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Abstract. Understanding land loss or resilience in response to sea-level rise (SLR) requires spatially extensive and continuous 7 

datasets to capture landscape variability.   We investigate sensitivity and skill of a model that predicts dynamic response likelihood 8 

to SLR across the northeastern U.S. by exploring several data inputs and outcomes.  Using elevation and land cover datasets, we 9 

determine where data error is likely, quantify its effect on predictions, and evaluate its influence on prediction confidence.  Results 10 

show data error is concentrated in low-lying areas with little impact on prediction skill, as the inherent correlation between the 11 

datasets can be exploited to reduce data uncertainty using Bayesian inference.  This suggests the approach may be extended to 12 

regions with limited data availability and/or poor quality.  Furthermore, we verify that model sensitivity in these first-order 13 

landscape change assessments is well-matched to larger coastal process uncertainties, for which process-based models are 14 

important complements to further reduce uncertainty. 15 

1 Introduction  16 

Estimates of global sea-level rise (SLR) predict increases between 0.3 and and 1.2 meters by 2100 (Church et al., 2013; Kopp et 17 

al., 2014), while Northeastern and Mid-Atlantic U.S. SLR projections are higher than the global average due to a variety of factors 18 

including subsidence, static equilibrium effects and changing ocean dynamics (Goddard et al., 2015; Mitrovica et al., 2011; Kopp, 19 

et al., 2014; Sella et al., 2009; Slangen et al., 2014; Sweet et al., 2017a,b; Yin & Goddard, 2013; Yin et al., 2009; Zervas et al., 20 

2013).  SLR impacts such as high tide flooding, barrier island narrowing, and salt marsh degradation have been increasingly 21 

observed along the U.S. East Coast (e.g. Cahoon et al., 2009; Ezer & Atkinson, 2014; Kirwan & Megonigal, 2013; Sweet & Park, 22 

2014).  The northeastern U.S. coast (Figure 1from Maine southward through Virginia) is a diverse landscape, with major shipping 23 

ports (eg. New York City, Boston, Norfolk), heavily populated cities (eg. Washington, D.C., New York City, Boston), and 24 

extensive natural areas that provide a variety of habitat and ecosystem services.  Understanding and assessing how coastal 25 

landscapes such as this respond to SLR is central to refining adaptive management strategies (Fishman et al., 2014) and identifying 26 

areas that provide buffering or mitigation to support long-term management targets (Pelletier et al., 2015).   27 

 28 

Coastal environments are products of a complex interplay of exposure and processes, substrate and sediment supply, tidal ranges, 29 

and geomorphology (e.g. Davies, 1964; FitzGerald et al., 2008; Hayes, 1979).  As illustrated by Carter (1988), a robust body of 30 

literature documents the ecologic transition of these environments from the shoreline over geomorphic features (e.g. dunes and 31 

bluffs) landward.  In fact, a relatively steady SLR rate over the last few thousand years is central to our modern coastal 32 

configuration, including the development of barrier islands and wetlands (e.g., Redfield, 1972; Field & Duane, 1976; Shennan & 33 

Horton, 2002), as well as settlement patterns (McGranahan et al., 2007; Liu et al., 2015; Kane et al., 2017).   Because coastal land 34 

elevation is primarily governed by the substrate and/or underlying geology of the landscape as well as a product of the physical 35 



2 

 

and biogeochemical processes acting on it, it serves as a central parameter in defining the distribution and configuration of 36 

ecosystems and their ability to evolve in response to processes driving change (Gesch, 2009; Kempeneers et al., 2009).   37 

