
Cover Letter

Dear Editor,

We first would like to thank again the two reviewers for their reviews, that greatly improves
the quality of the paper. Please find in the following details of our answers (A) to the reviews (Q),
and how we addressed them in the manuscript (R). The marked-up manuscript is attached to the
end of this document.

—————— Common remarks —————

Q: Compare with Parallel implementation of Barnes2016 & Zhou2017:

A: It is hard to compare our sequential version to a parallel one, especially because the results
mainly depend on the number of processors. This work is mainly motivated by problems where
many different landscape evolution models have to be run at the time (for example for parameter
estimation), or where distinct DEMs can be processed independently. In these cases, running
many instances of a sequential algorithm is always faster than a sequential application of parallel
algorithms. We did not explore any parallel implementation of our method, although many parts
of the algorithm can be trivially vectorized. Further research need to be performed in finding the
bottlenecks and benchmarking a parallel version. We will clarify all this in the paper.

R: Added (Section 3.3) : “ Our algorithm being optimized for a sequential usage, we chose, however,
not to compare it to the parallel versions of Barnes2016 and Zhou2017. ”

—–

Q: Code Availability

A: We share the same concerns than the referee about code availability. Although a pull request
on GitHub already refers to a git branch that is published online on this platform, we agree
that making the code available in a separate repository may be better in order to reproduce the
results presented in this paper. However, we are concerned by having to maintain duplicate codes
in different repositories. Maintaining individual repositories for every algorithm that we want to
include in the fastscapelib library is not a good solution either. This might actually have a negative
impact on reproducibility and readability. Therefore, we propose to create a repository specifically
for this paper; once the paper is accepted we will archive it (i.e., making it read-only) and redirect
users to the fastscapelib library where further development and maintenance will happen.

—————— Review RC1 —————

Q: Page 1, line 9: other problems as well - better specifying 1 or 2 of them.

1

R: Added (Abstract) “such as the simulation of erosion”

—–

Q: Page 3, line 13: “and each of its stages” I will rewrite this part of the sentence

R: Replaced by (Section 1): “After a detailed presentation of the different steps of the method”

—————— Review RC3 —————

Major issues:

Q: The only major flaw with this paper is that the benchmarks seem ill-constructed. Figure 5a is
nice, though I think it would be improved by showing Zhou (2017). (If I recall correctly, RichDEM
also has an implementation of this, so it should be easy to do.) I think it would also be improved
by considering larger datasets, perhaps up to 10,000x10,000. I think Figure 5c needs some real
work. Wei (2018) should be included here, no doubt. Figure 5a shows that it has completely
different performance characteristics than Barnes (2014a), so this is critical to contextualizing your
work. Surely modifying the algorithm to include surface offsets or flow directions isn’t too difficult?
Otherwise, perhaps Wei et al. or Barnes et al. have such an implementation? Please find a way to
address this.

A: Maybe the referee means Zhou (2016)? Zhou (2017) is about a parallel version of the algo-
rithm, and it would be irrelevant to add it in the benchmarks. On the other hand, Zhou (2016)
could definitively be added, although all our benchmarks agree that Wei (2018) performs better,
although with a similar pattern. We already have results of benchmarks for both Zhou (2016)
and larger datasets (up to 16k x 16k), so it would not be difficult to add them in the paper if
needed. Obviously, as pointed by the referee, all these implementations do not include flow di-
rection. Modifying the code to include surface offset or flow direction would represent additional
work (design/implementation/testing) that could be published separately, whereas in this paper
we preferred to compare our method with state-of-the-art algorithms that have been already pub-
lished and for which one can find an existing implementation. The suggested modification is, in
our opinion, not yet state-of-the-art.

R: Zhou 2016 has been added to Fig 5a ; Wei 2018 to Fig 5c. More details on benchmark follows.

—–

Q: Similarly, as discussed below, the Wei, Barnes, and Zhou algorithms are all adapted to large
datasets and, when I’ve looked at the source, written in a very literate style (minimal bit-hacking).
This raises the question of whether versions of these algorithms optimized for use on smaller datasets
would perform better in your benchmark. I think you’ve done a good job of showing that your
algorithm ranks with the state of the art, but the comparison isn’t strong enough to conclude that
the design itself is superior. You may or may not consider this worth addressing.

A: We will elaborate on the details below. As stated before, we now have results for larger grids so
we can easily propose a fairer comparison. It should be noted that our goal is more to explore the-
oretical results (demonstrating the time linearity of our algorithm) than to propose a competitive,
optimal implementation.

R: Fig 5 now shows our results on grid of 16k x 16k nodes.

2

Detailed comments:

P. 2, Line 3: “have been optimized so that they can deliver acceptable performance when used with
large datasets.”

R: Replaced by (Section 1): “have been optimized so that they can be used efficiently on large
datasets”

—–

Q: p. 3, Line 22: “zk>zn, and rcv(k)=n”. Could it be that “zk>zn and not rcv(k)=n” or “not
zk>zn and rcv(k)=n”? That is, are both conditions necessary, or does one imply the other? You
should clarify this.

A: Both conditions are necessary: a node is always the receiver of all his donors, and is always
strictly bellow them.

R: (Section 2) We removed the last condition (zk>zn) because it is already included in rcv(k)=n
and we changed to a “set” notation: “a set of flow donors, Donors(n), which is a subset of the
neighbors of n and is defined as Donors(n) = {k ∈ Nb(n), s.t. rcv(k) = n}”

—–

Q: p. 3, Line 25: Lindsay (2016) also defines a “flat-bottomed depression”. In such a depression,
no cell is a proper local minimum. Presumably such cells would be labeled as singular nodes due to
the manner in which you construct the rcv array, though you don’t make this special case explicit
in your paper. You should clarify this. A: True, “flat bottomed depressions” are singular nodes in

our terminology. This will be clarified.

R: (Section 2) Changed from “also called a pit using Lindsay (2016) terminology.” To “and either
correspond to a pit or a flat-bottomed depression in Lindsay (2016) terminology.”

—–

Q: p. 4, Pt 1: This is the inevitable result of using convergent/unidirectional flow routing.

A: This is true for unicity, not for existence. The path ends at a base level node (or boundary
node), which is in general not the case due to the existence of local minima.

R: Added (Section 2): “(not a local minimum)” in point 1.

—–

Q: p. 4, Pt 3: I have difficulty following this point. A minimum can only be defined with respect
to a set of possible alternatives and it is not clear at this point what the set of alternatives is. Since
you haven’t introduced it previously, I would appreciate a forward reference to the point in your
paper where you do introduce it.

A: The minimum is chosen among all possible flow paths starting at a given point. This will be
rephrased. Another issue with this equation is that this does not hold for nodes below water lever.
We will rewrite this condition to properly take this point into account.

R: (Section 2) We prepended for the different properties that they are respected “for each node n
of the topography”, and changed property 3 to: “The receivers defining P are chosen such that it
satisfies properties 1 and 2, and minimizes the energy E, defined as:”. We also changed the per
node energy to “Ei”, with the following remark: “As a first approximation, we set Ei = zi (the
altitude of the node). We will discuss later the special case of nodes under water level. ”. Which is

3

done below, after defining a water level: “The energy of the nodes should be changed to Ei = wi,
but as described later, one may choose various routing strategies inside the depressions depending
on the application. Therefore, we allow any path within depressions by setting Ei to zero inside
them, and keeping Ei = zi elsewhere.”

—–

Q: p. 4, Line 8: “whether the singular node is a base level node”. I feel like the term “base level
node” is unintuitive, since many nodes could be at, or below, a given base level, but be interior to
a landscape. The term “boundary node” seems more intuitive.

A: We have mixed feelings with this point: “boundary” is clearly more intuitive in the sense of
boundary condition, but not in the geometrical meaning. Any boundary condition could easily be
chosen inside the domain. Nevertheless, we will do the change.

R: We eventually replaced “base level nodes” by “boundary nodes”

—–

Q: p. 4, Line 9: “that all have an elevation below a given water level”. I find this definition
counterintuitive. A basin includes regions outside of a depression (up to the peaks of mountains).
We are now calling a depression the set of cells below a chosen waterlevel, but nothing about this
paragraph constrains a water level to be contained with a Lindsay (2016) typology-style depression.
It seems possible to set the spill as a mountain peak and declare the entire DEM a depression. I
wonder if there’s a more intuitive term that can be used here? Or perhaps a constraint can be
added?

A: Linking this definition with Lindsay terminology will certainly make it clearer.

R: (Section 2) We complexly rewrote this paragraph, with more formal definitions: “To better
explain the problem that we want to solve, we consider a filled topography as the result of an ideal
physical process where a perfectly fluid material has been poured onto an impermeable ground and
stabilized at steady state. For a node n, we define as water level (wn) the elevation of the fluid
surface, and as a spill any node s such that ∃d ∈ Donors(s)|wd = ws and zs > wrcv(s). Note that
for a flow routing observing the aforementioned properties, the water level can be computed as
wn = max(wrcv(n), zn). We also use the term depression from Lindsay (2016) terminology, and we
define it with respect to a basin B as a subset of nodes of B under water level, characterized by
wn = wrcv(n). Note that the water level of a boundary basin corresponds to the elevation of its
associated boundary node so that it contains no depression. In the case of nested depressions, the
water level of a basin may be higher than the elevations of all its nodes, which means that the spill
does not always belong to B.”

