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Highlighted in bold are the reviewer comments followed by our point-by-point replies in regular 

text. Sentences that will be added or changed from the original manuscript are in italics. All 

changes will be made to the final manuscript submission following completion of the interactive 

review period. 

 

Reviewer Patrice Carbonneau 

This is an excellent contribution which comes at timely point when many technologies are 

coming together. The new method rests on a genuine innovation in grain size mapping, a 

clever use of a k-means cluster. The paper is mostly well written and has an excellent level 

of technical detail. This might be demanding for readers, but a detailed reading of this 

work is effective in lifting the black-box effect that can arise from advanced image 

processing workflows with a large number of steps and parameters. One of the major 

benefits of this work is the fact that it is open-source and written in the popular Python 

language. This is very timely because Basegrain, the current best option for grain size 

mapping, is written for windows-7 and no longer in active development. Despite the fact 

that the creator of Basegrain is very collaborative and willingly shares the Matlab source 

code, the river sciences community will soon need an updated option with a major 

preference towards an open-source solution. PebbelCounts seems poised to fill this gap. 

We thank the reviewer for positive comments regarding the quality, thoroughness, timeliness, 

and innovativeness of the submission. The level of detail in the paper is very high, which this 

reviewer found good, but the second reviewer found obfuscating to our main points. Our goal 

with the manuscript at this level of detail was to provide sufficient information for a reproducible 

algorithm and processing chain that can be precisely followed. Previous publications of grain-

size estimation algorithms often had a shorter method section that did not allow to reproduce the 

algorithm. In the spirit of open source and traceable and reproducible algorithms and software, 

we strongly think that a well-documented algorithm is beneficial to the community for the years 

to come. We cover points regarding this more in the reply to the second reviewer, but are happy 

to see that the first reviewer found the highly detailed analysis and writing useful.  

 

I have a few suggestions about corrections but these are not major: 

1- I found equations 1,2 and 3 to be laborious and not really necessary. Non-metric RGB 

cameras destined for the consumer or ‘prosumer’ market have square pixels. As observed 

by the authors, differences in X and Y resolution are negligible. This whole section could be 

cut short to a single equation. 



We agree that this section can be cut-down without losing too much information, but still feel a 

description for the interested user warrants a few sentences. Section 5.3.1 will now read 

(including the suggestion in point 3 below): 

 

We refer to all imagery used as top-down as opposed to the commonly used nadir term, which 

refers to images taken consistently from a directly downward-pointing vantage, since our images 

are taken from a variety of near-downward angles. As consumer-grade cameras have square 

pixels with negligible difference in horizontal and vertical resolution, the image scale can be 

calculated directly from the camera parameters and camera height with the resolution (R) in 

mm/pixel given by: 

R = (S * h) / (f * I)           (1) 

where S is the sensor height or width in mm, f is the lens focal length in mm, h is the camera 

height in mm, and I is the image height or width in pixels. S and I should either both be the 

width, or both be the height of the sensor and image, respectively. This assumes no major 

distortions within the field of view, which is not valid for oblique imagery, but is negligible for 

top-down photography at close range using non-fisheye lenses. With h=1.55 m, the resulting 

image resolutions tested from the Fujifilm were 0.26, 0.35, 0.53, and 1.05 mm/pixel by eq. (1). 

 

2- A better reading of your bibliography. This bibliography is in fact quite complete. But I 

get a distinct impression that many papers were skimmed, deemed relevant, and cited. I am 

often struck by points of discussion or relevant findings of other authors which are missing 

in the text despite the fact that these authors are cited. Another explanation may be that 

the discussion lacks many key points of a good discussion where elements of other authors 

will need more consideration. Specifics of this will be seen below. 

We have tried to fix and improve these points through some re-reading of the relevant 

bibliography, and re-writing of discussion points. We have made an effort to avoid spending 

much time discussing grain-sizing efforts that are based on texture (roughness, variance, entropy) 

techniques, besides to mention the papers that cover them, which are many in number and highly 

variable in exact methodology. We have focused our closer readings and the discussion on those 

studies that also employ image-segmentation techniques to the problem of grain sizing, as these 

are more relevant to our study and allow to decipher the full grain-size spectrum.  

 

3- The accepted term for ‘top-down’ imagery in the remote sensing community is ‘nadir’. 

Please use that term. 

