
Reply to Reviewers – Smith, Rheinwalt, and Bookhagen

Reviewer #3:

The paper by Smith et al. argues that, for a given airborne lidar dataset, there exists an optimal
resolution which minimizes the impact of both gridding errors and any uncertainty in the DEM in
the calculation of topographic metrics.

I think this paper should eventually be published but I have serious concerns about the analysis
that I urge the authors to consider prior to publication.

Thank you for your detailed comments, thorough review, and time spent with the
manuscript and code. We have done our best to respond to each of the comments
individually, and make appropriate changes to the MS.

Specific Comments:

1) I am concerned with how the authors created their DEMs. When I create a DEM of a
mathematical function I sample the function at regularly spaced points. The resulting DEM is an
incomplete representation of the surface but it is an accurate representation where the function
is sampled. When I compute slope and aspect using DEMs created this way there are errors
associated with discretization, but they are small and converge to zero as the pixel size
becomes small.  As such, I was surprised by magnitude and types of errors computed by Smith
et al. for their synthetic cases.

When I looked more closely, I saw the reason for this discrepancy. If I am interpreting the code
https://github.com/UP-RS-ESP/TopoMetricUncertainty/blob/master/gaussian_hill_example.py
correctly, Smith et al. have generated their DEMs of Gaussian hills by randomly sampling a
Gaussian function and then computing the mean elevation of those random samples within
each domain. None of this is explained in the manuscript in the section on synthetic data
analysis. Since no information is given, I have no idea how many random samples were used to
compute the mean value, or why the authors choose to use the mean value. When scientists
grid data from a point cloud, they generally use Independent Distance Weighting (IDW) because
this method weighs measurement points close to the sample location more heavily than points
father from the sample. The author’s approach is not an interpolation of any kind – it treats
measurements points far from the DEM grid point location (x_i, y_j) equal to those close to the
grid point location. DEM values are supposed to represent the elevation at each point on the
surface. DEMs are never supposed to represent the mean elevation within some square
domain. Yet, that is how they have been created in this manuscript and I believe that much of
the error that the authors are studying is due to the nonstandard way that they have created
their DEMs. To address this issue, I urge the authors to explain how their DEMs are created and
use IDW to create the DEMs from the point cloud. I would further urge the authors not to
assume a random sample in their synthetic DEMs, since lidar data are not a random sample.
Before this error is fixed it is difficult to even fully review the paper. However, I will do the best I
can, recognizing that this can only be a preliminary review until the DEMs are properly
computed.

We believe that there has been a substantial misunderstanding of our methods here,
and we would like to clarify that we do not randomly sample a Gaussian function for our



synthetic data analysis, but rather sample a mathematical function at evenly spaced
points, as the reviewer suggested is best practice.

In our github code, we provide two forms of synthetic data, one which is representative
of a point cloud, and one which is created natively on a grid using equal-spaced
sampling as expected by the reviewer. The functions found here: https://github.com/UP-
RS-ESP/TopoMetricUncertainty/blob/master/surfaces.py are used to create our synthetic
data that are used in the first part of the MS. We do not create a point cloud and take a
mean of randomly-sampled points, as the reviewer suggests, but rather calculate the
mathematical value of the given exponential term in the Gaussian function at each
sampled (x, y) coordinate. This is explained in the MS on page 4, line 10, although we
agree that this could be made more clear by explaining our gridding procedure or linking
to the specific code used to create the surfaces. The secondary set of code that the
reviewer linked to is a toy example with synthetic lidar data, and is not used in the MS.
During data analysis and manuscript preparation we explored the impact of randomly
sampling points akin to a lidar dataset. We were especially interested in the impact of X-
Y offsets (gridding data with an uncertainty in the X/Y location) and point clustering. We
do not present these results in the manuscript (as they would extent the already long
manuscript even more), but kept this part of the code on the github archive. We have
updated the Github landing page to be more explicit as to what each piece of code does,
and which are used in the MS.

Given that we simply sample our Gaussian function at each point on our grid in equal
steps, we can also sample the slope and aspect of that function (see Equations 1, 2),
which are well-known at each point of our grid for a differentiable function. We then use
those ‘perfect’ samples of slope and aspect at each sample point to compare to the
slope and aspect grids calculated on our ‘perfect’ elevation grid using various algorithms.
When we compare the computed difference of our 4-neighbor method to the derived
values of TE on the same ideal grid (compare MS Figure 3 and Supplemental Figure 2),
the magnitudes and directions are the same. We thus conclude that our TE model
accurately captures the magnitude of algorithm-induced error on the synthetic surface.

