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Abstract. Digital Elevation Models (DEMs) are a gridded representation of the surface of the earth and typically contain

uncertainties due to data collection and processing. The topographic metrics slope and aspect contain errors and uncertainties

inherited both from the representation of a continuous surface as a grid (referred to as truncation error, TE), and from any DEM

uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect.

Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a5

quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality

metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics, and to compare calculations

on DEMs of different sizes and accuracies.

Using lidar data with point density of∼10 pts/m2 covering Santa Cruz Island in southern California, we are able to generate

DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the one-meter dataset are on average10

0.3◦ (0.9◦) from TE, and 5.5◦ (14.5◦) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of four

meters that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU

for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the four meter DEM are 0.25◦

(0.75◦) from TE and 5◦ (12.5◦) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not

necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty15

across a range of resolutions.

1 Introduction

Continuous surfaces are often projected onto an evenly sampled grid – digital elevation models (DEMs) are a common example.

The accuracy of the gridded representation of the underlying surface is controlled by the spacing of the grid, the variability of

the surface (i.e., the terrain itself), and the amount of uncertainty added during data collection and processing.20

In recent years, an ever-growing array of DEM datasets have become available across a range of resolutions and spatial

scales. As new data acquisition and processing strategies – such as lidar, stereo photogrammetry, and structure from motion

– mature, the number and variability of features represented in a DEM will grow dramatically. In this manuscript, we refer to

DEMs as high resolution when their grid spacing is low (e.g., one to three meters), and low resolution when their grid spacing

is high (e.g., a 10+ meter DEM). Across all DEM resolutions, it is important to quantify the uncertainties in DEMs, and their25
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potentially large impacts on metrics calculated from the DEM (Florinsky, 1998; Zhou and Liu, 2004; Oksanen and Sarjakoski,

2005; Wechsler and Kroll, 2006; Wechsler, 2007).

The estimation of topographic metrics, such as slope and aspect, is a common task across scientific disciplines. Slope and

aspect provide important boundary conditions for hillslope stability analysis (e.g., Montgomery and Dietrich, 1994; Tucker

and Bras, 1998) and landslide monitoring (e.g., Guzzetti et al., 1999; Ayalew and Yamagishi, 2005), geomorphic transport5

laws (e.g., Roering et al., 1999; Dietrich et al., 2003; Pelletier, 2008; Grieve et al., 2016), hydrologic applications (e.g., Band,

1986; Zhang and Montgomery, 1994; Tarboton, 1997; Pelletier, 2010, 2013) including flood risk modeling (e.g., Ouma and

Tateishi, 2014) and stream power analysis (e.g., Bookhagen and Strecker, 2012; Lague, 2014), tectono-geomorphic modeling

(e.g., Whipple and Tucker, 1999; Snyder et al., 2000; Tucker and Hancock, 2010; Kirby and Whipple, 2012; Bookhagen

and Strecker, 2012), ecologic modeling (e.g., Franklin, 1995; Guisan and Zimmermann, 2000; Thompson et al., 2001), and10

vegetation analysis (e.g., Pierce et al., 2005; Kent, 2011).

A wide range of methods have been developed to accurately derive slope and aspect from elevation data using a range

of approaches, each optimized for different use cases (e.g., Evans, 1980; Zevenbergen and Thorne, 1987; Skidmore, 1989;

Tarboton, 1997; Dunn and Hickey, 1998; Schmidt et al., 2003). For example, the methods D-8 and D-Infinity are optimized

towards hydrologic flow-routing problems, particularly on DEMs of low spatial resolution (Tarboton, 1997), and the methods15

of Evans (1980) and Zevenbergen and Thorne (1987) include some smoothing of the underlying DEM to minimize the impacts

of DEM noise. However, all of these methods contain some intrinsic error due to truncation error (TE) – the deviation of the

gridded sample from the continuous original surface (Figure 1). The TE describes the error made by truncating an infinite sum

and approximating it by a finite sum. It often includes a discretization error, which arises from taking a finite number of steps

to approximate an continuous surface. Several authors have explored the theoretical limitations of estimations of slope and20

aspect calculations on gridded surfaces (e.g., Heuvelink et al., 1989; Hunter and Goodchild, 1997; Florinsky, 1998; Abarbanel

et al., 2000; Zhou and Liu, 2004); in general, TE can be related directly to the grid-sampling – more tightly sampled grids will

deviate less from the original surface.
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Figure 1. (A) Slope and (B) aspect distribution differences from analytical solutions of slope and aspect on a Gaussian Hill, on one-degree

bins, starting from [0.5, 1.5). None of the methods perfectly match the analytical solution, with slightly different offset magnitudes. Note that

the D-Infinity method (black line) produces aspect frequency distribution errors two orders of magnitude larger than those errors produced

by the other methods. It is important to note, however, that the aspect offsets are small – on the order of 1-5 pixels per bin for the methods

excluding D-Infinity.

