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Abstract. Grain-size distributions are a key geomorphic metric of gravel-bed rivers. Traditional measurement methods include

manual counting or photo sieving, but these are achievable only at the 1–10 m2 scale. With the advent of unmanned aerial

vehicles and increasingly high-resolution cameras, we can now generate orthoimagery over hectares at sub-cm resolution.

These scales, along with the complexity of high-mountain rivers, necessitate different approaches for photo sieving. As opposed

to other image segmentation methods that use a watershed approach to automatically segment entire images, our open-source5

algorithm, PebbleCounts, relies on k-means clustering in the spatial and spectral domain and rapid manual selection of well-

delineated grains. The result is improved grain-size estimates for complex river-bed imagery, without any post processing. In

a second step, we develop a fully automated method, PebbleCountsAuto, that relies on edge detection and filtering suspect

grains, without the k-means clustering or manual selection steps. The algorithms are tested in controlled indoor conditions

on three arrays of pebbles and then applied to 12 × 1 m2 orthomosaic clips of high-energy mountain rivers collected with a10

camera-on-mast setup (akin to a low-flying drone). A 20-pixel b-axis length lower truncation is necessary for attaining accurate

grain-size distributions. For the k-means PebbleCounts approach, average percentile bias and precision are 0.03 and 0.09 ψ,

respectively, for ∼1.16 mm/pixel images, and 0.07 and 0.05 ψ for one 0.32 mm/pixel image. The automatic approach has

higher bias and precision of 0.13 and 0.15 ψ, respectively, for ∼1.16 mm/pixel images, but similar values of −0.06 and 0.05

ψ for one 0.32 mm/pixel image. For the automatic approach, only at best 70% of the grains are correct identifications, and15

typically around 50%. PebbleCounts operates most effectively at the 1 m2 scale, where the algorithm can be rapidly applied in

∼5 minutes in many small areas to acquire accurate grain-size data over 10–100 m2 areas. These data can be used to validate

PebbleCountsAuto applied at the scale of entire survey sites (102–104 m2). We synthesize results and recommend best practices

for image collection, orthomosaic generation, and grain-size measurement using both algorithms.

1 Introduction20

Gravel-bed rivers transport water, nutrients, and sediment downstream, linking high mountains to populated forelands. The

grain-size distributions (GSDs) — and associated percentile diameters, such as the D50 and D84 — in a river reach are fun-

damental geomorphic metrics of these systems (e.g., Shields, 1936; Parker et al., 1982; Church et al., 1998). They are used

to characterize aquatic habitats (e.g., Kondolf and Wolman, 1993), assess the impacts of human infrastructure like dams (e.g.,

Kondolf, 1997; Grant, 2012), calibrate theoretical models of river transport and erosion (e.g., Sklar et al., 2006; Attal and Lavé,25
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2006; Attal et al., 2015; Dunne and Jerolmack, 2018), and explore natural phenomena such as downstream fining (e.g., Paola

et al., 1992; Ferguson et al., 1996; Rice and Church, 1998; Gomez et al., 2001; Chatanantavet et al., 2010; Lamb and Venditti,

2016), which is essential for nutrient transport and ecological diversity.

Accurate grain-size measurement is elusive in nature given the heterogeneity of gravel-bed rivers, particularly in steep moun-

tain catchments where the range of grain sizes is large. Traditionally, GSDs have been gathered via physical clast measurement5

and counting along grids (Wolman, 1954), lines (Wohl et al., 1996), or in ∼1 m2 patches (Bunte and Abt, 2001), all truncated

at some lower observable limit (e.g., Rice and Church, 1998). Not only are these techniques time consuming, prone to operator

bias, and disruptive to the environment, but they also require large (hundreds of pebbles) sample sizes to accurately estimate

the characteristic nature of the grains in each location (Wolcott and Church, 1991).

In light of this, measurement from photographs is an attractive option for increasing sample size and decreasing fieldwork,10

while covering larger areas. Increasingly affordable high-resolution — 12–24 megapixel (MP) — cameras, allows the collection

of high-quality photo surveys via Structure from Motion with Multi-View Stereo (SfM-MVS) (Smith et al., 2015; Eltner et al.,

2016) at scales of entire river cross sections or reaches at resolutions at or exceeding 1 cm/pixel (e.g., Woodget and Austrums,

2017). Even higher resolution (1 mm/pixel) river surveys can be accomplished with low-flying unmanned aerial vehicles

(UAVs) (e.g., Carbonneau et al., 2018), pole-mounted cameras, or using handheld imagery.15

We build on previous work and introduce the addition of color-space clustering techniques to present efficient new semi-

automated (PebbleCounts) and fully automated (PebbleCountsAuto) algorithms for grain identification and sizing from imagery

in high-energy mountain rivers. Our algorithms are built on Python with a few popular libraries and are open source. The

instructions and code can be accessed at: https://github.com/UP-RS-ESP/PebbleCounts (Purinton and Bookhagen, 2019). In

this study, we present previous work on grain-size measurement from rivers and our motivation for new developments. The20

processing chains of PebbleCounts and PebbleCountsAuto are then discussed. We test the algorithms in controlled conditions

and then in a more challenging field setting in the northwestern Argentine Andes. The limits and caveats of the method are

discussed using imagery of varying resolution, and suggestions for photo collection and processing are provided.

