Reply to reviewers for manuscript (esurf-2019-20) submission to Earth Surface Dynamics:

Introducing PebbleCounts: A grain-sizing tool for photo surveys of dynamic gravel-bed rivers —
Purinton and Bookhagen

Highlighted in bold are the reviewer comments followed by our point-by-point replies in regular
text. Sentences that will be added or changed from the original manuscript are in italics. All
changes will be made to the final manuscript submission following completion of the interactive
review period.

Reviewer Patrice Carbonneau

This is an excellent contribution which comes at timely point when many technologies are
coming together. The new method rests on a genuine innovation in grain size mapping, a
clever use of a k-means cluster. The paper is mostly well written and has an excellent level
of technical detail. This might be demanding for readers, but a detailed reading of this
work is effective in lifting the black-box effect that can arise from advanced image
processing workflows with a large number of steps and parameters. One of the major
benefits of this work is the fact that it is open-source and written in the popular Python
language. This is very timely because Basegrain, the current best option for grain size
mapping, is written for windows-7 and no longer in active development. Despite the fact
that the creator of Basegrain is very collaborative and willingly shares the Matlab source
code, the river sciences community will soon need an updated option with a major
preference towards an open-source solution. PebbelCounts seems poised to fill this gap.

We thank the reviewer for positive comments regarding the quality, thoroughness, timeliness,
and innovativeness of the submission. The level of detail in the paper is very high, which this
reviewer found good, but the second reviewer found obfuscating to our main points. Our goal
with the manuscript at this level of detail was to provide sufficient information for a reproducible
algorithm and processing chain that can be precisely followed. Previous publications of grain-
size estimation algorithms often had a shorter method section that did not allow to reproduce the
algorithm. In the spirit of open source and traceable and reproducible algorithms and software,
we strongly think that a well-documented algorithm is beneficial to the community for the years
to come. We cover points regarding this more in the reply to the second reviewer, but are happy
to see that the first reviewer found the highly detailed analysis and writing useful.

I have a few suggestions about corrections but these are not major:

1- | found equations 1,2 and 3 to be laborious and not really necessary. Non-metric RGB
cameras destined for the consumer or ‘prosumer’ market have square pixels. As observed
by the authors, differences in X and Y resolution are negligible. This whole section could be
cut short to a single equation.



We agree that this section can be cut-down without losing too much information, but still feel a
description for the interested user warrants a few sentences. Section 5.3.1 will now read
(including the suggestion in point 3 below):

We refer to all imagery used as top-down as opposed to the commonly used nadir term, which
refers to images taken consistently from a directly downward-pointing vantage, since our images
are taken from a variety of near-downward angles. As consumer-grade cameras have square
pixels with negligible difference in horizontal and vertical resolution, the image scale can be
calculated directly from the camera parameters and camera height with the resolution (R) in
mm/pixel given by:

R=(S*h)/(f*1) 1)

where S is the sensor height or width in mm, f is the lens focal length in mm, h is the camera
height in mm, and I is the image height or width in pixels. S and | should either both be the
width, or both be the height of the sensor and image, respectively. This assumes no major
distortions within the field of view, which is not valid for oblique imagery, but is negligible for
top-down photography at close range using non-fisheye lenses. With h=1.55 m, the resulting
image resolutions tested from the Fujifilm were 0.26, 0.35, 0.53, and 1.05 mm/pixel by eq. (1).

2- A better reading of your bibliography. This bibliography is in fact quite complete. But |
get a distinct impression that many papers were skimmed, deemed relevant, and cited. | am
often struck by points of discussion or relevant findings of other authors which are missing
in the text despite the fact that these authors are cited. Another explanation may be that
the discussion lacks many key points of a good discussion where elements of other authors
will need more consideration. Specifics of this will be seen below.

We have tried to fix and improve these points through some re-reading of the relevant
bibliography, and re-writing of discussion points. We have made an effort to avoid spending
much time discussing grain-sizing efforts that are based on texture (roughness, variance, entropy)
techniques, besides to mention the papers that cover them, which are many in number and highly
variable in exact methodology. We have focused our closer readings and the discussion on those
studies that also employ image-segmentation techniques to the problem of grain sizing, as these
are more relevant to our study and allow to decipher the full grain-size spectrum.