In addition to TE, real-world DEMs will have some degree of measurement uncertainty. The magnitude of that uncertainty

varies across data collection methods and data post-processing, but also depends on the terrain itself and is often difficult to

estimate (Heuvelink et al., 1989; Lee et al., 1992; Bolstad and Stowe, 1994; Florinsky, 1998; Fisher, 1999; Smith and Sandwell,

2003; Farr et al., 2007; Wechsler and Kroll, 2006; Wechsler, 2007; Mukul et al., 2017; Purinton and Bookhagen, 2017, 2018;

Wessel et al., 2018). Any uncertainty in elevation estimates will propagate into the calculated topographic metrics.5

The impacts of TE and DEM uncertainty on slope and aspect estimations can be quantified for any gridded data. We first

use synthetic data with known properties as a control to define generalized functions applicable to any DEM, and to develop

a quality metric for slope and aspect calculations. Following this analysis, we turn to a high-resolution lidar dataset cover-

ing complex terrain to study the spatial structure of uncertainty in topographic metrics propagating from both TE and DEM
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uncertainty. This novel approach allows us to identify the optimal grid resolution that minimizes the error bounds from the

combination of TE and PEU, and to analyze the implications of using sub-optimal DEM resolutions for calculating slope and

aspect.

2 Data and Methods

In this analysis, we demonstrate the limitations of calculating slope and aspect using synthetic data surfaces. These surfaces5

serve as a valuable control dataset, as the precise analytical values for slope and aspect at each grid cell are known. We further

add normally distributed random noise with a known mean and standard deviation to our synthetic data to investigate the

impacts of DEM uncertainty on topographic metrics. Following the discussion of synthetic data, we apply the same methods

to high-resolution lidar data interpolated to DEMs with varying spatial resolutions.

2.1 Synthetic Data10

We generate regular n×n grids of size n=11, 101, 1001 describing a Gaussian hill with a maximum height of one, with

elevations defined on a regular square grid as z = e(−x2−y2) for each (x,y) grid cell (Figure 2). A second surface describing

a sphere is included in the Supplement. It is important to note that the horizontal and vertical units for the synthetic data are

arbitrary – the grid cell spacings generated by using differently sized grids are an expression of the width-to-height ratio of

the surface. The python functions used to generate our synthetic surfaces can be found on GitHub: https://github.com/UP-RS-15

ESP/TopoMetricUncertainty/surfaces.py.

A
Grid Size: 11

B
Grid Size: 101

C
Grid Size: 1001
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Figure 2. Gaussian hill elevations at n=11, 101, and 1001. As grid sizes increase, a smoother surface is generated. Note that the horizontal

and vertical units are arbitrary and that the grid-cell spacings are an expression of the width-to-height ratio of the surface. Cross sections of

the shapes at all grid sizes can be seen in Supplemental Figure 1.
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2.2 Topographic Metrics

In this study, we focus on the topographic metrics slope S(x,y) and aspect A(x,y) which we define as,

S(x,y) =
180◦

π
× arctan

√(
∂z

∂x

)2

+

(
∂z

∂y

)2

(1)

and

A(x,y) =
180◦

π
× arctan

(
∂z

∂y
× ∂x

∂z

)
+ 180◦ (2)5

with x and y being the spatial coordinates. Key in calculating slope and aspect is the calculation of the directional derivatives
∂z
∂x and ∂z

∂y .

There exist a wide range of methods for calculating the directional derivatives on gridded data that broadly fall into three

classes: (1) four-neighborhood methods, (2) eight-neighborhood methods, and (3) steepest descent methods (e.g. Evans, 1980;

Zevenbergen and Thorne, 1987; Skidmore, 1989; Tarboton, 1997; Dunn and Hickey, 1998; Schmidt et al., 2003; Zhou and10

Liu, 2004; Oksanen and Sarjakoski, 2005). In our analysis, we use the standard second-order finite difference approximation

as implemented in Python Numpy (Fornberg, 1988; Durran, 1999), which is a four-neighborhood method. We tested additional

methods using eight-neighborhoods (e.g., singular-value decomposition plane fitting and the method of Evans (1980)) – which

provide some underlying DEM-smoothing and are well-suited to noisy DEM data – and using steepest descent (e.g., D-8

and D-Infinity (Tarboton, 1997)), which identify the steepest slope that water would take and are optimized for hydrologic15

use cases. However, these methods do not necessarily provide the most representative slope of the terrain, and show distinct

differences from the analytical solutions of slope and aspect (cf. Supplemental Figures 2 and 3). We choose to use the simple

four-neighbor method in our analysis as it results in the lowest relative error when compared with the analytical solution for

slope and aspect (Supplemental Figure 2) and does not include any smoothing of the underlying DEM.

3 Sources of Uncertainty in Topographic Metrics20

Biases in topographic metrics can be determined both numerically, by comparing the results of calculations to known values,

and analytically, by deriving the impacts of both TE and DEM uncertainty on topographic metrics.

