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Abstract. Images captured by Unmanned aerial vehicle (UAV) and processed by Structure from Motion (SfM) 

photogrammetry are increasingly used in geomorphology to obtain high resolution topography data. Conventional 10 

georeferencing using ground control points (GCPs) provides reliable positioning but the geometrical accuracy critically 

depends on the number and spatial layout of the GCPs. This limits the time- and cost-effectiveness. Direct georeferencing of 

the UAV images with differential GNSS, such as PPK (Post-Processing Kinematic), may overcome these limitations by 

providing accurate and directly georeferenced surveys. To investigate the positional accuracy, repeatability and reproducibility 

of digital surface models (DSMs) generated by a UAV-PPK-SfM workflow, we carried out multiple flight missions with two 15 

different camera/UAV systems: a small-form low cost micro-UAV equipped with a high FOV action camera and a professional 

UAV equipped with a DSLR camera. Our analysis showed that the PPK solution provides the same accuracy (MAE: ca. 0.02 

m, RMSE: ca. 0.03 m) as the GCP method for both UAV systems. Our study demonstrated that a UAV-PPK-SfM workflow 

can provide consistent, repeatable 4D data with an accuracy of a few centimetres. However, a few flights showed vertical bias 

and this could be corrected using one single GCP. We further evaluated different methods to estimate DSM uncertainty and 20 

show that this has a large impact on cm-level topographical change detection. The DSM reconstruction and surface change 

detection based on a DSLR and action camera were reproducible: the main difference lies in the level of detail of the surface 

representations. The PPK-SfM workflow in the context of 4D earth surface monitoring should be considered as an efficient 

tool to monitor geomorphic processes accurately and quickly at a very high spatial and temporal resolution. 

1 Introduction 25 

During the past decade, Unmanned Aerial Vehicles (UAV’s) or Unmanned Aerial Systems (UAS’s) have emerged as a very 

valuable tool for aerial surveying (Passalacqua et al., 2015; Tarolli, 2014). An important application in geoscience is the 

generation of high-resolution topography (HRT) data (i.e., point clouds, digital surface models—DSMs or digital elevation 

models—DEMs) from 2D imagery using Structure from Motion (SfM) and Multi-view Stereo (MVS) photogrammetry (Eltner 

et al., 2016; James and Robson, 2012). Compared to satellite- or airborne-based sensing approaches, the UAV’s provide 30 
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important advantages, more specifically they provide a considerably higher spatial resolution at a relatively low cost in 

combination with a high versatility in terms of sensors and data collection. With the capability of detecting topographical 

change at a very high resolution and accuracy, the UAV-SfM framework has become an increasingly used tool for the 

monitoring of landslides (e.g., Clapuyt et al., 2017; Turner et al., 2015), overland flow erosion (e.g., Eltner et al., 2017; Pineux 

et al., 2017), river dynamics (e.g., Hemmelder et al., 2018) and vegetation dynamics (e.g., Candiago et al., 2015).  5 

However, the inter-comparison of UAV-SfM photogrammetric products requires very accurate georeferencing. So far, the use 

of ground control points (GCPs) surveyed with precise GPS systems or total stations is generally employed for accurate 

positioning. The GCP-based georeferencing method has been widely proven to be a solid solution for accurate georeferencing 

(Hawkins, 2016; James et al., 2017; Turner et al., 2016). However, GCPs need to be placed as a network and this comes at a 

cost as it is time consuming. Furthermore, the accuracy depends on the quantity and distribution of GCPs (Sanz-Ablanedo et 10 

al., 2018). When used in a monitoring study, additional issues arise from the fact that GCP’s can move (weather impact or 

surface deformations). Finally, a major limitation arises from the fact that GCP’s cannot be placed in poorly accessible terrain 

due to practical or safety reasons (e.g., swamps, landslides or glaciated areas). 

Direct georeferencing based on high precision GNSS is key to overcome this issue, but it requires the accurate geotagging of 

aerial images at the exposure time. During the last several years, the development of high-quality IMU and GNSS technology 15 

and dedicated RTK (Real Time Kinematic) and PPK (Post-Processing Kinematic) solutions for UAVs has enabled the accurate 

measurements of UAV/camera position and orientation. By double differencing the phase ambiguities between two 

GNSS/GPS receivers, atmosphere propagation delay and receivers clock errors can be eliminated. RTK positioning requires a 

stable radio (or internet) link between a base and the UAV, and this can sometimes be challenging due to radio link outages 

and/or GNSS signal blocks. PPK, in contrast, processes the information after the flight and there is thus no risk of data loss 20 

due to link outages. In addition, precise ephemeris data of GNSS satellites is available during post processing, which can often 

provide a more accurate solution. The utilization of such an approach has the potential to avoid or mitigate the need for GCPs. 

Several studies already investigated the application of RTK/PPK direct georeferencing by the integration of sensor orientation 

with onboard RTK-GPS (Fazeli et al., 2016; Forlani et al., 2018; Stöcker et al., 2017). In a study performed by Gerke and 

Przybilla (2016), the block orientation accuracy could significantly be enhanced by using an on-board RTK-GNSS solution. 25 

With an enabled RTK-GNSS and cross flight pattern, the best scenario reached a final horizontal geometric accuracy of 4 cm. 

Recently, both georeferencing methods are gradually matured and can deliver centimeter-level accuracy in geomorphological 

applications (Table 1). However, to our knowledge the accuracy and repeatability of HRT products derived from RTK/PPK in 

the context of longer-term 4D earth surface monitoring with time-laps structure-from-motion photogrammetry has not been 

quantified. 30 

The accuracy and precision of photogrammetry depends on many other factors, including image quality, camera calibration, 

flight plan characteristics, SfM algorithms, surface texture and albedo, etc. The bundle block adjustment (BBA) process 
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determines the 3D positions of key features/points presented in the overlapping part of multiple images by recognizing and 

matching keypoints (hereafter referred to as tie points, i.e., keypoints that can be identified on two or more images). In a next 

step the relative locations and orientations of the camera are estimated by performing a fit and minimizing the error through 

the tie points (Triggs et al., 2000). The abovementioned factors affects the identification of the tie points, which are infrequently 

reported, but important, nevertheless. Therefore, the accuracy of traditional photogrammetric data depends heavily on control 5 

quality, whereas SfM accuracy is also strongly affected by image characteristics (Mosbrucker et al., 2017). 