3- The accepted term for ‘top-down’ imagery in the remote sensing community is ‘nadir’.
Please use that term.

This point is well taken and we have discussed this among the two authors. Nadir imagery refers
specifically to downward-pointing images. The images used in this study are taken from a
variety of angles near downward, but hardly ever exactly, since we are using an imperfect
camera-on-mast setup. Top-down imagery is a more general term and we feel more appropriate



for the type of imagery used in this study, especially because we do not measure the angle of the
images taken. We have, however, added a sentence at the beginning of Section 5.3.1 on P10, L5:

We refer to all imagery used as top-down as opposed to the commonly used nadir term, which
refers to images taken consistently from a directly downward-pointing vantage, since our images
are taken from a variety of near-downward angles.

4- The drone/SfM elements of the paper are not well organised. The UAV/SfM paragraph
in the introduction could be moved. SfM is now so ubiquitous that it should not shock the
reader if you say in the methods that SfM was used for data acquisition. The overall
reflection of how this could apply to drones in an SfM workflow needs to be moved to a
section in the discussion. This is an area where many elements of the cited literature are not
mentioned. Important points are:

The paragraph in the introduction concerning UAV and SfM orthomosaic generation can be
shortened, but it is mainly there to provide a segue from previous manual counting methods in
the previous paragraph, to photo-sieving methods, and onward to the last introductory paragraph
where we introduce our photo-sieving method. We will shorten the paragraph as follows, and
will create a new section in the discussion to cover the other concerns of the reviewer (see the
next reviewer points below). The new introduction paragraph from P2, L10:

In light of this, measurement from photographs is an attractive option for increasing sample size
and decreasing fieldwork, while covering larger areas. Increasingly affordable high-resolution -
-- 12--24 megapixel (MP) --- cameras, allows the collection of high-quality photo surveys at
scales of entire river cross sections or reaches via Structure-from-motion with Multi-View Stereo
(Smith et al., 2015; Eltner et al., 2016) at resolutions at or exceeding 1 cm/pixel (e.g., Woodget
and Austrums, 2017). Even higher resolution (1 mm/pixel) river surveys can be accomplished
with low-flying unmanned aerial vehicles (UAVs) (e.g., Carbonneau et al., 2018), pole-mounted
cameras, or using handheld imagery.

i- Acquisition geometry. There is now a large volume of literature on the image geometry
that produces the best 3D models from SfM. This remains important here since DEM-
distortions will propagate to the orthoimage. So in parallel with the robotic photosieving
work, there should be a recommendation of a mixed acquisition with nadir imagery for the
actual grain delineation but with oblique views for maximum SfM quality.

ii- Be honest and realistic about scale coverage. The paper states an ambition of covering
areas up to 10 000 m2. At the same time the method rests on SfM with surveyed ground
control to generate an orthomosaic with a constant resolution. This is in fact an ambitious
goal. The acquisition of 80% overlapping imagery with surveyed GCPs and at sub-mm



resolutions over a hectare is a multi-day (or multi-camera) job. This is why the robotic
photosieving approach of Carbonneau et al (2018) does not advocate a orthomosaics but
uses scaled individual images.

iii- Use of a Mavic as the only reference is perhaps overly pessimistic. Carbonneau et al
(2018) mention that a Phantom 4 Pro (20 Mpix imagery) could acquire 0.7mm/pix imagery
at 2m altitude. With active collision avoidance, that becomes a workable, if very low, flying
altitude. This problem should resolve itself as sensors with more than 20MPix become more
available.

Regarding the points i-iii listed here, we have re-written Section 7.3 in the discussion. This
section deals with practical considerations for image collection and processing using the
proposed algorithms. We now include sub-sections dealing with image resolution and geometric
considerations for image collection, using a UAV-SfM robotic photosieving workflow (as
covered by Carbonneau at al. (2018)), and addressing the ambitious up-scaling we propose. This
new section hopefully addresses the reviewers concerns and adds clarity to the potentials and
caveats of PebbleCounts as applied to photogrammetric river surveys, particularly regarding the
use of drones. The new Section 7.3 in the discussion will read as follows (beginning from the
current location on P25, L29):

7.3 Practical Considerations for Image Collection and Processing

To conclude the discussion, we focus on the collection of imagery by camera-on-mast or
handheld setups. This includes geometric acquisition and resolution considerations. We further
address the potentials for UAV surveying. Finally, we address the up-scaling potential of the
proposed method.

