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Abstract. We study a sedimentary delta prograding over a fixed adversely sloping bathymetry, asking whether a perturbation

to the advancing shoreline will grow (unstable) or decay (stable) through time. To start, we use a geometric model to identify

the condition for acceleration of the shoreline advance (autoacceleration). We then model the growth of a delta on to a fixed

adverse bathymetry, solving for the speed of the shoreline as a function of the water depth, foreset repose angle, fluvial topset

slope, and shoreline curvature. Through a linearization of this model, we arrive at a stability criterion for a delta shoreline;5

indicating that autoacceleration is a necessary condition for unstable growth. This is the first time such a shoreline instability

has been identified and analyzed. We use the derived stability criterion to identify a characteristic lateral length-scale for the

shoreline morphology resulting from an unstable growth. On considering experimental and field conditions we observe that this

length scale is typically larger than other geomorphic features in the system, e.g., channel spacings and dimensions, suggesting

that the signal of the shoreline growth instability in the landscape might be "shredded" by other surface building processes,10

e.g., channel avulsions and along shore transport.

1 Introduction

Shorelines are the moving boundary between land and sea, and their evolution is of great importance to the estimated ten per-

cent of the global population that live in their proximity (Wong et al., 2014). Shorelines are also an area of scientific interest,

because their shape records information about the processes that formed them. While significant progress has been made in15

characterizing shoreline shape (Shaw et al., 2008; Geleynse et al., 2012), inferring formative processes from shoreline shape re-

mains a challenge. Galloway (1975) recognized that qualitatively, the shape of a delta shoreline reflects the relative importance

of waves, tides, and fluvial input, but using shoreline shape to assess the strength of these processes quantitatively remains

an open challenge (Nienhuis et al., 2015; Baumgardner, 2016). Part of the challenge may lie in the susceptibility of shore-

lines to instabilities. For example, an instability associated with high-angle waves results in the self-organization of regular,20

quasiperiodic shoreline features (Ashton and Murray, 2006). Another type of instability important for deltaic shorelines is the

channel-forming instability. Although unchannelized sheet flow can be observed in nature on some alluvial fans, channelized

flow is more common. This has been ascribed to the instability of sheet flow, tending to evolve towards a channelized state
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Whipple et al. (1998). This instability can be expected to manifest itself in the shape of the shoreline, with areas near channels

receiving the most sediment and therefore prograding faster relative to the rest of the shoreline.

Here our interest will focus on a new mechanism that might drive the instability of an advancing delta shoreline. Our

motivation is the recent works from Hajek et al. (2014) and López et al. (2014), who have studied the growth of a sedimentary

delta under a condition of a "back-tilted" subsidence rate; a condition that resulted in the water depth ahead of the shoreline5

decreasing with distance (i.e., the delta builds on an adverse slope). Such scenarios can arise in foreland basins where the

sediment supply is sufficiently high relative to subsidence for progradation to occur, if a prograding delta approaches the

opposite side of a lake or reservoir, or if the delta toe encounters an adverse slope on an offshore bar. In a one-dimensional

modeling and experimental study López et al. (2014) indicated that, for some combinations of sediment input and subsidence

style, delta progradation on an adverse slope could exhibit a positive acceleration; referred to as autoacceleration. We think that10

such a behavior could be a critical ingredient for the onset of unstable growth. To see this, imagine a two-dimensional, in plan

view, growth scenario with an advancing planar shoreline front. Under an autoaccelerating regime any "blip" (perturbation) in

the growth direction along the shoreline front could find itself in a location which is more favorable for growth. In this way,

it is possible that, under the right conditions, rather than being consumed by the advancing planar shoreline, this "blip" will

accelerate away and provide a potential driver for an unstable morphological break down of the planar shoreline. Indeed, the15

two-dimensional delta growth experiments from Hajek et al. (2014) underscore this possibility by observing "a tendency for

shorelines to run away seaward in response to base-level fall in back-tilted basins".