The selection and configuration of cameras are of special interest in UAV photogrammetry. Digital cameras equipped with 

high quality sensors (e.g., a DSLR camera) provide better image quality due to higher resolution and reduced image noise 

relative to more portable and smaller sensor (e.g., a compact or action camera) and this results in high quality DSMs (Eltner 

and Schneider, 2015; Micheletti et al., 2015; Mosbrucker et al., 2017). The focal length relates to radial distortion and 10 

associated calibration of the camera lens (Rosnell and Honkavaara, 2012; Sanz-Ablanedo et al., 2012). While small focal 

length (or wide-angle) leads to a large field of view (FOV), which therefore requires a less dense flight plan for a given lateral 

overlap, these images are subject to increased radial distortion, which can degrade accuracy (James and Robson, 2014; 

Mosbrucker et al., 2017). Some studies have investigated the impact of focal length on DEM accuracy (Clapuyt et al., 2016), 

but mainly on DEM reproducibility. Furthermore, the distance between sensor and surface also determines ground sample 15 

distance (GSD), which impacts on accuracy. Eltner et al. (2016) showed in a review of 54 studies that the error of SfM-derived 

DSMs increased nonlinearly with an increasing surface to camera distance (Eltner et al., 2016). From an operational point of 

view, camera weight is a critical variable as it determines the size and weight of the UAV system. There is a large difference 

in weight between DSLR (0.5–1.5 kg) and action cameras (0.05–0.15 kg) and this has large implications, not only for flight 

autonomy (and hence spatial coverage), but also the choice of the UAV platform. Small action cameras can be mounted on 20 

small ‘micro’ drones, which are subjected to less stringent UAV flight regulation (e.g., in Belgium, a UAV operation certificate 

allows for a maximum flight height  of 45 m and a weight limit of 5 kg (UAV + payload)). 

The quality of UAV survey output is typically analyzed using the spatial patterns of errors in DSMs, and this includes both the 

accuracy and the reproducibility of DSM generation. Errors propagate when differences of DSMs (DEM of differences, DoDs) 

are computed to quantify topographic change. Given the uncertainty inherent in individual DSMs, how to distinguish real 25 

geomorphic changes from noise, and how well these uncertainties are considered control the reliability of interpretation. In 

order to isolate and quantify the uncertainty that is associated with the topographic reconstructions, reproducibility assessments 

are critical aspects of monitoring landform changes over time (Brasington et al., 2000; Wheaton et al., 2010). However, until 

now the repeatability of direct PPK-based georeferencing for SfM-derived point clouds and/or DSMs has not been thoroughly 

evaluated. Past research has shown that a RTK-SfM workflow is repeatable (Forlani et al., 2018), but the analysis was based 30 

on repeated flights conducted over a very short time frame: i.e. with very similar satellite constellation, base station setup and 

light conditions. It remains uncertain to what extent a PPK-SfM workflow may provide consistent 4D data when survey 
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conditions are variable, e.g. when monitoring over longer periods of time (e.g. weeks or even months). This is particularly 

relevant for geomorphological applications that require centimetric precision such as rill erosion or soil roughness monitoring 

(d’Oleire-Oltmanns et al., 2012; Eltner et al., 2015). A second issue is the platform: low-cost, easy-deployable RTK-

enabled micro-UAV’s (small-form ca. 25×25 cm, weight 1.4 kg) equipped with small cameras have recently become available, 

but their accuracy and repeatability, relative to professional UAV systems (large-form ca. 80×80 cm, weight 4.5 kg) equipped 5 

with high-end camera’s remains poorly quantified. In particular, the influence of the UAV/camera setup on the minimum level 

of topographical change detection should be quantified in order to guide geomorphological applications. 

The main objective of this study is thereby to quantify the (i) repeatability, (ii) reproducibility and (iii) efficiency of the PPK-

SfM framework in the context of 4D earth surface monitoring with time-laps structure-from-motion photogrammetry where 

centimetric precision is required. More specifically, we aim to (i) assess the accuracy and repeatability of PPK and Non-PPK 10 

solutions in georeferencing to examine the capability of using PPK without the need for GCPs, (ii) assess the reproducibility 

of surface topography change detection using PPK solutions for two different UAV/camera setups (i.e., a DSLR camera versus 

a high FOV action camera), and (iii) evaluate different approaches to estimate uncertainties using PPK solutions and their 

implications for surface change detection. 

2 Material and Methods 15 

2.1 Study Site 

The study site is located in an agricultural area (1.7 ha) in the Belgium loess belt, ca. 40 km southeast of Brussels, Belgium 

(Fig. 1). It is characterized by a slightly undulated terrain with an altitude range between 207 m to 210 m a.s.l. and by very 

gentle slopes (mean slope: 1°). The site is partially cultivated while other parts are covered by grass. The surface was classified 

into five classes, i.e., bare soil, short grass, shrub, road and haystacks. 20 

2.2 Hardware Setup 

2.2.1 Platforms and Payloads 

We evaluated (i) a high-payload UAV system equipped with a DSLR camera and (ii) a consumer-grade UAV equipped with 

a fisheye action camera. The high-payload aerial system is a custom-built Hexacopter and is equipped with a DJI A2 flight 

controller. The platform has an effective payload of 4 kg and an autonomy of ca. 15 minutes. This UAV was equipped with a 25 

Canon EOS 550D camera (18 Megapixels, 5184 × 3456 pixels, with Canon EF 28 mm F/2.8 lens). The consumer-grade UAV 

was a DJI Phantom 3 Advanced Drone. We removed the DJI camera/gimbal system and mounted a Hero GoPro 3 camera (12 

Megapixels, 4000 × 3000 pixels, with 2.92 mm F/2.8 123° HFOV lens) (Fig. 2). Both platforms are equipped with a compact 

multi-GNSS RTK receiver (Reach RTK kit, Emlid Ltd) with RTK/PPK capability as described below. 
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2.2.2 PPK-GPS Module 

During the UAV flights, a Reach RS (Emlid Ltd) base station was mounted on a tripod located in the north of the test area to 

provide positioning correction input. The maximal distance between the UAV and the base station was 220 m. The receiver of 

the base is configured to log the raw data in a RINEX file at 5 Hz using the satellite GPS, GLONASS and GALILEO. We did 

not use a fixed position for the base station, but randomly positioned in an area of ca. 10 × 10 m for each flight. Both UAVs 5 

were equipped with a Reach GNSS receiver to log the raw data as UBX format using GPS and GLONASS satellites. The 

antenna model was Tallysman’s TW2710, which covers the GPS L1, GLONASS G1, BeiDou B1, Galileo E1, and SBAS 

(WAAS, EGNOS, and MSAS) frequency bands. The antenna was mounted on an aluminum plate, with the center right above 

the camera lens center to minimize the offset the shift between the antenna phase center and camera projection center. The 

antenna height was 22.5 cm and this difference between the antenna and camera projection center was considered during the 10 

post-processing. No lever-arm corrections were considered, but the offset between the camera and the GPS receiver was 

considered in the camera position assuming a constant vertical offset (see below). Because of the small magnitude of the 

physical offset vector (0, 0 and 22.5 cm in X, Y and Z in the body frame, respectively), typical tilting during flights would 

only propagate to a camera position error of about 1 cm, which is close to the expected GPS positioning error of about 2-3 cm. 