 38 

Models are widely available (e.g., Marcy et al. 2011, Strauss et al. 2012) to estimate the potential for SLR-induced inundation 39 

across the landscape.  These models use present-day elevation as a primary input, which makes them well-suited to identify impacts 40 

to developed areas, where hard structures, barriers to migration, and other stabilization measures constrain the landscape to its 41 

current elevation and use.  However, these models cannot depict landscape variability in environments that respond dynamically 42 

to SLR through mechanisms such as vertical accretion due to washover or biomass accumulation. Lentz et al. (2016) addressed 43 

this limitation by developing a coastal response model (Figure 2) for the northeastern U.S. that predicts the likelihood of dynamic 44 

response to SLR, where dynamic is defined as the ability of an environment to either maintain its current state (e.g., a beach remains 45 

a beach) or transition to another non-submerged state (e.g., a forest becomes a marsh).   46 

 47 

The confidence of our probabilistic dynamic response outcomes depends on the accuracy of model input parameters, which include 48 

continuous land cover and elevation data.   Here, we use the nearly 38,000 km2 coverage of Lentz et al. (2016) to examine 1) the 49 

sensitivity of predictions to differences in the certainty of these input data and 2) model skill to determine where better data are 50 

necessary to improve prediction confidence and affect results.  We explore the inherent correlation between elevation and coastal 51 

land cover distributions in our model by testing the ability of Bayesian inference to capture this relationship such that elevation 52 

may be used to predict land cover, and vice versa.  We hypothesize that the relationship between these data inputs over such an 53 

extensive and diverse expanse reduces uncertainty in each parameter in our framework, and that that potential data error is 54 

sufficiently minor that it does not obscure important process thresholds that would in turn affect predicted outcomes.  In addition 55 

to better understanding model sensitivity to these parameters, our results also clarify how Bayesian inference may be used to 56 

supplement poorer data quality and/or uncertainty, particularly in low-lying coastal environments. 57 

2 Data and Methods 58 

2.1 Previous Work 59 

Lentz et al. (2015) mapped coastal response predictions—the probability of dynamic response or DP—using a Bayesian network 60 

(BN) probabilistic modelling approach (Table 1).  We define DP as the likelihood of land cover type to retain its existing state or 61 

transition to a new non-submerged state under the given SLR projection.  By this definition, DP is a binary outcome, in that if the 62 

coast does not respond dynamically to SLR, it will inundate, therefore DP equals one minus the probability of inundation.  A DP 63 

value of 0.5 indicated highest uncertainty in that either dynamic response or inundation had an equally likely probability of 64 

occurrence (Lentz et al., 2016).   65 

 66 

The study area was a 38,000 km2 region from Maine to Virginia, U.S.A., bounded by the 10-m elevation contour inland to -10 m 67 

offshore.  The BN (Figure S1) produced two probabilistic outcomes at a 30 x 30 m resolution for future SLR scenarios in the 68 

2020s, 2030s, 2050s, and 2080s: 1) adjusted land elevation (AE) relative to the projected sea level, and 2) dynamic response or 69 

DP.  As described in Lentz et al. (2015), the SLR scenarios were comprised of three components: ocean dynamics (generated from 70 

24 Coupled Model Intercomparison Project Phase 5 (CMIP5 models (Taylor et al., 2015), ice melt (as estimated by Bamber and 71 

Aspinall, 2013 for the two Antarctic Ice Sheets, and glaciers and ice caps as based on Marzion et al, 2012 and Radic et al., 2013), 72 

and global land water storage (as based on Church et al., 2013).  Percentiles of these three components were estimated and then 73 
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aggregated to provide a SLR scenario and corresponding uncertainty.  The projected SLR scenario ranges for each decade used in 74 

our model are shown in Figure S1 as follows: 2020s (0 to 0.25 m); 2030s (0.25 to 0.5 m); 2050s (0.5 to 0.75 m) and 2080s (0.75 75 

to 2 m). 76 

 77 

AE predictions were generated through implementation of a deterministic equation (see Figure S1).  First, SLR scenarios were 78 

combined with vertical land movement rates due to subsidence and other non-tectonic effects (using rates derived from a 79 

combination of GPS CORS stations in Sella et al., 2007; and long-term tide gauge data in Zervas et al., 2013) to make projections 80 

relative (local).  Projected relative SLR values were then subtracted from elevation data binned in ranges (as shown in Figure S1), 81 

which were comprised of a combination of high-resolution elevation data from the National Elevation Dataset (NED, Gesch, 2007) 82 

supplemented where necessary with coarser resolution bathymetry from the National Oceanic and Atmospheric Administration 83 