In exploring the possible instability associated with autoacceleration, we will appeal to the analogy between solid/liquid

phase change processes and delta shoreline advance (Swenson et al., 2000; Voller et al., 2004; Capart et al., 2007; Lorenzo-

Trueba et al., 2009; Voller, 2010; Ke and Capart, 2015; Lai et al., 2017). This analogy is based on the construction of a shoreline20

mass balance condition, equating the sediment flux arriving to the rate of its advance—a condition directly analogous to the

phase change interface heat balance Stefan condition in melting problems ( Crank (1984)). The original shore balance proposed

by Swenson et al. (2000) has been recently modified by (Ke and Capart, 2015) to account for the shoreline planform curvature.

Recognizing the extensive work related to the role of curvature in the morphological instability of growing interfaces (Mullins

and Sekerka, 1963; Sekerka et al., 2015; Paterson, 1981; Li et al., 2004, 2009; Zhao et al., 2016), this modification allows us25

to expand the so called Swenson/Stefan analogy to develop a criterion for an unstable delta shoreline advance.

Principally, we are interested in answering a number of key questions:

– Under what conditions would an unstable shoreline growth arise and how would it evolve over time?

– What, if any, is the connection between autoacceleration and an unstable shoreline growth?

– What would be the characteristic length scale of the instability and how does this scale compare to other geomorphic30

length scales in deltaic shoreline settings, e.g., channel spacings?

To set the stage for our study, we adopt the delta geometry used in the López et al. (2014) model and then, on invoking the

additional simplifying assumption of a static basin with a constant water level, we arrive at an explicit criterion for the onset of
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autoacceleration. To see and understand how such a condition may lead to an unstable growth condition, we further perform

a linear stability analysis of the Ke and Capart (2015) shoreline condition, identifying the criterion when a specified small

perturbation on a planar autoaccelerating shoreline front would be expected to grow, i.e., become unstable.

2 A Geometric Model

The one-dimensional model recently present in López et al. (2014) assumed that the growth of a delta into a basin with a5

back-tilting hinged subsidence rate would, under the supply of a constant unit sediment flux q at the origin x= 0, maintain

a similar geometry with fixed positive topset (ST > 0) and foreset (SF = tan(α), α ∈ [0, π2 ]) slopes. Here we retain these

geometric assumptions but invoke an additional assumption that the delta builds onto a basement with a fixed (non-subsiding)

slope SB ; a limiting simplification, that allows us to directly arrive at an explicit condition under which autoacceleration will

occur. This geometric model is schematically represented in the cross-section (long profile) shown in Fig.1. If we assume that10

this schematic is for a one-dimensional planar growing delta, an analysis of the change in area of the deposit cross section due

to a small incremental advance of the shoreline x= `(t), leads to the following expression for the shoreline speed

v =
d`

dt
=

q

`ST +D
, (1)

where D is the water depth at the point where the foreset toe meets the basement. The water depth can be determined in

two ways, in terms of the foreset length, i.e., D = Lsin(α) or, after appropriate geometric algebra, in terms of the shoreline

position, i.e., D = `SB+D0

1−SB
SF

, where D0 is the constant water depth at x= 0. On taking a further derivative in time we arrive at15

an expression for the acceleration of the shoreline

a=
d2`

dt2
=−q d`

dt

[ST + SB

1−SB
SF

]

[`ST +D]2
, (2)

note, dD/d`= SB

1−SB/ST
. To exhibit autoacceleration, the value of a will need to be positive, requiring that the numerator in

the last term on the right hand side of Eq.(2) will need to be negative, which, in turn, implies that, under the assumption of a

fixed basement, an explicit condition for autoacceleration can be written as

SeB =
SB

1− SB

SF

+ST < 0, (3)

where we define SeB to be an effective basement slope. Note this condition tells us that, since the topslope, ST , and foreset20

slope, SF , are always positive and SB < SF , we will only observe autoacceletration when the basement slope is adverse, i.e.,

SB<0. In fact, after some algebra, we see that for autoaccelertaion, we need at an adverse basement with an absolute slope value

|SB |> bST , where the always positive prefactor b= (1−SB/SF ). We expect the value of this prefactor to range between 1,

when −SB << SF , and ∼ 2 when the basement and foreset slopes are close in value, −SB ∼ SF .