For the high-payload UAV, we used the hotshoe of the camera to timemark the pictures with a GPS event that are logged on 15 

a Reach GNSS device mounted on the UAV. As the action camera has no hotshoe, we built an electronic system to integrate 

and synchronize the GPS with the action camera. To this end, a single board computer (SBC) is used as a trigger by transmitting 

an electrical signal to both the camera and GPS unit. To eliminate the lag between the shutter opening time of the camera and 

the GPS recording time, we quantified the delay between the electrical signal and the shutter opening by integrating a LED 

light in the circuit. Several delay times were tested until the LED light was visible on the images taken by the action camera. 20 

This procedure resulted in a system where the geotagging was accurately synchronized with the GPS time. For both 

UAV/camera systems, we did not build a link between the UAV-IMU and camera. As a result, the images only contained 

positioning information without attitude parameters. 

2.3 Data Collection 

2.3.1 Flight Planning 25 

Flight missions were planned using the Autopilot app (Hangar Technology, 2018). The side overlap was set to 80%. The 

frontal overlap was defined by the speed of the UAV and the camera trigger interval which was set at 2 s for DSLR camera 

and 4 s for action camera, which resulted in a frontal overlap of ca. 90% for both systems. 

Flight mission arrangements are summarized in Table 2. Three flights (including repeated flights) were conducted before a 

part of the study area was plowed. These flights were conducted at a constant height above the take-off point leading to a 30 

ground sample distance (GSD) of less than 0.63 cm and 3.11 cm for the DSLR and the action camera, respectively. It should 
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be noted that the missions were performed using simple parallel rather than cross-hatch flight pattern, as the latter mission 

setup can mask systematic bias. 

2.3.2 Ground Control Points 

Sixteen fixed targets were distributed evenly across the study area before the survey as control points (Fig. 2). Depending on 

the georeferencing methods used (see below), the control points were applied as Ground Control Points (GCP’s) or Check 5 

Points (CP’s). The targets consisted of a laminated square board (0.3 m × 0.3 m) painted in yellow and a black cross marker 

in center. They were fixed with nails into the ground and remained at the site for the study period before plowing. For the last 

flight mission after plowing, new GCPs were deployed and surveyed. The targets were surveyed after each flight mission using 

a Reach RS (RTK solution) with the EUREF-IP Network. The correction stream was provided by BRUS station (Brussels, 

Belgium, Antenna: ASH701945B_M) via NTRIP (Networked Transport of RTCM via Internet Protocol), which had a mean 10 

planimetric error of 0.007 m and altimetric error of 0.013 m (https://emlid.com/). Based on repeated measurements of field 

GCP coordinates, the planimetric precision was estimated at 0.015 m while the altimetric precision was 0.023 m. It should be 

noted that this assessment includes minor (G)CP movement induced by rainfall kinetic energy and soil swelling/shrinking. The 

coordinate system was referenced to World Geodetic Datum of 1984 (WGS84). 

2.4 Data Processing 15 

2.4.1 Georeferencing Configuration 

The open source software package RTKLib was used for computing differential positioning (Takasu and Yasuda, 2009). Raw 

GPS data from the UAV-mounted cameras and the base station were then extracted and corrected by post-processing using 

RTKLib. We verified the consistency of the estimated camera positions using PPK by evaluating different satellite elevation 

masks (15° and 20°) and methods (i.e., fix and hold versus continuous mode). 20 

We extracted PPK-GPS and single GPS solutions for the camera position estimates. To assess the accuracy of different 

georeferencing options, datasets were processed with four configurations, i.e., single GPS, single GPS + GCPs, PPK only, and 

PPK + 1 GCP. For the conventional methods using GCPs and single GPS, we used the RTKLib single GPS solution to acquire 

the images coordinates, and selected half of the targets as 3D GCPs during block control processing. The remaining control 

points were then used as checkpoints. The setup of GCP/CP is shown in Figure 3. In the single GPS + GCPs scenario, the 25 

eight selected GCPs were evenly distributed in the survey area. In the PPK + 1 GCP scenario, cross validation was used. We 

selected one point as a GCP while the remaining targets where then used as CPs and this bundle adjustment processing was 

repeated sixteen times. The accuracy assessment was based on the average error of the cross-validation. 
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2.4.2 Point Cloud and DSM Generation 

The geotagged images were processed with the Pix4D Mapper software (www.pix4d.com). The software uses the SfM 

algorithm to generate 3D point clouds, DSMs and orthophoto mosaics of the surveyed area. The procedure consists of three 

main steps: (i) Initial Processing, (ii) Point Cloud generation, and (iii) DSM and orthomosaic generation. First, the photographs 

are aligned using a point matching algorithm that automatically detects matching points on overlapping photographs and uses 5 

these points to simultaneously solve for exterior orientation (EO) parameters. With additional position information that is 

available for the images or GCPs, the software then georeferences the model and refines the camera calibration by minimizing 

the error between the modeled locations of the points and the measured locations, meanwhile, non-linear deformations within 

the model are corrected.  

Camera accuracy is a key parameter allowing users to set how accurate the coordinates of images can be, which would affect 10 

the determination of estimated camera positions in the BBA process. Considering the precision of PPK GPS (ca.0.02 m) and 

the antenna angle movement caused by UAV attitude during flying, we set the horizontal and vertical accuracy both as 0.05 m. 

We used the Pix4D 3D maps template for the remaining settings, i.e., full keypoints image scale, automatic targeted number 

of keypoints and standard calibration method. In order to maintain the characteristics of the original data, the clouds were not 

filtered nor smoothed. Gridded DSMs were then generated based on the mean altitude of these point clouds. The 3D outputs 15 

(i.e., point clouds and DSMs) used for reproducibility assessment were georeferenced using the PPK method (and no GCP 

were considered). The corresponding grid resolutions of the DSMs were less than 0.031 m for the action camera and 0.006 m 

for DSLR camera. 