3.1 Truncation Error

We derive the TE from the formulas of topographic metrics by propagating the uncertainty of the second-order finite difference

approximation for the directional derivatives ∂z
∂x and ∂z

∂y . Neglecting rounding errors, we assume the uncertainty ε of the25

second-order finite difference ∆ to be bounded by

∣∣∣∣∂z∂a −∆za

∣∣∣∣≡ ∣∣∣∣∂z∂a − z(a+h)− z(a−h)

2h

∣∣∣∣/ h2

6

∣∣∣∣∂3z

∂a3

∣∣∣∣= εa (3)
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where a represents either x or y, and h is the grid spacing.

The considered topographic metrics slope S(x,y) and aspect A(x,y) depend on both directional derivatives ∂z
∂x and ∂z

∂y . As

the corresponding uncertainties εx and εy are not independent, propagated TE T for slope (TS) and aspect (TA) are given by

|TS(x,y)|=

√(
∂S

∂∆zx

)2

ε2
x +

(
∂S

∂∆zy

)2

ε2
y + 2

(
∂S

∂∆zx

)(
∂S

∂∆zy

)
εxεy (4)

|TA(x,y)|=

√(
∂A

∂∆zx

)2

ε2
x +

(
∂A

∂∆zy

)2

ε2
y + 2

(
∂A

∂∆zx

)(
∂A

∂∆zy

)
εxεy . (5)5

These can be more explicitly expressed using Equation (3) as

|TS(x,y)|= 180◦

π
×

√
∆z2

xε
2
x + ∆z2

yε
2
y + 2∆zx∆zyεxεy

(∆zx + ∆zy)(1 + ∆zx + ∆zy)
2 (6)

|TA(x,y)|= 180◦

π
×

√
∆z2

xε
2
x + ∆z2

yε
2
y − 2∆zx∆zyεxεy

∆z4
x (1 + ∆zx + ∆zy)

2 . (7)

The sign of the TE is derived from symmetry considerations in the following way:

sign(TS) = sign

(
arctan

√
(∆zx + εx)

2
+ (∆zy + εy)

2

− arctan

√
(∆zx− εx)

2
+ (∆zy − εy)

2

)
(8)10

and

sign(TA) = sign

(
arctan

∆zy + εy
∆zx + εx

− arctan
∆zy − εy
∆zx− εx

)
. (9)

Equations 6-9 allow us to calculate the magnitude of the TE at each point (x,y) on our synthetic surfaces (Figure 3).
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Figure 3. Gaussian hill slope (A, C, E) and aspect (B, D, F) errors from the analytical TE. All grid sizes show clear spatial patterns in slope

and aspect errors. Offset magnitudes scale with grid size. Errors on the n=1001 grid (bottom row: E, F) are generally two orders of magnitude

smaller than those for the n=101 grid (middle row: C, D). Colors scaled from 5th to 95th percentiles of error magnitudes.

As can be seen in Figure 3, the magnitude of the slope and aspect error decreases with increasing n. This implies that as

more tightly sampled models of a surface are used, the accuracy of slope and aspect estimations increases. This follows the

work of Abarbanel et al. (2000), which shows that finite-difference derivative estimations have error magnitudes that scale

with the inverse of the grid spacing for evenly spaced grids. However, even with increasingly accurate surface models, there

remains some TE simply due to the fact that a smooth surface cannot be perfectly represented by gridded data. At very fine5

scales, computer rounding will also lead to errors in slope and aspect calculations. In this study, however, we do not use fine

enough grids for this to impact our error estimates.

As the precise mathematical definitions of our synthetic surfaces are known, we can analytically derive their slope and

aspect values at each point and compare those results to numerical calculations (see Supplemental Figure 4). In the absence

of DEM uncertainty, the difference between analytically- and numerically-derived topographic metrics will be dominated by10

the TE from the second-order finite difference approximation. Additionally, modifying the absolute magnitude of the shape
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heights (e.g., a maximum height of 100 instead of one), does not modify the absolute magnitudes of slope and aspect TE (see

Supplemental Figure 5).

Slope and aspect calculations have very different spatial error patterns (see Figure 3). However, as with aspect errors, slope

errors depend on the orientation of the grid despite the radial symmetry of the surface. This is easiest to see in the slope

difference map of the Gaussian hill, where error magnitudes are not simply scaled by slope (see Figure 3E).5

3.2 DEM Uncertainty

Elevation models are never perfect – there are always errors and uncertainties due to data collection or processing. The un-

certainty in calculated topographic metrics can be constrained by propagating DEM uncertainties into their calculations (e.g.