As we noted above, while meeting the autoacceleration condition, SeB < 0 may lead to unstable shoreline growth, it is not25

clear if the occurrence of autoacceleration is sufficent for such a behavior. For example, the geometry (e.g., curvature) of a
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Figure 1. Schematics of sediment delta cross-sections depositing on to a fixed basement with an adverse slope SB < 0. The topset slope is

ST > 0 and the submarine foreset has angle α, length L(`), and a depth of D(`) at the point where its toe touches the basement.

shoreline perturbation on an accelerating front might retard its further growth. In order to arrive at a more rigorous condition

for shoreline stability, we need to develop a treatment that can account for plan-form perturbations of the planar front. Such

a treatment will require a more sophisticated model for the partitioning of the sediment between the fluvial and submarine.

Towards this end, we develop a linear stability analysis for a two-dimensional plan view shoreline that uses the local shoreline

mass balance proposed by Ke and Capart (2015).5

3 A Linear Stability Analysis

The key ingredient in the analogy (see Swenson et al. (2000)) between the advance of a sediment delta front into a standing

body water and the tracking of the liquid/solid Stefan melting front is the determination on how the sediment arriving on the

land side of the shoreline is deposited into the submarine. In the one-dimensional Swenson analogy this involves a simple

distribution of the excess sediment arriving at the shoreline to maintain a submarine foreset of constant slope, see Fig.1, a10

device that leads to a relationship between the speed of the shoreline advance and the land-side sediment supply. The major

contribution in the work by Ke and Capart (2015) is to generalize this relationship to a case where the growing delta has a

two-dimensional planform (x in the seaward direction and y in the lateral), i.e., from Eq. (23) in Ke and Capart (2015), the

shoreline evolves as

∂x

∂t
·n=

J ·n
sinα(L(x)+ 1

2κL
2(x)cosα)

, (4)

where x is the Cartesian position vector for a point on the shoreline, J ·n is the unit sediment flux (+ pore space) arriving to15

the landward side of the shoreline (essentially the excess material that can be used for shoreline advance), n is the seaward
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pointing unit normal on the shoreline, α is the angle of repose of the foreset, L(x) is its length, and κ is the plan-form curvature

of the shoreline. We will use this more general shoreline condition as the basis for our linear stability analysis.

In the case of a planar shoreline (curvature κ= 0) at position x= `(t), under our assumptions of a fixed a fluvial slope and

constant unit discharge, J ·n= q−ST ` ˙̀ and the condition in Eq. (4) reduces to

˙̀ =
q−ST ` ˙̀
Lsinα

(5)

where ˙̀ = ∂`/∂t= v, the planar front velocity. On recognizing that Lsinα=D, where D is the depth of the foreset toe, we5

see that this equation can be rearranged as ˙̀ = v = q/(`ST +D), matching our geometric mass balance model in Eq. (1)).

The starting point for our stability analysis is to introduce a small perturbation of the planar front with the form

x(t,y) = `(t)+ εδ(t)cos(ky), (6)

where, with reference to Fig. 2, δ(t) is the amplitude of the perturbation, the parameter ε� 1, and k is the wave number,

related to the wavelength of the perturbation through λ= 2π/k. This step allows us to ask whether a small perturbation to

the shoreline will shrink back to the advancing front (stable) or if it will accelerate away from it (unstable)? With the given10

perturbation, we note that, to the first order O(ε), the velocity vector of the front and the shoreline sediment flux vector at any

given lateral location y, are still in the x-direction, i.e.,

∂x

∂t
·n= ˙̀+ εδ̇ cos(ky), (7)

and

J ·n= q−ST ` ˙̀− εST (`δ̇+ ˙̀δ)cos(ky). (8)

In addition we note that curvature of the perturbation is given by

κ= εk2δ cos(ky), (9)

and the foreset length at any given lateral position y is15

L(y) = L(`)+ ε
dL(`)

d`
δ cos(ky) = L(`)+ ε

SeB −ST
sin(α)

δ cos(ky), (10)

the last term on the right obtained by using the definitions in and around eqs (2) and (3). On substitution of these expansions