We also believe there was also a misunderstanding of our methods with concern to the
generation of the DEMs from the lidar point cloud. To clarify, we have generated our
lidar DEMs using a triangular irregular network (TIN) approach, which is also widely
used in the lidar community and implemented by LASTools (e.g., Isenburg et al, 2006).
This is an alternative method to the weighted mean provided by IDW techniques, and
also results in reliable lidar DEMs. To supplement our analysis and address the
concerns related to DEM generation, we have generated DEMs from the same source
lidar data using several alternative techniques, including IDW with several different
parameters (Table 1 of this reply, new Supplementary Table 1, and Supplementary
Figures 13-21). The difference between these elevation models is very small (see Figure
1 of this Reply and Supplementary Figures 13-21). For detailed processing
methodologies, we refer to our manual here:
https://github.com/BodoBookhagen/Lidar_PC_interpolation



Table 1 – List of lidar interpolation schemes used in the preparation of this manuscript. We use the TIN method from
LAStools as our primary data source, but have also examined DEMs created with each other method. We refer to
Supplementary Figures 13-21 for detailed comparisons of Elevation, Slope, TE, and PEU for each DEM generation
method. One figure is also presented below in Figure 1 of this reply.

Figure 1 – Impact of changed DEM interpolation method on a 1m DEM. Left column shows difference for a zoomed in
region of SCI for (A) elevation, (C) slope, (E) TE, and (G) PEU when a simple inverse distance weighting scheme is
used as compared to the TIN method discussed in the MS. Color bar scaled from 5 th to 95th percentiles. Right column
shows the density histogram of the differences for the whole Pozo catchment. Red lines represent the 25th and 75th

percentiles, with a black line centered on zero. Histograms scaled between 5th and 95th percentiles.  While elevation
differences are relatively small, they engender much larger slope errors. The difference in calculated TE and PEU
between methods remains small.



Regardless of what gridding method is used, there will be some uncertainty in the
derived elevation grid. This uncertainty is modified by the terrain type, accuracy of the
lidar data, sampling scheme, and many other factors (as mentioned in the MS, page 12,
Line 14). While we agree that we do not have a perfect error model – we assume that
the standard deviation of the community of points in each lidar grid cell search radius is
representative of the uncertainty in that lidar point elevation – we argue that the TE and
PEU effects we see are independent of the error model used. We have experimented
with different error models, including preferentially selecting more reliable points with
lower scan angles (Rheinwalt and Bookhagen, 2018), but the spatial distribution of
errors remains similar. Importantly, if a different error model exists, it can be directly
included in our approach. Elevation uncertainty will be propagated into the slope and
aspect calculations regardless of the DEM used, and the effect of DEM uncertainty on
slope and aspect calculations will increase as the spacing of the DEM approaches the
uncertainty magnitude.

2) I am having difficulty understanding the error equations. In eqns 4 and 5 there is a partial
derivative with another partial derivative / as a subscript. I have never seen this
syntax before. What does it mean? I am also confused by the reference to epsilons as
uncertainties. In the paper, the epsilon values used to compute TE are computed using the
standard deviations within each pixel, which is not the same as uncertainty. The uncertainty of a
mean value can be quantified using a standard deviation, but only after being divided by the
square root of the number of samples used to compute the mean. I am similarly confused by the
use of standard deviations without any scaling by the number of samples in the PEU
calculations.

We have reviewed the equations here, and want to clarify our notation. We used a
shorthand, which is more common in the physics community, to avoid writing double
partial derivatives. We quantify the change in topographic metrics with a change of the
topography – essentially dS / d(dz/dx), which was not clearly stated. We have
reformatted each of the equations in the updated MS to use the classic notation.

In reference to the second point, we think that the reviewer misunderstood our DEM
generation method. As we mentioned above in the reply to the first comment, we use
equally spaced samples (‘gridding’) of the mathematical function to create our elevation
metrics, so we do not have any uncertainty or standard deviation to include in our TE
calculation. We have explored these effects, but did not report them in the manuscript,
as they require further analysis and are more appropriate for a subsequent paper.

The TE, as represented by Equations 4/5, does not involve the standard deviation, as it
is based simply on the finite difference operation performed on the gridded dataset. The
epsilon metric, defined in Equation 3, is an inherent error due to the second order finite
difference approximation used here to calculate slope and aspect, and does not take into
account any uncertainty in the elevation measurements. We only introduce a standard
deviation in Equations 10/11, where the PEU is calculated independently of the TE.

We are unsure as to the reviewer’s last point “I am similarly confused by the use of
standard deviations without any scaling by the number of samples in the PEU
calculations”. The standard deviation is always calculated with knowledge of the number
of samples – the formula for STD is the square root of the sum of squared differences
from the mean divided by one minus the sample size. Perhaps this confusion is related



to the misunderstanding of our synthetic data creation methods. In any case, we
calculate our PEU formulas by propagating the standard deviation of the elevation data
into the directional derivatives used to calculate slope and aspect to arrive at a value for
PEU.

3) One of the metrics used by the authors, the truncation error is, according to the authors,
“uncertainty associated with the representation of a continuous surface as a grid.” However,
since landscapes have roughness at all scales (i.e., they are not differentiable and, more
broadly, any increase in DEM resolution almost always results in additional real features being
resolved in the topography), it is not necessarily the case that a polynomial is a better
approximation of the surface than a straight line, as implied by the truncation error and the
associated assumption that minimizing TE leads to a better result. I can see how TE would be a
useful measure if topography was smooth at small scales, but I don’t think this is supported by
observations of actual topography. To address this issue, the authors could explore and defend
their choice of TE in landscapes with microtopography present (i.e., nearly all landscapes) or
they could perform their analysis without using TE.