—–

Q: p. 4, Lines 19-30: I think these steps are performed iteratively, but don’t see mention of this.
Could you please clarify?

A: No, these steps are needed only once to find and resolve all local minima. But each of them
include inner iterations over the domain. We will clarify this.

R: (End of Section 2) “Each of these stage processes the whole DEM, and as such are run only
once for a given topography.”

—–

4

Q: p. 5, Line 3: “visiting the donors recursively”. I followed the reference to the Appendix, but did
not find it to be enlightening since it requires knowledge of the stack construction from Braun and
Willet (2013). I think you are doing a depth-first traversal of all of the cells in a basin (those cells
whose flow ultimately terminates at a given singular node). If so, stating this directly would make
things clearer. The word recursion also implies a particular computational motif—functions calling
themselves—which isn’t implied by the Appendix. If you are using recursion, the Appendix should
be modified. However, this is a risky strategy for larger datasets since some operating systems
impose relatively low limits on the depth of recursion.

A: We can copy Braun and Willet (2013) algorithm in the appendix if needed (which is indeed a
depth first traversal). We will change recursion to traversal which is technically more correct.

R: We changed recursion to traversal wherever it appeared and added the stack computation of
Braun and Willet (2013) in Appendix 1

—–

Q: Flat bottomed-depressions: It would be helpful to make a note of the special cases where many
cells are singular and physically adjacent. I think your algorithm handles this gracefully, but it
would be nice to make that explicit.

R: Added (Section 2.1): “The case of flat bottomed depressions does not require any particular
treatment: all nodes within flat areas are singular nodes and therefore are each assigned a unique
basin identifier.”

—–

Q: p. 6, Line 2: “To illustrate the problem” Which problem?

R: Rephrased to (Section 2.2): “This second stage tackles the problem of selecting the right subset
of links so that we obtain consistent flow paths on the basin graph. To illustrate the proposed
solution, let’s start from an inner basin.”

—–

Q: p. 6, Line 19: “majored by”. I’m not familiar with this terminology.

R: Changed to “The number of links being always bounded by a linear function of the number n
of nodes in the grid (Euler formula)”.

—–

Q: p. 7, Line 1: “using this algorithm come a global upper bound”.

R: Changed to (Section 2.2.1): “using this algorithm induces a global upper bound of O(n log n)
on the complexity of our solution.

—–

Q: Algorithm 2: This is super cool! What a good find. The pseudocode here seems as though it
won’t get you to O(N) time since each step must be implemented carefully to make that guarantee.
Perhaps some statement to this effect with a reference to Mareš (2002) is in order?

R: Added (Section 2.2.2): “As demonstrated by Mares (2002), the limit of 8 neighbors for the
selection of a basin in the inner loop is critical in halving the number of edges at each iteration of
the outer loop and thus in obtaining a linear time complexity.”

—–

5

Q: p. 8, Line 1: “rather unlikely”. This approach to correctness seems a bit cavalier. I expect that
a good algorithm works in all cases, not merely when it’s convenient. The rest of this paragraph
seems to imply that, in theory, this problem can be handled. But I’m left with the feeling that
your implementation may contain subtle bugs that you’ve thought are too unlikely to pay attention
to! I would like assurance that you check for such exceptional situations and either handle them
gracefully and correctly, or flag them for user intervention. It’s also unclear why the assumption
you state solves the problem and why it isn’t possible to build adversarially nested structures.

A: There are several aspects here. First, in 8-connected meshes, the graph may no longer be planar
but the crossing edges are in general in low proportion in the overall graph, hence the “rather
unlikely” which, indeed, needs more rigorous explanations. By changing 8 to 16 in Mares (2002)
algorithm, we validated experimentally that the mathematical condition for the O(n) complexity
holds for any (tested) 8-connected graphs. We unfortunately do not have a formal proof for that, but
this has no impact on the correctness of the algorithm, only on the complexity. This means that 1)
our algorithm is proven to be O(n) for any planar input mesh (e.g. 4 connected or triangulation),
and 2) it is not proven that there is no very small chance that for some very rare cases, the
complexity might be O (n log n) for 8-connected graph. Once again, we never saw this case
occurring.

R: Changed to (Section 2.2.2): “Furthermore, this issue does not impact the correctness of the
algorithm. Only the linear complexity is not formally proven. Because it is not planar, the case of
a 8-connectivity grid would fall in the second category mentioned by Mares (2002) of graphs closed
on graph minor. We have validated this experimentally by randomly computing minors of different
sized 8-connected graph. We found an edge density of 4, implying that half of the basins in the
basin graph are linked to at most 16 adjacent basins (and not 8 as for planar graphs) at any step
of the algorithm. Therefore, we have demonstrated the linear complexity for 8-connected graphs
experimentally, although future work is needed to prove this in a formal framework.”

—–

Q: p. 8, 2.3.1: Are all of the depressions carved to make a continuous flow network? If so, the
situation shown in Figure 3 doesn’t seem as though it can happen: Flow will progress along the
carved network before water ever pools. Similarly, if depression filling is applied, pooling won’t
occur.

And: Figure 3c: The depiction of standing water shown here is at odds with my understanding of
what the flow network looks like following carving or depression-filling. Or perhaps erosion fills in
the channels connecting depressions, resulting in standing water?

A: Depression carving and filling are metaphors: our algorithm updates the flow directions, but
does not change the elevation of the DEM. We name our variants “filling” and “carving” to match
with previous work, but in our case, we compute the flow directions that would appear if the
topography has been filled or carved. Pooling can be computed quite easily as a post process on
the filling strategy by parsing the flow network from top to bottom (which can obviously not work
with carving), and we show it to give an idea of the water level, and hence of the location of the
spills on fig 3, and latter to show the effect of the different strategies on erosion in fig 4.

R: Added, before 2.3.1: “Note that we use carving and filling as metaphors as our algorithm only
changes the flow graph connectivity without altering elevation values.” And, in caption of fig 4.:
“Water level is shown in blue, and is computed by propagating the spill elevation while parsing the
nodes in the upstream order (based on updated donors).”

6

—–

Q: Algorithms 3 and 4: On Page 3, a Donors array was listed as one of the data structures used.
Presumably that needs to be updated as well, though it doesn’t appear here. Some explanation of
this is needed.

R: Added, before 2.3.1: “For each of the variants, the donors and stack structures need to be
updated to reflect the changes in the receivers.”

—–

Q: p. 9, Line 4: “minimal distance” The minimal euclidean distance ignoring obstacles? I think
this could be clearer.

R: Added (Section 2.3.2): “Euclidean”.

—–

Q: Algorithm 4: I struggled somewhat to follow the logic here. Why is a cost function used instead
of a simple breadth-first ordering? Perhaps a figure showing what the different flow paths look like
would be helpful. The algorithm also seems as though it will terminate at the depression’s pit cell.
However, the flow pattern to the outlet will then have half of the depression exhibiting convergent
flow to the pit cell and half of the depression showing convergent flow to the outlet. This flow
pattern is unrealistic if the entire depression is treated as having been filled with flow superimposed
on the resultant flat surface.

A: There are several issues with a filling led by a breadth first traversal, the first one being that it
depends on the order of that parse. Local methods generally suffer from straight patterns resulting
from the 4 or 8 connectivity, which is why we propose a better approximation with a cost function
associated to a simple Euclidean distance. This is not a major contribution of our work, and any
other solution could be explored here. There is indeed a mistake in the notation. It should be: “for
all neighbors nnb of n such as znout ≥ znnb”

R: Added (Section 2.3.2): “We prefer this method over a simple breadth-first search, which depends
on the order in which neighbors are visited and which leads to more pronounced straight lines after
erosion, due to the 4 or 8 connectivity.”. We also corrected the algorithm.

—–

Q: p. 11: If only the receiver array is modified, how is the Equation From Page 9 implemented
when water flows uphill? Campforts and Grovers (2015, “Keeping the Edge”) show that the Stream
Power Law as it’s used in Fastscape doesn’t preserve points or other topography discontinuities well.
The channels carved here seem as though they are representative of the sorts of terrain this critique
applies to. Some discussion of modeling philosophy might be useful.

A: We will add a reference to Campforts and Grovers (2015) to discuss on the limitation of this
strategy. We simply follow the fastscape implementation, clamping the slope to 0 to avoid uphill
flow. Lake deposition or any other processes could be applied in this case but are outside the scope
of this work.

R: Added (After Eq 3): “In particular, the local gradient ∇z is chosen as the slope between the
eroded node and its receiver (forced to 0 if its value is negative in order to avoid erosion artifacts
in the case of ”upslope flow” caused by updated receivers). We choose this algorithm which is
particularly well suited to our flow routing method, although some discussion on the limits of this
algorithm can be found in (Campforts and Grovers, 2015) for steep topography.”

7

—–

Q: Figure 5: Could you put (a), (b), and (c) in bold in the caption to help readers find the relevant
text?

R: Numberings have been put in bold in all captions.