7.3.1 Acquisition Geometry and Resolution of Mast or Handheld Images

Ideally, collecting 9+ top-down images/m? (as in our field surveys) or collecting an
approximately 1:2 (or greater) ratio of top-down to oblique imagery (as in our experiments with
point cloud data dimensions; see supplement Section S1), leads to the highest quality point cloud
results in Agisoft. Higher quality point clouds, in turn, lead to less distortion errors during
orthorectification and higher quality orthomosaics. Due to the textured nature of gravel images,
we were able to get comparable results in reduced time using only 4 top-down images/m? in the
lab setting. In any case, high overlap of ~80% between images is recommended to ensure the
best results. Where a user desires accurate and dense point cloud data in addition to the 2D
orthomosaics, it is recommended that (many) more images closer to the surface be collected and
from oblique viewing angles (e.g., Verma et al., 2019).

As we find the difference in calculated resolution and subsequent grain-size measurement to be
negligible between orthorectified and raw top-down imagery at these scales, the use of
orthomosaic imagery is not strictly necessary when using image-segmentation software like



PebbleCounts (e.g., Carbonneau et al., 2018). However, on very rough surfaces with cast-
shadows from large grains, generating orthoimagery will overcome distortions present in the
raw photos. Furthermore, georeferenced orthomosaics may be preferable for capturing large
sites at a constant resolution that can be fed into the algorithm.

In terms of camera and photographic height (and thus resolution) considerations, one first needs
to assess the minimum grain size that is desired. Following this, the resolution of the image can
be determined using eq. (1) with some knowledge of the camera parameters (focal length,
camera height, sensor size, and image size). The smallest grain b-axis needed should be 20-times
this resolution. For instance, using a similar camera to the Sony a6000 (24 MP, 15.6 x 23.5 mm
CMOS sensor, 16 mm focal length), to measure all grains down to 1 cm one needs a resolution
of 0.5 mm/pixel, and thus a maximum camera height of ~2 m. If finer grain sizes are desired, the
user can use higher resolution imagery, but must be aware of the longer time needed for
processing finer imagery.

7.3.2 On the Use of the UAVs

The > 20 m flight heights typical of UAV surveys lead to cm-scale imagery with currently
available 12-24 MP cameras, which is less appropriate for PebbleCounts processing, unless
large (> 0.2 m) cobbles and boulders dominate the river site. Carbonneau et al. (2018) build on
the work of Carbonneau and Dietrich (2017) to present a workflow for robotic photo sieving on
mm to sub-mm UAV imagery without any GCPs. The method uses a number of high and oblique
overlapping flights to orthorectify a lower non-overlapping flight with mm-scale acquisition. In
their study, the resulting georeferenced single orthoimages are measured using Basegrain,
demonstrating the potential of this method to be applied with PebbleCounts instead.

Practical considerations for UAV image acquisition include the use of multiple flight heights for
georeferencing, including one low flight to acquire mm-scale imagery, and the collection of both
nadir and oblique imagery for improved SfM-MVS results (Carbonneau et al., 2018). Also, the
use of a 3-axis camera gimbal is key to reduce blur in the images (Woodget et al., 2018).
Imagery at sub-mm resolution is already achievable from newer drone models with high MP
cameras flown at low heights. For example, 0.5 mm/pixel imagery from a DJI Mavic drone with
a 12 MP camera, wide angle 4.3 mm focal length, and 4.55 x 6.17 mm sensor requires a very low
flight height of ~1.4 m, giving a field of view of only ~1.5 x 2 m. This may be somewhat improved
using better cameras like on the Mavic 2 Pro (20 MP camera). Regardless, acquiring such
imagery with the high overlap (~80%) required for SfTM-MVS processing is still difficult
(particularly given current ~20-minute flight length limitations from available batteries).
Improvements in technology will continue to increase survey sizes from UAVS, but, for the time-
being, the single, non-overlapping orthoimage workflow proposed by Carbonneau et al. (2018)
has high potential to achieve large-areal results from PebbleCounts using UAV imagery.