This point is well taken and we have discussed this among the two authors. Nadir imagery refers 

specifically to downward-pointing images. The images used in this study are taken from a 

variety of angles near downward, but hardly ever exactly, since we are using an imperfect 

camera-on-mast setup. Top-down imagery is a more general term and we feel more appropriate 



for the type of imagery used in this study, especially because we do not measure the angle of the 

images taken. We have, however, added a sentence at the beginning of Section 5.3.1 on P10, L5: 

 

We refer to all imagery used as top-down as opposed to the commonly used nadir term, which 

refers to images taken consistently from a directly downward-pointing vantage, since our images 

are taken from a variety of near-downward angles.  

 

4- The drone/SfM elements of the paper are not well organised. The UAV/SfM paragraph 

in the introduction could be moved. SfM is now so ubiquitous that it should not shock the 

reader if you say in the methods that SfM was used for data acquisition. The overall 

reflection of how this could apply to drones in an SfM workflow needs to be moved to a 

section in the discussion. This is an area where many elements of the cited literature are not 

mentioned. Important points are:  

The paragraph in the introduction concerning UAV and SfM orthomosaic generation can be 

shortened, but it is mainly there to provide a segue from previous manual counting methods in 

the previous paragraph, to photo-sieving methods, and onward to the last introductory paragraph 

where we introduce our photo-sieving method. We will shorten the paragraph as follows, and 

will create a new section in the discussion to cover the other concerns of the reviewer (see the 

next reviewer points below). The new introduction paragraph from P2, L10: 

 

In light of this, measurement from photographs is an attractive option for increasing sample size 

and decreasing fieldwork, while covering larger areas. Increasingly affordable high-resolution -

-- 12--24 megapixel (MP) --- cameras, allows the collection of high-quality photo surveys at 

scales of entire river cross sections or reaches via Structure-from-motion with Multi-View Stereo 

(Smith et al., 2015; Eltner et al., 2016) at resolutions at or exceeding 1 cm/pixel (e.g., Woodget 

and Austrums, 2017). Even higher resolution (1 mm/pixel) river surveys can be accomplished 

with low-flying unmanned aerial vehicles (UAVs) (e.g., Carbonneau et al., 2018), pole-mounted 

cameras, or using handheld imagery. 

 

i- Acquisition geometry. There is now a large volume of literature on the image geometry 

that produces the best 3D models from SfM. This remains important here since DEM- 

distortions will propagate to the orthoimage. So in parallel with the robotic photosieving 

work, there should be a recommendation of a mixed acquisition with nadir imagery for the 

actual grain delineation but with oblique views for maximum SfM quality. 

ii- Be honest and realistic about scale coverage. The paper states an ambition of covering 

areas up to 10 000 m2. At the same time the method rests on SfM with surveyed ground 

control to generate an orthomosaic with a constant resolution. This is in fact an ambitious 

goal. The acquisition of 80% overlapping imagery with surveyed GCPs and at sub-mm 



resolutions over a hectare is a multi-day (or multi-camera) job. This is why the robotic 

photosieving approach of Carbonneau et al (2018) does not advocate a orthomosaics but 

uses scaled individual images. 

iii- Use of a Mavic as the only reference is perhaps overly pessimistic. Carbonneau et al 

(2018) mention that a Phantom 4 Pro (20 Mpix imagery) could acquire 0.7mm/pix imagery 

at 2m altitude. With active collision avoidance, that becomes a workable, if very low, flying 

altitude. This problem should resolve itself as sensors with more than 20MPix become more 

available. 

Regarding the points i-iii listed here, we have re-written Section 7.3 in the discussion. This 

section deals with practical considerations for image collection and processing using the 

proposed algorithms. We now include sub-sections dealing with image resolution and geometric 

considerations for image collection, using a UAV-SfM robotic photosieving workflow (as 

covered by Carbonneau at al. (2018)), and addressing the ambitious up-scaling we propose. This 

new section hopefully addresses the reviewers concerns and adds clarity to the potentials and 

caveats of PebbleCounts as applied to photogrammetric river surveys, particularly regarding the 

use of drones. The new Section 7.3 in the discussion will read as follows (beginning from the 

current location on P25, L29): 

 

7.3 Practical Considerations for Image Collection and Processing 

To conclude the discussion, we focus on the collection of imagery by camera-on-mast or 

handheld setups. This includes geometric acquisition and resolution considerations. We further 

address the potentials for UAV surveying. Finally, we address the up-scaling potential of the 

proposed method.  