—–

Q: Figure 5: What I find most interesting about this figure is that Wei 2018 is competitive with
your results in (a), but gets dropped in (c). Why, in (c), do you choose to compare your work
against a slower algorithm?

And: Why does Figure 5c uses Barnes (2014a)? I can’t find an explanation anywhere. It seems like
comparing against Barnes (2014a) is a poor choice. Barnes (2014a) suggests a path for accelerating
Priority-Flood by reducing the number of cells passed through the Priority-Queue. Barnes (2014a),
Zhou (2016), and Wei (2018) all present progressively better algorithms for doing this. It’s better
to think of all of these algorithms as being O(N + M log M), where M is the number of cells which
pass through the priority-queue. M decreases dramatically between Barnes (2014a) and Wei (2018),
as shown in Wei (2018, Figure 8). By the time Wei (2018), the O(N) term might even dominate
the O(M log M) term, meaning that Wei (2018) is a linear-time algorithm! Indeed, your Figure
5a suggests this. In any case, Figure 5c seems to overstate your results since it’s not a proper
performance comparison.

A: This point is very interesting. One major difference between our work and previous work is
that we apply our algorithm on landscape evolution models, rather than as a filling processing step
on real, acquired data. As such, we work on synthetic data where the number of local minima
can be arbitrary important. One of our finding here is that there is a critical proportion of local
minima where the original implementation (Barnes 2014) outperforms any subsequent work. An
intuition of the reason of this effect can be given by changing the reviewer notation to N: the
number of nodes outside of depressions and M: the number of nodes inside the depressions. We try
to give a better analysis in the paper, but a very simplified intuition could be that Barnes (2014)’s
complexity “looks like” O(M + N log N), while subsequent work “looks like” O (N + M log M).
There are obviously some constraints on M and N that makes the analysis more complex, but the
simplicity of Barnes algorithm makes its O(M) part extremely efficient, which is shown on fig 5.a.
This raises two important questions: are our results globally better than more recent work, and in
which cases our algorithm (and recent work), performs better than Barnes (2014) ; a study that
seems to lack in Zhou or Wei’s papers. This is the point of figure 5. b and c, that shows that
in a typical fastscape model, our algorithm is in condition to perform better (in term of number
of local minima), than Barnes’. The first question (whether our algorithm performs better than
previous work, being Zhou 2017 or Wei 2018), is partially answered in fig 5.a. We choose to add
more focus on this behavior analysis than a detailed performance comparison, because it gives the
reader more hints on when to choose a method or another, and a performance evaluation, as noted
by the referee, largely depends on a variety of external aspects such as optimization or adaptation
of the algorithm to the computer architecture.

R: Added (Section 3.3 ; to justify the comparison with Barnes (2014a)): “Interestingly, the sim-
plicity of this first version makes it the most efficient when the number of local minima is large (see
Section 4).”. Besides, we also added Wei (2018) in Fig 5c.

—–

8

Q: p. 12 and 13: Given this description, I don’t see how your benchmarks will be meaningful. Using
the Wei (2018) algorithm in conjunction with the Barnes (2014b) algorithm for the benchmarks of
Figure 5a makes a certain sense, but why not simply modify the Wei (2018) algorithm using the
PF+e strategy of Barnes (2014a)? Wouldn’t this comparison be more fair?

A: I double checked the code, we do not include the flat resolution algorithm on the benchmark.
We add, however, a post process connectivity computation (receivers, donors and stack), which
is, however, an important output of our algorithm. This is performed only for the purpose of
comparing performance, because the connectivity computation on flat surfaces does not cancel
local minima.

A2: We eventually found out, and we deeply apologize for that, that the above answer was wrong.
The addition of the epsilon correction is important to compare algorithms with identical output,
with state of the art approved methods. We also checked, and will mention it, that in practical
cases, the algorithm from Wei (2018) without correction has performances equivalent to our results.

R: Added (Section 3.3): “Note that without combining it with a flat resolution algorithm, Wei
(2018) algorithm shows an equivalent performance to our approach, provided that the depressions
remain evenly distributed. In that case, the main difference between the two approaches is that
ours provides data structures (flow paths, basin graph) that might be reused elsewhere.”

—–

Q: p. 13, Line 8: “we reuse the implementations available in the RichDEM” This seems reasonable,
but it should be done with caveats. As you note on p. 2, this set of algorithms has ”been optimized
so that they can deliver acceptable performance when used with large datasets.” It seems as though
your algorithm uses significantly more space than the B, Z, and W algorithms you cite in your paper.
The Barnes (2014a) algorithms work in-place using only the priority-queue and a boolean array as
extra memory; that is, it requires about O(sqrt(N)) additional space. In comparison, your code
has a Receivers array, Donors array (which takes O(8N) space), and Union-Find array, leading to
a O(10N) space requirement. Trading space for time is a well-known optimization technique. This
raises the question of how the B,Z,W algorithms would perform had they been optimized for small
datasets. It also raises the question of how your algorithm would perform on larger datasets. The
average size of the test dataset used by Wei (2018), for instance, was 2*10ˆ8 cells - two orders
of magnitude larger than the 1500x1500 grid you use and three orders of magnitude larger than
the Figure 5a benchmark. I don’t think additional tests are necessary, but it should be clarified
somewhere that the algorithms you’re comparing against are being used for dataset sizes they
weren’t designed for.

A: We do not agree with this point. The donor & receiver data structures are still needed for many
landscape evolution models using upwind numerical schemes), independently of the algorithm used,
and the lack of optimization in this regard (donors array could be a N sized array) is more in favor
of B, Z, W algorithms than ours. The union find and graph data structure are needed only for the
depression graph, which size is generally much smaller than the grid size. Furthermore, we use grid
size in the order of (or slightly larger than) what is generally used in landscape evolution modeling.
We tried to benchmark larger data, up to 16k x 16k, which shows consistent results, but with more
noise due to cache misses and other OS/material related issues that makes the results less readable.

R: Added (Section 3.3): “Note that because of the differences in the design/implementation used
in RichDEM vs. our code, the benchmarks presented here should be seen as an illustration of the
theoretical complexities of the algorithm variants rather than a strict comparison of their actual
performances.” And we eventually obtained clean benchmarks for 16k arrays that are now shown

9

in Fig 5.

—–

Q: p. 14, Lines 10-15: This is a really nice analysis. However, I’m not sure I agree with it entirely.
This line: “Because those variants are more complex, k4 and k5 have higher values.” Why is the
cost of using a priority-queue higher for the Zhou and Wei algorithms? I would think that k2=k5.
I agree that k4>k1. However, one of the reasons priority queues are expensive is because they have
poor cache coherence. (Search online for ”Latency numbers every computer programmer should
know”. See also, Luengo-Hendriks (2010)’s discussion of priority queue performance variation.)
This means I expect k1

A: Yes, there is numbering issue, k3 > k0 and k4>k1. Cache coherency is an inherent problem
of these depression filling algorithms, because of the random location of the depression on the
topography, and which is hard to include in the discussion. Furthermore, the ratio of cache size to
the grid size depends on the hardware and might change drastically in the next few years.

R: (Section 4) We fixed the numbering issue.

—–

Q: Lines 10-15: Some analysis of the space used by the various algorithms would improve this
discussion.

R: Added (end of Section 4): “For all the algorithms compared here, the memory consumption grows
linearly with the DEM size. Barnes (2014a) , Zhou (2016) and Wei (2018) Priority-Flood variants
only use a supplementary queue to unload the priority queue, making it very memory-efficient.
By contrast, our algorithm store more information like the structures used for representing flow
paths (receivers, donors and stack), the basin graph and possibly some additional data structures
like those needed by Mares (2002)’s algorithm. Some of this data might be required for further
processing, e.g. the flow paths in landscape evolution modeling applications. Other data related
to the basin graph increases the memory consumption, although in practice the number of local
depressions – and thus the size of the graph – is small enough with respect to the size of the grid,
resulting in only a small memory overhead compared to the Priority-Flood variants.”

—–

Q: Algorithm 6: It might be useful to note somewhere that the link is undirected such that
Links.contains((n1,n2))==Links.contains((n2,n1)). The current implementation seems to rely on
the ordering of the stack to ensure this is true, but in another context it may be useful to relax
that ordering.

R: added (Appendix 2): “Note that the links are undirected, such that Links.contains((b0, b1))
== Links.contains((b1, b0))”

10

A Versatile, Linear Complexity Algorithm for Flow Routing in
Topographies with Depressions
Guillaume Cordonnier1,2, Benoît Bovy3, and Jean Braun3

1Univ. Grenoble Alpes, 1251 Avenue Centrale Domaine Universitaire, 38400 Saint-Martin-d’Hères, France
2Inria Grenoble Rhône-Alpes, 655 Avenue de l’Europe, 38330 Montbonnot-Saint-Martin, France
3GFZ German Research Centre for Geosciences, Telegrafenberg 14473, Potsdam, Germany

Correspondence to: Guillaume Cordonnier

Abstract. We present a new algorithm for solving the common problem of flow trapped in closed depressions within digital

elevation models, as encountered in many applications relying on flow routing. Unlike other approaches (e.g., the so-called

"Priority-Flood" depression filling algorithm), this solution is based on the explicit computation of the flow paths both within

and across the depressions through the construction of a graph connecting together all adjacent drainage basins. Although

this represents many operations, a linear time-complexity can be reached for the whole computation, making it very efficient.5

Compared to the most optimized solutions proposed so far, we show that this algorithm of flow path enforcement yields the

best performance when used in landscape evolution models. Besides its efficiency, our proposed method has also the advantage

of letting the user choose among different strategies of flow path enforcement within the depressions (i.e., filling vs. carving).