7.3.3 Coverage and Processing Limits Using PebbleCounts



Using handheld imagery, a survey site of 1,000 — 5,000 m? with ~10 GCPs measured via dGPS
can be covered in 2-6 hours by one person (including GCP collection). Using a camera-on-mast
setup, this time can be reduced by half, with even greater speed possible using more people and
cameras (of the same focal length). The potential to cover even larger survey sites up to or
exceeding 100x100 m (10,000 m? = 1 hectare) is feasible in a day of work by two people using
the proposed method with a 16-20 mm focal length lens and a 3-5 m mast.

Current UAV technology limits mm to sub-mm orthomosaic generation via high-overlap SfM-
MVS to relatively small areas, unless carefully applied to single orthoimages as in Carbonneau
et al. (2018). However, technology improvements will continue. These include greater battery
life, more accurate geo-tags from onboard dGPS, higher MP cameras, and sharper images while
in motion. It is thus within reason to expect hectare to multi-hectare SfM-MVS UAV surveys at
mm to sub-mm resolution in seamless orthomosaics along entire river reaches in the near future.

One limit of the scalability of the PebbleCounts method is processing time. The KMS
PebbleCounts tool is recommended to be applied to maximum 1-2 m? patches, depending on the
image resolution, as the manual clicking of good grains is time consuming, requiring 5-20
minutes per patch depending on patch size, image resolution, and abundance of finer grains. On
the other hand, the AIF PebbleCountsAuto tool can theoretically be applied at larger scales.
However, it is also advisable to tile data and feed it to the algorithm in maximum 1-2 m? patches
for ~1 mm/pixel imagery, since the non-local means denoising can take minutes on very large
images (> 2,000 x 2,000 pixels). Again, the use of systems with GPUs or large memory will
shorten processing times and allow for larger images to be run.

In practical terms, a workflow to cover a ~2,500 m? survey site captured at 1 mm/pixel
resolution would be: (1) tiling into 2 m? patches, (2) passing each patch to the AIF
PebbleCountsAuto tool with quick manual steps of shadow-masking and sand-clicking (if sand is
present), where each tile takes 1-2 minutes, (3) selecting a random subset of ~20 tiles to pass to
the KMS PebbleCounts tool as validation and uncertainty estimation for the AlF approach. Such
a workflow could be accomplished in 1-2 days of work by an experienced user, providing tens- to
hundreds-of-thousands of measured grains from the survey site and a robust measurement of the
full GSD. To increase processing speed, a gridded subset of tiles could also be extracted from
the full survey site, with a 3-5 m step size between patches, to provide complete coverage across
heterogeneous gravel-bar features, while avoiding unnecessary over-sampling and processing of
every patch in the survey site.

5- Improve the discussion. The discussion needs a much improved start and overall
reorganisation. A good rule on writing a discussion is to start with a sentence or two that
distil the major findings that you want the reader to take away from this paper. A
discussion needs to go over the substantive elements of the findings and their meaning and
contrast to the work of other authors before going into issues. Here, the authors need to
start the discussion with a section that tells us what they have achieved and gives the reader
a better sense of how PebbelCounts compares to other methods. Without necessarily



running other methods on their data, we at least need a summary table that presents errors
reported in literature and compares them to the current work. This is the section where
you need to show an enhanced understanding of the literature.

While we agree that the discussion could use some reorganization (see for example our response
to point 4 i-iii above) and a better introduction, we would like to avoid tables with exhaustive
lists of the errors reported in other studies. In particular, we do not want to make comparisons
between errors from the described image segmentation approach and texture based (e.g.,
roughness, entropy, semivariance) approaches, since these other methods are based on
correlative relationships, rather than direct measurements of the grains.

A comparison with other image segmentation studies is made especially complicated by the
tendency in different studies to sometimes only report the bias without the error spread, use
different metrics of uncertainty reporting, and/or report uncertainties in mm rather than psi units.
For example, unfortunately, the only study we found that reports the accuracy of Basegrain
versus control data is that of Westoby et al. (2015), however, they only provide percentile bias
numbers in mm with no measure of spread.

We feel it is more useful to report a few aggregate numbers from these studies, which together
demonstrate the PebbleCounts algorithm to be within the range (and even on the low-end) of
previously reported uncertainties. Ultimately, the uncertainty in measurement is highly
dependent on the input image quality and complexity (range in grain size, angularity, intra-
granular variability) and providing blanket estimates is less useful than end-users applying the
KMS tool to a subset of images to validate the results of the AIF approach.