2.5 Data Analysis 

2.5.1 Accuracy Assessment 20 

Absolute accuracy validation was performed using the CPs (which were not used in the BBA process) by comparing the 

coordinates of the 16 CPs in the 3D cloud with the reference values measured in the field by RTK-GNSS. Mean absolute error 

(MAE) and the root mean square error (RMSE) and standard deviation of the differences were computed for each flight to: (i) 

assess the accuracy of SfM outputs with different georeferencing configurations (ii) assess the precision of PPK-SfM 

reconstruction considering CPs as static references during the observation period (i.e., with variable satellite constellation, 25 

light conditions and base station setup), and (iii) detect whether there are internal systematic shifts and block deformations in 

the SfM output. 

2.5.2 Precision Maps Based on Monte Carlo Simulation 

To demonstrate how tie points uncertainty can vary spatially, we implemented a Monte Carlo approach that enabled precision 

maps to be produced when using SfM-based software. Following the workflow by James et al. (2017), the processing was 30 
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implemented using a combination of PhotoScan Professional (v.1.2.4, for image processing and bundle adjustment), Python 

(integrated into PhotoScan, for Monte Carlo execution) and sfm_georef (v.3.1, (James and Robson, 2012), for visualization of 

results). To construct the image network, images were automatically matched and oriented in PhotoScan using the ‘align 

images’ function. During the alignment process, the georeferencing was achieved by PPK positioning of camera coordinates 

without GCP reference. The subsequent Monte Carlo analyses were carried out in PhotoScan, using a Python script to automate 5 

repeated bundle adjustments. The simulated pseudo-random error (camera accuracy) was set as 0.05 m considering the 

precision of PPK-GPS and the antenna movement caused by drone attitude. The Monte Carlo processing comprised 1000 

iterations for each survey. Afterwards, the results from all iterations are compiled to give distributions of determined values 

for all estimated parameters (e.g. coordinate values for each sparse point). To construct 3D precision maps, point coordinate 

standard deviations in X, Y, and Z directions are calculated for each point and interpolated onto a grid, generating a raster map, 10 

representing the spatially variable precision of tie points. For both camera datasets, we obtained precision maps for each survey 

and compared their range with CP observation precisions (i.e., precision of CP residuals) from the repeated surveys by 

extracting values from corresponding CP positions. 

2.5.3 Repeatability and Reproducibility Assessment 

To robustly distinguish real changes of DSM/DEM differencing from the inherent noise (Fuller et al., 2003), DoD uncertainty 15 

must be considered. Regardless of the approach used to generate DSM/DEMs, the process of accounting for DoD uncertainty 

follows a consistent progression via three steps: (i) quantifying the error surface (δz) of each individual DSM surface (ii) 

propagating the identified uncertainties into the DoD (δuDoD) and (iii) assessing the significance of the propagated uncertainty 

(Wheaton et al., 2010). The tie points differ between each repetition of the survey, and therefore we analyze the error 

propagation at the DSM level. There are two primary ways to build an error surface. The combined error can be calculated as 20 

a single value for the entire DoD based on the average RMSE of each DEM if spatially-explicit estimates of the error do not 

exist. This method assumes that the errors in each cell are random and independent. Alternatively, a spatially variable error 

can be considered for both DEMs independently (e.g., Wheaton et al., 2013). The individual error in the DSMs can be 

propagated into the DoD as: 

𝛿uDoD =  √(𝛿z𝑟𝑒𝑓)2 + (𝛿z𝑐𝑜𝑚𝑝)2                                                                                                                               (1) 25 

where δuDoD is the propagated error in the DoD as minimum level of detection threshold (LoDmin)., and δzref and δzref are the 

individual error in referenced DSM and compared DSM, respectively. 

To define a spatially variable confidence interval associated with each measurement and combining the uncertainties, a 

prescribed confidence level (95% in the following) is used to estimate locally the measurement accuracy and precision. The 

registration error (reg) is considered and assumed isotropic and spatially uniform, as the systematic bias in georeferencing may 30 

exist (e.g., Brasington et al., 2003; Wheaton et al., 2013). Eq. (1) can be hereby modified to: 
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𝐿𝑂𝐷95% = ±1.96(√(𝛿z𝑟𝑒𝑓)
2

+ (𝛿z𝑐𝑜𝑚𝑝)
2

+ 𝑟𝑒𝑔 )                                                                                                               (2) 

Where reg is the relative overall registration error between the surveys. LOD95% is the level of detection at 95% confidence 

interval. 

2.5.4 UAV-based Monitoring of Surface Change 

As mentioned above, the farmland was plowed on 6 April, leading to surface roughness and volume change. Surveys 5 

implemented before and after the plowing were compared to detect the change. In this case study, the PPK dataset was 

potentially subjected to higher reg error, while PPK + 1GCP scenario might be able to substantially mitigate the reg error. 

Therefore, a reg value was used based on the CP RMSEs for the PPK dataset, whereas the PPK + 1GCP dataset was regarded 

with negligible reg error. In that case, the assessment of the constant and spatialized LoD were carried out: a DoD using a 

survey-wide LoD based on the Z-RMSE on CPs and a spatialized LoD based on the Monte Carlo altimetric precision. A 10 

zoomed-in area as well as a transect was sampled to illustrate the surface change using the LoDmin thresholds (Fig. 6). The 

sediment budget was subsequently assessed using the Geomorphic Change Detection (GCD) software (Wheaton et al., 2010). 

The GCD software provides the capability of segregating and quantifying those uncertainties independently in each DEM and 

propagating them through to the DEM of difference. For each DEM, we set aforementioned two uncertain surfaces in the 

change detection between surveys.  15 

3 Results 

3.1 Accuracy and precision of the georeferencing methods 

Table 3 summarizes the average (i.e. considering all the flights) check point accuracy and precision ranges in the X, Y and Z 

directions for each block control configuration. For the DSLR surveys, the single GPS configuration provided an average 

planimetric and altimetric RMSE of 1.59 m and 3.45 m, respectively, while the RMSEs for the other three georeferencing 20 

configurations were all below 0.036 m. For PPK, the altimetric CP RMSE was 0.036 m and the average was only slightly (ca. 

20%) improved when adding 1 GCP. For the action camera, the CP RMSEs for the GCP solution are better than 1 pixel for X, 

Y and Z coordinates. The CP RMSEs for the PPK solutions were slightly higher than for the GCP solution, but in the range 

of 0.5-1.4 pixels for the X, Y and Z coordinates. The values reported here are very close to the estimated error of the PPK 

solution. When using single GPS + GCP, the accuracy was substantially enhanced to cm-level, and the absolute mean errors 25 

were less than 0.028 m. For both cameras, PPK + 1 GCP showed similar planimetric accuracy and better altimetric accuracy. 

