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Abstract. The large, shallow earthquakes at Northridge, California (1994), Chi-Chi, Taiwan (1999) and Wenchuan, China 10 

(2008) each triggered thousands of landslides. We have determined the position of these landslides along hillslopes, 

normalizing for statistical bias. The landslide patterns have a co-seismic signature, with clustering at ridge crests and slope 

toes. A cross check against rainfall-induced landslide inventories seems to confirm that crest-clustering is specific to 

seismic-triggering as observed in previous studies. In our three study areas, the seismic ground motion parameters, lithologic 

and topographic features used do not seem to exert a primary control on the observed patterns of landslide clustering. 15 

However, we show that at the scale of the epicentral area, crest- and toe-clustering occur in areas with specific geological 

features. Toe-clustering of seismically-induced landslides tends to occur along regional major faults. Crest-clustering is 

concentrated at sites where the lithology along hillslopes is approximately uniform, or made of alternating soft and hard 

strata, and without strong overprint of geological structures. Although earthquake-induced landslides locate higher on 

hillslopes in a statistically significant way, geological features strongly modulate the landslide position along the hillslopes. 20 

As a result the observation of landslide clustering on topographic ridges cannot be used as a definite indicator of topographic 

amplification of ground shaking.  

1 Introduction  

Seismic ground shaking triggers many landslides in active mountain areas. A growing number of catalogues of landslides 

associated with large earthquakes is now being produced by mapping from satellite images (Tanyaş et al., 2017; U.S. 25 

Geological Survey, 2018b). Such catalogues have been used to show that to the first order, the density of the co-seismic 

landslides is controlled by the intensity of seismic shaking and by hillslope rock strength, and that the total volume of 

landslides and the area extent affected by them increase with the earthquake magnitude  (Keefer, 1984; Marc et al., 2016, 

2017; Rodríguez et al., 1999). 
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In recent years, several studies have explored the position of the landslides in the landscape, adding this characteristic to 30 

their description of the landslide inventories. At the catchment scale, landslides triggered by storms and earthquakes affect 

different parts of ridge and valley topography (Densmore and Hovius, 2000; Meunier et al., 2008). Storm-induced landslides 

are preferentially triggered low on slopes due to riverbank erosion and high groundwater pressure (Lin et al., 2011; Meunier 

et al., 2008; Tseng et al., 2017). By contrast, earthquake-triggered landslides are more uniformly distributed since ground 

shaking affects all portions of the hillslope (Densmore and Hovius, 2000), or they are concentrated near ridges or slope 35 

breaks (Harp and Jibson, 1996; Massey et al., 2017; Sepúlveda et al., 2010; Weissel and Stark, 2001). Numerical simulations 

of ground shaking in complex topographies predict that seismic waves are actually amplified around ridge crests (e.g. Boore, 

1973; Massa et al., 2014; Poursartip et al., 2017). Both seismic noise analysis and strong motion records confirm that 

stronger shaking often occurs at topographic highs (Chávez-García et al., 1996; Durante et al., 2017; Hartzell et al., 2014; 

Massa et al., 2010). Meunier et al, 2008 suggested that earthquake-induced landslides tend to cluster around ridge crests as a 40 

consequence of these topographic site effects. Yet, amplification of ground shaking around the crests predicted by numerical 

studies is found to be modest, mostly 1.2 to 2.5 times the flat model, depending in particular on the shape of the hill and the 

seismic wave frequency considered (Ashford et al., 1997; Asimaki and Mohammadi, 2018; Chávez-García et al., 1996; Geli 

et al., 1988; Lovati et al., 2011; Pedersen et al., 1994). Numerous authors argued that larger crest amplifications observed in 

the field are mostly caused by lithological contrasts along the wave path and possible upward propagation of Rayleigh waves 45 

from the base of a slope towards the crest (Burjánek et al., 2014; Gallipoli et al., 2013; Glinsky and Bertrand, 2017; Havenith 

et al., 2003; Ohtsuki and Harumi, 1983).  