To clarify these points and provide a better intro for the discussion, we propose a modification of
Section 7 and 7.1, which begins at P23, L6:

7 Discussion

In this study we developed two new methods for grain-size measurement with low uncertainties
and the potential to deliver full GSDs from complex images of high-energy mountain rivers. Our
open-source Python-based algorithms perform equally well to other image segmentation tools,
but can be applied more quickly over larger areas surveyed by the StM-MVS workflow we
present. Critical to success is the application of a strict lower cutoff, which limits the minimum
measurable b-axis grain size to 20-times the pixel resolution. The automated version of the
algorithm delivers less accurate measurements, but these can be limited by using low-blur,
higher resolution imagery. We focus our discussion on the comparison of our approach with
similar work, the effect of the lower truncation on GSD estimates, and practical guidelines for
acquiring imagery and applying PebbleCounts, including the application of UAV surveys.

7.1 Performance of KMS and AIF



For comparison of our algorithms to previous work, we do not consider errors reported in
studies using texture-based measurements (e.g., Woodget at al., 2018), since these methods are
based on correlative relationships rather than physical measurement of each grain. Similar to
other image segmentation methods (Butler et al., 2001; Graham et al., 2010), the KMS
PebbleCounts approach undercounts grain sizes in each respective size class. This
undercounting does not undermine the resulting GSDs and associated percentile estimates, so
long as an appropriate lower truncation is defined. This cutoff was found to be 20 pixels
(compare to 23 pixels found by Graham et al. (2005a)) in b-axis length (Fig. 13), which explains
the degradation in 3--5 mm counting in the reduced resolution lab images (Fig. 8), where the
smallest pebbles were only a few pixels in size as resolution was decreased.

As shown in Figure 16, when we apply this cutoff and exclude poorly performing images we find
an average m (bias) and e (spread) of 0.03 and 0.09 psi, respectively, for the ~1.16 mm/pixel
imagery and 0.07 and 0.05 psi for the 0.32 mm/pixel image. For the AIF approach these values
are 0.13 and 0.15 psi for the ~1.16 mm/pixel imagery and -0.06 and 0.05 psi for the 0.32
mm/pixel image. These are averages, which actually increase at higher percentiles in agreement
with other image segmentation methods (e.g., Sime and Ferguson, 2003). We thus suggest higher
error budgets at higher percentiles.

As demonstrated in Figures 18 and 19, there are significant inaccuracies associated with the
AIF approach. The errors associated with the AIF approach can be limited when applied to
high-quality (low-blur) ~1 mm/pixel resolution imagery, with better results possible on < 0.5
mm/pixel imagery. Ultimately, the uncertainties are highly dependent on the input image quality
and complexity (range in grain size, angularity, intra-granular variability) and providing
blanket estimates is less useful than end-users applying the KMS tool to a subset of images to
validate the results of the AIF approach.

In spite of this caveat, our bias values of 0.03-0.13 psi are in the range of previously published
absolute biases of 0.007--0.33 psi from similar techniques (see Table 2 in Graham et al. (2010)).
To our knowledge, the only study to compare Basegrain results to control data by Westoby et al.
(2015), makes comparisons in mm rather than psi units. Since the psi scale is logarithmic, in our
study the error in mm increases with psi from ~0.8 mm uncertainty at 4.5 psi (23 mm) to ~7 mm
uncertainty at 6.5 psi (91 mm) for the ~1.16 mm/pixel imagery in the KMS case. Westoby et al.
(2015) report similar bias from Basegrain, again increasing in magnitude at higher percentiles.
Regarding the error spread reported in the literature, our range of 0.05-0.13 psi is less than the
0.25 and 0.14 psi values reported by Sime and Ferguson (2003) and Graham et al. (2005b),
respectively, for their image segmentation techniques.

6- 3D data The section at the end of the discussion on the integration of 3D information
does not sit well. Move it to the introduction with the intention of stating that you will not
be using 3D clouds or DEMs. It would be worth citing the work of James Brassington and
Damia Vericat who have developed particle sizing based on TLS. But also you could
mention that Woodget et al (2018), already cited, found that 3D information did not



improve particle size estimates. This section could be the place in the intro where you
discreetly place a few SfM/drone citations but just to further justify that this will be an
image-based method.