(Eqs.(7—10)) into the shoreline condition (Eq.(4)), after some algebra and the matching of O(1) and O(ε) terms, we arrive at

the following relationships for the rate of shoreline advance (c.f., Eq.(5) and perturbation amplitude growth

˙̀ =
q

D(`)+ST `
, (11)

δ̇ =−


S

e
B + k2D2(`)

2SF

D+ST `


 ˙̀δ. (12)
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We imagine the delta is constructed by introducing a constant unit sediment flux q
[

m3

m s

]
at x = 0 along the line

0 ≤ y ≤ 2π into a water body. We assume as h(x, t) builds the surface of the subaerial part of the sediment wedge maintains
a constant slope, (i.e., −(∂h/∂x) = ST ). We consider the shoreline is a perturbed line, i.e. x(t, y) = l(t) + ϵδ(t) cos(ky) (Fig.
1). The curvature κ up to O(ϵ) is given as

κ = ϵk2δ cos ky. (1)

We have
L(x) = L(l) + ϵL′(l)δ cos ky. (2)

n

εδ

sediment

water

Figure 1: Schematic diagram of a perturbed line with mode k = 4.

From [1], we know the normal velocity as

∂X

∂t
· n =

J · n/(1 − ψ)

sinα(L(x) + 1
2κL

2(x) cosα)
. (3)

Using mass conservation, we have the local flux J · n = q − ST ll̇, where dot represents the derivative with respect to time.
To derive the local flux, we first compute the volume of the sediment above the water

Vs(t) =
ST

2

∫ 2π

0

x2(y, t)dy (4)

=
ST l2(t)2π

2
. (5)

Thus J · n =
q ∗ 2π − V̇

2π
= q − ST ll̇.

Plugging the local flux and Eqs. (1) and (2) into Eq. (3), we have

l̇ =
q

L(l)(1 − φ) sinα+ ST l
(6)

δ̇

δ
= −L′(l) + k2L2(l)

2 cosα

L
l̇ (7)

(
δ

l
)−1 d

dt

δ

l
= − I

L
l̇, (8)

1

l(t)

Figure 2. Schematic diagram of a perturbed shoreline

On noting the strictly nonnegative nature of most of the terms in this expression, it follows that for an unstable growth—an

increase of the perturbation amplitude with time—the numerator in the bracket term on the right hand needs to be negative,

i.e., the condition for unstable shoreline growth is

SB

1− SB

SF

+ST = SeB <−
k2D2

2SF
, (13)

This criterion states that an unstable growth requires the presence of an adverse effective basement slope SeB < 0, i.e. the

autoacceleration condition in Eq. (3) is a necessary condition for unstable shoreline growth. Indeed, we note that in the limit of5

α→ π/2, where the foreset slope, SF →∞, becomes a "cliff face", the stability criterion is identical to the autoacceleration

condition.

At this point we need to emphasize three possible limitations of our analysis. In the first place while Ke and Capart (2015)

offers the most general and correct treatment available for the relationship between sediment supply and shoreline front advance

it is limited by the assumptions of a constant water level and fixed basement bathymetry. Secondly, our treatment neglects the10

possible role of lateral sediment transport (Ikeda, 1982; Parker, 1984). Hence, a strict interpretation of any findings based on

our stability criterion needs to carry the rider that they may only be applicable to systems where subsidence, sea-level changes,

and the role of lateral sediment transport can be ignored. Finally, we have assumed the delta is fed by a constant unit sediment

discharge and we recognize that temporal changes in the sediment supply may exert additional control on the stability of its
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growth. Nevertheless, we feel that the consequences of the stability condition in Eq.(13), examined in detail below, reveal

important features on the nature of delta shoreline growth in the presence of adverse basement slopes.

4 Disscussion

Now that we have established that the condition of autoacceleration can lead to unstable growth of a Delta shoreline we

need to consider two issues. How, under a given set of conditions, will a shoreline instability evolve? and What length scales5

(wave-lengths) will the resulting instability exhibit?