Furthermore, the computed graph of basins is a generic structure that has the potential to be reused for solving other problems

as well , such as the simulation of erosion. This sequential algorithm may be helpful for those who need to, e.g., process digital10

elevation models of moderate size on single computers or run batches of simulations as part of an inference study.

Copyright statement. Author(s) 2018

1 Introduction

Finding flow paths on a topographic surface represented as a Digital Elevation Model (DEM) is a very common task that is

required by many applications in domains such as hydrology, geomorphometry, soil erosion and landscape evolution modeling,15

and for which various algorithms have been proposed either for gridded DEMs (e.g., O’Callaghan and Mark, 1984; Jenson and

Domingue, 1988; Quinn et al., 1991; Tarboton, 1997) or unstructured meshes (e.g., Jones et al., 1990; Banninger, 2007).

Closed depressions may arise in DEMs because they are real topographic features or result from interpolation error during

DEM generation or its lack of resolution. These spurious local minima need to be resolved because they disrupt flow routing,

produce hydrologically unrealistic results or introduce artificial singularities that may result from a sudden, unrealistic jump20

in computing discharge. Flow routing is often corrected by filling depressions (e.g., Jenson and Domingue, 1988), carving

channels through artificial sills (Rieger, 1998) or by using hybrid breaching-filling techniques (Lindsay, 2016).

1

(a) Without Correction

0 10 km

(b) With Correction

Figure 1. Simulation of the evolution of an escarpment over 70 time steps of 1,000 years each and on a 1024× 256 regular grid, using the

FastScape model (Braun and Willett, 2013, see also section 3 below). The grid nodes of the leftmost column (boundary nodes) have a fixed

(base level) elevation while the initial elevation of the other nodes corresponds to a 500 m high flat surface with small random perturbations.

Using the same set of model parameters, simulation results are shown (a) without and (b) with correction of flow routing in local depressions

at each time step. As illustrated, flow path disruptions in (a) cause a much slower migration of the escarpment, while the topography predicted

in (b) is usually considered as more realistic, especially under temperate or humid climates.

Although not having a linear time complexity, the most recent algorithms of depression removal – e.g., the "Priority-Flood"

algorithm and its variants (Barnes et al., 2014a; Zhou et al.; Wei et al., 2018) – have been optimized so that they can be used

efficiently on deliver acceptable performance when used with large datasets. To increase performance for very large datasets,

further optimization efforts have been focused primarily on rather complex, parallel variants of these algorithms (Barnes, 2016;

Zhou et al., 2017).5

Yet, in some applications flow path enforcement still remains the main bottleneck. This is for example the case in many

Landscape Evolution Models (LEMs) simulating an evolving topography (see Tucker and Hancock, 2010, for a review) and that

rely on flow routing to compute erosion rates. To produce realistic results, flow path enforcement is often applied many times,

i.e., at each simulation time step (Figure 1), even when this eventually becomes irrelevant as the modelled erosional processes

usually tend to remove depressions rather than deepen or add new ones (Braun and Willett, 2013). Furthermore, LEMs are also10

used as forward models in sensitivity analyses and/or inferences on the parameters that control erosional processes, which often

2

require running a large number of models to adequately explore the parameter space. Parallel flow routing and hydrological

correction algorithms don’t help much here, as grid-search and/or sampling methods (e.g., Sambridge, 1999) are generally

easier to implement and more effective to execute in parallel. Highly optimized, sequential algorithms are still needed in this

case.

We have developed a new method of flow enforcement that is based on the explicit building of a graph of drainage basins5

(possibly encompassing depressions) and the computation of the flow paths both within inner and across those basins. This idea

was first introduced in a Computer Graphics implementation of the Stream Power Law (Cordonnier et al., 2016), but with a

sub-optimal complexity. Although this approach may appear naive at first glance, we have improved it by using fast algorithms

of linear complexity at each step of the procedure, which now makes the whole computation very efficient. Not only this method

enable the use ofallows using a wide range of techniques of flow enforcement within the closed depressions (e.g., depression10

filling, channel carving or more advanced techniques); but it also provides generic data structures that could potentially be

reused for solving other problems like modeling the behavior of erosion/deposition processes within those depressions.

After a detailed presentation of the different steps of the methodthe method and each of its stages, we will show in the sections

below through some results how our algorithm behaves and performs compared to existing solutions of flow path enforcement.

We will finally discuss the assets and limitations of our method, with some focus on landscape evolution modeling applications.15

2 Algorithm

The input of the algorithm is a topography T = (N ,E), where N is a set of nodes and E is a set of edges that link pairs of

neighbor nodes. A node n is given a horizontal position pn and a vertical elevation zn. A topography may for example result

from a triangulation or correspond to a regular grid of 4-connectivity (i.e, four neighbors per nodes) or 8-connectivity (i.e., also

including diagonal neighbors). We follow the conventions of Braun and Willett (2013) to define flow paths on the topography:20

each node n is given (1) a single flow receiver, rcv(n), which corresponds to the one of its (strictly) downslope neighbors

having the steepest slope, and (2) a set of flow donors, Donors(n), which is a subset of the neighbors of n and is defined as

Donors(n) = {k ∈Nb(n), s.t. rcv(k) = n} such that zk > zn, and rcv(k) = n,∀k ∈Donors(n). We set rcv(n) =∅ when n

is a singular node: it either corresponds to a user-defined boundarybase level node (e.g., a node on the domain boundary) or a

local minimum in the topography, i.e., a node inside the domain where all of its neighbors have a higher elevation, and either25

correspond to a pit or a flat-bottomed depression in also called a pit using Lindsay (2016) terminology.

We propose an algorithm that updates the receivers of a subset ofN such that the flow is never trapped in local minima. This

algorithm primarily aims at resolving local minima in the context of flow routing and thus leaves the elevation of the nodes

unchanged. Hence it breaks the previously introduced definition of a flow receiver: the new receivers assigned by the algorithm

generally produce some localized "upslope flow". While this seems unnatural and may not be wanted, the data structures30

used by the algorithm provide enough information to efficiently address this issue later depending on the application, which

is beyond the scope of this work. Still, the algorithm ensures that the updated flow routing stays consistent across the whole

topography by respecting the following properties for each node n of the topography:

3

1. Given a node n, There exists a single boundarybase level node b (not a local minimum), and a unique flow path from n

to b. The flow path is defined as the set of nodes P = (n, rcv(n), rcv(rcv(n)), ...,b).

2. This flow path does not contains any contains no cycle, i.e., each any node appears only once in P

3. The receivers defining P are chosen such that it satisfies properties 1 and 2, and minimizes the energy E, defined as:The

energy E, defined by the sum of the elevations of the nodes in the path (eq. 1), is minimal.5

E =
∑

i∈P
Ei�zi (1)

As a first approximation, we set Ei = zi (the altitude of the node). We will discuss later the special case of nodes under water

level.

Our method is essentially based on the computation of a graph connecting adjacent drainage basins. We define a basin as

the set of all nodes that flow toward the same singular node (Figure 2 (b)). A basin is either a boundary basin or an inner basin10

depending on whether the singular node is a boundarybase level node or a local minimum. To better explain the problem that

we want to solve, we consider a filled topography as the result of an ideal physical process where a perfectly fluid material

has been poured onto an impermeable ground and stabilized at steady state. For a node n, we define as water level (wn) the

elevation of the fluid surface, and as a spill any node s such that ∃d ∈Donors(s)|wd =ws and zs > wrcv(s). Note that for a

flow routing observing the aforementioned properties, the water level can be computed as wn =max(wrcv(n),zn). We also use15

the term depression from Lindsay (2016) terminology, and we define it with respect to a basin B as a subset of nodes of B

under water level, characterized by wn =wrcv(n). Note that the water level of a boundary basin corresponds to the elevation

of its associated boundary node so that it contains no depression. In the case of nested depressions, the water level of a basin

may be higher than the elevations of all its nodes, which means that the spill does not always belong to B. To better explain the

problem that we want to solve, let’s also define a depression inside a basin B as a subset of nodes ∈ B that all have an elevation20

below a given water level, and the spill as the node that defines the water level of B (note that the spill does not always belong

to B). Intuitively, the basin water levels correspond to the elevation of the surfaces of the lakes that would naturally appear

at steady-state after enough precipitation if the topography was perfectly impermeable. The water level of a boundary basin

corresponds to the elevation of its base level node so that it contains no depression. In the case of nested depressions, the water

level of a basin may be higher than the elevations of all its nodes. The energy of the nodes should be changed to Ei =wi, but25

as described later, one may choose various routing strategies inside the depressions depending on the application. Therefore,

we allow any path within depressions by setting Ei to zero inside them, and keeping Ei = zi elsewhere.