We have significantly shortened this section on point clouds to a few key points and moved the
majority of the information, including the current Figure 20, to the supplementary material. The
remaining section is now in the introduction. We have incorporated the suggested citations. We
have created a new section in the introduction preceding the current Section 4 where the
PebbleCounts algorithms are presented. This will be the new Section 4 and reads as follows (we
also include the new Section S1 below):

4 Additional Data Dimensions from Point Clouds

As mentioned in Section 2, previous authors have attempted to incorporate roughness from
point-cloud data into measurements of average grain size (e.g., Brasington et al., 2012), which
has potential if the range in sizes is large enough to be expressed in 3D in the point cloud (e.g.,
Woodget et al., 2018). Such work highlights the potential to exploit third height dimensions from
irregularly spaced point clouds generated via lidar or SfM-MVS, but stops short of object
detection and segmentation. We briefly summarize key points we found in this regard and direct
the reader to the supplementary material Section S1 for a full description.

Our efforts to incorporate height information were complicated by vertical noise (scattering
around a mean value) inherent to the STM-MVS technique derived from a limited set of
overlapping photos. Vertical standard deviations from flat target surfaces in our field data were
~1.7 mm, and likely much higher on steeper grain surfaces. It is possible to get lower values of
0.2 mm with many more oblique images taken under ideal conditions at close range (e.g., Cullen
et al., 2018; Verma et al., 2019), however, for field surveys this is not feasible while also
covering large areas. As the point cloud actually has a lower resolution (since it is based only on
matched points) and more vertical noise than the orthomosaic (which exploits the full camera
resolution), the imagery alone provided more detail. This is particularly important around grain
edges needed for segmentation, which are not captured in top-down imagery alone (Figure S1).
To conclude, the potential for additional data dimension integration into pebble counting may be
possible using higher dimensional object detection schemes, but, for the time-being, the
orthoimagery alone provides satisfying results.

Supplement Section S1

The results presented here are similar to other studies segmenting grains from 2D imagery. This
ignores the potential to exploit the third height dimension of the data from irregularly spaced
SfM-MVS point clouds and associated DEMs. Many authors have already begun to look at
patch-scale variance or roughness (e.g., Rychkov et al., 2012) from point clouds on gravel-bed
rivers to determine bulk characteristics, but this stops short of object detection and



segmentation. Here, we briefly describe some of our own efforts to incorporate this additional
information into PebbleCounts.

Our simplest approach was including the gridded DEM information, resampled to the same
resolution as the orthomosaic. We inverted the elevation raster and flood-filled from the lowest
points (tallest grains) using watershed approaches, conceptionally similar to lidar tree-detection
algorithms (e.g., Chen et al., 2006; Alonzo et al., 2015). For large, prominent grains with semi-
spherical shapes, the flooded area was found to linearly increase until reaching the grain
boundary, at which point the rate of area change jumped. We explored this break point as a
potential segmentation tool for larger grains, but found that in the complex natural setting the
shape of most grains is far from spherical, and furthermore, overlapping grains led to
inconsistent behavior in the area breaks.

In an additional approach, we calculated both roughness and curvature at a variety of scales (5,
10, 50, 100 mm) directly from the point cloud using the open-source CloudCompare software
(CloudCompare, 2018). This information was then gridded into a raster of the same resolution
of the orthomosaic. While roughness could at times identify the smoother sand patches, it was
difficult to discern between a sand patch and flat rock, and a color threshold on the
orthoimagery was more successful. Curvature showed some spikes at grain boundaries, with the
potential to aid in edge detection, however, we found that curvature was also high on intra-
granular features.

In general, this analysis was complicated by vertical noise (scattering around a mean value)
inherent to the SIM-MVS technique in the generation of dense point cloud data. In the field, for
~9 photos taken from a height of ~5 m, the vertical standard deviation of points on a detrended
flat surface (one of our coded targets) was found to be 1.7 mm for 13,014 points. On the other
hand, in the perfect lab setting with 16 photos from ~1.5 m, the detrended flat carpet around the
pebbles achieved a standard deviation of 0.2 mm (33,371 points), similar to other SfM-MVS
studies using large numbers of carefully collected images (e.g., Cullen et al., 2018; Verma et al.,
2019). These standard deviations from detrended flat surfaces represent a best-case scenario,
whereas, in our field setting, the vertical uncertainty on the complex, overlapping pebbles is
likely higher. Such vertical noise is absent from the orthomosaics and limits the applicability of
point clouds at these scales.