Here, we study the spatial variations of the position of co-seismic landslides on hillslopes within the epicentral areas of three 

large, shallow earthquakes affecting steep mountain topography: the 1994 Mw 6.7 Northridge Earthquake, the 1999 Mw 7.6 

Chi-Chi Earthquake and the 2008 Mw 7.9 Wenchuan Earthquake. We also consider the location of rainfall-triggered 50 

landslides in the area affected by the Chi-Chi earthquake for comparison. Using a statistical approach, we identify coherent 

patterns of ridge crest- and slope toe-clustering. We explore seismic, topographic, lithological and structural features as 

possible controls on the observed patterns, and conclude that co-seismic landslide distributions are best explained by 

superposition of effects of local geological configurations on general seismically-controlled patterns.  

2 Study areas and landslides inventories 55 

We use previously published landslides inventories for three earthquakes (Table 1), constructed by digitizing landslides 

outlines from field and air-photos, and satellites images. These inventories have been shown to be relatively complete for 

landslides larger than 30 m2, but they do not allow distinction between the erosional and depositional parts of landslides. 
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2.1 The 1994 Northridge earthquake 

The Mw 6.7 Northridge occurred on the 17th of January 1994, about 100km North of Los Angeles, in Southern California. 60 

Rupture started on the Northridge blind thrust fault, at about 19km depth (Somerville et al., 1996). It generated strong 

ground shaking with peak ground accelerations (PGA) up to 1.78g. More than 11,000 landslides were triggered, with a 

cumulative area of more than 23km2 (Harp and Jibson, 1996). Most of these landslides were located in the Santa Susanna 

and San Gabriel Mountains.  

2.2 The 1999 Chi-Chi earthquake  65 

On the 21st September 1999, the shallow Mw 7.6 Chi-Chi earthquake occurred in the western foothills of Taiwan’s Central 

Range. The rupture initiated along the Chelungpu thrust fault at 12±5 km depth (Angelier et al., 2001). Strong ground 

shaking was recorded with a PGA up to 1g in some places (Tsai et al, 2000). The earthquake caused about 10,000 landslides 

with a combined area in excess of 125 km2 (Liao and Lee, 2000).  

2.3 The 2008 Wenchuan earthquake 70 

On the 12th of May 2008, the Mw 7.9 Wenchuan earthquake occurred along the eastern boundary of the Tibetan Plateau. The 

rupture initiated at a focal depth of 14 to 19 km and propagated along two segments of the Longmen Shan thrust system (De 

Michele et al., 2010; Tong et al., 2010). Strong ground motion was felt with recorded PGA exceeding 0.8g in some places 

(Wen et al., 2010) . The earthquake caused a large number of landslides: more than 197,000 were mapped, with a cumulative 

surface area exceeding 700km² (Xu et al., 2014). At least three catalogues are available for this earthquake (Gorum et al., 75 

2011; Parker et al., 2011; Xu et al., 2014). Here, we use the one from Xu et al 2014, which we deem to be the most complete 

and accurate, based on a comparison detailed in the supplementary materials. 

2.4 Rainfall-induced landslides in the Chi-Chi epicentral area 

In 2009, typhoon Morakot deposited up to 31.9 meter of rainwater in 48 hours in the considered area (Chien and Kuo, 2011). 

More than 15,000 landslides were triggered by this typhoon (Marc et al., 2018) in an area that extends into the Chi-Chi 80 

epicentral area. In the area of overlap, the characteristics of the landslide populations associated with the earthquake and the 

typhoon can be compared directly. Moreover, we document the time variation of the location of the landslides located in 

three watersheds in the Chi-Chi epicentral area from 1994 to 2014 (Marc et al., 2015, Table 1). The location of these three 

catchments is reported in Fig. 2 and 3.  
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3 Methods 85 

3.1 Landslide position in the landscape  

Our aim is to determine the position of landslides within the landscape, specifically their position relative to a ridge crest or 

the top of a hillslope, and to the river valley or toe of a hillslope. For this, we adopt the metrics of Meunier et al, 2008 to 

normalize for the variation of hillslope lengths across the landscape, introducing the normalized distance to stream |dst|. 