National Geophysical Data Center’s Coastal Relief Model (National Oceanic and Atmospheric Administration, 2014) to predict 84 

adjusted land elevation (AE) ranges relative to the projected sea level.   Before model integration, high resolution elevation data 85 

were converted to mean high water from the North American Vertical Datum 1988 using VDatum conversion grids (National 86 

Ocean Service, 2012).  87 

 88 

Dynamic response probabilities (DP) were estimated by coupling the predicted AE ranges with expert knowledge on the response 89 

of generalized land cover types (six categories that respond distinctly to SLR ecologically or morphologically--subaqueous, marsh, 90 

beach, rocky, forest, and developed--as described in Lentz et al. (2015) and shown in Table S1).  Although the resulting predictions 91 

provided a robust accounting of uncertainty from some of the data inputs and knowledge of physical landscape change processes, 92 

the relative influence of these uncertainties on the predictions has not been explored explicitly. 93 

2.2 Sensitivity and Skill Assessment 94 

We assessed the role of potential error in elevation (E) and land cover (LC) datasets on predicted outcomes.  Beaches and estuarine 95 

wetlands exist near sea-level; likewise, forests require elevations that provide adequate vadose zone thickness. While this 96 

correlation between E and LC allows one to be probabilistically predicted from the other, doing so also results in error correlation. 97 

Model elevation data came from the National Elevation Dataset (1/9 arc second or 1/3 arc second; U.S. Geological Survey, 2015) 98 

and Coastal Relief Model (as described in Lentz et al. 2015).  The expected errors in E from these data were included in previous 99 

predictions (Lentz et al., 2016), but their effect on predictions was not specifically addressed.  Furthermore, the LC values (from 100 

McGarrigal et al., 2017) were not treated as uncertain, which was inconsistent with the treatment of all the other relationships in 101 

the Lentz et al. (2016) analysis.  Better understanding of E and LC error helps to constrain it and identify where better data may 102 

improve predictions.  Conversely, knowing where data have lower error helps to identify where process uncertainty is highest, 103 

which can help prioritize future research efforts. 104 

 105 

We expanded our testing to determine 1) how our LC dataset compares with other LC data and previous error quantification results, 106 

2) how E uncertainty is refined by LC information, and 3) where error in LC and E datasets is most likely to affect our predictions.  107 

As described in Lentz et al. (2016), inference training (Bayes rule) was applied in the model to capture the correlation between E 108 

and LC in the form:  109 

P(𝐸𝑖|𝐿𝐶𝑗) = P(𝐿𝐶𝑗|𝐸𝑖)𝑥 P(𝐸𝑖)/𝑃(𝐿𝐶𝑗) ,         (1) 110 
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where we evaluate the ith outcome in the first term on the right as the probabilistic relationship conditioned on inputs from the j th 111 

spatial location.  Using this relationship, LC, entered with total certainty (such that P(LCj) is 1.0 if LCj corresponds to the land 112 

cover data at a particular location or P(LCj) = 0.0 if it does not), updates the prior E, entered with known uncertainty, based on the 113 

values of the digital elevation model over the entire modelling domain.  Similarly, E data are used to establish conditional 114 

probabilities of LC.  By assessing potential E and LC error using a BN that implements equation 1 (Figure S1), we can evaluate 115 

model skill in reducing error.   116 

2.2.1 Land Cover Data Comparison 117 

As noted in Lentz et al. (2015), the 2010 land cover data in the model (hereafter DSL, after McGarrigal et al., 2017) combine a 118 

variety of sources to capture detailed ecosystems information.  To better evaluate land cover data error, we compared land cover 119 

data with the 2010 Coastal Change Analysis Program (CCAP) land cover dataset which has a quantified error,  (NOAA 2017, 120 

https://www.coast.noaa.gov/dataregistry/search/collection/info/ccapregional) and were thus used as our “observed” data source.  121 