One may break the problem of flow path enforcement down to three, smaller problems: find the spill of each depression,

force the flow within the depressions to be routed toward their respective spill, and ensure that the flow through the spills is

properly routed into adjacent basins. The proposed algorithm addresses this problem in an explicit manner and can be divided30

into three main stages:

4

(a) Mesh: Nodes and Edges (b) Basin Graph: Basins and Links (c) Minimum Spanning Tree:
Basin Outflows

Figure 2. Illustration of the inputs and the first steps of the proposed flow routing algorithm. (a) The input topography is defined on top of a

mesh by a set of nodes and edges. A single edge is selected for each node, it connects the node to its flow receiver, i.e., its neighbor with the

steepest slope. Nodes with no receiver are local minima (colored in the figure). (b) All the nodes that flow to a same local minimum belong

to the same basin. A graph of basins is created by connecting together adjacent basins with links, which are materialized on the mesh by

edges representing the passes, i.e., the crossings of lowest elevation that connect each pair of basins (black thick arrows). (c) Some of the

links are selected by computing a minimum spanning tree and the corresponding passes are oriented in the direction of the flow across the

basins (unidirectional arrows). This structure is then used to update the flow receivers so that the flow reaches the domain boundaries without

being interrupted.

1. Compute the basins and link all pairs of adjacent basins (Figure 2 (b)).

2. Select only some of the basin links computed at the previous stage and orient them such that the flow is routed consis-

tently across adjacent basins, from inner basins toward the boundary basins (Figure 2 (c)). This operation is not trivial:

an optimal selection needs a global knowledge of the whole basin graph. To do so, we use an algorithmic structure: a

minimum spanning tree of the basin graph. We propose here two algorithms, a simple one with O(n logn) complexity,5

and a more complex one with O(n) complexity.

3. Update the flow receivers. Using the links selected at the previous stage, we update (only some of) the receivers to enforce

the flow both within and across inner basins so that it is ensured to finally reach the boundary basins and their associated

boundarybase level nodes. We propose three different methods (one may choose a method over another depending on

the specific problem to solve).10

Each of these stage processes the whole DEM, and as such are run only once for a given topography. TheyThose stages are

each detailed in the next sections.

5

2.1 Basin computation and linkage

This first stage consists in first assigning a basin identifier, basin_id(n), to each node n of the topography. The identifiers

are added sequentially by starting at singular nodes and parsing the nodes using a depth first traversal in the direction of the

donorsvisiting the donors recursively (see appendix A1). The case of flat bottomed depressions does not require any particular

treatment: all nodes within flat areas are singular nodes and therefore are each assigned a unique basin identifier.5

Then, the links connecting all pairs of adjacent basins are retrieved. To each link also corresponds an edge of the topography,

here called a pass, which represents the crossing of lowest elevation between the two basins. For example, the linkL= (B1,B2)

connects the basins B1 and B2 and has the corresponding Pass(L) = (n1,n2), where n1 ∈B1 and n2 ∈B2 and where the

chosen (n1,n2) minimizes zpass(L) =max(zn1
,zn2

). We define a single procedure to retrieve both the links and their pass (see

appendix A2). This procedure parses each edge of the topography: if the two nodes of the current edge have each different10

basin identifiers, then (1) it adds a new link if no link has been already set for these two basins, and (2) it sets or maybe updates

the pass of that link with the current edge.

The sets of basins B and the set of retrieved links L both define a basin graph. It is worth noting that, at this stage, the

links/passes are not oriented and that only one link/pass is stored for two adjacent basins. The procedure described above runs

sequentially and won’t add the link (B2,B1) if it already added the link (B1,B2).15

2.2 Flow routing across adjacent basins

This second stage tackles the problem of selecting the right subset of links so that we obtain consistent flow paths on the basin

graph. To illustrate the proposed solutionproblem, let’s start from an inner basin. If it is filled with water, the water level will

raise until it finds a pass where water eventually pours into another, adjacent basin. The associated link is then called the outflow

of the basin. Hence, routing the flow across the basins consists in connecting all outflows such that the resulting flow paths,20

from inner basins to the boundary basins, have the same properties than stated above, i.e., those paths are unique, contain no

cycle and minimize the energy needed to reach the boundary basins.

If we add to the basin graph a virtual basin (let’s call it external basin) to which we link all the boundary basins (i.e., the

external basin may be viewed as a bucket collecting all the flow that leaves the domain), then we can represent the connected

outflows using a specific algorithmic structure: a tree. More specifically, a basin tree is a tree that satisfies the properties above:25

it actually corresponds to a minimum spanning tree of the basin graph, i.e., a subset of the basin graph resulting from a selection

of the links so that the following energy is minimized:

Etree =
∑

L∈O
zpass(L) (2)

Where O is the set of selected links (or the set of outflows) and zpass(L) is the elevation of their respective passes.

6

We propose two algorithms for the computation of a minimum spanning tree. Kruskal’s algorithm is very generic and simple

with a log-linear complexity. We also propose a second algorithm, which leverages the planar nature of the basin graph to reach

a linear complexity.

Algorithm 1 Kruskal

for each Basin B do

MakeSet(B)

end for

Sort all links L by increasing weight zpass(L)

for each Link L = (B1,B2) do

if Find(B1) 6= Find(B2) then

Add (B1,B2) to the Basin Tree

Union(B1, B2)

end if

end for

2.2.1 Kruskal’s algorithm

KruskalKriskal’s algorithm (Kruskal, 1956) is one of the most classical algorithms used for computing minimum spanning trees5

and is known to have a O(m logm) complexity, where m is the number of links. The number of links being always bounded

by a linear function ofmajored by the number n of nodes in the grid (Euler formula), using this algorithm inducescome a

global upper bound of O(n logn) on the complexity of our solution. This algorithm uses a Union-Find structure to store and

merge equivalence classes of objects (see Algorithm 1). The idea here is to parse all links L ∈ L sorted by increasing elevation

zpass(L), progressively grouping each pair of basins as a larger, virtual one (equivalence class). All subsequent paths between10

basins within this equivalence class are discarded to prevent loops. The Union-Find data structure has three operations:

MakeSet Create an equivalence class containing a single element.

Union Merge two equivalence classes.

Find Get the equivalence class of an object.

The optimal implementation of the Union-Find structure provides a O(α(N)) complexity for these operations, where N15

is the number of elements in the structure (i.e., here the number of basins) and α is the inverse Ackermann function whose

complexity is lower than O(logN). This however requires first sorting the links by increasing weight (i.e., by the elevation of

their respective passes), which finally yields a O(m logm) complexity for the whole computation.

7

2.2.2 Planar graphs

The problem of finding the minimum spanning tree is known to have a O(N) complexity when the graph is planar (Mareš,

2002). A planar graph is a graph which can be embedded in a plane such that none of its edges cross another one. The basin

graph described in section 2.1 is an example of planar graph. The key intuition behind the algorithm proposed in Mareš (2002)

is that at least half of the vertices of a planar graph have at most 8 neighbors. The algorithm is then an adaptation of another5

classical algorithm, named Boruvka’s algorithm (Boruvka, 1926) ; see Algorithm 2 for more details. The O(N) complexity

comes from the fact that at each step of the outer loop, we parse and remove at least half of the nodes of the graph, and
∑
N +N/2+ · · ·+1< 2N . As the number of grid nodes n >N , the complexity of this algorithm is bounded by O(n). As

demonstrated by Mareš (2002), the limit of 8 neighbors for the selection of a basin in the inner loop is critical in halving the

number of edges at each iteration of the outer loop and thus in obtaining a linear time complexity.10

Algorithm 2 Planar Boruvka (Mareš, 2002)

Initialize the basin tree structure

while There remains nodes in the basin graph do

while There is a basin B that has less than 8 neighbors do

Add the link with the lowest neighboring pass to the basin tree

Contract the link (if the link connects basins B and Bp, remove B and append all remaining neighbors of B to Bp)

end while

Clean the graph: bucket sort all links lexicographically to remove parallel edges.

end while

A special case may arise when the basin graph is computed from a grid of 8-connectivity. In this case, the edges of the

graph may cross each other due to the diagonal connectivity, possibly making the basin graph not perfectly planar. This is,

however, rather unlikely as it implies that two passes connecting different basins are found on the two diagonals connecting

four adjacent nodes of the grid. Furthermore, this issue does not impact the correctness of the algorithm. Only the linear

complexity is not formally proven. Because it is not planar, the case of a 8-connectivity grid would fall in the second category15

mentioned by Mareš (2002) of graphs closed on graph minor. We have validated this experimentally by randomly computing

minors of different sized 8-connected graph. We found an edge density of 4, implying that half of the basins in the basin graph

are linked to at most 16 adjacent basins (and not 8 as for planar graphs) at any step of the algorithm. Therefore, we have

demonstrated the linear complexity for 8-connected graphs experimentally, although future work is needed to prove this in a

formal framework.In fact, we may still apply this algorithm if we assume that half of the basins in the basin graph are linked20

to at most 16 adjacent basins – an upper bound that we have validated experimentally – at any step of the algorithm.