Adding 1 GCP improved the accuracy of the altimetric CP RMSE of the PPK solution by 20% to 30%. The standard deviation 

for the mapping errors (SD error) are very similar for both cameras and PPK and GCP solutions (0.02–0.04 m), while as 

expected, the precision was substantially less good for the single solution (0.24–0.35 m). 
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3.2 PPK accuracy and repeatability 

Figure 4 shows the CP residual distributions for each survey for the PPK solution. As reported above, the overall accuracies 

and precisions among the surveys were robust within a range of 0.10 m, regardless of dates and missions. The planimetric 

accuracies of the surveys were robust (with little bias) and the errors were close to zero. In contrast, the altimetric accuracy 

showed a much higher uncertainty among the surveys with substantial bias for some flights. Similar results were obtained for 5 

both camera setups, i.e., altimetric errors showed larger variation than planimetric errors. We can also express the accuracies 

in pixels to standardize the RMSEs in terms of the expected error incurred from GSD. The CP XYZ RMSEs for the DSLR 

camera corresponds to ca. 4–15 pixels. However, it should be noted that the GSD for the DSLR camera is extremely fine 

(0.006 m) due to the low flight height, and this is much finer than the width of the markers used on the CP (0.02 m) or the 

precision of the CPs. As a result, the XYZ RMSEs for the action camera were better and within a range of 1 to 5 pixels. 10 

3.3 PPK precision 

For soil surface change detection, it is important to quantify the precision of each surface. Here, we compare different methods 

to quantify precision. Figure 5 shows tie point precision maps derived from the Monte Carlo (MC) simulations. Spatial patterns 

can be observed from the DSLR precision map, where shrub area have higher uncertainties while non-vegetated areas were 

modelled more precisely. The DSLR dataset had a much better precision and smaller range (0 to 0.05 m) when compared to 15 

the MC simulations for the action camera dataset. For the action camera, the precision ranged between 0 and 0.25 m. In contrast 

to the results obtained for the DSLR camera, the precision map for the action camera did not show a clear structured spatial 

pattern. The boxplots represent the CP-derived precision based on the 5 repeated surveys (16 CPs were used in each survey) 

(Fig. 5 c and d). The DSLR precision maps derived from the MC simulations are in line with the empirical precision derived 

from the CPs (i.e., 0.01 to 0.03 m). The slightly higher mean and range obtained for the empirical precision reflects the fact 20 

that for the MC analysis, only uncertainty in camera position was considered, while the empirical estimates reflect all sources 

of variability (i.e., positioning uncertainties, differences in image quality between surveys, etc.). In contrast, the action camera 

MC precision was substantially higher than the precision derived from the repeated CP surveys. In other words, the 

observational precision estimates were smaller than those estimated from the MC analysis. 

Based on the MC precision maps, spatially propagated error estimates can be generated for the repeated surveys (Fig. A1). 25 

The spatially distinct errors can be quantified, where shrubs had larger error of detection (0.031 m). The distribution of errors 

also showed lower precision for shrubs. For the rest of surface types, the MC precision was around 0.02 m. For the action 

camera dataset, no clear spatial pattern was found and a spatially uniform precision is therefore a good approximation. 
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3.4 Soil surface change detection 

In order to illustrate the potential of PPK in high resolution surface change detection, we evaluate various approaches and 

camera setups. At the end of the monitoring period, the surface of the study area changed substantially as a result of plowing. 

The DSMs of the plowed area (before and after plowing) were analyzed (Fig. 6). For the PPK datasets, when the mean XYZ 

RMSE was used to estimate the registration error, the threshold was high and substantially reduced the sensitivity in change 5 

detection. For the PPK + 1GCP datasets, we observed that the bias (particularly in Z direction) was removed and we therefore 

set the registration error to zero. We then applied both a spatially uniform DoD threshold (based on the CPs RMSE) and a 

spatially variable error surfaces (based on MC precision). Note that due to the different flight altitudes (35 m and 20 m for the 

DSLR and action camera, respectively), the DoD thresholds were similar for both cameras. Similar change detection can be 

obtained using the constant DoD for both cameras (Fig. 6a). As reported above, the MC precision showed smaller uncertainties 10 

for the DSLR dataset than for the action camera dataset, leading to different levels of detection. The zoomed-in area shows the 

detail of the surface changes along a profile and its DoD threshold (Fig. 6b). The DSLR camera provided much more detail 

than the profile generated by the action camera. Nevertheless, a significant surface change could be detected for both 

approaches when using the LoDmin threshold. We assessed the volume changes over the area of interest while considering the 

LoD thresholds. Regarding the PPK solution, the volume estimations of the two camera datasets had significant difference due 15 

to the existed bias. For the PPK + 1GCP datasets. when using a spatially uniform (i.e. constant average) LoD, the DSLR 

dataset resulted in a total volume lowering of 8.17 ± 2.70 m3, while a volume increase of 175.50 ± 76.33 m3 was detected due 

to changes in bulk density and the construction of ridges. The action camera dataset evaluated the volume decrease at 6.16 ± 

2.36 m3, while 191.77 ± 99. 18 m3 accumulated (Fig. 9c). When using MC LoD, the estimated volume of changes was 155.96 

± 35.05 m3 for DSLR camera and 92.60 ± 66.5 m3 for action camera. Both DSLR and action camera obtained similar estimation 20 

using constant LoD. The MC LoD for DSLR datasets resulted in more significant surface changes than those obtained for the 

action camera dataset. 

4 Discussion 

4.1 Accuracy and precision of PPK solution in direct georeferencing 

The PPK direct georeferencing provided centimeter level accuracy and precision during a 14-day monitoring campaign where 25 

light conditions, image quality and GPS satellite constellation changed. This indicates that the direct georeferencing with 

accurate positioning is capable to replace the conventional ground control method and allows for the acquisition of robust 

centimetric HRT data. As already indicated by many studies, single on-board GPS provides meter level accuracy (Turner et 

al., 2012a). The quality of GCP-based georeferencing depends on the number and distribution of GCPs (Sanz-Ablanedo et al., 

2018). The accuracy can be improved by introducing more and densely distributed GCPs, which induces a tradeoff between 30 
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survey time and quality of surface reconstruction (Eltner et al., 2016; Smith et al., 2016). Areas with poor distributions of 

GCPs or lower control precision could be vulnerable to systematic errors (James et al., 2017). For example, in remote glacier 

studies (Kraaijenbrink et al., 2016), GCPs can generally only be located at the glacier periphery, which is unfavorable for 

internal accuracy. In contrast, precise direct georeferencing of aerial surveys (kinematic GNSS) provides an evenly distributed 

control framework as each image can be regarded as a control point. Figure A2 exhibited the planimetric image residuals 5 

between the original image positions and the optimized positions after BBA process. This shows that the image residuals were 

evenly distributed and had standard deviation of only a few centimetres, indicating there was little bias during the image 

georeferencing process. The DSLR images had smaller SD of positional residuals than those of the action camera images, 

indicating that the action camera images had higher random error regarding the BBA process.  