Although the DSL land cover data contain much more detailed ecosystems information than CCAP (19 classes in CCAP vs. 197 122 

classes in DSL), our generalization of DSL data into six classes (Table S1) allowed us to similarly generalize CCAP data and 123 

compare the two data sets in terms of user’s error (accuracy, or how often the LC type in the DSL data would be the same in the 124 

CCAP or “observed” data) and producer’s error (reliability, or how often the LC type in the CCAP or “observed” data would be 125 

the same in the DSL data).  When generalizing the two datasets for purposes of comparison, we further grouped together beach 126 

and rocky categories, as both exposed bedrock and beach/dune categories are included in the CCAP "bare land" category (Table 127 

S1).  Data grids were compared using ArcGIS software’s Combine tool (ESRI, 2016). 128 

2.2.2 Model Skill 129 

Our training dataset included E and LC data at ~42,000,000 grid cells throughout the northeast U.S. northeast.  We tested our BN 130 

(developed with Netica software; Norsys, 2014) and trained on these datasets, to predict E values from LC data, and LC data from 131 

E values, by assessing posterior probability distributions in our BN, and evaluating the error rate between predictions and 132 

observations.  To perform this test, we built a separate two-variable BN to implement equation 1 consisting only of E and LC data 133 

(Figure 1).  The network was trained on the full elevation and DSL land cover dataset using equation 1, and an error rate was 134 

calculated based on the number of times the network predicted a value for a dataset that did not match the observed value at a 135 

given location.  To test the extension of the inference relationship to situations where E or LC data inputs may be unavailable or 136 

limited, the modified BN was used to predict an E value (or LC, as the BNs can be run as both forward and inverse models) as if 137 

it were unobserved given only the (uniformly distributed) LC data (or E value) as an input, and the corresponding posterior 138 

probabilities were observed. 139 

2.2.3 Mismatch Error 140 

Some errors were expected from inconsistencies between the LC data and the E data, such as where subaqueous categories (Figure 141 

1) co-occurred with elevations above 0 m (referenced to Mean High Water, or MHW in our model), and elevations below 0 m co-142 

occurred with a land cover category other than subaqueous.  These mismatches might be due to classification or elevation error, 143 

datum changes, or changes over time.  To evaluate the impact of these mismatches, we focused on an area contained within the 144 

highest resolution and continuous elevation boundary contours (-1 to 10 m from the 1/3 NED), using about half our points 145 

(~22,000,000), as we anticipated mismatch errors farther offshore than -1 m would be low (i.e. below 0 m and subaqueous).  We 146 

https://www.coast.noaa.gov/dataregistry/search/collection/info/ccapregional
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classified mismatches by: 1) E data resolution (1/3 and where available, 1/9 arc-second data from the National Elevation Dataset) 147 

and 2) LC type to determine whether errors might be explained systematically due to inputs.   148 

 149 

Once identified, we examined the effects of mismatches on the accuracy of predicted outcomes.  First, our model was used to 150 

identify corresponding DP likelihood among LC types and the low-lying E ranges most commonly mistaken with one another (-1 151 

to 0 and 0 to 1 m).  Rather than evaluate a specific time step, we made input parameters defining relative SLR uniform (vertical 152 

land movement and projected sea level, as in Figure S1) to assess overarching impacts on predictions.  Mismatches were also 153 

compared geospatially with measured land cover shifts in the 2001 to 2010 CCAP change data (NOAA, 2013) to assess where E 154 

and LC data inputs, due to slightly differing dates in their data collection (Lentz et al., 2015) may have captured dynamic state 155 

shifts due to process-based changes (e.g. movement of sand bodies around inlets or marsh erosion/inundation; Gomez et al., 2016).   156 