8

2.3 Updating flow receivers

The basin tree obtained at the previous stage must be oriented before routing the flow from inner basins to the boundary basins.

This is achieved by traversing the tree in the reverse order (i.e., starting from the boundary basins) and labelling the two nodes

of each pass, one as nin (incoming flow) and the other one as nout (outgoing flow). Depending on their elevation, either nin or

nout is the spill node of the corresponding basin.5

The last stage then consists in updating the flow receivers so that any flow entering an inner basin is ensured to leave the

basin through nout. The most straightforward solution would be to only update the receiver of each local minimum p so that

rcv(p) = nout. Note that if nin has a higher elevation than nout, then two receivers must be updated: rcv(nin) = nout and

rcv(p) = nin. This very simple solution ensures topological continuity of the flow but does not preserve its spatial continuity.

We therefore propose two other, more realistic methods: one similar to depression filling and another similar to depression10

carving. Note that we use carving and filling as metaphors as our algorithm only changes the flow graph connectivity without

altering elevation values. For each of the variants, the donors and stack structures need to be updated to reflect the changes in

the receivers.

2.3.1 Depression carving

The idea is here to mimic the effect of a river carving a narrow trench between the bottom of the depression and the spill: a15

new, single path is computed from the local minimum to the pass. In fact, the most direct path is already defined by the flow

receivers that were computed initially, but it is in the reverse order, i.e., from the pass to the local minimum. Hence, It is trivial

to follow this path and progressively revert the receivers until the local minimum is reached (see Algorithm 3).

Algorithm 3 Depression carving

ncur = nin

nnext = rcv(nin)

while rcv(ncur) 6=∅ do

ntmp = rcv(nnext)

rcv(nnext) = ncur

ncur = nnext

nnext = ntmp

end while

2.3.2 Depression filling

Unlike the previous method, we update here the receivers as if the depressions were completely filled by some material. We20

define a procedure that starts at a pass and then progressivelyrecursively parses all neighbor nodes in a breadth-first order as

long as these are below water level, at the same time updating the receiver of the current parsed node as being one among its

9

neighbors that has already been parsed (see Algorithm 4). We repeat this procedure for all depressions by traversing the basin

tree from the boundary basins to the most inner ones so that accurate water level values can be computed during the procedure.

Receivers are chosen according to a cost function that we define here as the minimal Euclidean distance between a node and

nout. This function does not yield the perfect path patterns that one would obtain by including obstacles in the computation

of the Euclidean distanceusing an euclidean distance function with obstacles on a regular grid, but it is simple and efficient5

while being accurate enough. We prefer this method over a simple breadth-first search, which depends on the order in which

neighbors are visited and which leads to more pronounced straight lines after erosion, due to the 4 or 8 connectivity.

Algorithm 4 Depression filling

cost= n 7→ ‖n−nout‖
rcv(nin) = nout

queue = {nin}

while queue not empty do

n = queue.pop_front()

min_cost=∞
for all neighbors nnb of n such as znout ≥ znnb do

if nnb is not in queue then

queue.append(nnb)

else if nnb has already been parsed and cost(nnb)<min_cost then

min_cost= cost(nnb)

rcv(n) = nnb

end if

end for

end while

3 Results

Our algorithm is run under different settings to illustrate its behavior and compare it with some other, state of the art methods.

Most of the examples below are shown within the context of landscape evolution modeling, using a simple model of block10

uplift vs. channel erosion by the Stream Power Law. This model simulates the evolution of the topographic surface z, which

can be written as follows:

∂z

∂t
= U −KAm (∇z)n (3)

WhereU is the uplift rate,A is the drainage area (a surrogate for water discharge),∇z the local topographic gradient, andK,m,

n are the parameters of the Stream Power Law. The latter is solved numerically on a 2D regular grid using an implicit scheme15

of linear complexity (see the FastScape algorithm described in Braun and Willett, 2013). In particular, the local gradient∇z is

10

chosen as the slope between the eroded node and its receiver (forced to 0 if its value is negative in order to avoid erosion artifacts

in the case of "upslope flow" caused by updated receivers). We choose this algorithm which is particularly well suited to our

flow routing method, although some discussion on the limits of this algorithm can be found in (Campforts and Govers, 2015)

for steep topography. As common settings, we use K = 7× 10−4m0.2y−1, m= 0.4 and n= 1. Grid spacing is 100 m in both

directions.5

3.1 Illustration of the algorithm

(a) Initial bedrock elevation (b) Basins linkage (c) Tree computation

Figure 3. Our algorithm of flow enforcement run on a synthetic case. (a) Hillshade and contour plot of the input topography with apparent

depressions. (b) basins (areas of unique, random colors) and all passes connecting adjacent basins (thin black lines). (c) Flow directions

across the basins (white arrows), as resulting from the computation of a minimum spanning tree from the basin graph, and water level (blue

areas) after some erosion is applied on the input topography.

The behavior of our algorithm of flow path enforcement is best illustrated using a simple synthetic topography as input. A

set of 25 local minima are sampled on a regular grid of 500×500 nodes and the elevation of the topographic surface is locally

computed as a fixed proportion of the distance to the nearest local minimum (Figure 3 (a)). The first step of the algorithm

delineates the basin of each local minimum and finds all possible connections (links) between the basins, located at the lowest10

pass between each pair of adjacent basins (Figure 3 (b)). Then, a minimum spanning tree is computed from the graph of these

links to find the path of minimum energy that would allow the water to leave the basins (white arrows in Figure 3 (c)). The flow

receivers can then be updated by using the edges of this basin tree. The updated receivers are in turn used by the FastScape

algorithm to slightly erode the basin boundaries during 1 time step of 100 years. The result is shown as well as the final water

level in Figure 3 (c).15

11

(a) Initial bedrock elevation (b) Simple correction (c) Carving (d) Filling

Figure 4. Demonstration of the effect of flow path enforcement on erosion, using different strategies of flow receivers "correction" within

inner basins. (a) Hillshade and contour plot of the initial topography. (b), (c) and (d) Hillshade and contour plot of the topography obtained

after running a single time step of 5,000 years with channel erosion only (no uplift), with flow receivers updated using each of the different

strategies described in section 2.3. Water level is shown in blue, and is computed by propagating the spill elevation while parsing the nodes

in the upstream order (based on updated donors).

3.2 Effect of flow path enforcement strategies on eroded topographies

Figure 1 already shows the effect of flow path enforcement vs. no enforcement on the evolution of an escarpement under active

erosion processes. A second set of experiments, shown in Figure 4, illustrates the impact that the different strategies of flow

receiver updating have on the evolution of the topographic surface under the action of channel erosion. The input synthetic

topography is defined on a 100×100 regular grid and looks like an inverted pyramid with 45◦ regular slopes, forming a single,5

big depression (Figure 4 (a)). The node at the middle of the top boundary is the only node that is not part of the depression: it

has same elevation than the node at the center of the grid and it is defined as a boundarybase level node. A single time step of

5000 years of erosion only (no uplift) is performed using each of the strategies described in section 2.3:

Simple correction. In this specific case, the algorithm updates the receivers of only three nodes: (1) one of the neighbors of

the boundarybase level node, which here corresponds to the spill of the closed depression, (2) one of the neighbors of10

the spill that, together with the spill, forms the pass connecting the depression to the boundarybase level node and (3)

the local minimum at the bottom of the depression. The new assigned receivers are respectively for (1) the boundarybase

level node itself, (2) the spill and (3) the other node of the pass. We can see in Figure 4 (b) that this strategy doesn’t allow

channel erosion to propagate much from the boundarybase level node into the closed depression. In fact, drainage area

values close to the boundarybase level node are high enough to trigger erosion but the low values of drainage area in the15

vicinity (within the depression) prevents further propagation of the erosion wave.

Depression carving. Unlike the former strategy and as expected, Figure 4 (c) shows that the depression carving strategy allows

erosion to propagate toward the local minimum along a narrow and deep trench.

12

Depression filling. Using the depression filling strategy, flow receivers are updated over a large area of the depression as if the

water surface was replaced by a very gentle slope toward the spill. As a result, erosion affects a great part of the modelled

domain, with the emergence of a star-like pattern centered at the spill (Figure 4 (d)). The number and disposition of the

branches of the star are due to the grid 8-connectivity used here.

Choosing one strategy over another greatly depends on the specific application. For example, the simple correction strategy5

may be acceptable if one assumes that no erosion could happen in depressions below the water level. However, interrupted

drainage area patterns within the depressions may be problematic when used with erosion algorithms like the FastScape model,

which uses an implicit time scheme for solving the Stream Power Law but still treats drainage area explicitly, resulting in too

slow opening of the closed depressions by erosion. The depression carving or depression filling strategies generally yield better

results in the latter case. These two strategies have, however, contrasted behaviors and choosing one or the other will depend10

on several criteria such as the size (i.e., depth vs. volume) of the depressions.

3.3 Performances

To assess the performance of our algorithm, we have run multiple benchmarks under various settings. Although these bench-

marks mostly take place in the framework of landscape evolution modeling, they provide results that may be useful in other

applications too. Note that for better readability, we present here only the results from benchmarks applied on a fixed grid of15

16384× 163844096× 4096 nodes. We obtain consistent results for other grid sizes.