Ridge crests are characterized by a |dst| equal to one, while rivers have a |dst| equal to zero (see supplementary, Method and 90 

metrics).  

A given portion of the landscape is characterized by its probability density function of occurrence of |dst| values, PDFtopo 

(Fig. S1.e). Landslide locations are characterized by PDFls, the probability density function of |dst| derived only from cells 

affected by landslides. Within portions of the epicentral area (macrocells), we compute both PDFtopo and PDFls and we 

define the ratio of probability Rp= PDFls/PDFtopo . In this way, the distribution of locations of the landsliding cells along 95 

hillslopes (here expressed in |dst|) is normalized by the distribution of occurrence of locations in the landscape of the 

macrocell, effectively removing geomorphic or methodological biases (Fig. S1.e, S1.f). If the landscape into the macrocell is 

uniformly sampled by landsliding, Rp=1 over (0,1). High values of Rp (>>1) for |dst| >0.75 indicate a significant crest 

oversampling by landslides. Inversely, low values of Rp express undersampling. Similarly, large values of Rp for |dst|<0.25 

indicate hillslope toe oversampling. In our analysis, we have defined 𝑅𝑝𝑐𝑟𝑒𝑠𝑡 = 𝑅𝑝[0.75−1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   and 𝑅𝑝𝑡𝑜𝑒 = 𝑅𝑝(0−0.25]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  as the 100 

mean value of Rp over the upper and the lower quarter of the hillslope respectively.  

3.2 Crest and toe clustering  

The purpose of this paper is first to detect if there are areas where the landslides are more likely to occur on a given portion 

of the hillslope (i.e. if crests or toes are more susceptible to fail during an earthquakes), and if so, what physical processes 

could explain it. Macrocells with very few landslides are not statistically representative. Therefore, we must be able to 105 

quantify the probability for a given topography and landslides within it that the observed Rp could differ from one because of 

statistical fluctuations rather than for physical reasons. To do this, we test the null hypothesis comparing the Rp derived from 

the data to the one associated to a random sampling of the landscape. In each macrocell, we define the 90% interval of 

confidence Irp depending on the number of landslides affecting it. Crest-clustering, defined here as preferential sampling of 

the upper quarter of a hillslope section by landsliding, is only considered to occur where Rpcrest exceeds the upper bound of 110 

Irp. Similarly, Rptoe is defined as the average of Rp computed over the lower quarter of the slope, and toe-clustering is 

adjudged for Rptoe values greater than the upper-bound of Irp (Fig. S2). Since crest-clustering and toe-clustering are mutually 

exclusive (see supplementary, Statistical robustness, Fig. S4), zones of toe-clustering also have values of Rpcrest lower than 

the lower bound of Irp. Therefore, Rpcrest can be used as an indicator of crest- and toe-clustering. 
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3.3 Spatial mapping of the landslide position within the epicentral area 115 

Maps of Rpcrest and Rptoe were generated by subdividing a study area into macrocells in which Rp is calculated. The size of 

the macrocells in this study is set at 7.8 km2 to optimize for two criteria: a) the cell must be small enough to capture the 

spatial variation within the epicentral area, and b) it must be large enough to be statistically representative in terms of 

landslide content (see supplementary Methods-Metrics). The second criterion imposes a lower limit to the resolution at 

which we can observe any spatial variation. Figure S5 shows three Rpcrest maps in the Wenchuan epicentral area with 120 

increasing macrocell size. Although the patterns remain globally the same, macrocells of 7.8 km2 produce the most legible 

map. The mean of Rpcrest, averaged over the whole landscape, remains relatively independent of the macrocell size (Table 2, 

supplementary).  

3.4 Extraction of seismic and topographic parameters 

In each macrocell, we compute the median of the seismic parameters according to the USGS ShakeMap (Allen and Wald 125 

2007; U.S. Geological Survey 2018a). Shake maps provide the peak ground velocity (PGV), peak ground acceleration 

(PGA), and the pseudo spectral acceleration (PSA) at 3s, 1s, and 0.3s.   