 

7.3.1 Acquisition Geometry and Resolution of Mast or Handheld Images 

Ideally, collecting 9+ top-down images/m2 (as in our field surveys) or collecting an 

approximately 1:2 (or greater) ratio of top-down to oblique imagery (as in our experiments with 

point cloud data dimensions; see supplement Section S1), leads to the highest quality point cloud 

results in Agisoft. Higher quality point clouds, in turn, lead to less distortion errors during 

orthorectification and higher quality orthomosaics. Due to the textured nature of gravel images, 

we were able to get comparable results in reduced time using only 4 top-down images/m2 in the 

lab setting. In any case, high overlap of ~80% between images is recommended to ensure the 

best results. Where a user desires accurate and dense point cloud data in addition to the 2D 

orthomosaics, it is recommended that (many) more images closer to the surface be collected and 

from oblique viewing angles (e.g., Verma et al., 2019).  

As we find the difference in calculated resolution and subsequent grain-size measurement to be 

negligible between orthorectified and raw top-down imagery at these scales, the use of 

orthomosaic imagery is not strictly necessary when using image-segmentation software like 



PebbleCounts (e.g., Carbonneau et al., 2018). However, on very rough surfaces with cast-

shadows from large grains, generating orthoimagery will overcome distortions present in the 

raw photos. Furthermore, georeferenced orthomosaics may be preferable for capturing large 

sites at a constant resolution that can be fed into the algorithm. 

In terms of camera and photographic height (and thus resolution) considerations, one first needs 

to assess the minimum grain size that is desired. Following this, the resolution of the image can 

be determined using eq. (1) with some knowledge of the camera parameters (focal length, 

camera height, sensor size, and image size). The smallest grain b-axis needed should be 20-times 

this resolution. For instance, using a similar camera to the Sony a6000 (24 MP, 15.6 x 23.5 mm 

CMOS sensor, 16 mm focal length), to measure all grains down to 1 cm one needs a resolution 

of 0.5 mm/pixel, and thus a maximum camera height of ~2 m. If finer grain sizes are desired, the 

user can use higher resolution imagery, but must be aware of the longer time needed for 

processing finer imagery. 

 

7.3.2 On the Use of the UAVs 

The > 20 m flight heights typical of UAV surveys lead to cm-scale imagery with currently 

available 12-24 MP cameras, which is less appropriate for PebbleCounts processing, unless 

large (> 0.2 m) cobbles and boulders dominate the river site. Carbonneau et al. (2018) build on 

the work of Carbonneau and Dietrich (2017) to present a workflow for robotic photo sieving on 

mm to sub-mm UAV imagery without any GCPs. The method uses a number of high and oblique 

overlapping flights to orthorectify a lower non-overlapping flight with mm-scale acquisition. In 

their study, the resulting georeferenced single orthoimages are measured using Basegrain, 

demonstrating the potential of this method to be applied with PebbleCounts instead.  

Practical considerations for UAV image acquisition include the use of multiple flight heights for 

georeferencing, including one low flight to acquire mm-scale imagery, and the collection of both 

nadir and oblique imagery for improved SfM-MVS results (Carbonneau et al., 2018). Also, the 

use of a 3-axis camera gimbal is key to reduce blur in the images (Woodget et al., 2018). 

Imagery at sub-mm resolution is already achievable from newer drone models with high MP 

cameras flown at low heights. For example, 0.5 mm/pixel imagery from a DJI Mavic drone with 

a 12 MP camera, wide angle 4.3 mm focal length, and 4.55 x 6.17 mm sensor requires a very low 

flight height of ~1.4 m, giving a field of view of only ~1.5 x 2 m. This may be somewhat improved 

using better cameras like on the Mavic 2 Pro (20 MP camera). Regardless, acquiring such 

imagery with the high overlap (~80%) required for SfM-MVS processing is still difficult 

(particularly given current ~20-minute flight length limitations from available batteries). 

Improvements in technology will continue to increase survey sizes from UAVs, but, for the time-

being, the single, non-overlapping orthoimage workflow proposed by Carbonneau et al. (2018) 

has high potential to achieve large-areal results from PebbleCounts using UAV imagery. 

 

7.3.3 Coverage and Processing Limits Using PebbleCounts 



Using handheld imagery, a survey site of 1,000 – 5,000 m2 with ~10 GCPs measured via dGPS 

can be covered in 2-6 hours by one person (including GCP collection). Using a camera-on-mast 

setup, this time can be reduced by half, with even greater speed possible using more people and 

cameras (of the same focal length). The potential to cover even larger survey sites up to or 

exceeding 100x100 m (10,000 m2 = 1 hectare) is feasible in a day of work by two people using 

the proposed method with a 16-20 mm focal length lens and a 3-5 m mast.  