Ultimately, as the point cloud actually has a lower resolution (since it is based only on matched
points) and more vertical noise than the orthomosaic (which exploits the full camera resolution),
the imagery alone provided more detail. This is particularly important around grain edges
needed for segmentation, which are not captured in top-down imagery alone, as shown in Figure
S1. The lab setting resulted in point clouds with sufficient density and precision to identify
individual grains with point-cloud processing tools. Thus, achieving higher quality SfIM-MVS
point clouds is possible, but only through more intense data collection during fieldwork (Fig.
S1).

Alternatively, lidar point clouds with distance measurements based on phase shifts have a lower
standard deviation of ~1 mm in multiple settings and distances (up to ~300 m) and could allow



more precise delineation using roughness and curvature calculations directly on the point cloud,
however, such devices remain costly. Additionally, the development of affordable hyperspectral
cameras with additional wavelengths will help in image segmentation in the spectral domain. To
conclude, the potential for additional data dimension integration into pebble counting may be
possible using higher dimensional object detection schemes, but, for the time-being, the
orthoimagery alone provides satisfying results.
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Figure S1: (a) Slope distribution in field (top-down) and experimental (oblique) point cloud
clips. The point cloud slope was calculated in \textit{CloudCompare} \citep{cloudcompare} by
first calculating the normals at each point using the 6 nearest neighbors and then extracting the
dip of each normal. (b) Map-view of point density normalized by the maximum for the 9 top-
down field images and (c) the same for the 16 oblique experimental images. Point density was
calculated as the number of points in a radius of 3 mm. The clips were from a 0.2$\times$0.2 m
area, visually selected to have similar grain sizes and numbers of grains, shown in the inset
images in (b) and (c). The average point density for the 16 oblique photo setting was 59
points/cm$"2$, whereas, in the field using 9 top-down photos the density was 17 points/cm$"2$.
Note the higher point density on grain edges in (c) compared to (b), which are important for
segmenting grains directly on the point cloud.

Reviewer Pascal Allemand

This paper describes an interesting open source software for automatic measurement of
grain size distribution from images. Compared to existing systems, this open source
software is able to work on ortho-images obtained by phogrammetric methods on image
collections covering wide areas. The algorithm seems very efficient but the results are
deserved by the text which is too long and a discussion where key problems are downed out
among less important elements. | suggest to the authors to re-write the paper in a more
concise and linear way.



We appreciate that the reviewer finds the work relevant and sees its potential for grain-size
mapping. However, we disagree that the paper needs major rewriting. As mentioned in our first
reply, our goal in having such a high level of detail is in reporting every step in a very complex
study. Interested users will be able to follow every step we have taken from data collection to
algorithm development and assessment via a close reading. Hopefully some of the confusion was
eliminated in the large amount of discussion rewriting and reorganization that we accomplished
in reply to the first reviewer. Nevertheless, we have tried to accommodate the comments of the
second reviewer in some of the points below.

P4 line 2: How to be sure that the detected grains are representative of the whole grains? It
is a point to discuss.

We have hand-clicked every visible grain in the control images, thus representing the true
distribution of the grains. We can be sure that the grains detected using the image segmentation
approaches are representative of the whole distribution because these grain-size distributions
match very well to the hand-clicked control data as shown in, for example, Figure 14. We add a
sentence at P4, L2:

Despite the selection of fewer grains, Figure 2 demonstrates that these grains do represent the
entire distribution through the close match in GSD between hand-clicked and KMS results.

P4 line 6: The fact that current methods are limited to some m2 is a real limitation that
should be indicated in the part concerning the current methods.