In this study, our experiments showed that a high quality GNSS receiver mounted on an aluminum plate that is positioned as 10 

far as possible from the UAV electronics can provide reliable accuracy and precision in positioning camera locations. Initial 

tests showed that the GPS data quality is very vulnerable to interferences from the UAV motors and electronics and special 

attention should be given to shielding. The PPK positioning (without GCPs) of camera positions was shown to provide the 

same level of accuracy and precision as a GCP solution in our case. Nevertheless, there might be biases in the PPK GNSS 

position estimation due to false solutions which can remain undetected (e.g., false fix in resolving ambiguities). An approach 15 

to detect this is to check the accordance between ‘Fix and hold’ and ‘Continuous’ resolution in integer ambiguity in RTKLib.). 

Implementing one GCP did improve the results in our study: on average the addition of a single GCP did slightly reduce the 

overall RMSEs. Given that it is difficult to assess the quality of the PPK solution without independent observation, we 

recommend that using one GCP (or one single fixed point throughout the monitoring) provides a robust way to detect 

perturbations of the GPS signal. Forlani et al. (2018) balanced the advantage of an RTK/PPK versus a GCP solution and 20 

reported that for the RTK + 1 GCP configuration, the vertical bias was greatly reduced. It should be noted that applying one 

GCP only moves the overall project to the approximate location without internal georeferencing. 

4.2 DSLR versus Action Camera 

As for the cameras we used in this study, the main differences were related to the focal length, image resolution and quality. 

The action camera with shorter focal length (2.92 mm) provides a larger field of view (diagonal FOV: 149.2°) but is 25 

characterized by radial lens distortions. The vertical errors derived from sixteen individual check points were all below 0.07 

m indicating that the ‘doming’ effect can be greatly eliminated or mitigated due to the dense and precise control of camera 

positions. The DSLR camera, due to a larger APS-C sized imagers, higher focal length and higher resolution, together with 

the complete control of the ISO, shutter speed and aperture settings, produced much less noise and better overall picture quality. 

These differences led to better GSD and image contrast. We observed that this assisted greatly in recognizing and matching 30 
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tie points. For instance, at 45 m flight height, the DSLR dataset has a higher tie point density (mean: 213.5 points m-2) than 

action camera (mean: 12.1 points m-2) and the detailed images help improve finding and matching tie points.  

To visualize the two camera setup outputs and assess the potential of soil roughness measurement in different surface type, we 

derived two representative transects (Fig. 6b). Due to a higher GSD, the DSLR-derived data showed abundant and sharp 

details, while data from the action camera was relatively smooth. It should be noted that due to the large FOV, the action 5 

camera required a flight plan that was much less dense than for the DSLR camera (about half), indicating that a much larger 

area (about double) could be surveyed in the same time. However, this larger spatial coverage comes at the cost of ground 

resolution. A lower distance between the camera sensor and the surface is required for the action camera to obtain the same 

GSD as DSLR camera (for the GoPro and EOS cameras used in this study, the flight height ratio to obtain the same GSD 

equals 1:3.5, and the consumed time ratio was ca. 1:1.5). For the design and practical implementation of UAV surveys, it is 10 

crucial to take the sensor weight and size into account, as well as the payload and endurance of UAV platform. We found that 

with a light, small, highly portable and low-cost UAV equipped with a very simple camera and RTK/PPK GPS system, very 

good results in terms of accuracy and precision are possible (RMSE of ca. 1 pixel). In addition, taking advantage of the large 

FOV of the compact action camera, it is feasible to cover more area but at the cost of GSD and accuracy. 

4.3 Precision estimates 15 

We observed some inconsistencies between the MC-derived precision and CP-derived precision estimates. The observational 

precision for the DSLR dataset was slightly worse than those obtained from the MC estimates. We attribute this to the fact that 

CP itself can be regarded as a key feature which is easy to recognize in the BBA process. In addition, the observational 

precision reflects all sources of uncertainty while the MC only considered the camera position. In contrast, the MC precision 

of action camera dataset was much lower than the CP precision, which results from the high radial distortion feature of the 20 

high FOV lens and the lower GSD. 

To identify which factor (high GSD or low FOV) controls the precision estimates, we pre-processed the images using two 

methods (i) down-sample the DSLR images to have the same GSD as action camera images (ii) clipped the action camera 

images to have the same FOV as DSLR images (For that, we implemented an additional flight mission for the action camera 

using a denser flight path). Precision maps were then generated using Monte Carlo simulation (Fig. A3). With a lower GSD, 25 

the precision pattern for the DSLR dataset remained but showed increased uncertainties. In contrast, the clipped low FOV 

action camera images revealed a clear spatial pattern for the precision estimates. Based on this analysis, we suggest that a 

higher GSD increased the robustness of the tie point matching and hence improved the precision. The large FOV of the action 

camera enabling wide imaging angles to a single tie point, may to some extent compensate the difficulties for the identification 

of key features due to the lower GSD, at least if appropriate model calibration are introduced in the bundle adjustment. It 30 
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should be noted that the radial distortion induced by the fisheye lens is more severe on the edges of the images. This increases 

the uncertainties in tie points orientation and this may explain the higher magnitude of tie point uncertainties (Fig. 5b). 

4.4 Surface change detection 

Using an average RMSE to estimate the registration error resulted in poor estimates of surface change. This was related to the 

fact that the PPK solution provided results with substantial bias in the Z direction for a few flights. The repeatability assessment 5 

showed that the use of a flight specific registration error, based on 1 GCP, could remove the bias. Furthermore, this study 

showed that the approach is repeatable as both UAV-camera setups resulted in similar estimation of 3D surface changes. To 

obtain a robust change detection, it is crucial to set a proper uncertainty threshold (LoD). Our results indicated that the approach 

to estimate the LoD (i.e. MC-based versus CP-based) substantially affect the results, particularly for small scale, high 

resolution applications (i.e. that require centimetric precision). It is also important to understand the effect of different types 10 

of surfaces on the SfM output, particularly in a region with a ‘complex’ surface, e.g., vegetation area, rough objects and surface 

with few key features. Vegetation has long been recognized as a source of error in photogrammetry (Lane et al., 2000; 

Messinger et al., 2016), due to the cluster of leaves, the wind caused movement and illumination change and this increased the 

complexity of the imagery, leading to difficulties in isolating tie points (Harwin and Lucieer, 2012). Applying a spatially 

explicit error thresholds in topographic change detection can help improving the reliability and sensitivity. 15 