3 Results 157 

3.1 Land Cover Error 158 

Our LC error assessment found 15% error between CCAP and DSL data; this value is the same as the published 15% error for the 159 

CCAP dataset (Table 1 and McCombs et al., 2016).  A confusion matrix (Table S2) reveals which LC classes were most commonly 160 

mistaken; most frequent were bare land misclassified as subaqueous, and marsh misclassified as non-marsh vegetation. 161 

In addition to having the lowest number of pixels of all the land cover classes, user’s error and producer’s accuracy were lowest 162 

for the bare land category (49% and 21% respectively); the least number of correctly classified pixels were in the bare land class 163 

when compared with the ground truth (CCAP) class.  The bare land class also had the least number of pixels when compared with 164 

all other LC categories.  165 

3.2 Model Skill 166 

The two-parameter BN showed that for this implementation, LC was nearly as useful for constraining E as the other way around 167 

(Figure 1; Tables S3-S4).  Figure 1a shows that when non-uniform E data were used to predict LC, subaqueous environments were 168 

the most probable prediction for elevations lower than 0 m (as illustrated by the top four plots on the left).  This result reflects, in 169 

part, the dominance of subaqueous environments in our data set and therefore strong prior probability that any location below this 170 

elevation would be covered by water (Figure S1).  Additionally, we developed a modified BN with uniform prior distributions of 171 

LC (Figure 1a) and E (Figure 1b) to re-evaluate the inference relationship as if all prior states of the nodes were equally probable, 172 

which limits prediction bias from the lower percentage representation of certain land cover categories in the region.   173 

 174 

Generally (for both original and uniform-prior BNs), elevation signatures specific to different land cover types were observed, 175 

with subaqueous, marsh, and beach environments appearing at low-lying elevations, and developed and forested areas showing a 176 

predominance for higher elevation settings (Figure 1a).  When relying on the original prior LC distribution, the network had a 177 

corresponding accuracy rate of 69% (Table 1), and found beaches and rocky areas were not more probable than another land cover 178 

type.  Here, beaches were most commonly confused with subaqueous and marsh land cover types, and rocky areas with subaqueous 179 

(Table S3a).  Uniformly distributed LC priors yielded slightly different predicted outcomes, wherein the network never found 180 

rocky and forested land cover types more probable than another land cover type, most commonly confusing them with subaqueous 181 

and developed land cover types respectively (Table S3b).  Overall, the accuracy rate in the inference relationship between E and 182 

LC was 56% when uniform LC prior distributions were used (Table 1).   183 
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 184 

When land cover data were used to predict elevation (Figure 1b), a consistent dependence of the E distribution on the LC data was 185 

seen, with E increasing as LC traversed submerged, marsh, beach, rocky, and forested environments.  Overall, accuracy and 186 

reliability were lowest for the -1 to 0 m and 0 to 1 m ranges with both original and uniform prior distributions of E (Tables S4a 187 

and S4b).  The difference in prediction using the uniform-prior BN was that the 5-10 m range category was predicted, whereas this 188 

elevation was not more probable than another when original priors were used.  The accuracy rate in the inference relationship 189 

between LC and E was 66% for the original prior distribution and 58% for the uniform priors (Table 1).  190 

3.3 Mismatch Error 191 

We define a mismatch as a location where the subaqueous LC type co-occurred with elevations above 0 m, or where the remaining 192 

LC types co-occurred with elevations below 0 m.  The mismatch assessment (Figure 2a) showed that land-water mismatches affect 193 