Heuvelink et al., 1989; Hunter and Goodchild, 1997; Zhou and Liu, 2004; Oksanen and Sarjakoski, 2005); we refer to the un-

certainty introduced into slope and aspect calculations from elevation uncertainty as propagated elevation uncertainty (PEU).10

For our synthetic data, we assume the simplistic but straight forward error model of spatially uncorrelated white noise. We de-

fine noise to be normally distributed and consider two cases: (1) homogeneous white noise, i.e., noise drawn from one unique

normal distribution N (µ= 0,σ2 = const), and (2) slope dependent, spatially varying white noise, i.e., noise drawn from a

family of normal distributions N (µ= 0,σ2
S). Since for each grid cell noise is drawn independently, the PEU for slope (ES)

and aspect (EA) is given by15

ES =

√√√√ ∑
i∈{x−h,x+h}

∑
j∈{y−h,y+h}

(
∂S

∂zij

)2

σ2
zij (10)

EA =

√√√√ ∑
i∈{x−h,x+h}

∑
j∈{y−h,y+h}

(
∂A

∂zij

)2

σ2
zij . (11)

As before, this can be expressed more explicitly using Equation (3) as

ES =
90◦

hπ

√√√√√∆z2
x

(
σ2
zx+h,y

+σ2
zx−h,y

)
+ ∆z2

y

(
σ2
zx,y+h

+σ2
zx,y−h

)(
∆z2

x + ∆z2
y

)(
1 + ∆z2

x + ∆z2
y

)2 (12)

EA =
90◦

hπ

√√√√√(∆zy
∆zx

)2(
σ2
zx+h,y

+σ2
zx−h,y

)
+σ2

zx,y+h
+σ2

zx,y−h

∆z2
x

(
1 +

(∆zy
∆zx

)2)2 (13)20

As with TE, PEU introduces distinctive spatial patterns into the slope and aspect estimates (Figure 4). Both slope and aspect

uncertainties are higher on shallow slopes, as has been shown in previous work (Florinsky, 1998; Zhou and Liu, 2004). On

flat or nearly flat terrain, the elevation uncertainty will more strongly impact the estimated partial derivatives, and thus lead to

erroneous slope and aspect estimates. It is also important to note that aspect varies between [0, 360) and slope only between

[0, 90), which is why we expect standard deviations to be different by a factor of four (see Figure 4).25
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Figure 4. Gaussian hill (n=101) slope and aspect standard deviations for spatially invariant noise (std=1e−4), derived from elevation un-

certainty propagation (Equations 12-13). Aspect has higher standard deviations than slope, as aspect varies between [0, 360) and slope only

between [0, 90). This is evident especially on flat terrain (e.g., the edges of the Gaussian hill).

When we compare our analytically-derived topographic metric uncertainty patterns (Figure 4) to those generated from actual

random noise – using an ensemble of 10,000 synthetic surfaces, each generated with normally distributed noise – the spatial

patterns and magnitudes are nearly identical between the two methods (cf. Supplemental Figure 6).

4 Optimal Grid Spacing

Both TE and PEU yield distinct spatial patterns, implying that the error and uncertainty in topographic metrics will vary5

throughout a DEM. Using both the TE and PEU magnitudes, we can examine whether TE or PEU is dominant at an arbitrary

grid spacing, given a known DEM uncertainty (Figure 5).
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Figure 5. TE and PEU magnitudes for two noise levels, (A) 1e−4 and (B) 1e−6, compared to grid spacing. Aspect plotted in black, slope

plotted in gray. Solid lines for PEU, dashed lines for TE. TE decreases with decreasing grid spacing, while PEU increases as the noise

standard deviation relative to grid spacing increases.

As can be seen in Figure 5, TE will approach zero for sufficiently small grid spacings, while PEU will rise as the amount of

noise relative to the grid spacing increases. Using both TE and PEU magnitudes across grid spacings, an optimal grid spacing

for a given noise level which minimizes their combined influence can be chosen. Note that we do not assume that the quality

of the data is maximized when the combination of TE and PEU is minimized, but that the error bounds on topographic metric

calculations are minimized. Thus, the optimal grid spacing is preferred for calculating slopes and aspects for use in applications5

where uncertainty across the entire grid should be minimized.

4.1 Metric Quality Ratios

The trade off between TE and PEU can also be thought of as a quality ratio. Simply put, the impact of DEM uncertainty on

topographic metrics is modulated by the grid spacing – i.e., 1 cm of vertical noise on a 10 m grid will have a very different

impact than 1 cm of vertical noise on a 1 cm grid. As both TE and PEU have distinct spatial patterns, a combined Quality Ratio10

(QR) can capture a holistic view of the overlapping influence of TE and PEU. The QR can be defined from the combination of

the TE and PEU as:

QR=

(
1

1 + (m× |TE|)

)
×
(

1

1 + (m× |PEU |)

)
(14)

where m is a normalization factor which accounts for the four-fold difference in the range of possible values between slope

and aspect. On a surface without noise, the QR will approach one as grid spacing and TE approach zero. The influence of TE15

10



and PEU on calculated QRs can be seen by comparing the same synthetic grid with two noise levels (see Supplemental Figure

7). High noise levels reveal similar spatial patterns to those seen in Figure 4, while low noise levels show the influence of TE

(cf. Figure 3).
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and aspect calculations. Note that the purple and yellow lines in panel B have the same optimal grid spacing, and thus only the yellow line is

visible.