Relations have been observed between seismic ground motion and the ridge shape and orientation with respect to the 

epicenter. For example, the ridge half width can be related to the frequency of resonance of the topography (e.g. Paolucci, 

2002, Massa et al, 2014) and the ridge shape ratio (slope height /ridge width) can be linked to the ground motion 130 

amplification (Geli, 1988). To test if the clustering can be associated to the geometry of the ridges we calculate and associate 

to each macrocell the median slope heights and the median of the ridge half-widths. To do this, we perform a geometric 

extraction of the ridge relief by simplifying the geometry of the topographic ridge cross section by a triangular shape (see 

supplementary extraction of topographic features Fig. S8).    

3.5 Lithological features 135 

In order constrain the influence of rock strength on landslide location patterns, we group lithologies that have similar 

apparent physical properties, using the information provided by geological maps of the earthquake epicentral areas (see 

Fig. S9). For the Northridge area, we use a combination of the maps compiled by the United States Geological Survey 

(Yerkes et al., 2005; Strand, 1969). For Taiwan, we use materials from the Taiwan Central Geological Survey, MOEA 

(MOEA and Central Geological Survey, 2008), and for Wenchuan we use the map published by Robert, 2011. Each 140 

macrocell is defined by its dominant lithology group, i.e, the one occupying the largest area.  
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4 Results 

4.1 Temporal variation of crest-clustering  

To test if seismic ground shaking and rainstorms cause hillslope failures in different parts of the landscape, we first consider 

the temporal variation of clustering in the upper quartile of slopes in three watersheds in the Chi-Chi epicentral area between 145 

1996 and 2014 (Fig. 1). Before the Chi-Chi earthquake, the typhoon-induced landslides tended to under-sample the upper 

slope domain (Rpcrest < 0.6). The Chi-Chi earthquake itself was characterized by clear crest over-sampling (Rpcrest = 1.2). Just 

after the earthquake, Rpcrest dropped to 0.4 and returned to its pre-earthquake value in about 3 years. This evolution seems to 

confirm that landslides triggered by earthquakes and rainfall have distinct and different clustering behaviour as observed in 

previous study (Meunier et al, 2008; Densmore and Hovius, 2000). 150 

4.2 Spatial variation of crest-clustering 

Figure 2 shows the spatial distribution of Rpcrest in the three epicentral areas. Macrocells without statistically significant 

clustering are removed for clarity (see Methods-Statistics). In the three cases, we observe coherent patterns of crest- and toe-

clustering on about half of the surface affected by landsliding (Fig. 2). These patterns can cover several tens of square 

kilometers, and they have similar sizes in the three epicentral areas. Hence, the larger the epicentral area the more individual 155 

patterns we observe. Specifically, the Northridge epicentral area is almost exclusively affected by crest-clustering (Fig. 2.b). 

Two coherent zones are observed in the Chi-Chi epicentral area: crest-clustering in the western-part of the epicentral area, 

and toe-clustering in the eastern part (Fig. 2.c). In the Wenchuan case, five or six distinct patches of crest-clustering can be 

identified. They are separated by more or less elongated zones of toe-clustering extending up to several tens of kilometers 

(Fig. 2.a). Overall, crest-clustering does not appear to be a dominant pattern in the Wenchuan case. Note that in the 160 

Wenchuan case, the pattern of clustering is very sensitive to the quality of the landslide inventory (see dependence on the 

datasets in the supplementary). In the following, we only consider results obtained with the Xu et al, 2014 dataset. Therefore,  

the three cases show that earthquake-triggered landslides are distributed quite evenly along many slopes in an epicentral 

area, with upper slope or slope toe clustering in some places. 