15% of the reduced (>19,000 km2) prediction area (Figure 2b) and the most commonly occurring mismatches (Figure 2c) were 194 

among dynamic environments (subaqueous, marshes and beaches) at low elevations (-1 to 1 m).  More than half of the mismatch 195 

data were comprised of LC categories other than subaqueous below 0 m.  Of these, nearly all environments were found in the -1 196 

to 0 bin, wherein marshes were the dominant environment type (35% of mismatch), followed by beaches (8% of mismatch).  The 197 

remaining LC types (rocky, forest, developed) comprised <6% of the observed mismatch area combined.  The cumulative 198 

probability of the subaqueous category falling in a positive E range (0 to 1 or 1 to 5 m) made up the remainder of the mismatch 199 

data (42%), with nearly 78% of these falling within the 0 to 1 m range. 200 

 201 

Mismatches helped to highlight what may be systematic offsets with the E and LC data inputs.  The most common mismatches 202 

were nearly evenly divided between 1/3 and 1/9 arc-second NED datasets, however mismatch error was more dominantly 203 

comprised of elevation data below 0 m sourced to the 1/9 arc-sec NED, and error sourced to the 1/3 arc-second dataset most 204 

commonly came from the subaqueous category falling in a positive E range.  Mismatch error was also nearly three times as likely 205 

to occur in marshes or subaqueous categories as in any other LC category (Figure 2b).  In sum, mismatches were most concentrated 206 

in low-lying ranges for coastal areas 1) comprised of LC categories (beaches, marshes) most commonly misclassified in the LC 207 

comparison (Section 3.1) and 2) where land cover was most inaccurate and unreliable when used in predicting elevation (-1 to 1 208 

m, Section 3.2).  Using uncertainty terminology as in Mastrandrea et al., 2010, mismatched beaches had a likely DP (P > 0.66) in 209 

both -1 to 0 and 0 to 1 m bins (Figure 2d), whereas the DP for the remaining mismatched land cover categories between -1 to 1 m 210 

were as likely as not (0.33 < P < 0.66; marshes, forests) to unlikely (P > 0.33; rocky, developed).   211 

4 Discussion 212 

The high overall agreement between CCAP and DSL data when reclassified (Table S1) indicates DSL data have at most moderate 213 

error.  Although the elevation data have a stated, calculated error that was integrated directly in our model, a similar error estimate 214 

was not available for the land cover (DSL) data (although our probabilistic framework allows this to be incorporated if available).  215 

Comparing the DSL land cover dataset to a dataset with a known error value (CCAP), revealed an identical error rate (15%) to that 216 

determined for CCAP alone (McCombs et al., 2016).  Although we cannot confirm that this error resides solely with the CCAP 217 

data, the updated and more detailed information in the DSL data, as well as the similarity in error rate with the published CCAP 218 

error, suggests that entering the DSL data as if they are known with certainty is an appropriate assumption for most of our LC 219 

categories.   220 
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 221 

The land cover comparison also showed that bare land and marsh categories are those most commonly classified as another 222 

category (subaqueous and non-marsh vegetation respectively).  The greatest error in the comparison--the bare land category—is 223 

in part explained by the substantial under-representation of beaches in both datasets when compared with other LC types. Due to 224 

this under-representation, beaches are never the most probable land cover type predicted from E when original prior distributions 225 

are applied (Table 3a).  Our uniform prior test demonstrates that in spite of this regional bias, there is also ambiguity in the E-LC 226 

relationship in with regards to beaches and marshes in our model; when either marshes are beaches are predicted from E with a 227 

uniform prior, they match the observed LC (user’s accuracy) 47-49% of the time respectively (Table S3b).  However, beaches are 228 

more confidently predicted in the -1 to 0 m range than other land cover types (Figure 1b), suggesting a propensity of beaches in 229 

our model training data are shallowly submerged.  Incorporating first-return lidar instead of bare earth data in our model could be 230 

used to further distinguish the six LC types from one another via vegetation differences (e.g. Lee and Shan, 2003; Im et al.,  2008; 231 