The QR can also used as a normalized metric to compare DEMs across grid spacings and noise levels (Figure 6, and

Supplemental Figure 8). Each noise level/grid spacing pair has a point at which the QR of the DEM is maximized. This point5

represents the optimal trade off between TE and PEU over the entire grid.

As can be seen in Figure 6, as noise levels increase, the optimal grid spacing increases, and the QR of that optimal spacing

decreases. For very noisy datasets (purple and yellow lines, Figure 6), very large grid cell spacings – i.e., aggregation – can

help reduce the combined influence of TE and PEU on slope and aspect estimates.
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There are distinct differences between the optimal slope and aspect grid spacings for the same dataset. For any given noise

level, the optimal grid spacing to calculate aspect is higher than that for slope. The difference in optimal grid spacing is driven

by the relative magnitudes of the PEU between slope and aspect calculations – the PEU for aspect calculations is always higher

than that for slope due to differences in the formulas for slope and aspect (see Figure 5 and Equations 12-13).

4.2 Heterogeneous Noise5

In practice, datasets will not have homogeneous noise across grid spacings – coarser parameterizations of a surface will include

more uncertainty as fine-scale features are aggregated into single pixels. Additionally, noise in real-world datasets is influenced

by non-uniform landscape features such as slope, aspect, terrain relief, and vegetation cover (e.g., Kraus and Pfeifer, 1998;

Kyriakidis et al., 1999; Holmes et al., 2000; Smith and Sandwell, 2003; Carlisle, 2005; Oksanen and Sarjakoski, 2006; Ro-

driguez et al., 2006; Shortridge and Messina, 2011; Purinton and Bookhagen, 2017, 2018). While several authors (e.g., Hunter10

and Goodchild, 1997; Zhang and Goodchild, 2002; Fisher and Tate, 2006) have examined complex error models in real data,

we choose to use a simplistic error model based on terrain slope – e.g., higher slopes have higher noise levels – to look at the

first-order impacts of heterogeneous noise on the calculation of topographic metrics.

When we compare the heterogeneous noise result to the analysis shown in Figure 6 (cf. Supplemental Figure 9), the results

are very similar, albeit with higher optimal grid spacings. We can also compare the optimal grid spacings for homogeneous15

and heterogeneous noise directly for a set of noise levels from 1e−8 to 1e−2 (Figure 7).
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Heterogeneous noise leads to 
smaller optimal grid spacing 

Homogeneous noise leads to 
smaller optimal grid spacing

On the line, the noise 
distribution does not 
change the optimal
grid spacing 

A

B

Figure 7. Optimal grid spacing for slope (A) and aspect (B) across a range of noise levels (1e−2 to 1e−8). Points in the upper triangle have

smaller optimal grid spacings with homogeneous noise. Points in the lower triangle have smaller optimal grid spacings with heterogeneous

noise. Points on the dashed line have the same optimal grid spacings regardless of the noise distribution. Heterogeneous noise leads to smaller

slope grid spacings but larger aspect spacings for the same average noise level.

As can be seen from Figure 7, slope can be calculated on a smaller grid spacing with slope-biased noise, while aspect should

be calculated with a larger grid spacing. The divergence in the optimal grid spacings between homogeneous and heterogeneous

noise is driven by the differences in the influence of terrain slope on slope and aspect QRs. While both slope and aspect

calculations have similar grid-spacing dependent TE magnitudes, the differences in the relative magnitudes of the PEU lead

to different responses to the distribution of noise on the DEM (see Figure 5). The simplistic slope-dependent error model5

used here is unlikely to translate to a real-world setting; however, it is clear that the spatial distribution of noise on the DEM

influences the choice of optimal grid spacing for both slope and aspect calculations.
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5 Impacts of Noise on Topographic Distributions

As can be seen in Figures 4-6, the introduction of noise has non-trivial impacts on slope and aspect calculations. To examine

the impact of both TE and PEU on the frequency distributions of slope and aspect, we generate 1,000 member ensembles of

slope and aspect for each combination of two different grid sizes (n=101, 1001) and three different noise levels (homogeneous

noise, std=1e−2, 1e−3, 1e−4). We then bin the ensemble data into one-degree slope and aspect bins.5
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Figure 8. Slope (A, C) and Aspect (B, D) probability distributions (one-degree bins) for a Gaussian hill with homogeneous noise at variable

levels (std=0, 1e−2, 1e−3, 1e−4) for n=101 (A, B) and n=1001 (C, D). The introduction of small levels of noise washes the spikes out of

the aspect distribution. Slope distributions are steeper with the introduction of higher noise levels. Similar density functions are generated at

similar QRs, despite differences in absolute noise levels.

When homogeneous noise is added to synthetic surfaces, the large spikes in aspect distributions related to the cardinal

directions (e.g., at 45/90/135 degrees) are smoothed out into neighboring bins. However, this does not imply that the calculated

aspects are ‘better’, just that they have a more even distribution – the PEU overprints the TE as seen in Figure 3. This can

clearly be seen in Supplemental Figure 10, which shows the impact of noise on slope and aspect grids.