The spatial distribution of Rpcrest for the landslides induced by typhoon Morakot in Taiwan is distinct from that found for the 165 

three earthquakes. The typhoon caused uniform toe-clustering (Fig. 3), with lower values of Rpcrest (~0.5) in the 

aforementioned watersheds than those obtained in the same region for landslides induced by the Chi-Chi earthquake, even 

though these also cluster downslope. This observation, added to the results concerning the temporal variation of Rpcrest 

presented in the section 4.1, suggests that toe-clustering is a signature of rainfall-induced landslides.  
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5 Controls of clustering 170 

Pervasive crest-clustering of co-seismic landslides within an earthquake epicentral area would signal predominance of 

seismic controls over any other controls. By contrast, a noisy distribution of crest-clustering could suggest that the location 

of landslides is controlled by highly variable local factors such as topographic slope, soil moisture or soil depth. The 

existence of coherent patterns of crest-or toe-clustering over hundreds of square kilometers suggests a large-scale control 

such as regional geological structures or geomorphic features. 175 

5.1 Seismic controls 

In our examples, crest-clustering is not primarily explained by regional seismic parameters. Figure 4 shows Rpcrest plotted 

against the median of Peak Ground Velocity (PGV) (Fig. 4.a) and Pseudo Static Acceleration at 1s (PSA 1s) published on 

ShakeMap (Fig. 4.b). For the Northridge and Wenchuan earthquakes, crest- and toe- clustering both occur over a wide range 

of PGV (1-100 cm/s) and PSA (0.1-1g). In Taiwan, Rpcrest weakly increases with PGV and PSA1s but the spatial distribution 180 

of the patterns relative to the regional geological structure may cause misattribution. Indeed, as PGV and PSA strongly 

decrease towards the east, the strength of the geological units increases (see Sec. 5.3) (see Fig. S12). Similar results are 

found for PGA and PSA3s (Fig. S13). 

5.2 Geomorphic controls 

Local hillslope geometry does not explain cluster location. Figure 5.c shows Rpcrest plotted against the median of the ratio of 185 

the gradient of the upper and lower hillslope quarters. No correlation can be identified. Both hillslope local relief and aspect 

ratio also fail to segregate zones of crest-clustering from zones of toe-clustering (Fig. 5.a-b) with possible exception of the 

Chi-Chi case. There Rpcrest seems to decrease as slopes become higher and steeper. 

5.3 Geological control on Rpcrest distribution  

Maps of Rpcrest projected on the main lithological units of the three epicentral areas are shown in Fig. S9. Meanwhile, the 190 

statistical distributions of Rpcrest per lithology are reported in boxplots in Fig. 6. In the Chi-Chi case, crest-clustering is 

principally observed in the western foothills that are comprising of poorly consolidated sandstones with interbedded marls 

and mudstones (Camanni et al., 2014; MOEA and Central Geological Survey, 2008) (Fig. 6.b. and Fig S9.c). The higher 

grade lithological units to the east are mainly affected by toe-clustering. Hence, lithology seems to be a first-order control on 

the distribution patterns of Rpcrest. 195 

However, in Northidge and Wenchuan cases, the distribution of Rpcrest is not correlated in a simple way with rock strength 

according to simple lithological classes (Fig. 6.a-c). In the Wenchuan epicentral area, rocks with various deformation grades 
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are observed, depending among other things on the major geological structures that intersect them. For instance, intensely 

deformed sandstones are found into the Wenchuan Shear Zone, while they are moderately deformed within the Songpan 

Garze units, and relatively intact in the foothills (e.g. Robert, 2011). This geological diversity allows a more detailed, ad hoc 200 

analysis of substrate controls on landslide location. 

From our data, crest- and toe-clustering of co-seismic landslides seem to be concentrated along specific geological features. 

This is illustrated by the following observations from the Wenchuan epicentral area, which is large and geologically diverse.  

In the Wenchuan shear zone, landslide toe-clustering occurs along the Minjiang river valley (Fig. 7.b). This river is entrained 

in the Wenchuan shear zone over more than 60km, where deformation of rocks is very intense (e.g. Godard et al., 2010; Liu-205 

Zeng et al., 2011). In this area, mostly Paleozoic rocks have several schistosities and intense foliation that strongly decrease 

their strength (Fig. 7 cross section A-B). The deformation is particularly intense in this zone due to the presence of resistant 

granitic massifs on both side of the fault zone (Robert, 2011). The most weakened material is downslope where the fault cuts 

the surface.  