Reif et al., 2011) and better distinguish intertidal areas, which may allow refinement of marsh, beach, and forest classifications 232 

(e.g. Kepeneers et al., 2009; Sturdivant et al., 2017).   233 

 234 

Testing our two-node BN revealed that Bayesian inference can be used to fill data gaps or enhance data quality.  Applying both 235 

non-uniform and uniform priors (the latter to remove the regional land cover biases specific to the northeastern U.S.) showed that 236 

land cover-specific elevation signatures are present. Notable distinctions were between elevation end members (very high or very 237 

low relief; subaqueous, forests, developed) and mid-range (moderate relief; marshes, beaches, rocky) areas.  Assessing model skill 238 

in the E and LC relationship revealed an accuracy of 56% (uniform priors) to 69% (non-uniform priors), showing that including 239 

the regional LC bias helped to improve predictions (Table 1), and that the most commonly missed LC-E predictions occurred in 240 

elevations closest to mean sea level (-1 to 1 m).   241 

 242 

In addition to missed predictions, our testing revealed that some E ranges and LC categories were never the most probable outcome. 243 

This was true for several land cover types (specifically beaches and rocky under original E priors; rocky and forest under uniform 244 

priors (Tables S3) and one elevation range (5-10 m elevations under original LC priors, Table S4b).  For the original priors, we 245 

attribute this to the under-representation of certain classes (regional bias) in our training data, wherein beaches, rocky, and 5-10 m 246 

elevation ranges were infrequent when compared to other classes/bins.  In the case of uniform priors, our BN is detecting the 247 

slightly stronger relationship of some land cover types in certain elevation ranges (e.g. developed in the 1 to 5 m range), thereby 248 

making other E-LC relationships never more probable than these.  Although bin reassignments that span smaller elevation ranges 249 

could help resolve more specific land cover signatures in our model, particularly for low-lying beaches and marshes, this would 250 

likely occur at the cost of increased prediction uncertainty as outcomes would span a larger number of bins. 251 

 252 

Our mismatch analysis revealed LC and E mismatches are uncommon and found at low elevations (-1 to 1 m) in dynamic 253 

environments (beaches, marshes, and subaqueous categories).  Mismatches were most infrequent among typically higher elevation 254 

environments (forests, developed, and rocky).  We suggested that low elevation mismatches resulted from physical changes, such 255 

as tidal inlets causing submerged sandbars to become subaerial beach, or forests becoming marshes.  However, comparison with 256 

CCAP changes from 2001 to 2010, revealed a very small (3%) correspondence with identified areas of mismatch.  Results instead 257 

may suggest high-resolution (1/9 NED) E data captures a systematic offset in part due to MHW submergence from datum 258 

conversion (Lentz et al., 2015), particularly for marshes and beaches (Fig 3b).  In addition to elevation data that accounts for 259 
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vegetation, as suggested earlier, seamless and continuous topographic and bathymetric data (Danielson et al., 2016) would 260 

constrain resolution error and better resolve distinctions between subaerial and subaqueous environments. 261 

 262 

Ultimately, the contributions of data error are unlikely to change the DP uncertainty categories (Fig. 2d).  In the case of LC error, 263 

the most commonly confused LC categories were subaqueous with beach categories, and marshes with forests.  In either case, 264 

when coupled with E data, beaches and subaqueous categories between -1 and 1 m generally have a likely DP and marshes and 265 

forests to have an as likely as not DP (Figure 2d), with the latter emphasizing the dominance of process uncertainty as accounted 266 

for in our original model via expert elicitation (as described in Lentz et al., 2015) over data error in affecting DP outcomes.  267 