We clarify this point at the start of Section 3 by modifying the first paragraph beginning at P3,
L24:

Watershed segmentation is effective for interlocking, uniformly colored, oblate grains, however,
energetic gravel-bed rivers in mountains often have more complex grain compositions with
intra-granular variation, irregular shadowing, and a large range of sizes. The automated
watershed methods proposed suffer from over-segmentation, grain misidentification, and the
need for significant, time-consuming post-processing (e.g., in Basegrain with the split, merge,
and delete tools) when applied to complex images. These issues limit the application of previous
methods at areas > 10 m?,

Figure 1: the differences in results between AIF KMF and water shed methods should be
discussed in the discussion

We feel that this discussion belongs in the introduction. Our algorithm does not use the
watershed method and this section and Figure 1 and 2 are intended to highlight the reason why
we avoid this technique before we go on to explain the steps our algorithm does take, which is



certainly introduction material. We have however, added a sentence to the end of Section 7.1 in
the discussion:

Importantly, we emphasize that the previous image segmentation techniques discussed here all
rely on the watershed segmentation step, whereas, neither of our algorithms use this step for the
reasons demonstrated in Figures 1 and 2.

Figurel: Concerning the watershed method (basegrain?), you show, I thing, the gross
results. The results can be filtered with basegrain by post processing.

Yes, the results can be post-processed, but the point here is that the post-processing is time-
consuming, subjective, and limits the applicability of Basegrain to larger areas. We have
highlighted this point with the modified paragraph mentioned in the P4, L6 point above.

Page 5 line 8: What type of denoising method do you use? Does it preserve edges?
This is covered at P5, L12-13:

...chromaticity bands from this color space undergo bilateral filtering (Tomasi and Manduchi,
1998) to preserve inter-granular edges while further smoothing color.

Page 5 line 10: how do you filter the sand patches? on color? on texture?
This is stated at P5, L10:

...HSV color selection for sand-patch masking.

We clarify by adding:

...HSV color selection for sand-patch masking (whereby sand is filtered by a narrow, user-
selected color mask).

Figure 3: | suggest to merge figure 3 and figure 6 and to shorten the text referring to the
manual user of your software.

We feel that the text is sufficient and should not be cut for the sake of clarity to the user. We will
merge Figure 3 and 6 as shown here:
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Figure 3. Flowchart of PebbleCounts (left) and PebbleCountsAuto (right). The boxes are user
supplied input or output from the algorithm. Dashed lines indicate a user input step during

processing, either entering and checking values or clicking.

Figures 4 and 5: difficult to read and not necessary. | suggest to remove or to rework in a
more concise and readable way

We feel that these figures are useful and provide the user with an idea of how running the
algorithm actually looks. This goes into our point about high level of detail in the manuscript so
the interested user can follow along very well upon close reading. In a digital version of the
study, these images can be zoomed into, which yields high quality vector and raster graphics
(tested at 300% zoom in Adobe Acrobat Reader).

Concerning “S Calibration and Validation Test I: Controlled Experiment”: shorten and get
to the point. The part concerning the cameras is not useful. What is important is the result
(description of the Photoscan parameters is useless for example). Size of pixels do not



matter. What is important is the ratio between the resolution of the image to the size of the
smallest grain detected.

We disagree with the reviewer here, and feel that the discussion of camera types and our
experimental setup is very useful to users that will want to apply the method directly and repeat
the processing for their own field sites. This again goes towards the thoroughness of our study,
where we have left none of our processing steps out.

Same for “6 Calibration and Validation Test II: Field Surveys”. I suggest to remove the
useless details and to go to the point. You could show only the better and the worth
examples and discuss why the “best” example give good results and why the “worst”
example give no such good results (but good anyway iA L)

We feel that a close reading of the section demonstrates the good and bad results and the reasons
for them. One example we point to here on P19, L7-9:

Importantly, S24 is the only site not from a major river stem, but rather from a debris-flow fan
draining a small tributary catchment in the Quebrada del Toro. S34 also had a high
Adiff==2.11. In this case, poor performance is due to significant blurriness of this image, and
again a small sample size (n=47).

Figure 19 (they are too many figures): for me, what is important is to discuss why its work
or not, in what case and How | can use your software and what error can | expect, by
adding some advices on the acquisition procedure I should follow. These points are
discussed in the current version but are not enough highlighted.

We feel that this figure is demonstrative of the difference in the AIF and KMS routines and very
instructive to the end user concerned about image quality and how it will affect the results from
each technique. Regarding advice for acquisition, we have rewritten a large part of the discussion
in response to the first review (see above). The point cloud integration has been removed which
should add to the discussion clarity, and we end the discussion with a clearly outlined section of
the “Practical Considerations for Image Collection and Processing”.