The central part of the foothills of the Longmen Shan is characterized by two large units: the so-called “upper unit” has large 210 

lithological contrasts over short distances (~10km) due to folding and thrusting, while the “lower unit” is more uniform 

(Fig. 7.a-c cross section C-D). In the upper unit co-seismic landslides have a coherent toe-clustering pattern, whereas the 

lower unit has a clear crest-clustering pattern (Fig. 7.a and S14.b). A strong concentration of landslides is observed on lower 

slope segments along the Beichuan fault, especially up to the Jinhe and Mianyuan rivers branches (Fig. 7 and S14.b). Around 

this fault, massive Permian dolomites top the cataclastic Triasic rocks, which crop out along the Tuojiang river, forcing 215 

failures downslope. In the area of Qiaping, between the Beichuan fault and the Pengguan massif and along the Mianyuan 

river, the Silurian and Devonian sedimentary rock layers are dipping steeply and bear traces of strong deformation, including 

pervasive schistosity. (Robert, 2011) (Fig. 7.a-c cross section E-F). There, the downslope layers could be more susceptible to 

toppling onto the riverbed. The location of landslides is thus strongly controlled by the stratigraphy (weak rocks downslope 

topped by strong rock forming the crests), bedding dip, and the fault weakening zone.  220 

In the foothills of the Longmen Shan, except the central part discussed above, crest-clustering of landslides is clearly 

dominant. In the north-eastern part, most of the landslides oversampled the crests of the large Tangwanzhai syncline 

(Fig. 7 and S17.d). In this area, the presence of this large syncline strongly influences the morphology as the crests formed 

by sandstone and limestone strata are almost parallel to the Wenchuan fault system (Fig. 7.a and c cross section G-H and 

Fig. S15 cross section I-J). Similar patterns are observed in the Sanjiang klippe and on both sides of the Tuojiang river, in the 225 

Longmen Shan Central Zone (Fig. 7, S14.a and S15 cross section K-L). These crests are made of stronger and more resistant 

rocks implying the formation of steep slopes in the direction opposite to the dip of sedimentary layering. This slope 

asymmetry is marked by a strong curvature along the crests, a configuration that could favour amplification of ground-

motion promoting toppling or wedge failures.  

Finally, in earthquake affected Crystalline Massifs of the Longmen Shan (Pengguan, Xuelang Bao and Baoxing), crest-230 

clustering is also dominant, except along the Minjiang river (Fig. 7.a).  
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Meanwhile, in the Chi-Chi epicentral area, crest-clustering is observed in the foothills made of terrace deposits and 

alternating of sandstone and shale strata (Fig. S7.c). Toe-clustering is found in the eastern part of the epicentral area where 

steep valleys, aligned major faults, cut shaly sandstones and slightly metamorphosed argilite layers (Fig. S9.c). 

In the Northridge area, crest-clustering is observed where interbedded conglomerate sandstones and shales form the crests of 235 

the Northern part of the Santa Susanna Mountains (Harp and Jibson, 1996; Winterer and Durham, 1962) (Fig. S16). There, 

co-seismic landslides preferentially occurred on the top of the scarp slopes. This configuration seems to be similar to that in 

the Tangwanzhai area of the Wenchuan earthquake (Fig S17.d). Crest-clustering is also observed in the so called badlands at 

the fringe of the Santa Clarita basin, which have formed in a homogeneous weak lithology (Fig. S9.b).  

In summary, three main types of geological effects were identified as major controls on landslide clustering: a) rivers 240 

flowing along fault zones with structurally weakened rocks, b) stratigraphic alternations of strong and weak units and c) the 

effect of the bedding on the steepest hillslopes (>26°) .  