Slope distributions are systematically shifted towards higher values as more noise is added to the synthetic surfaces. This10

effect is due to the presence of more large ‘steps’ in the synthetic data, where smooth transitions across elevation gradients are

replaced with more stepped hills and dips. Across noise levels and grid sizes, distributions with similar QRs maintain the same

general shape. This indicates that the QR captures how ‘wrong’ the aggregate distribution is when compared to the original

synthetic surface.
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If different window sizes are used to calculate slope and aspect (e.g., 5x5 and 7x7), slope estimates are higher and the aspect

‘spikes’ at cardinal directions are slightly diminished. Larger window sizes do not, however, help minimize differences in the

slope distributions (see Supplement Figure 11).
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6 Case Study: Multi-Resolution Lidar on Santa Cruz Island

6.1 Dataset Description

The Santa Cruz Island (SCI, see Figure 9) is part of the Channel Islands off the coast of south-central California. It is a

tectonically active island (Neely et al., 2017) with steep topography and pronounced erosion (Perroy et al., 2010, 2012),

diverse lithologic cover (Dibblee, 2001), and moderate and species-rich vegetation cover (Baguskas et al., 2014). The lidar5

point cloud data used to derive DEMs at a range of spatial resolutions were obtained from the 2010 US Geological Survey

Channel Islands Lidar Collection (OpenTopography, 2012). The point cloud has an average point ground-classified density of

∼10 points/m2.

Figure 9. Topographic setting of Santa Cruz Island (SCI), showing elevation (A), slope (B) and aspect (C) derived from a 1-m DEM and

calculated from a total of 2.3× 109 ground-classified lidar points. The SCI covers a wide range of terrain types, slope regimes, and all

aspect directions. Black polygon (southwest SCI) indicates the Pozo catchment shown in Figure 10. For a canopy height model, we refer to

Supplemental Figure 12.
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6.2 Deriving Elevations and Uncertainties from Point Cloud Data

Using LAStools (LAStools, 2017), we use a triangulated irregular network (TIN) approach to derive average point cloud eleva-

tions at each grid cell center, for each of our chosen grid resolutions (1-30 meters, in one meter steps, and 90 meters). We have

tested several alternative interpolation schemes – including simple means, inverse-distance weights, and other triangulation

schemes – using all of the major open source software packages (see Supplemental Table 1 for a full listing, and Supplemental5

Figures 13-21 for a cross-comparison). Each of these methods generates a slightly different DEM, with different assumptions

and ideal use cases. Our optimal grid resolution analysis is applicable to each of these DEMs; there is relatively little variation

in grid-wide TE and PEU across interpolation schemes. To simplify our discussion of the lidar data, we use only the TIN DEM

for further analysis. However, it is clear that our analysis of TE and PEU for slope and aspect are equally applicable to DEMs

created with alternative interpolation schemes.10

In addition to producing DEMs, we generate pixel-wise standard deviations estimated from the point cloud. That is, we

determined the standard deviation of all ground-classified lidar points falling into each grid cell for each grid resolution.

While vegetation cover may impact ground-classification results, our calculations are based on ground-classified points only.

Because of the high point-cloud density, this standard deviation metric should reflect terrain variability and not vegetation

cover. This measure serves as a DEM uncertainty and is highly spatially heterogeneous. Elevation and standard deviation maps15

for additional grid resolutions can be found in the Supplement (Supplemental Figures 22-24). An island-wide canopy-height

model can be found in Supplemental Figure 12.

6.3 Mapping Uncertainty on SCI

Using our standard deviation grids, we can then calculate both TE and PEU on SCI (see Supplemental Figure 25). Using these

two grids as inputs, we can also derive the QR across the entire SCI (Figure 10). Note that maximal QRs are low when compared20

to the theoretical models shown in Figures 6 and 8; this is due to both the much higher inherent noise in the real-world data,

and to the more complex terrain represented by the lidar data.
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Figure 10. Selected metrics for the Pozo catchment in the southwestern part of SCI, calculated on the optimal grid resolution for this

catchment (three meter grid). (A) Elevation, (B) lidar point density, (C) elevation standard deviation, (D) slope quality ratio (see Equation

14). The aspect quality ratio is shown in Supplemental Figure 26. A comparison of the elevation standard deviation and the lidar canopy

height model is shown in Supplemental Figure 27.

6.4 Identification of Optimal Grid Resolution

Using our pixel-wise standard deviations – and derived QRs – at each grid resolution, we can determine the island-wide optimal

grid resolution for the calculation of topographic metrics which minimizes the combined influence of TE and PEU on our lidar

dataset.