4.1 Evolution of the Instability

In our analysis of the instability the obvious place to start is to explore the shape of the stability region and develop an

understanding of how unstable shoreline perturbations might evolve with time. To provide a physical context that enables us

to analyze our stability criterion under conditions that are consistent with realizable experimental systems we consider the10

XES10 experiment reported in Hajek et al. (2014), an experiment specifically designed to study the growth of shoreline in the

presence of a back-tilted (adverse) subsidence. We will use this experiment to extract reasonable slopes values for our analysis.

Thus, following Hajek et al. (2014) the top slope is set as ST = 0.03 and, unless we state otherwise, the foreslope will be set as

SF = tan(π/4) = 1. Further, consistent with our analysis here, we will neglect subsidence and assume that the final basement

profile, reported in Fig 2. of Hajek et al. (2014), prevails through out time. This later choice provides, in x > 1.6 m downstream15

of the sediment input, the water depth relation D(x) = 0.95− 0.2(x− 1.6) m, an adverse basement slope of SB =−0.2, and

an effective basement slope of SeB = SB

1−SB
SF

+ST =−0.1666+ .03 =−0.1366.

To illustrate the shoreline stability region, under XES10 conditions, we use Eq.(13) to plot the water depth at the toe D

against the basement slope SB for four different values of the foreset slope SF = tan(α), Fig. 3[a]. In making these plots, for

convenience of presentation, with no real loss of generality, we have arbitrarily set the wave number k = 1. It is evident that the20

unstable region gets larger as SF increases. In particular, the most unstable scenario (corresponding to α= π/2) is, as noted

above, the criterion for autoacceleration. To further explore these stability plot, let us consider three points PA,PB and PC .

The point PA(SB =−0.2,D = 0.783m) belongs to the stable region indicating the shoreline perturbation decays, δ̇(t)< 0.

The point PB(SB =−0.2,D = 0.523m) is exactly on the boundary separating the stable and unstable regions, indicating the

growth rate of the perturbation is zero, δ̇(t) = 0. The PC(SB =−0.2,D = 0.235m) is in the unstable region indicating the25

shoreline perturbation grows, i.e. δ̇(t)> 0.

In our study of evolution of an unstable shoreline we will consider the advance of a shoreline on the XES10 final basement

profile. Here we will set the initial shore line position at `(t= 0) = 1.65m down stream of the sediment input and impose the

slightly perturbed initial shape x(0) = `(0)+δ(0)cos(y), where δ(0) = 0.05 m, and a lateral extent of y ∈ [0,2π] m. With these

values, on scaling the time so that the input unit flux is q = 1, the analytical solution of the linear theory in Eq. (12) gives30

δ(`) = 0.426
e`(−0.5037+0.0508`)

(7.743− `)0.8025 m, (14)
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where the advance of the bulk shoreline with time is

`(t) =
1.27−

√
0.979− 0.37t

0.17
m. (15)

In Fig. 3[b], we plot the absolute size of the perturbation δ as a function of the bulk shoreline position `. The shoreline starts

from the stable point PA, with a depth at the toe ofD = 0.783m. The initial progradation is in a stable regime and the amplitude

of the perturbation decreases. The minimum amplitude 0.0425 is reached at `= 3.21, point PB . Here the the growth rate of the

perturbation is zero but beyond this point we enter the unstable regime where the perturbation grows and the shoreline becomes5

unstable (e.g see point PC).

We can also use the above conditions to test the the validity of the linear theory used in the derivation of the stability

criterion, Eq. (13). In particular, following an approach used in previous works (Li and Li, 2011; Zhao et al., 2016) we have

developed a semi-implicit boundary element like scheme to compute the nonlinear dynamics of a shoreline. In these nonlinear

computations, we measure the growth of the perturbation as δ(t) = max ||x| − `(t)|, where x is the position vector of the10

shoreline. The linear prediction is in excellent agreement with our nonlinear results, see Fig. 3[b], in particular we note that, in

the non-linear analysis, the minimum perturbation 0.0428 is reached at position `= 3.19—values close to the linear analysis

counterparts of 0.0425 and 3.21. Moreover, we have performed a series of simulations using different initial perturbations, and

confirmed that the difference between the linear and nonlinear results is indeed O(ε2).
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Figure 3. [a] The stability region of the absolute criterion for different foreset slopes SF with k = 1 and ST = 0.03. When SF = 1, the point