6 Discussion and conclusion 

In this study we have systematically tested for a range of controls on the position of co-seismic landslides relative to the toe 

and the crest of hillslopes. Confirming previous studies (e.g. Densmore and Hovius, 2000, Meunier et al., 2008), we find that 245 

rain-triggered landslides occur preferentially at slope toes, likely due to high pore pressures associated with infiltration and 

fast downslope flow of groundwater in fractured rock mass, regolith and colluvium during rainfall. The location of 

earthquake-triggered landslides is, on average, higher on hillslopes than the rainfall-induced one, and displays coherent 

patterns of toe-and-crest clustering spread all over the epicentral area. Where we have identified clear patterns of crest- and 

toe-clustering within the epicentral area of Northridge, Chi-Chi, and Wenchuan earthquakes, these are due to a combination 250 

of seismic mechanisms and geological controls. 

Toe-clustering of seismically-triggered landslides occurs mainly in areas where hillslope materials are heavily fractured and 

weathered, particularly in river valleys along major fault zones, and more specifically near the fault where the deformation is 

the highest. The influence of fault zone weakening on slope stability have been documented in other contexts (e.g. Demir et 

al., 2013; Korup, 2004; Scheingross et al., 2013). In absence of particular geological structures, toe-clustering is also 255 

observed along trunk valleys in hard rock massifs where static stress can have induced severe fracturing at the base of 

topographic ridges (Molnar, 2004), and where weak stratigraphic units crop out low in mountain landscapes. Therefore toe-

clustering of co-seismic landslides appears to be explained at the first order by geological and structural controls. These 

controls add to any effects of possible downslope seismic amplification due to surface wave generation or directional effects 

(Pilz et al., 2018; Wasowski et al., 2013).  260 

Crest-clustering of co-seismic landslides is found primarily in areas without strong lithological contrasts, specific geological 

structures or away from river trunk valleys. It is particularly well developed in regions underlain by sedimentary rocks, 

where ridge crests are defined by specific beds oriented parallel to the seismogenic faults. In these particular geological 
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configurations, topographic amplification could control the landslide position. For example, in the Tangwanzhai syncline, 

the sharpest crests are oversampled by landslides (see supplementary topographic amplification, Fig. S17).  Several authors 265 

have shown that ridge sharpness promotes topographic amplification (Maufroy et al., 2015; Rai et al., 2016). The landslide 

position would thus reflect of the expression of strong ground motion in the uppermost part of the slope which can be 

explained by complex interactions of various seismic waves with both topography and lithology. The focusing of waves on 

the edges of slopes may induce sufficient amplification of the ground motion to trigger slope failures (e.g Kaiser et al., 2013; 

Stahl et al., 2014). Higher levels of amplification may be reached when the incoming wave is perpendicular to the ridge 270 

elongation (Massa et al., 2010), and thus increase the probability of failure. Moreover some authors suggest that Rayleigh 

waves, generated at the toe of the hillslope and propagating toward the ridge-crest, would produce an added inertial force on 

the sliding mass and increase the duration of ground motion, favoring upper slope failures (Jafarzadeh et al., 2015; 

Poursartip and Kallivokas, 2018).  

We do not find clear explanations for the presence of some of the large crest- and toe- clustering patterns, as in Wenchuan 275 

along the Subo river, or east of Beichuan. Additional field observations in these areas may help to document these signals.  

Our results reconsider the hypothesis of Meunier et al, 2008 since we show that the co-seismic landslide position along 

hillslopes is strongly modulated by geological features (stratigraphy and bedding) and structures (faults and folds). The 

ground motion intensity controls the landslide density (Meunier et al., 2007; Yuan et al., 2013), and seems to influence the 

distribution of the landslide size (Marc et al., 2016, Valagussa et al., 2019), but seems to be a secondary control on their 280 

positions along hillslopes in geologically contrasted epicentral areas. Hazard scenarios for earthquake-induced landslides 

should not consider only lithology-units but strive to also consider stratigraphic and structural objects that can favor 

landsliding on specific hillslope sections.  
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FIGURES 

Table 1: Details of the inventories used of earthquake- and rainfall-induced landslides 460 

Database Date Country 
Number of 
landslides 

Surface 
covered by 
landslides 
(km2) 

Trigger 
Landslides 
inventory 
origin 

Data and 
Methods 
used to map 
the 
landslides 

Pre-Chi-Chi 
1994   

- 
1999 

Taïwan 375 2.7 Rainfall 
(Marc et al., 
2015) 