We have run benchmarks for our algorithm – including the two variants for computing the minimum spanning tree but

considering only the depression filling strategy – as well as for threetwo other, state-of-the-art algorithms of local minima

resolution, respectively proposed by Barnes et al. (2014a), Zhou et al. and Wei et al. (2018): one proposed by Wei et al. (2018)

and another one proposed by Barnes et al. (2014a). All threeBoth of those algorithms fill the depressions using improved20

variants of the "Priority-Flood" algorithm that reduce the number of nodes processed by a priority queue. The Barnes et al.

(2014a) variant used here, i.e., "Priority-Flood+ε", is only slightly optimized but has the advantage of filling the depressions

with a nearly-flat surface so that flow directions can be determined. Interestingly, the simplicity of this first version makes

it the most efficient when the number of local minima is large (see Section 4). While being the most optimized sequential

variant that has been proposed so far, the Wei et al. (2018) variant fills the depressions with perfectly flat surfaces and thus25

has to be combined with a flat resolution algorithm – we use here an optimal, O(n) algorithm proposed by Barnes et al.

(2014b). We apply the same treatment on the Zhou et al. variant. AllBoth variants fill the depressions by directly updating

the elevation values on the grid. To ensure proper comparison with our algorithm, we thus need to run them on a temporary

copy of the elevation values before computing the flow receiver for each node of the grid. Our algorithm being optimized for a

sequential usage, we chose, however, not to compare it to the parallel versions of Barnes (2016) and Zhou et al. (2017). Both30

the algorithms and the benchmarks are implemented using the C++ language. For the state-of-the-art algorithms, we reuse

the implementations available in the RichDEM library v2.2.9 (Barnes, 2018). The benchmarks where computed on an Intel

Xeon Silver 4110 CPU (2.1 GHz, 32.0 Go RAM)Intel Core i7-4710MQ CPU (2.5 GHz, 32.0 Go RAM). We used Microsoft

13

Local Minima (×105)

Time (s)

250

300

350

400

200

150

100

0 1 2 3

Ours, O(n)
Ours, O(n log(n))
Wei 2018

Zhou 2016

Barnes 2014a

Simulation Steps
200 4 8 16

Local Minima (×105)

0

20

40

60

12

Noise:

0 %

3 %

7 %

10 %

Simulation Steps
204 8 16120

150

175

200

225

125

100

75

250

Time (s)

Ours, 0 % noise

Ours, 10%

Wei 2018, 0 %

Wei 2018, 10 %

Barnes 2014a, 0 %

Barnes 2014a, 10 %

(a) Performance of algorithms (b) Local Minima in Fastscape (c) Per Step Performances

Figure 5. Results from benchmarks assessing the performance of our algorithm for local minima resolution – including both O(n logn)

Kurskal’s and O(n) Mareš’ variants for computing the minimum spanning tree, compared to threetwo other solutions based on variants of

the Priority-Flood depression filling algorithm proposed by Barnes et al. (2014a), Zhou et al. and Wei et al. (2018), respectively. See text for

more details about the setup of these benchmarks. (a) Execution time measured for local minima resolution applied once on a synthetic input

topography vs. total number of local minima generated in the input topography. (b) Evolution of the number of local minima detected in the

topography obtained at each of the first 20 time steps of a FastScape model run. Each curve corresponds to a given magnitude of random

perturbations added to produce spatially variable uplift rates (magnitude values are relative to a fixed uplift rate of 5× 10−3 m y−1). (c)

Execution time measured for local minima resolution at each time step, with either spatially uniform or variable uplift rates (i.e., a relative

noise magnitude of either 0% or 20%). The blue curves refer to our algorithm using the O(n) variant for computing the minimum spanning

tree.

Visual Studio compiler with fast optimization options. Note that because of the differences in the design/implementation used

in RichDEM vs. our code, the benchmarks presented here should be seen as an illustration of the theoretical complexities of

the algorithm variants rather than a strict comparison of their actual performances.

In a first set of benchmarks, we create an input topography by running the FastScape model (starting from an initial flat

surface with small random perturbations) until steady-state is reached (the uplift rate is set to 5× 10−3 m y−1), and then5

by lowering the elevation of an arbitrary number of nodes down to 10−5 m below their lowest neighbors. Those nodes are

chosen randomly on even rows and columns to make sure that we obtain the same number of local minima in the input

topography. Note that each generated basin have a size of at most 9 cells, which allows for a fine control on the cumulative

size of the depressions. Figure 5 (a) shows the execution times of our vs. state-of-the-art algorithms for an increasing number

of local minima. We can see that in these settings our algorithm (both variants for the computation of the minimum spanning10

tree) globally outperforms the state-of-the-art solution of Wei et al. (2018) combined with flat resolution. Note that without

combining it with a flat resolution algorithm, Wei et al. (2018) algorithm shows an equivalent performance to our approach,

14

provided that the depressions remain evenly distributed. In that case, the main difference between the two approaches is

that ours provides data structures (flow paths, basin graph) that might be reused elsewhere. By contrast, the Barnes et al.

(2014a) Priority-Flood variant shows an inverse trend: it performs much worse in the absence of depression but the execution

time rapidly decreases when increasing the total number of local minima, eventually achieving better performance than our

algorithm. This is explained by the very simple implementation of this variant, in which all the nodes are processed by a priority5

queue in the absence of depression (not optimal) while a plain queue is used for most of the nodes if the topography is largely

covered by depressions, making this variant near optimal in that specific case. Note that for high numbers of local minima we

also start to discern in Figure 5 (a) the difference in performance of the variants used to compute the minimum spanning tree,

here explained by their log-linear vs. linear complexity.

In a second set of benchmarks, we analyze the performances of the algorithms for local minima resolution through full10

simulations of landscape evolution. We run the FastScape model over 20 time steps of each 10,000 years, starting from a flat

topography with small random perturbations (thus containing many local minima) and using fixed boundary conditions, i.e.,

boundarybase level nodes all along the grid boundaries. The simulations are all based on a uniform uplift rate of 5×10−3 m y−1

but each differ by the magnitude of the random field (created on a coarser, 1500×1500 grid) added to produce spatially variable

uplift rates. This magnitude ranges from 0 % to 20 % of the uniform uplift rate. As shown in Figure 5 (b), a greater magnitude15

of perturbation of uplift rates reduces the rate at which the local minima disappear under the action of channel erosion as the

simulation proceed. With no perturbation, all local minima are removed after the first time step. This has important implications

for the overall time spent on resolving local minima during a simulation. Figure 5 (c) shows that, with uniform uplift, our

algorithm greatly optimizes this overall time compared to the Priority-Flood variant of Barnes et al. (2014a). Even with variable

uplift rates, our algorithm performs better after only a few time steps.20

4 Analysis

We focus our discussion on an in-depth analysis of the differences in performance obtained by the different state-of-the-art

algorithms, as reported in the section above. Barnes et al. (2014a) propose to progressively flood the topography from exterior

to interior, keeping in a priority queue all the parsed nodes except for the ones in depressions, which are processed using a plain

queue. The operations used in this algorithm can be split in two main categories: one handling the nd nodes in depression areas,25

with nd < n the total number of nodes, and another one handling the other "regular" nodes, nr = n−nd, using the priority

queue. As a depression encloses at least one node (a local minimum) and zero or more nodes in the immediate vicinity, the total

number of nodes in depression areas is always greater or equal to the total number of local minima nl, that is, n−nd ≤ n−nl.
Therefore, the complexity of Barnes et al. (2014a) Priority-Flood variant is bounded by k0 + k1n+ k2 (n−nl) log(n−nl),
where k0, k1 and k2 are constants. Due to the very simple formulation of this algorithm, k1 isand k2 are very small. The30

improved variants of Priority-Flood proposed by Zhou et al. and Wei et al. (2018) further reduce the number of nodes that

are processed by the priority queue by carefully selecting spill candidates among the regular nodes. In those variants, the total

number of nodes processed by the priority queue becomes nearly proportional to the number of local minima, inverting the

15

formulation of the complexity that is here bounded by k3 + k4n+ k5nl lognl. Because those variants are more complex, k4

hasand k5 have higher values.

We also derive the complexity of our algorithm taking its stages separately. The first and last stages, i.e., the computation

of the basin graph and the update of flow receivers, are both bounded by k6 + k7n, with a relatively high value for the k6 and

k7 constants. The second stage, i.e., the computation of the minimum spanning tree, is either bounded by k8nl lognl when5

using the Kruskal’s algorithm or by k9nl when using the algorithm proposed by Mareš (2002), with k8 < k9. Both expressions

above are valid considering that nl ∼N (the number of basins) for N large.

The complexities of the algorithms that we have derived here are all consistent with the benchmark results shown in Figure 5

(a). The difference between the two minimum spanning tree algorithms is visible only for a large number of local minima,

as predicted by their respective asymptotic complexity, while being unnoticeable for low nl where the other stages of the10

processing prevail. Similar expressions obtained for the complexity of our algorithm vs. the solution based on Wei et al. (2018)

are also well illustrated by sub-parallel curves in the figure. The inverse trend observed for Barnes et al. (2014a) solution is

explained by its complexity, where the term (n−nl) log(n−nl) tends towards zero as nl increases.