Unlike the synthetic data examined in Figure 6, the optimal grid resolution for aspect calculations is the same as that for slope.5

This is due to the distribution of both elevations and elevation uncertainties in the SCI DEM, and the different responses of slope

and aspect calculations to the diverse terrain on SCI. Whole-island median TE, PEU, and QR can be found in Supplemental

Table 2 for grid resolutions from one to ten meters. While four meters is the calculated optimal grid resolution, the QR peak

is quite flat (see Figure 11), implying that both three-meter and five-meter DEMs will yield slope and aspect results of nearly

equal quality. Indeed, the TE and PEU magnitudes are similar for both metrics between three and five meters (see Supplemental10

Table 2).
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Figure 11. Median Quality Ratios (QRs) for all slopes, low slopes (<10) and high slopes (>30) across grid resolutions (1-30m). There is a

clear trend where low slopes have better slope QRs, but worse aspect QRs. The optimal grid resolution for SCI is four meters for both slope

and aspect. For inter-quartile ranges on the QRs, see Supplemental Figure 28.

It should be noted that a four-meter optimal grid resolution is likely too large for many applications, particularly those

interested in micro-topography or other small-scale features. In those cases, slope and aspect values calculated from a higher-

resolution DEM should be used with caution – PEU will continue to grow as grid resolution increases, and the rate of that

increase will accelerate (see Figure 5). This effect will occur even if the DEM uncertainty decreases at smaller scales simply

due to the larger impacts of PEU at very high grid resolutions. This means that the uncertainty bounds on slope and aspect5

estimates on very high resolution DEMs will increase quickly, which may limit some analyses. It is important to examine

whether the data are precise enough to effectively resolve the features of interest. For high-resolution analyses, very high

quality DEMs are required.

In this analysis of the airborne lidar dataset from SCI, we find that a four-meter DEM resolution minimizes the combined

influence of TE and PEU. Slope and aspect analyses performed at this grid resolution have the smallest error bounds, and thus10

provide the most reliable data for analysis of topographic metrics over the entire island. However, there exist other methods of

choosing an appropriate DEM resolution for a given analysis, for example that of Roering et al. (2010). We do not argue that

our method is the best for all applications, but that our optimal grid resolution provides the smallest uncertainty for slope and

aspect calculations over the entire dataset.

While a single, whole-island, grid resolution is useful in some applications, it is clear from Figure 10 that there are large15

spatial variations in the DEM uncertainty and the resulting QR, and hence in the optimal grid resolution. We can extend our

method of identifying the optimal grid resolution on a catchment-by-catchment basis (Figure 12, map view in Supplemental

Figure 29).
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Figure 12. Optimal grid resolution for minimizing error bounds on slope and aspect calculations across SCI compared to catchment median

slope. Point sizes are scaled to catchment size, from 0.1 to 34 km2. Dashed lines show the 25th percentile to 75th percentile of optimal

grid resolution, colored by the standard deviation of that point. Stars show the whole-island optimal resolution and median slope. There

exists a clear trend where lower median slopes lead to lower optimal grid resolutions. Standard deviations also tend to be smaller in these

catchments, due to higher DEM fidelity over flat terrain. Catchments with low (>10 meter) optimal grid resolutions are small and have

complex topography. For a map view of these results, we refer to Supplemental Figure 29.

There exist large spatial variations in the optimal grid resolution across SCI, driven by differences in terrain slope and DEM

quality. When these differences are compared to median catchment slope and median catchment standard deviation, a clear

pattern emerges (Figure 12). While there remains significant scatter in the data, catchments with high median slopes tend to
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have both higher standard deviations and lower optimal grid resolutions. The data is bimodal, with the majority (83% for slope,

95% for aspect) of catchments having optimal resolutions below ten meters.

It is worth noting that the vast majority of the catchments with optimal slope and aspect resolutions above ten meters are

small catchments concentrated on the northwestern edge of SCI (see Supplemental Figure 29). These catchments have two

unique topographic features which contribute to the high optimal grid sizes. (1) They have two distinct slope regimes: one5

steep hill of nearly constant slope, followed by one flatter residual marine terrace with a different constant slope. (2) The

catchments drain into steep, deeply incised, cliffs. Interestingly, neither removing the steep cliffs (which have high elevation

uncertainty), nor aggregating several small catchments into one larger analysis unit (to improve the statistical reliability of

the median QR) result in higher optimal grid resolutions. We posit that the low optimal grid resolutions are a product of the

unique two-stage topography in this region. However, an in-depth analysis of the specific factors which drive the optimal terrain10

resolution in each individual zone is outside of the scope of this manuscript.

As a final application, we clipped out only the river networks on SCI to test whether they had higher or lower optimal grid

resolutions than the island as a whole, or their individual catchments. We found that river networks, particularly those parts

of the network which are in steep terrain, have higher elevation uncertainties, which leads to predicted higher optimal grid

resolutions than the surrounding terrain. In applying our method of deriving optimal grid resolution, it is important to take into15

account the possibility of large differences in the optimal grid resolution over relatively small spatial scales, and to account for

the differences in elevation uncertainty in different terrain types.

