forests, developed, and rocky).  We suggested that low elevation mismatches resulted from physical changes, such 

as tidal inlets causing submerged sandbars to become subaerial beach, or forests becoming marshes.  However, comparison with 

CCAP changes from 2001 to 2010, revealed a very small (3%) correspondence with identified areas of mismatch.  Results instead 

may suggest high-resolution (1/9 NED) E data captures a systematic offset in part due to MHW submergence from datum 

conversion (from NAVD88; Lentz et al., 2015), particularly for marshes and beaches (Fig 3b).  In addition to elevation data that 10 

accounts for vegetation, as suggested earlier, seamless and continuous topographic and bathymetric data (Danielson et al., 2016) 

would constrain resolution error and better resolve distinctions between subaerial and subaqueous environments. 

 

Ultimately, the contributions of data error are unlikely to change the DP uncertainty categories (Fig. 3d2d).  In the case of LC 

error, the most commonly confused LC categories were subaqueous with beach categories, and marshes with forests.  In either 15 

case, when coupled with E data, beaches and subaqueous categories between -1 and 1 m generally have a likely DP and marshes 

and forests to have an as likely as not DP (Figure 2d), with the latter emphasizing the dominance of process uncertainty as accounted 

for in our original model via expert elicitation (as described in Lentz et al., 2015) over data error in affecting DP outcomes.  

Furthermore, the response of developed and some beach areas to SLR is also particularly uncertain in our model due to unknowns 

regarding human behaviour (Wong et al., 2014).  Socioeconomic factors (McNamara et al., 2011, Hinkel et al., 2013) may 20 

determine where buildings and critical infrastructure are adapted to a dynamically changing landscape, coastal engineering projects 

are employed or upgraded (Gedan et al., 2011; Arkema et al., 2013), and alternatives such as inland migration (Hauer et al., 2016; 

2017) or managed retreat occur.  Our probabilistic modelling framework allows us to update likelihood predictions as more 

information about the SLR response of the coastal landscape, and people living on it, becomes available. 

5 Conclusions 25 

Our results show that a) land cover error between two data sources is consistent with published error for one source (15%), b) 

inference training further reduces error, and c) mismatch error is low with respect to the prediction area.  To better resolve elevation 

and land cover distinctions in low-lying environments, elevation that accounts for vegetation distinctions, and/or seamless datasets 

including both topography and bathymetry may be useful.  However, the ability to capture the relationship between elevation and 

land cover via Bayesian inference in such a sizeable region demonstrates that it is possible to extend this application where data 30 

restrictions or gaps might otherwise limit expansion.  

 

Furthermore, data input error has minimal effect on our predicted outcomes, particularly when uncertainty terminology is applied 

(Figure 2d).  These outcomes therefore support first-order decision-making surrounding the inundation potential of specific 

environments, providing an essential risk assessment tool (NRC, 2009).  We find uncertainty in the response of different land cover 35 

types to varying SLR scenarios in our coastal response model is composed dominantly of uncertainty in physical and ecological 

processes, as opposed to data error, particularly for developed areas and low elevation marshes (Lentz et al., 2016).  To further 
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refine assessments of future coastal response in areas of concern, data or deterministic models that account for site-specific SLR 

response rates and process knowledge will be well-paired with this approach.   
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Figures 
 

 

Table 1. Summary table of accuracy rates for all confusion matrices of land cover and elevation comparisons.  Accuracy rates are 5 

calculated by summing where predictions matched observations (the diagonal bolded terms in Tables S2-S4) and dividing by the 

total number of outcomes.   Confusion matrices are available in supplemental materials (Tables S2-S4). 
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Figure 1. Updated probability distributions after training between elevation and land cover datasets with non-uniform (dark) and 

uniform (light) priors (the latter to limit regional LC bias), a) showing land cover distributions under selected elevation ranges and 

b) showing elevation distributions under selected land cover types. Land cover categories (Table S1) abbreviated as follows: S = 

subaqueous; M = marsh; B = beach; R = rocky; F = forest; and D = developed. 5 
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Figure 2. Results of mismatch analysis a) in selected area with inset of enlarged view; b) shown as percentage of the prediction 

area within the 1/3 National Elevation Dataset (NED) contour boundary and by elevation source type; c) by land cover type as a 

percentage of the total mismatch area, where lighter hues show the percent of predictions in the -1 to 0 m range (with the 

exception of subaqueous, which shows a 0 to 1 m range), and darker hues show the percent of predictions in the -10 to 1 m 5 

range; and d) the corresponding DP likelihood for each land cover type in the elevation ranges most commonly mistaken (light 

gray box shows the as likely as not 0.33>P>0.66 range). 

 