Furthermore, the response of developed and some beach areas to SLR is also particularly uncertain in our model due to unknowns 268 

regarding human behaviour (Wong et al., 2014).  Socioeconomic factors (McNamara et al., 2011, Hinkel et al., 2013) may 269 

determine where buildings and critical infrastructure are adapted to a dynamically changing landscape, coastal engineering projects 270 

are employed or upgraded (Gedan et al., 2011; Arkema et al., 2013), and alternatives such as inland migration (Hauer et al., 2016; 271 

2017) or managed retreat occur.  Our probabilistic modelling framework allows us to update likelihood predictions as more 272 

information about the SLR response of the coastal landscape, and people living on it, becomes available. 273 

5 Conclusions 274 

Our results show that a) land cover error between two data sources is consistent with published error for one source (15%), b) 275 

inference training further reduces error, and c) mismatch error is low with respect to the prediction area.  To better resolve elevation 276 

and land cover distinctions in low-lying environments, elevation that accounts for vegetation distinctions, and/or seamless datasets 277 

including both topography and bathymetry may be useful.  However, the ability to capture the relationship between elevation and 278 

land cover via Bayesian inference in such a sizeable region demonstrates that it is possible to extend this application where data 279 

restrictions or gaps might otherwise limit expansion.  280 

 281 

Furthermore, data input error has minimal effect on our predicted outcomes, particularly when uncertainty terminology is applied 282 

(Figure 2d).  These outcomes therefore support first-order decision-making surrounding the inundation potential of specific 283 

environments, providing an essential risk assessment tool (NRC, 2009).  We find uncertainty in the response of different land cover 284 

types to varying SLR scenarios in our coastal response model is composed dominantly of uncertainty in physical and ecological 285 

processes, as opposed to data error, particularly for developed areas and low elevation marshes (Lentz et al., 2016).  To further 286 

refine assessments of future coastal response in areas of concern, data or deterministic models that account for site-specific SLR 287 

response rates and process knowledge will be well-paired with this approach.   288 

 289 
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 461 

Table 1. Summary table of accuracy rates for all confusion matrices of land cover and elevation comparisons.  Accuracy rates are 462 

calculated by summing where predictions matched observations (the diagonal bolded terms in Tables S2-S4) and dividing by the 463 

total number of outcomes.   Confusion matrices are available in supplemental materials (Tables S2-S4). 464 

 465 

 466 

 467 

 468 

 469 

 470 

  471 

Confusion Matrix Accuracy Rate 

C-CAP vs. DSL Land Cover comparison 85% 

Predicted vs. Observed Land Cover 

Elevation inputs; original distributions 

 
77% 

Predicted vs. Observed Land Cover 

Elevation inputs; uniform distributions 

 
65.5% 

Predicted vs. Observed Elevation  

Land cover inputs; original distributions 

 
66% 

Predicted vs. Observed Elevation  

Land cover inputs; uniform distributions 
59% 
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 473 

Figure 1. Updated probability distributions after training between elevation and land cover datasets with non-uniform (dark) and 474 

uniform (light) priors (the latter to limit regional LC bias), a) showing land cover distributions under selected elevation ranges and 475 

b) showing elevation distributions under selected land cover types. Land cover categories (Table S1) abbreviated as follows: S = 476 

subaqueous; M = marsh; B = beach; R = rocky; F = forest; and D = developed. 477 
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Figure 2. Results of mismatch analysis a) in selected area with inset of enlarged view; b) shown as percentage of the prediction area within the 1/3 National Elevation Dataset 

(NED) contour boundary and by elevation source type; c) by land cover type as a percentage of the total mismatch area, where lighter hues show the percent of predictions in 

the -1 to 0 m range (with the exception of subaqueous, which shows a 0 to 1 m range), and darker hues show the percent of predictions in the -10 to 1 m range; and d) the 
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corresponding probability of dynamic response (DP) likelihood for each land cover type in the elevation ranges most commonly mistaken (light gray box shows the as likely 

as not likelihood range (0.33>P>0.66) rangefollowing Mastrandrea et al., 2010). 