6.5 Island-Wide Slope and Aspect Distributions

As has been shown in Figures 6 and 11, there is clearly an optimal spatial resolution for the calculation of slope and aspect on

our SCI lidar dataset. Furthermore, in Figure 8, it was shown that changes in QR can have a substantial impact on the slope20

and aspect distributions of a synthetic surface. This analysis can be extended to the SCI lidar data at a range of spatial scales

(Figure 13).

There are clear differences in the slope and aspect distributions with increasingly poor QRs. This effect can also be seen in

quantile-quantile plots of the entire SCI slope distribution when compared to the optimal grid resolution (see Figure 13C). Grid

resolutions higher than the optimal result in slope distributions that are dominated by higher slopes, while lower resolutions25

tend towards lower slopes. This effect can be seen even when the grid resolution is only slightly removed from the optimal

resolution (Supplemental Figure 30). Notably, grid resolutions close to the optimal (e.g., three meters and five meters), have

QRs and slope distributions that are very similar to the optimal four meter distribution.

As a final test of grid-resolution dependence, we resampled several grids to nominally match the optimal grid resolution –

in this case we chose three meters for the Pozo catchment (see Figure 9, Supplemental Figure 31) as the reference distribution.30

As can be seen in Figure 14A, there are differences between test (one to five meter) resolutions and the reference three meter

histogram. When the test datasets are resampled to the three meter reference resolution using bilinear resampling (Figure

14B) and nearest neighbor resampling (Figure 14C), the histograms generally do not converge to the reference three meter

distribution. The exception to this is when the one-meter data are resampled with a nearest neighbor approach, they converge
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Figure 13. (A) Slope and (B) aspect differences across SCI DEMs, with QR calculated using SCI DEM elevation standard deviations (see

Figure 10 and Supplemental Figures 22-24). Optimal slope and aspect distributions plotted in black. (C) Quantile-quantile plot showing

difference between the entire SCI slope distribution vs the ‘optimal’ (four meter) resolution. We observe a clear pattern in slope distributions

where resolutions below the optimal resolution tend to overestimate slope, those below tend to underestimate slope.

to the three meter distribution. We attribute this effect to the lidar-gridding method – the three-meter data is drawn from the

same neighborhood as the nine one-meter neighborhoods which are used for the one-meter gridding.

In general, slope distributions from resampled data should be used with caution; simply resampling elevation data to the op-

timal grid resolution before calculating slope does not guarantee better results – the DEM has to be created from the ungridded

point data to fully take advantage of optimal gridding for slope calculations.5
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Figure 14. (A) Divergence of higher and lower grid-resolution slope distributions from that at the optimal resolution for the Pozo catchment

(see Figure 9). Excepting the one meter histogram, the differences between resolutions are small. Right panels show slope distributions taken

from one, two, four, and five meter data resampled to three meter resolution using (B) bilinear resampling and (C) nearest neighbor resam-

pling. The resampled data distributions do not converge on the reference three meter distribution, excepting the one-meter data resampled

with a nearest neighbor approach.
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7 Conclusions

This study presents a detailed accounting of uncertainties and errors in the topographic metrics slope and aspect derived from

both truncation errors and uncertainty in the underlying source digital elevation model (DEM). We first develop our analysis on

synthetic data, which acts as a control dataset. We then extend our methodology onto a high point-density lidar dataset, which

allows us to compare the relative impacts of gridding truncation errors and propagated elevation uncertainty on the calculation5

of topographic metrics.

From the analysis of both synthetic and real-world data, we identify the following key points: (1) the relative impact of

truncation error and propagated elevation uncertainty can be captured in a single metric, which we coin the Quality Ratio.

This metric can be used to compare the accuracy of topographic metrics across DEM spatial resolutions and uncertainty

distributions. (2) There exists an optimal grid resolution at which to calculate the topographic metrics slope and aspect for a10

given dataset that minimizes the total impact of both truncation error and propagated elevation uncertainty; the distribution of

DEM uncertainties leads to spatial variation in the optimal grid resolutions at which to calculate slope and aspect. For Santa

Cruz Island in southern California, we find an optimal grid resolution of four meters, with island-average slope (aspect) errors

of 0.25◦ (0.75◦) for truncation error, and 5◦ (12.5◦) for propagated elevation uncertainty. (3) Topographic metrics calculated at

sub-optimal grid resolutions will have potentially large errors in their slope and aspect distributions. Resampling grids to the15

optimal resolution does not completely ameliorate these issues; it is important to generate the DEM at the optimal resolution

from the underlying lidar dataset. (4) Slope and aspect calculations at high DEM resolutions (<3 meters) are significantly

impacted by the nonlinear relationship between grid spacing and propagated elevation uncertainty. A DEM with very low

uncertainties is required to support robust analysis of fine-scale topography.

Given that grid-resolution-driven effects on regional slope and aspect distributions could have significant impacts on the20

interpretation of landscape morphology, we recommend that region-specific optimal DEM resolutions be determined before

the calculation of topographic metrics.
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