Current UAV technology limits mm to sub-mm orthomosaic generation via high-overlap SfM-

MVS to relatively small areas, unless carefully applied to single orthoimages as in Carbonneau 

et al. (2018). However, technology improvements will continue. These include greater battery 

life, more accurate geo-tags from onboard dGPS, higher MP cameras, and sharper images while 

in motion. It is thus within reason to expect hectare to multi-hectare SfM-MVS UAV surveys at 

mm to sub-mm resolution in seamless orthomosaics along entire river reaches in the near future.  

One limit of the scalability of the PebbleCounts method is processing time. The KMS 

PebbleCounts tool is recommended to be applied to maximum 1-2 m2 patches, depending on the 

image resolution, as the manual clicking of good grains is time consuming, requiring 5-20 

minutes per patch depending on patch size, image resolution, and abundance of finer grains. On 

the other hand, the AIF PebbleCountsAuto tool can theoretically be applied at larger scales. 

However, it is also advisable to tile data and feed it to the algorithm in maximum 1-2 m2 patches 

for ~1 mm/pixel imagery, since the non-local means denoising can take minutes on very large 

images (> 2,000 x 2,000 pixels). Again, the use of systems with GPUs or large memory will 

shorten processing times and allow for larger images to be run.  

In practical terms, a workflow to cover a ~2,500 m2 survey site captured at 1 mm/pixel 

resolution would be: (1) tiling into 2 m2 patches, (2) passing each patch to the AIF 

PebbleCountsAuto tool with quick manual steps of shadow-masking and sand-clicking (if sand is 

present), where each tile takes 1-2 minutes, (3) selecting a random subset of ~20 tiles to pass to 

the KMS PebbleCounts tool as validation and uncertainty estimation for the AIF approach. Such 

a workflow could be accomplished in 1-2 days of work by an experienced user, providing tens- to 

hundreds-of-thousands of measured grains from the survey site and a robust measurement of the 

full GSD. To increase processing speed, a gridded subset of tiles could also be extracted from 

the full survey site, with a 3-5 m step size between patches, to provide complete coverage across 

heterogeneous gravel-bar features, while avoiding unnecessary over-sampling and processing of 

every patch in the survey site.  

 

5- Improve the discussion. The discussion needs a much improved start and overall 

reorganisation. A good rule on writing a discussion is to start with a sentence or two that 

distil the major findings that you want the reader to take away from this paper. A 

discussion needs to go over the substantive elements of the findings and their meaning and 

contrast to the work of other authors before going into issues. Here, the authors need to 

start the discussion with a section that tells us what they have achieved and gives the reader 

a better sense of how PebbelCounts compares to other methods. Without necessarily 



running other methods on their data, we at least need a summary table that presents errors 

reported in literature and compares them to the current work. This is the section where 

you need to show an enhanced understanding of the literature.  

While we agree that the discussion could use some reorganization (see for example our response 

to point 4 i-iii above) and a better introduction, we would like to avoid tables with exhaustive 

lists of the errors reported in other studies. In particular, we do not want to make comparisons 

between errors from the described image segmentation approach and texture based (e.g., 

roughness, entropy, semivariance) approaches, since these other methods are based on 

correlative relationships, rather than direct measurements of the grains.  

A comparison with other image segmentation studies is made especially complicated by the 

tendency in different studies to sometimes only report the bias without the error spread, use 

different metrics of uncertainty reporting, and/or report uncertainties in mm rather than psi units. 

For example, unfortunately, the only study we found that reports the accuracy of Basegrain 

versus control data is that of Westoby et al. (2015), however, they only provide percentile bias 

numbers in mm with no measure of spread.  

We feel it is more useful to report a few aggregate numbers from these studies, which together 

demonstrate the PebbleCounts algorithm to be within the range (and even on the low-end) of 

previously reported uncertainties. Ultimately, the uncertainty in measurement is highly 

dependent on the input image quality and complexity (range in grain size, angularity, intra-

granular variability) and providing blanket estimates is less useful than end-users applying the 

KMS tool to a subset of images to validate the results of the AIF approach. 