2 Previous Work on Photo Sieving

Manual digitization of each pebble was previously necessary for grain sizing from pictures (e.g., Kellerhals and Bray, 1971;25

Ibbeken and Schleyer, 1986). Modern digital grain sizing is divided into texture- and segmentation-based image-processing

methods. Texture methods rely on the relationship between grains and their shadowed interstices to derive size estimates

over image windows. Examples include semivariance (Verdú et al., 2005; Carbonneau et al., 2003, 2004; Carbonneau, 2005),

entropy or inertia calculated from gray level co-occurrence matrices (GLCM) (Haralick et al., 1973; Carbonneau et al., 2004;

Carbonneau, 2005; Dugdale et al., 2010; de Haas et al., 2014; Woodget and Austrums, 2017; Woodget et al., 2018), and30

autocorrelation (Rubin, 2004; Warrick et al., 2009; Buscombe et al., 2010). These methods only provide one estimate of grain

size (e.g., D50), which often requires site-specific calibration.
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Buscombe (2013) achieved full GSD measurements using wavelet decomposition on gray-scaled sand and pebble imagery,

and also published their technique as an open-source Python tool. This is another texture method that does not measure each

grain individually, and it is more apt for thin sections or beach sands, since it requires that each grain be fully resolvable

and that the distributions be relatively homogeneous in size and shape. An additional texture method relies on the 3D texture

(or roughness) of point clouds to relate the variance of bed-scale topography to average grain size (Brasington et al., 2012;5

Rychkov et al., 2012; Westoby et al., 2015; Woodget and Austrums, 2017; Bertin and Friedrich, 2016), however, this technique

also requires site calibration and the relationships have been found to vary widely depending on, among other things, grain

sorting and packing (Pearson et al., 2017).

In contrast to texture methods, the focus of segmentation is the full delineation and measurement of every visible grain.

Segmentation is error prone in images that contain overlapping grains, a large range of grain sizes including sand patches,10

changes in landcover (e.g., vegetation), pebbles that are highly irregular in shape (non-ellipsoid), pebbles with intra-granular

color variations or texture such as veins or fractures, and in which shadowing is irregular. Herein, we refer to these factors col-

lectively as image complexity. The benefits are that segmentation does not require any site calibration besides knowledge of the

image scale and it provides a full GSD and all the commonly used percentiles (D5,16,25,50,75,84,95). Published methods include

the work of Butler et al. (2001), Sime and Ferguson (2003), and Graham et al. (2005a, b), all of which rely on edge detection15

followed by watershed segmentation and ellipse fitting to each separate grain region to get the long (a) and intermediate (b)

grain axes. Detert and Weitbrecht (2012) added some sophistication to the edge detection and watershed steps of Graham et al.

(2005a, b) and provide a free — though closed source — application called Basegrain for the commercial software package

MatlabTM , which has become a standard tool (e.g., Bertin and Friedrich, 2016; Bertin et al., 2017; Langhammer et al., 2017;

Carbonneau et al., 2018).20

3 Motivation for New Methods

Watershed segmentation is effective for interlocking, uniformly colored, oblate grains, however, energetic gravel-bed rivers in

mountains often have more complex grain compositions with intra-granular variation, irregular shadowing, and a large range

of sizes. The automated watershed methods proposed suffer from over-segmentation, grain misidentification, and the need

for significant, time-consuming post-processing (e.g., in Basegrain with the split, merge, and delete tools) when applied to25

complex images. These issues limit the application of previous methods to areas < 10 m2.

In the interest of attaining GSDs from these settings and in images with a mix of clasts and sand patches, we are motivated

to develop a new semi-automated technique that uses k-means clustering of pixels and rapid manual selection of well-defined

grains, herein referred to as the K-means with Manual Selection (KMS) or PebbleCounts approach, and a fully automated

version that uses filtering of suspect grains, herein referred to as the Automatic with Image Filtering (AIF) or PebbleCountsAuto30

approach (Fig. 1). By avoiding over-segmentation and misidentification associated with the watershed approach, we are able

to select fewer grains per image, but be sure that those selected are correctly delineated, thus improving the resulting GSD

(Fig. 2), with the intention of up-scaling to include many thousand grain measurements over large areas. Despite the selection
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of fewer grains, Figure 2 demonstrates that these grains do represent the entire distribution through the close match in GSD

between hand-clicked and KMS results.