PA is in a stable region, the point PB is on a boundary between the stable and unstable region, and point PC is in an unstable region. [b] The

amplitude of the shape perturbation δ as a function of bulk shoreline position `, in the case where the initial t= 0 shape of the shoreline is

x(t= 0) = 1.65+0.05cos(y), the foreset slope is SF =1, and there is a linear variation, 0.95− 0.2(x− 1.6)m, of the water depth.
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4.2 Choice of characteristic Length scale

Following the typical approach of a morphological instability analysis (see Sekerka et al. (2015) ) we can look for two charac-

teristic wavelengths associated with our shoreline perturbations. The first of these is the wavelength associated with the fastest

growing wave number; given sufficient time, we would expect this to be the dominant wavelength of the evolving instability.

The second, is the the wavelength associated with the wave number at which the amplitude of the perturbation neither grows5

or decays—the neutral wavelength.

In the case that the initial perturbation exhibits a number of modes, x(y,t) = `(t)+ ε
∑∞
k=1 δk(t)cos(ky), each mode in-

dependently evolves following Eq. (12). In this circumstance, we can determine, essentially by direct inspection of Eq. (12),

that the fastest growing wave length would be associated with the wave number k = 0, corresponding to an infinitely long

wave length—recall that wavelength λ= 2π
k . This presents something of a conundrum, while an infinite wavelength is math-10

ematically consistent with our analysis it is unlikely to be physically achievable. Rather, we would expect that the dominant

wave-length observed, in a given system, would be set by the lateral size of the system ( e.g., the width of an experiment, or

the distance between channels).

Perhaps a better length scale to characterize the nature of unstable shoreline growth is the neutral wavelength. On appropriate

rearrangement, this wavelength can be calculated by substitution of the wave number definition k = 2π
λn

in to our the stability15

criterion (Eq.(13)),

λn =

√
2πD√
−SFSeB ]

, −SB > 0, (16)

The value of λn provides us with a minimum lateral length-scale for the resulting morphology of the growth of an unstable

shoreline.

4.3 Values of Neutral Wavelength in Experimental and Field Systems

Our contention is that, determining the possible values of the neutral wave length in experimental and field systems will inform20

us on the expected length-scales of the instability in delta shoreline growth along adverse basement slopes.

As an example, let us again consider the end-point conditions found in the XES10, Hajek et al. (2014) experiment. In this

case, as the sediment toe advances onto the adverse slope, the neutral wavelength Eq.(16) linearly decreases from a value

of λn(1.6) = 11.41m to a value, at the maximum length of the experiment, of λn(5) = 3.24m. Hence, in this experimental

system, we see the influence of the unstable growth on the dynamics of the shoreline motion is at a large-scale, close to or25

beyond the lateral dimension of the system, y = 3m (Hajek et al., 2014). Note, extending the length of the adverse slope to

the point where the water depth D→ 0, would allow smaller wavelengths to become unstable. For example, at x= 6.3m

(D = 0.1m), the neutrally stable wavelength is λn(6.3) = 0.12m . At this point, however, there is a very limited remaining

longitudinal domain over which the instability can develop.

As for the determining values of neutral wavelengths that could be characteristic of field settings, we consider predic-30

tions from Eq.(16) using data from two adverse slopes in natural settings. First, in recognition of the active delta building
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in Wax-lake/Atchafalaya Bay area in the Gulf of Mexico Wagner et al. (2017), we use the 1935 pre-growth bathymetry data

(Atchafalaya Bay, https://www.ngdc.noaa.gov/mgg/bathymetry/estuarine/). We stress that our intention here is not to model

the growth of specific deltas in this system but rather to use the pre-delta bathymetry data to provide constraints on the spacial

extent and values of pre-existing basement slope regimes in a field setting. Toward this objective, we have selected a sampling

region (3km lateral, 6km longitudinal), 10km off-shore of the Atchafalaya outlet. Figure 4 shows the location of three longitu-5

dinal profiles that span this system. These profiles indicate that, on average, the sample region has a persistent adverse slope