To clarify these points and provide a better intro for the discussion, we propose a modification of 

Section 7 and 7.1, which begins at P23, L6: 

 

7 Discussion 

In this study we developed two new methods for grain-size measurement with low uncertainties 

and the potential to deliver full GSDs from complex images of high-energy mountain rivers. Our 

open-source Python-based algorithms perform equally well to other image segmentation tools, 

but can be applied more quickly over larger areas surveyed by the SfM-MVS workflow we 

present. Critical to success is the application of a strict lower cutoff, which limits the minimum 

measurable b-axis grain size to 20-times the pixel resolution. The automated version of the 

algorithm delivers less accurate measurements, but these can be limited by using low-blur, 

higher resolution imagery. We focus our discussion on the comparison of our approach with 

similar work, the effect of the lower truncation on GSD estimates, and practical guidelines for 

acquiring imagery and applying PebbleCounts, including the application of UAV surveys. 

 

7.1 Performance of KMS and AIF 



For comparison of our algorithms to previous work, we do not consider errors reported in 

studies using texture-based measurements (e.g., Woodget at al., 2018), since these methods are 

based on correlative relationships rather than physical measurement of each grain. Similar to 

other image segmentation methods (Butler et al., 2001; Graham et al., 2010), the KMS 

PebbleCounts approach undercounts grain sizes in each respective size class. This 

undercounting does not undermine the resulting GSDs and associated percentile estimates, so 

long as an appropriate lower truncation is defined. This cutoff was found to be 20 pixels 

(compare to 23 pixels found by Graham et al. (2005a)) in b-axis length (Fig. 13), which explains 

the degradation in 3--5 mm counting in the reduced resolution lab images (Fig. 8), where the 

smallest pebbles were only a few pixels in size as resolution was decreased. 

As shown in Figure 16, when we apply this cutoff and exclude poorly performing images we find 

an average m (bias) and e (spread) of 0.03 and 0.09 psi, respectively, for the ~1.16 mm/pixel 

imagery and 0.07 and 0.05 psi for the 0.32 mm/pixel image. For the AIF approach these values 

are 0.13 and 0.15 psi for the ~1.16 mm/pixel imagery and -0.06 and 0.05 psi for the 0.32 

mm/pixel image. These are averages, which actually increase at higher percentiles in agreement 

with other image segmentation methods (e.g., Sime and Ferguson, 2003). We thus suggest higher 

error budgets at higher percentiles.  

As demonstrated in Figures 18 and 19, there are significant inaccuracies associated with the 

AIF approach. The errors associated with the AIF approach can be limited when applied to 

high-quality (low-blur) ~1 mm/pixel resolution imagery, with better results possible on < 0.5 

mm/pixel imagery. Ultimately, the uncertainties are highly dependent on the input image quality 

and complexity (range in grain size, angularity, intra-granular variability) and providing 

blanket estimates is less useful than end-users applying the KMS tool to a subset of images to 

validate the results of the AIF approach. 

In spite of this caveat, our bias values of 0.03-0.13 psi are in the range of previously published 

absolute biases of 0.007--0.33 psi from similar techniques (see Table 2 in Graham et al. (2010)). 

To our knowledge, the only study to compare Basegrain results to control data by Westoby et al. 

(2015), makes comparisons in mm rather than psi units. Since the psi scale is logarithmic, in our 

study the error in mm increases with psi from ~0.8 mm uncertainty at 4.5 psi (23 mm) to ~7 mm 

uncertainty at 6.5 psi (91 mm) for the ~1.16 mm/pixel imagery in the KMS case. Westoby et al. 

(2015) report similar bias from Basegrain, again increasing in magnitude at higher percentiles. 

Regarding the error spread reported in the literature, our range of 0.05-0.13 psi is less than the 

0.25 and 0.14 psi values reported by Sime and Ferguson (2003) and Graham et al. (2005b), 

respectively, for their image segmentation techniques. 

 

6- 3D data The section at the end of the discussion on the integration of 3D information 

does not sit well. Move it to the introduction with the intention of stating that you will not 

be using 3D clouds or DEMs. It would be worth citing the work of James Brassington and 

Damia Vericat who have developed particle sizing based on TLS. But also you could 

mention that Woodget et al (2018), already cited, found that 3D information did not 



improve particle size estimates. This section could be the place in the intro where you 

discreetly place a few SfM/drone citations but just to further justify that this will be an 

image-based method. 