Our study demonstrates that the PPK positioning is a robust solution for monitoring surface change and estimating sediment 

budgets at very high spatial and temporal resolution. This technique can be very advantageous when it comes to monitoring 

large areas that are poorly accessible or require repeated surveying (Clapuyt et al., 2017; Eltner et al., 2016). A relatively cheap 

RTK/PPK-enabled micro UAV (small-form 25×25 cm, weight 1.4 kg, autonomy 15 minutes) provided similar accuracy and 

repeatability as a professional multirotor UAV system (large-form 80×80 cm, weight 4.5 kg, autonomy 15 minutes). Based on 20 

our analysis, we suggest that using a micro-drone/action camera setup is suitable for large scale monitoring (e.g., gully erosion, 

landslides, glaciers, etc.) when a high GSD is not required. When considering a scene’s 3D geometry, the high FOV also assists 

in recording features exposed along vertical facades (e.g., vertical cliff face) from nadir-view photogrammetry. Furthermore, 

in countries with strict UAV regulations and/or inaccessible regions (e.g., mountains) a light-weight system can be more easily 

transported on the field than a large UAV system. The DSLR camera setup can be used when high resolution is needed, for 25 

example for soil roughness assessment, sheet and tillage erosion, solifluction, riverbank erosion, etc. Finally, a key step in PPK 

positioning is to obtain GPS data from a stationary base station. In this study, we used an internet-enabled system to geolocate 

the base station for each flight. For areas where an internet is absent or unreliable, and long-term monitoring is required, we 

suggest setting up a permanent reference point that can be used to position a local base station (e.g., a concrete pole). 
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5 Conclusion 

The UAV-SfM framework is increasingly used in geomorphology to accurately capture the Earth’s surface. Our study showed 

that the application of PPK (Post-Processing Kinematic) in direct georeferencing can provide cm-level accuracy and precision 

which results in a greatly improved field survey efficiency. Furthermore, it is a robust method that was demonstrated to be 

repeatable among multiple dates and surveys. We investigated the positional accuracy and the repeatability of DSMs by 5 

repeating the same flight plans. The PPK solution had a similar accuracy (MAE: ca. 0.02 m, RMSE: ca. 0.03 m) as the 

traditional approach using georeferencing based on GCP’s. Nevertheless, some flights were characterized by a vertical shift 

which could be mitigated using a single GCP. We also evaluated two UAV-camera setups (with differences in UAV 

size/weight, portability, camera focal length, resolution and sensor quality) and showed that the tie point uncertainties are very 

different. Nevertheless, the DSM reconstruction and surface change detection based on a DSLR and action camera were 10 

reproducible: the main difference lies in the level of detail of the surface representations. Using low-altitude flights (<45 m) it 

is possible to detect surface change using a PPK-SfM workflow with a threshold below 5 cm, even with a low-cost action 

camera. Precision estimates are critical to assess significant changes between two surfaces. We evaluated different methods to 

estimate precision and registration errors and found that Monte Carlo simulations (James et al., 2017) where the camera 

position uncertainty is considered provide a robust way to estimate spatially explicit LoD thresholds for low-FOV cameras. 15 

Overall, the PPK-SfM workflow overcomes some of the main limitations of GCPs, and provides a high-precision and high-

efficiency solution in surveying and geomorphological applications.  
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Figure 1: Description of the study sites. (a) location of study site (b) satellite image of the study site (c) classification of the surface 

used in the analysis. 
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Figure 2: Experimental setup: (a) UAV/camera setup: DSLR camera (EOS 550D) mounted on RPAS Type Y6, Action camera 

(GoPro Hero 3) mounted on a Phantom 3 Advanced (b) Parallel flight lines (Top: RPAS Type Y6 with DSLR camera; Bottom: 

Phantom 3 with action camera) and GCPs/CPs distribution (c) How GCPs/CPs displayed in the images and (d) Measurement of 

GCPs/CPs. 5 
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Figure 3: Distribution of GCPs and CPs and illustration of the different georeferencing configurations: Single GPS, Single GPS + 8 

GCPs, PPK, PPK + 1 GCP. Note: Cross validation was implemented in PPK + 1 GCP configuration, i.e., one single control point was 

used as GCP in each processing.   

  5 
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Figure 4: Distribution of CP residuals on X, Y and Z directions of each survey. MAE and RMSE in legend indicate mean absolute 

error and root-mean-square-error of XYZ direction. Units are given in meters as well as pixels to standardise results in terms of the 

expected error incurred from the GSD at corresponding flight height. 

  5 
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Figure 5: Precision maps derived from Monte Carlo simulation. (a) MC map of DSLR camera, dataset: F3_a (b) MC map of action 

camera, dataset: F2_b (c) boxplots of MC precision of DSLR surveys (area of interest) (d) boxplots of MC precision of action camera 5 

surveys (area of interest) 
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(a)
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(b) 
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(c) 

 

Figure 6: Change detection based on DoD (datasets: F2, F3_a of DSLR and action camera surveys). (a) Surface change map (b) 

Height profiles sampled at identical location from the corresponding DSMs before and after plowing. Line graph shows height 

profiles along the sample transect (X-axis: position along the transect, Y-axis: surface height) (c) Volumetric sediment budget. 5 
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Table 1. Summary of positional accuracy assessments conducted in various published studies. 

Authors Validation Method Flight height and GSD Motivation/Application Accuracy Georeferencing Method 

(Turner et al., 2012b) Check points 

 

50 m, ca. 1 cm px-1 

 

Accuracy assessment Mean absolute horizontal accuracy of 0.66 and 1.25 m Direct georeferencing with single GPS 

Mean absolute horizontal accuracy of 0.10 and 0.13 m GCP 

(Harwin and Lucieer, 

2012) 

Check points 30–50 m, 1–3 cm px-1
 

(after down-sampling) 

Coastal erosion Horizontal RMSE of 0.001–0.083 m 

Vertical RMSE of 0.04–0.06 m 

GCP 

(Ouédraogo et al., 

2014) 

DEM of difference Maximum of 100 m, 3.3 

cm px-1 

Agricultural soil 

microtopography 

Mean absolute difference of 0.074 m GCP 

(Uysal et al., 2015) Check points 60 m, 5.2 cm px-1 Accuracy assessment Mean vertical accuracy of 0.062 m  GCP 

(Fazeli et al., 2016) Check points 120 m, 2.38 cm px-1 Accuracy assessment Mean horizontal accuracy of 0.132 m 