SB =−0.00015 in the off-shore direction, along which the water depth changes from approximately 1.8 to 0.9 m. If we assume

that the foreset is SF = 0.0002 and set the topset slope as ST = 0.00007 (values consistent with the current day slopes on Wax

Lake delta (Shaw et al., 2016; Wagner et al., 2017)), we see that, as a shoreline advances along this adverse slope, the predicted

neutral wavelengths (Eq.16) are, compared to the system size, relatively large. Linearly decreasing with off-shore distance, we10

obtain values ranging from λn ≈ 142km to 71km. The two deltas growing in the modern Atchafalya Bay are around 10 km

in diameter, smaller than the predicted neutral wavelength, so we are led to conclude that if these advancing deltas were to

encounter an adverse slope the indication of the resulting unstable growth would not be observable.

As a larger-scale field example, we consider the Torok formation in the Colville basin, as reported by Houseknecht et al.

(2001). This formation displays clinoforms prograding over an adverse basement slope associated with a foredeep. Based on15

the schematic cross-section shown in Figure 7B of Houseknecht et al. (2001), we can estimate the adverse basement slope over

which the shelf-margin prograded. Over a distance of roughly 200 km, we measure a steady decrease in the clinoform height

from around 1900 to 710 m. Assuming that the clinoform heights correspond to basin depth, a minimum estimate of |SB | is

6× 10−3. This estimate is a minimum, because it does not account for relative sea level rise, which would cause the basin

depth to increase over time. We measure a foreset slope of roughly 0.03, which is consistent with typical values for continental20

slopes. While we do not have an estimate for ST available, it is reasonable to assume that it is small relative to the basement

slope we measured. Based on these values, we obtain an estimate for the neutral wavelength λn that ranges from 689 to 257

km, decreasing as the shelf margin progrades into shallower water. The cross-section reported in Houseknecht et al. (2001)

spans a distance of 450 km, so here we see that the estimated neutral wavelengths are on the order of the system size.

5 Conclusions25

In this work we have used a geometric model and a linear stability analysis to investigate conditions under which the progra-

dation of a planar sedimentary delta shoreline could become unstable, i.e., a condition where a perturbation of the shoreline

will grow faster than the shoreline advance. Under the conditions of a constant unit discharge and a non-subsiding basement,

we find that:

– A geometric model provides a simple condition for determining the onset of autoacceleration, the positive seaward30

acceleration of the shoreline. This model shows that a necessary condition of autoacceleration is an adverse basement

slope with an absolute value exceeding the value of the topset (fluvial) slope; the amount of excess required to trigger

autoacceleration increases as the absolute value of the ratio of basement to foreset slope increases.
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Figure 4. Atchafalaya 1935 bathymetry data. The left panel shows the location of 3 profiles of length ∼6km, the profiles start ∼10 km

off-shore, are a direction normal to the shoreline, and cover a lateral range of 3km. The panel on right provides the bed elevations along each

of the profiles; the average slope of these profiles, is taken as SB =−0.00015

– A linear stability analysis shows that, in an autoacceleration condition, the growth of a delta shoreline prograding on

a fixed adverse slope will become unstable, i.e., lateral perturbations on the shoreline, greater than a particular neutral

wavelength, will grow faster than its bulk advance.

– The analysis indicates that the fastest (dominant) growth perturbation wavelengths, are at the lateral size of the system

under consideration.5

– In experiment and field systems the neutral wavelength of the perturbations (the wavelength at which there is no growth

or decay) is expected to be large; in excess of the widths of experimental systems and well beyond delimiting field length

scales such as distributary channel spacings.

Thus while we have clearly provided a positive answer to the question of this paper, "Can the growth of a deltaic shoreline be

unstable?" we can also conclude that observing clear signals of unstable growth in typical experimental and field delta systems10

would be unlikely. In other words, while delta building along an adverse basement slope is unstable, the resulting signal of

the shoreline growth instability in the landscape will probably be "shredded" by other surface building processes, e.g., channel

avulsions and along-shore transport.
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