We have significantly shortened this section on point clouds to a few key points and moved the 

majority of the information, including the current Figure 20, to the supplementary material. The 

remaining section is now in the introduction. We have incorporated the suggested citations. We 

have created a new section in the introduction preceding the current Section 4 where the 

PebbleCounts algorithms are presented. This will be the new Section 4 and reads as follows (we 

also include the new Section S1 below): 

 

4 Additional Data Dimensions from Point Clouds 

As mentioned in Section 2, previous authors have attempted to incorporate roughness from 

point-cloud data into measurements of average grain size (e.g., Brasington et al., 2012), which 

has potential if the range in sizes is large enough to be expressed in 3D in the point cloud (e.g., 

Woodget et al., 2018). Such work highlights the potential to exploit third height dimensions from 

irregularly spaced point clouds generated via lidar or SfM-MVS, but stops short of object 

detection and segmentation. We briefly summarize key points we found in this regard and direct 

the reader to the supplementary material Section S1 for a full description. 

Our efforts to incorporate height information were complicated by vertical noise (scattering 

around a mean value) inherent to the SfM-MVS technique derived from a limited set of 

overlapping photos. Vertical standard deviations from flat target surfaces in our field data were 

~1.7 mm, and likely much higher on steeper grain surfaces. It is possible to get lower values of 

0.2 mm with many more oblique images taken under ideal conditions at close range (e.g., Cullen 

et al., 2018; Verma et al., 2019), however, for field surveys this is not feasible while also 

covering large areas. As the point cloud actually has a lower resolution (since it is based only on 

matched points) and more vertical noise than the orthomosaic (which exploits the full camera 

resolution), the imagery alone provided more detail. This is particularly important around grain 

edges needed for segmentation, which are not captured in top-down imagery alone (Figure S1). 

To conclude, the potential for additional data dimension integration into pebble counting may be 

possible using higher dimensional object detection schemes, but, for the time-being, the 

orthoimagery alone provides satisfying results. 

 

Supplement Section S1 

The results presented here are similar to other studies segmenting grains from 2D imagery. This 

ignores the potential to exploit the third height dimension of the data from irregularly spaced 

SfM-MVS point clouds and associated DEMs. Many authors have already begun to look at 

patch-scale variance or roughness (e.g., Rychkov et al., 2012) from point clouds on gravel-bed 

rivers to determine bulk characteristics, but this stops short of object detection and 



segmentation. Here, we briefly describe some of our own efforts to incorporate this additional 

information into PebbleCounts. 

Our simplest approach was including the gridded DEM information, resampled to the same 

resolution as the orthomosaic. We inverted the elevation raster and flood-filled from the lowest 

points (tallest grains) using watershed approaches, conceptionally similar to lidar tree-detection 

algorithms (e.g., Chen et al., 2006; Alonzo et al., 2015). For large, prominent grains with semi-

spherical shapes, the flooded area was found to linearly increase until reaching the grain 

boundary, at which point the rate of area change jumped. We explored this break point as a 

potential segmentation tool for larger grains, but found that in the complex natural setting the 

shape of most grains is far from spherical, and furthermore, overlapping grains led to 

inconsistent behavior in the area breaks. 

In an additional approach, we calculated both roughness and curvature at a variety of scales (5, 

10, 50, 100 mm) directly from the point cloud using the open-source CloudCompare software 

(CloudCompare, 2018). This information was then gridded into a raster of the same resolution 

of the orthomosaic. While roughness could at times identify the smoother sand patches, it was 

difficult to discern between a sand patch and flat rock, and a color threshold on the 

orthoimagery was more successful. Curvature showed some spikes at grain boundaries, with the 

potential to aid in edge detection, however, we found that curvature was also high on intra-

granular features.  

In general, this analysis was complicated by vertical noise (scattering around a mean value) 

inherent to the SfM-MVS technique in the generation of dense point cloud data. In the field, for 

~9 photos taken from a height of ~5 m, the vertical standard deviation of points on a detrended 

flat surface (one of our coded targets) was found to be 1.7 mm for 13,014 points. On the other 

hand, in the perfect lab setting with 16 photos from ~1.5 m, the detrended flat carpet around the 

pebbles achieved a standard deviation of 0.2 mm (33,371 points), similar to other SfM-MVS 

studies using large numbers of carefully collected images (e.g., Cullen et al., 2018; Verma et al., 

2019). These standard deviations from detrended flat surfaces represent a best-case scenario, 

whereas, in our field setting, the vertical uncertainty on the complex, overlapping pebbles is 

likely higher. Such vertical noise is absent from the orthomosaics and limits the applicability of 

point clouds at these scales.  