For all the algorithms compared here, the memory consumption grows linearly with the DEM size. Barnes et al. (2014a),

Zhou et al. and Wei et al. (2018) Priority-Flood variants only use a supplementary queue to unload the priority queue, making15

it very memory-efficient. By contrast, our algorithm store more information like the structures used for representing flow paths

(receivers, donors and stack), the basin graph and possibly some additional data structures like those needed by Mareš (2002)’s

algorithm. Some of this data might be required for further processing, e.g. the flow paths in landscape evolution modeling

applications. Other data related to the basin graph increases the memory consumption, although in practice the number of local

depressions – and thus the size of the graph – is small enough with respect to the size of the grid, resulting in only a small20

memory overhead compared to the Priority-Flood variants.

5 Conclusions

We have presented here a new algorithm for flow path enforcement in topographies with depressions. We have designed this

algorithm within the framework of landscape evolution modeling and we have demonstrated through benchmarks that, in this

scope, it may greatly improve performance compared to other, state-of-the-art solutions. The potential of this algorithm is,25

however, not limited to landscape evolution models. On a broader scope, the basin graph and its minimum spanning tree are

generic structures that other applications may leverage, possibly through derived quantities such as the water level of each

depression. We propose here optimal methods to compute those structures and quantities. Despite the fact that our algorithm

is rather complex and requires some work to be properly implemented, it is designed in a composable way such that it is easy

to reuse one or several of its components. Adding new features like alternative strategies of flow path enforcement within the30

depressions would require only little effort, too.

While being versatile, this new algorithm does not provide an universal solution to the problem of flow routing both within

and across closed depressions. Perhaps its main limitation is the assumption of single direction flow, i.e., each node has one

16

unique flow receiver. Adding full support for multiple direction flow (MDF) without loosing in performance is rather difficult

and would require a fair amount of re-design work at each of the three stages of the algorithm:

– Basin computation should take into account divergent flow (basin labels are not unique for grid nodes located on drainage

divides).

– It should be theoretically possible to route the outflow from an inner basin into more than one of its adjacent basins (this5

is currently not possible using a minimum spanning tree computed from the basin graph).

– Alternative, MDF-compliant methods should be implemented to update the flow receivers within the depressions.

Other algorithms like the Priority-Flood don’t have that limitation: they act directly on elevation values and don’t prevent us

from applying MDF flow routing methods on the modified topography.

Another limitation of this algorithm is its sequential implementation. Further work is needed to adapt it so that it could be run10

on modern, multi-core and/or GPU-based architectures. Still, many use cases would benefit from the current implementation.

These include processing datasets of moderate size on a single computer or running batches of simulations or analysis pipelines,

e.g., in the context of sensitivity analyses or inferences on model parameters.

Code availability. An implementation of the algorithm presented here will soon be available (upon publication of this manuscript) in the

open-source fastscapelib library (https://github.com/fastscape-lem/fastscapelib), which already provides an implementation in C++ (with15

Python bindings) of efficient algorithms for landscape evolution modelingmodelling.

Author contributions. GC designed the algorithm and implemented it including the examples/benchmarks presented in this manuscript, BB

also worked on the implementation. GC and BB worked on the redaction of the manuscript with contributions by JB, all authors contributed

to fruitful discussions throughout this study, especially JB who provided many test conditions and use cases.

Competing interests. The authors declare that they have no conflict of interests.20

Acknowledgements. TEXT

17

Appendix A: Algorithms

A1 Basin computation

Algorithm 5 finds in which basin belongs each node of the grid by assigning them a label. One unique label is defined (here by

an integer) for each basin.

Algorithm 5 Basin computation

stack = compute_stack (Braun and Willett, 2013)

stack = ∅ (parse order, as in (Braun and Willett, 2013))

s = {outflows}

while s not empty do

n = s.top()

s.pop()

stack.push(n)

if rcv(n) = ∅ (i.e. singular node) then

label = label +1

end if

basin_id(n) = label

for all d ∈Donors(n) do

s.push(d)

end for

end while

A2 Basin Linkage5

Algorithm 6 creates the graph of basins by linking together each pair of adjacent basins. It also finds the passes of lowest eleva-

tion between those adjacent basins. Note that the links are undirected, such that Links.contains((b0, b1)) == Links.contains((b1,

b0))

18

Algorithm 6 Basin linkage

Links = ∅

for each node n in stack do

if rcv(n) = ∅ (i.e. singular node) then

bcur = basin_id(n)

else if bcur is not the label of a boundary basin then

for each neighbor nnb of n with basin label bnb 6= bcur do

link = (bcur , bnb)

zpass = max(zn,znb)

if Links.contains(link) then

if elevation of the pass of Links(link) < zpass then

Update link with pass (n, nnb) and its elevation zpass

end if

else

Links.add(link) with pass (n, nnb) and its elevation zpass

end if

end for

end if

end for

References

Banninger, D.: Technical Note: Water flow routing on irregular meshes, Hydrology and Earth System Sciences, 11, 1243–1247,

https://doi.org/10.5194/hess-11-1243-2007, 2007.

Barnes, R.: Parallel Priority-Flood depression filling for trillion cell digital elevation models on desktops or clusters, Computers and Geo-

sciences, 96, 56–68, https://doi.org/10.1016/j.cageo.2016.07.001, 2016.5

Barnes, R.: RichDEM: Terrain Analysis Software, http://github.com/r-barnes/richdem, 2018.

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation

models, Computers and Geosciences, 62, 117–127, https://doi.org/10.1016/j.cageo.2013.04.024, 2014a.

Barnes, R., Lehman, C., and Mulla, D.: An efficient assignment of drainage direction over flat surfaces in raster digital elevation models,

Computers and Geosciences, 62, 128–135, https://doi.org/10.1016/j.cageo.2013.01.009, 2014b.10

Boruvka, O.: O jistém problému minimálním, Pràce Moravské pr̆ìrodovĕdecké spolec̆nosti, 3, 37–58, 1926.

Braun, J. and Willett, S. D.: A very efficient O (n), implicit and parallel method to solve the stream power equation governing fluvial incision

and landscape evolution, Geomorphology, 180, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.

Campforts, B. and Govers, G.: Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law,

Journal of Geophysical Research: Earth Surface, 120, 1189–1205, https://doi.org/10.1002/2014JF003376, 2015.15

Cordonnier, G., Braun, J., Cani, M.-P., Benes, B., Galin, E., Peytavie, A., and Guérin, E.: Large scale terrain generation from tectonic uplift

and fluvial erosion, 35, 165–175, https://doi.org/10.1111/cgf.12820, 2016.

19

Jenson, S. and Domingue, J.: Extracting topographic structure from digital elevation data for geographic information system analysis, Pho-

togrammetric Engineering and Remote Sensing, 54, 1593–1600, 1988.

Jones, N., Wright, S., and Maidment, D.: Watershed delineation with triangle-based terrain models, Journal of Hydraulic Engineering, 116,

1232–1251, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1232), 1990.

Kruskal, J. B.: On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical5

society, 7, 48–50, 1956.

Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models, Hydrological

Processes, 30, 846–857, https://doi.org/10.1002/hyp.10648, 2016.

Mareš, M.: Two linear time algorithms for MST on minor closed graph classes, ETHZ, Institute for Mathematical Research, 2002.

O’Callaghan, J. and Mark, D.: The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image10

Processing, 28, 323–344, https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.

Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The prediction of hillslope flowpaths for distributed hydrological modeling using

digital terrain models, Hydrological Processes, 5, 59–80, https://doi.org/10.1002/hyp.3360050106, 1991.

Rieger, W.: A phenomenon-based approach to upslope contributing area and depressions in DEMs, Hydrological Processes, 12, 857–872,

https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<857::AID-HYP659>3.0.CO;2-B, 1998.15

Sambridge, M.: Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophysical Journal International,

138, 479–494, https://doi.org/10.1046/j.1365-246X.1999.00876.x, 1999.

Tarboton, D.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources

Research, 33, 309 –319, https://doi.org/10.1029/96WR03137, 1997.

Tucker, G. E. and Hancock, G.: Modelling landscape evolution, Earth Surface Processes and Landforms, 35, 28–50,20

https://doi.org/10.1002/esp.1952, 2010.

Wei, H., Zhou, G., and Fu, S.: Efficient Priority-Flood depression filling in raster digital elevation models, International Journal of Digital

Earth, 0, 1–13, https://doi.org/10.1080/17538947.2018.1429503, 2018.

Zhou, G., Sun, Z., and Fu, S.: An efficient variant of the Priority-Flood algorithm for filling depressions in raster digital elevation models,

Computers and Geosciences, pp. 87–96, https://doi.org/10.1016/j.cageo.2016.02.021.25

Zhou, G., Liu, X., Fu, S., and Sun, Z.: Parallel identification and filling of depressions in raster digital elevation models, International Journal

of Geographical Information Science, 31, 1061–1078, https://doi.org/10.1080/13658816.2016.1262954, 2017.

20