Mean vertical accuracy of 0.203 m 

Direct georeferencing with RTK-GPS 

(Clapuyt et al., 2016) DEM of difference 50 m, 0.43–0.77 cm px-1 Reproducibility assessment Mean absolute error of 0.06 m GCP 

(Stöcker et al., 2017) Check points 100 m, 2.8 cm px-1 Accuracy assessment Mean accuracy on X, Y and Z: 0.217, 0.186 and 0.053 m Direct georeferencing with RTK-GPS 

(Glendell et al., 2017) DEM of difference 23–40 m, 0.6–1.1 cm px-1 Upland soil erosion RMSE of DoD from 0.05 m to 0.35 m GCP 

(Forlani et al., 2018) Check points 90 m, 2.3 cm px-1 Accuracy assessment Mean horizontal accuracy of 0.024 m 

Mean vertical accuracy of 0.046 m 

Direct georeferencing with RTK-GPS 

Check points Mean horizontal accuracy of 0.015 m 

Mean vertical accuracy of 0.023 m 

GCP  

DEM of difference Mean absolute difference of 0.125 m Direct georeferencing with RTK-GPS 

(Eker et al., 2018) Check points 40 m, 0.72–0.89 cm px-1 Monitoring landslide RMSE of 0.04 m GCP 

(Rossini et al., 2018) Check points 110 m, 4.3–4.5 cm px-1 Tracking glacial dynamics Total RMSE of 0.153 m GCP 

(Grayson et al., 2018) Check points 120 m, ca. 3 cm px-1 Accuracy assessment RMSE of 0.025 m GPS precise point positioning (PPP) 

RMSE of 0.025 m PPK  

RMSE of 0.022 m GCP 

(Duró et al., 2018) Check points 25 m, 2.1 cm px-1 Bank erosion Mean error of -0.05–0.04 m GCP 

(Padró et al., 2019) Check points 80 m, 2.5 cm px-1 (RGB 

sensor) and 5 cm px-1 

(multispectral sensor) 

environmental monitoring RMSEr ≤ 0.036 m and RMSEz ≤ 0.036 m PPK 

RMSEr ≤ 0.023 m and RMSEz ≤ 0.030 m GCP 
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Table 2. Overview and key parameters of flight missions 

 Camera Date 
Mission 

Number 

Flight 

Height (m) 

Speed 

(m s-1) 

Area Covered 

(ha) 

Satellite 

PDOP value 

Ground Sampling 

Distance (cm px-1) 

Number 

of Images 

Before 

plowing 

DSLR 

camera 

(EOS) 

29.03.2018 F1 45 3.4 3.75 1.3 0.6 323 

05.04.2018 F2_a 45 3.4 3.26 1.2 0.6 360 

 F2_b 45 3.4 3.26 1.2 0.6 362 

         

Action 

camera 

(GoPro) 

29.03.2018 F1_a 45 3.4 11.33 1.3 3.1 134 

 F1_b 45 3.4 13.27 1.2 3.1 155 

30.03.2018 F2 45 3.4 12.05 1.4 3.1 137 

         

After 

plowing 

DSLR 

camera 

(EOS) 

06.04.2018 F3_a 35 3.0 0.85 1.3 0.5 129 

 F3_b 35 3.0 0.8 1.2 0.5 107 

        

Action 

camera 

(GoPro) 

06.04.2018 F3_a 20 2.6 3.23 1.2 1.3 182 

 F3_b 20 2.6 3.01 1.2 1.3 162 

Note: Repeated flight missions were marked as F_a and F_b. The missions showed in the list were used parallel flight plan.  
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Table 3. Mean absolute error (MAE), Standard deviation of error (SDE) and Root mean square error (RMSE) on check points respectively for horizontal and vertical coordinates, for the different 

configurations (datasets: all flights listed in Table 2) 

Note: we used one survey for different configurations in case the errors were averaged.  standard deviation of error (SDE) is reported to the 95% confidence level (1.96σ). 

 

Dataset 
Georeferencing 

method 

Accuracy   Precision   SD of observations 

MAE(m)  RMSE(m)  SDE(m)  MAE(m)  RMSE(m)  SDE(m) 

X Y XY Z  X Y XY Z  X Y XY Z  XY Z  XY Z  XY Z 

DSLR 

camera 

(EOS) 

Single (0 GCP) 0.327 1.463 1.499 3.423  0.344 1.554 1.59 3.455  0.205 0.232 0.309 0.308 
 

0.682 1.062  0.682 1.061  0.103 0.039 

Single + GCPs 0.011 0.011 0.015 0.024  0.013 0.013 0.018 0.030  0.026 0.023 0.034 0.059 
 

0.002 0.001  0.005 0.003  0.011 0.006 

PPK (0 GCP) 0.017 0.014 0.022 0.026  0.021 0.017 0.027 0.036  0.041 0.028 0.049 0.042 
 

0.005 0.016  0.008 0.018  0.019 0.007 

PPK + 1 GCP 0.019 0.011 0.022 0.025  0.023 0.014 0.027 0.030  0.035 0.027 0.044 0.040 
 

0.007 0.004  0.009 0.004  0.016 0.006 

 
 

        

Action 

camera 

(GoPro) 

Single (0 GCP) 1.661 0.796 1.841 3.353  1.680 0.693 1.817 3.268  0.151 0.137 0.203 0.417 
 

0.263 1.096  0.263 1.102  0.154 0.433 

Single + GCPs 0.017 0.016 0.023 0.021  0.021 0.019 0.028 0.026  0.032 0.026 0.041 0.036 
 

0.004 0.008  0.004 0.010  0.001 0.015 

PPK (0 GCP) 0.016 0.019 0.025 0.04  0.021 0.023 0.031 0.042  0.033 0.032 0.046 0.045 
 

0.008 0.018  0.009 0.018  0.013 0.013 

PPK + 1 GCP 0.013 0.012 0.017 0.027   0.018 0.017 0.024 0.031   0.029 0.029 0.041 0.040   0.006 0.009   0.008 0.010   0.013 0.012 
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Appendix A 

 

Figure A1: Distribution of the propagated error derived from Monte Carlo simulation (datasets: F3_a and F3_b of DSLR surveys, 

surface classification was shown in Fig. 1c). 
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Figure A2. Residuals on the images and CPs in planimetric view. Vectors give the horizontal residual component magnified by ×500 

for DSLR survey (left) and ×100 for action camera survey(right). With inset mean value and standard deviation of the image 

residuals. 
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Figure A3. Monte Carlo Precision maps (a) Dataset: down-sampled DSLR images with equal GSD as action camera images (b) 

Dataset: clipped action camera images with equal FOV. Note: the additional action camera flight mission (right) was conducted one 

year later and surface had slightly changed, but spatial pattern existed.

 