Ultimately, as the point cloud actually has a lower resolution (since it is based only on matched 

points) and more vertical noise than the orthomosaic (which exploits the full camera resolution), 

the imagery alone provided more detail. This is particularly important around grain edges 

needed for segmentation, which are not captured in top-down imagery alone, as shown in Figure 

S1. The lab setting resulted in point clouds with sufficient density and precision to identify 

individual grains with point-cloud processing tools. Thus, achieving higher quality SfM-MVS 

point clouds is possible, but only through more intense data collection during fieldwork (Fig. 

S1). 

Alternatively, lidar point clouds with distance measurements based on phase shifts have a lower 

standard deviation of ~1 mm in multiple settings and distances (up to ~300 m) and could allow 



more precise delineation using roughness and curvature calculations directly on the point cloud, 

however, such devices remain costly. Additionally, the development of affordable hyperspectral 

cameras with additional wavelengths will help in image segmentation in the spectral domain. To 

conclude, the potential for additional data dimension integration into pebble counting may be 

possible using higher dimensional object detection schemes, but, for the time-being, the 

orthoimagery alone provides satisfying results. 

 

Figure S1: (a) Slope distribution in field (top-down) and experimental (oblique) point cloud 

clips. The point cloud slope was calculated in \textit{CloudCompare} \citep{cloudcompare} by 

first calculating the normals at each point using the 6 nearest neighbors and then extracting the 

dip of each normal. (b) Map-view of point density normalized by the maximum for the 9 top-

down field images and (c) the same for the 16 oblique experimental images. Point density was 

calculated as the number of points in a radius of 3 mm. The clips were from a 0.2$\times$0.2 m 

area, visually selected to have similar grain sizes and numbers of grains, shown in the inset 

images in (b) and (c). The average point density for the 16 oblique photo setting was 59 

points/cm$^2$, whereas, in the field using 9 top-down photos the density was 17 points/cm$^2$. 

Note the higher point density on grain edges in (c) compared to (b), which are important for 

segmenting grains directly on the point cloud. 

 

 

Reviewer Pascal Allemand 

This paper describes an interesting open source software for automatic measurement of 

grain size distribution from images. Compared to existing systems, this open source 

software is able to work on ortho-images obtained by phogrammetric methods on image 

collections covering wide areas. The algorithm seems very efficient but the results are 

deserved by the text which is too long and a discussion where key problems are downed out 

among less important elements. I suggest to the authors to re-write the paper in a more 

concise and linear way.  



We appreciate that the reviewer finds the work relevant and sees its potential for grain-size 

mapping. However, we disagree that the paper needs major rewriting. As mentioned in our first 

reply, our goal in having such a high level of detail is in reporting every step in a very complex 

study. Interested users will be able to follow every step we have taken from data collection to 

algorithm development and assessment via a close reading. Hopefully some of the confusion was 

eliminated in the large amount of discussion rewriting and reorganization that we accomplished 

in reply to the first reviewer. Nevertheless, we have tried to accommodate the comments of the 

second reviewer in some of the points below. 

 

P4 line 2: How to be sure that the detected grains are representative of the whole grains? It 

is a point to discuss.  

We have hand-clicked every visible grain in the control images, thus representing the true 

distribution of the grains. We can be sure that the grains detected using the image segmentation 

approaches are representative of the whole distribution because these grain-size distributions 

match very well to the hand-clicked control data as shown in, for example, Figure 14. We add a 

sentence at P4, L2: 

Despite the selection of fewer grains, Figure 2 demonstrates that these grains do represent the 

entire distribution through the close match in GSD between hand-clicked and KMS results. 

 

P4 line 6: The fact that current methods are limited to some m2 is a real limitation that 

should be indicated in the part concerning the current methods.  

We clarify this point at the start of Section 3 by modifying the first paragraph beginning at P3, 

L24: 

Watershed segmentation is effective for interlocking, uniformly colored, oblate grains, however, 

energetic gravel-bed rivers in mountains often have more complex grain compositions with 

intra-granular variation, irregular shadowing, and a large range of sizes. The automated 

watershed methods proposed suffer from over-segmentation, grain misidentification, and the 

need for significant, time-consuming post-processing (e.g., in Basegrain with the split, merge, 

and delete tools) when applied to complex images. These issues limit the application of previous 

methods at areas > 10 m2. 