Our metric of TE is technique based – when a three-point difference method is used to
calculate a terrain derivative, there is always some error, excepting when the surface is
perfectly flat. If we assume that additional features will always be resolved at higher
resolutions, for example by modelling terrain as a fractal surface, slope is no longer
defined, because the surface is not differentiable. In the case of our synthetic data (the
Gaussian Hill), or with the gridded lidar data, we assume a differentiable surface, in
which case slope is defined, and we can then calculate the magnitude of the TE for our
finite-difference method. We can further test the magnitude of our TE on our synthetic
surface, as described on page 7 of the MS, and check that the magnitude of TE from the
finite-difference slope analysis matches the analytical solution for TE (compare Figures 3
and Supplemental Figure 2).

In our analysis, TE will always decrease with increasing spatial resolution – a finer grid
will have less and less truncation error, whether or not the underlying surface is smooth
or rough. However, depending on the application, one may not always want to minimize
the TE (ie, to choose only the finest available spatial resolution) as PEU has an
increasing effect at very fine scales. At the scale of microtopography, the uncertainty in
the elevation data is often as large as the microtopography being resolved – for
example, a DEM with a vertical accuracy of 10cm (the accuracy of a very good airborne
lidar dataset) can resolve 10cm high features, but cannot decide if those features are
signal or noise. The effect is even more pronounced when that DEM is then used to
calculate slope or aspect (see Figure 1 of this Reply, where small elevation differences
lead to large slope differences). At the fine scale, the PEU for slope and aspect grows
very quickly, independent of the shrinking TE. As such, we argue that there exists a
scale where the two independent errors and uncertainties of TE and PEU are co-
minimized and give slope and aspect estimations with the highest statistical reliability.

4) I don’t understand Figure 4. Part B illustrates conceptually how aspect values are pushed
away from and towards certain angles. That is not what part A shows. Part A shows that the
probability density of 91 degrees is anomalously high and that of 89 degrees is anomalously
low. The same bias towards larger values just above angles that are multiples of 45 degrees
applies to all other values. I don’t understand how this bias occurs but it is certainly not the
result of a tendency of the algorithm to result in higher values at angles that are multiples of 45
degrees, as implied by part B.



We are confident in the conceptual diagram shown in Part B, which is based on the
magnitudes of TE shown in Figure 3. There exist regions of convergence (e.g., 45
degrees is bounded by red (+) on the left and blue (-) on the right, so values are pushed
towards it) and divergence (e.g., 90 degrees). Furthermore, the magnitude of those
biases is modified by the slope of the surface – there are larger aspect biases in flat
areas (see Figure 3).

However, the reviewer is correct in noting that Figure 4A does not follow directly to
Figure 4B – this was an oversight in the MS that we have fixed. In essence, the ‘spikes’
seen in Figure 4A show the impact of the choice of aspect bin centers, not the
convergence/divergence shown in Figure 4B. As the input aspect data is on a square
grid, there are naturally more pixels at the cardinal directions. As the histogram function
uses half-open bins – e.g., [44,45) and [45,46) – there are significantly fewer points just
below the cardinal directions (and other multiples of 45, such as 22.5, etc), and
significantly more in the bin above. At the scale of our synthetic data (1001x1001 sized
grid), this translates to 1-2 extra pixels in the cardinal direction bins, which create those
spikes in the frequency distribution. The impact of switching from bins starting at 0 or 0.5
can be seen in Figure 2 of this reply.

Figure 2 – Impact of bin centers. Black lines use bins centered over integer numbers (e.g., [44.5, 45.5), [45.5, 46.5)).
Red lines use bins centered over halves (e.g., [44, 45), [45, 46)). While both binnings result in spikes in the aspect
distributions, the very large spikes at the cardinal directions are more pronounced in the centered (red) binning.

Unfortunately, there does not exist a binning which can suppress all of the spikes in the
aspect distribution of a square grid. Referring back to our original Figure 4, we only
expect the effect shown in Figure 4B to manifest with very fine binnings (on the order of
the error magnitudes, 1e-4), which will only be seen in very large datasets, and should
not have an impact on our aspect bins at the scale of our synthetic data grid spacing.
For DEMs with larger truncation errors, for example a DEM with a 10-m grid-cell size, we
would, however, expect the TE to shift pixels in and out of certain aspect bins, as is
suggested by Figure 3 and Figure 4B.

In light of this clarification, we have modified Figure 1, which is also influenced by the
choice of bin centers, and removed Figure 4 so as not to cause confusion. We have also
updated text in several places in the MS where the binning effect was misrepresented as
a TE impact.



5) The most common method for determining the appropriate scale for computing slopes and
curvatures that reflect landscape-scale attributes is to plot curvature as a function of scale and
identify the scaling break following Roering et al., 2010, Evidence for biotic controls on
topography and soil production. I think this alternative should be mentioned. At present the
paper isn’t referenced.

We have added this citation as an alternative method of choosing the appropriate scale
for DEM analysis (Page 18, Line 10).
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