Satellites 
images 

Chi-Chi 1999 Taïwan 9 272 127.6 Earthquake 
(Liao & Lee, 
2000) 

Aerial 
photographs 
and satellites 
images 

Post-Chi-Chi 
1999 

- 
2004 

Taïwan 1 647 10.1  Rainfall 
(Marc et al., 
2015) 

Satellites 
images and 
air photos 

Morakot 2009 Taïwan 17 344 225.0 Typhoon 
(Marc et al., 
2018) 

Satellites 
images 

Wenchuan 2008 
China 
(Sichuan) 

197 481 1 160  Earthquake 
(Xu et al, 
2014) 

Aerial 
photographs 
and satellites 
images 

Northridge 1999 
USA 
(California) 

11 111 25.9 Earthquake 

(Harp & 
Jibson, 
1996) 
 

Air photos 
and field 
observations 
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Figure 1: Time variation of the landslide crest-clustering Rpcrest in three watersheds in the Chi-Chi epicentral area mapped in 

Fig. 2. Chi-Chi-induced landslides sit well above the previous and subsequent rainfall-triggered landslides. 
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 465 

Figure 2: Rpcrest maps in the a. Wenchuan, b. Northridge and c. Chi-Chi epicentral area. The 3 maps are at the same scale. The 

study area are divided in macrocells of 7.8km2. Only cells of Rpcrest above the 90% prediction interval are represented (see 

Methods and Metrics). Regions of crest-clustering are colored in yellow-red. Regions of toe-clustering are colored in blue. Clear 

coherent patterns of crest- and toe-clustering are identified. The black curve delimits the 3 watersheds where Rpcrest is documented 

between 1996 and 2014 (Fig. 1). 470 
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Figure 3: Rpcrest map associated with the typhoon Morakot induced landslides in the southern west part of the Chi-Chi epicentral 

area. Only toe-clustering is observed. The black line delimits the 3 watersheds where Rpcrest is documented from 1996 to 2014 for 

rainfall and Chi-Chi induced landslides (Fig. 1).  

 475 
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Figure 4: Rpcrest as a function of seismic features: a. Median Peak Ground Velocity (PGV) (m.s-1), b. Median Pseudo Spectral 

Acceleration at 1s (PSA 1s) calculated in the Wenchuan, Northridge and Chi-Chi epicentral areas. Regional seismic parameters do 

not seem to explain landslide position along hillslopes. 

 

 480 

 

 

 

 

 485 

Figure 5: Rpcrest as a function of topographic features: a. ridge relief, b. hill shape ratio (H ridge relief, B half width of the hill) and 

c. upper over lower hillslope gradient ratio calculated in the Wenchuan, Northridge and Chi-Chi epicentral areas.  

 

 

Figure 6: Rpcrest as function of the lithologic groups of the a. Wenchuan, b. Chi-Chi and c. Northridge epicentral areas. F: flysh; 490 

SSh: mostly sandstones and shales; SC: mostly sandstones and conglomerates; L: mostly limestones; CR: crystalline rocks; TC: 

terrace deposits and conglomerates; SQA: shaly sandstones, quartzite and argillite; AS: argillite and sandstones; CA: colluvium 

and alluvium; S: mostly sandstones.  
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 505 

Figure 7: a. Structural map of the Wenchuan earthquake epicentral area (after Robert, 2011) overlaid with the Rpcrest map. b. Snapshot 

of the landslide map in a portion of the Wenchuan shear zone. Its location is reported in Fig. 7.a. Polygons with red contours 

represent the co-seismic landslides mapped by Xu et al., 2014. The yellow and blue lines delimit zones of crest- and toe- clustering 

respectively. c. Cross sections of different structural units after Robert 2011. Cross sections I-J and K-L are presented in Fig. S15.  

Complementary snapshots of the landslide map are shown in Fig. S14. GF: Guanxian fault, BF Beichuan fault, WF Wenchuan fault, Y-B 510 

F Yinxiu-Beichuan fault, QF Qinling fault. 