 

Figure 1: the differences in results between AIF KMF and water shed methods should be 

discussed in the discussion  

We feel that this discussion belongs in the introduction. Our algorithm does not use the 

watershed method and this section and Figure 1 and 2 are intended to highlight the reason why 

we avoid this technique before we go on to explain the steps our algorithm does take, which is 



certainly introduction material. We have however, added a sentence to the end of Section 7.1 in 

the discussion: 

Importantly, we emphasize that the previous image segmentation techniques discussed here all 

rely on the watershed segmentation step, whereas, neither of our algorithms use this step for the 

reasons demonstrated in Figures 1 and 2. 

 

Figure1: Concerning the watershed method (basegrain?), you show, I thing, the gross 

results. The results can be filtered with basegrain by post processing.  

Yes, the results can be post-processed, but the point here is that the post-processing is time-

consuming, subjective, and limits the applicability of Basegrain to larger areas. We have 

highlighted this point with the modified paragraph mentioned in the P4, L6 point above. 

 

Page 5 line 8: What type of denoising method do you use? Does it preserve edges?  

This is covered at P5, L12-13: 

…chromaticity bands from this color space undergo bilateral filtering (Tomasi and Manduchi, 

1998) to preserve inter-granular edges while further smoothing color. 

 

Page 5 line 10: how do you filter the sand patches? on color? on texture?  

This is stated at P5, L10: 

…HSV color selection for sand-patch masking. 

We clarify by adding: 

…HSV color selection for sand-patch masking (whereby sand is filtered by a narrow, user-

selected color mask). 

 

Figure 3: I suggest to merge figure 3 and figure 6 and to shorten the text referring to the 

manual user of your software.  

We feel that the text is sufficient and should not be cut for the sake of clarity to the user. We will 

merge Figure 3 and 6 as shown here: 



 

Figure 3. Flowchart of PebbleCounts (left) and PebbleCountsAuto (right). The boxes are user 

supplied input or output from the algorithm. Dashed lines indicate a user input step during 

processing, either entering and checking values or clicking. 

 

Figures 4 and 5: difficult to read and not necessary. I suggest to remove or to rework in a 

more concise and readable way  

We feel that these figures are useful and provide the user with an idea of how running the 

algorithm actually looks. This goes into our point about high level of detail in the manuscript so 

the interested user can follow along very well upon close reading. In a digital version of the 

study, these images can be zoomed into, which yields high quality vector and raster graphics 

(tested at 300% zoom in Adobe Acrobat Reader). 

 

Concerning “5 Calibration and Validation Test I: Controlled Experiment”: shorten and get 

to the point. The part concerning the cameras is not useful. What is important is the result 

(description of the Photoscan parameters is useless for example). Size of pixels do not 



matter. What is important is the ratio between the resolution of the image to the size of the 

smallest grain detected.  

We disagree with the reviewer here, and feel that the discussion of camera types and our 

experimental setup is very useful to users that will want to apply the method directly and repeat 

the processing for their own field sites. This again goes towards the thoroughness of our study, 

where we have left none of our processing steps out. 

 

Same for “6 Calibration and Validation Test II: Field Surveys”. I suggest to remove the 

useless details and to go to the point. You could show only the better and the worth 

examples and discuss why the “best” example give good results and why the “worst” 

example give no such good results (but good anyway ïA˛Ł ) 

We feel that a close reading of the section demonstrates the good and bad results and the reasons 

for them. One example we point to here on P19, L7-9: 

Importantly, S24 is the only site not from a major river stem, but rather from a debris-flow fan 

draining a small tributary catchment in the Quebrada del Toro. S34 also had a high 

Adiff=−2.11. In this case, poor performance is due to significant blurriness of this image, and 

again a small sample size (n=47). 

 

Figure 19 (they are too many figures): for me, what is important is to discuss why its work 

or not, in what case and How I can use your software and what error can I expect, by 

adding some advices on the acquisition procedure I should follow. These points are 

discussed in the current version but are not enough highlighted. 

We feel that this figure is demonstrative of the difference in the AIF and KMS routines and very 

instructive to the end user concerned about image quality and how it will affect the results from 

each technique. Regarding advice for acquisition, we have rewritten a large part of the discussion 

in response to the first review (see above). The point cloud integration has been removed which 

should add to the discussion clarity, and we end the discussion with a clearly outlined section of 

the “Practical Considerations for Image Collection and Processing”. 