Furthermore, faced with diverse camera models and the rise of SfM-MVS for the generation of georeferenced orthophotos,

we wish to explore reasonable and appropriate combinations for covering hectare-sized areas while maintaining accurate

measurement of characteristic GSDs. Fundamentally, our aim for the KMS approach is not in the delineation of a single high-5

resolution image from a∼1 m2 patch as in previous segmentation work, but rather a method that can cover areas of 10–100 m2

containing complex grain arrangements, despite missing many grains at the patch scale. These semi-automated photo-sieving

results can then be used to validate the AIF method at much greater spatial scales (102–104 m2). This work serves as both a

presentation of a new algorithm and a guide for the successful collection of GSDs in complex mountainous settings over large

survey areas, where physical grain sizing is not feasible and previously reported image processing methods are unreliable or10

time consuming.

Original Image

Initial Segmentation

Initial Segmentation

Final AIF Result

Final Watershed Result

Watershed Approach

Automatic with Image Filtering
(AIF) Approach

5 cm

5 cm 5 cm

5 cm 5 cm

ab

over segmentation

partial grain finding

false finding

bad selections filtered

Initial Segmentation Final KMS Result

5 cm 5 cm

ab

only good grains selected

ab

K-means with Manual Selection
(KMS) Approach

some poor selections remain

Figure 1. The conceptual difference between our K-means with Manual Selection (KMS) and Automatic with Image Filtering (AIF) ap-

proaches versus a fully automated watershed segmentation approach on a gravel image from a high-mountain river. The a- and b-axes of

each grain mask are found via an ellipse fit to the same area. Fewer grains are found in the KMS and AIF results, and there is still some

misidentification in the case of AIF, but less than in the watershed result.
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Figure 2. Watershed segmentation (blue, dashed and dotted line) versus KMS (gray, dashed line) and AIF (red, dotted line) approaches

compared with a hand-clicked b-axis GSD (black line) for a ∼1 m2 river patch (S09 in Figure 8b). Watershed approach leads to over-

segmentation of grains, giving an unreasonable number of clasts (276 versus 106 in the control) and an overly fine GSD.

4 Additional Data Dimensions from Point Clouds

As mentioned in Section 2, previous authors have attempted to incorporate roughness from point-cloud data into measurements

of average grain size (e.g., Brasington et al., 2012), which has potential if the range in sizes is large enough to be expressed

in 3D in the point cloud (e.g., Woodget et al., 2018). Such work highlights the potential to exploit third height dimensions

from irregularly spaced point clouds generated via lidar or SfM-MVS, but stops short of object detection and segmentation.5

We briefly summarize key points we found in this regard and direct the reader to the supplementary material Section S1 for a

full description.

Our efforts to incorporate height information were complicated by vertical noise (scattering around a mean value) inherent

to the SfM-MVS technique derived from a limited set of overlapping photos. Vertical standard deviations from flat target

surfaces in our field data were ∼1.7 mm, and likely much higher on steeper grain surfaces. It is possible to get lower values10

of 0.2 mm with many more oblique images taken under ideal conditions at close range (e.g., Cullen et al., 2018; Verma and

Bourke, 2019), however, for field surveys this is not feasible while also covering large areas. As the point cloud actually has

a lower resolution (since it is based only on matched points) and more vertical noise than the orthomosaic (which exploits the

full camera resolution), the imagery alone provided more detail. This is particularly important around grain edges needed for

segmentation, which are not captured in top-down imagery alone (Figure S1). To conclude, the potential for additional data15

dimension integration into pebble counting may be possible using higher dimensional object detection schemes, but, for the

time-being, orthoimagery alone provides satisfying results.
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5 The Algorithms

The methods developed here hold similarities to previous work by Graham et al. (2005a) and Detert and Weitbrecht (2012),

with some key differences. Processing is presented briefly, and we direct the interested user to the manual for a full description

of the steps: https://github.com/UP-RS-ESP/PebbleCounts (Purinton and Bookhagen, 2019).

5.1 PebbleCounts: K-means with Manual Selection (KMS)5

The general outline of PebbleCounts is shown in Figure 3. We employ the additional color spaces HSV (hue, saturation, value)

and CIELab (Russ, 2002), aside from traditional RGB (red, green, blue) and gray-scale, to enhance differences in the spectral

domain separate from lighting. First, the RGB image undergoes strong non-local means denoising (Buades et al., 2011) to

smooth intra-granular color difference, interactive gray-scale shadow masking (Otsu, 1979) to separate obvious interstices,

and HSV color selection for sand-patch masking (whereby sand is filtered by a narrow, user-selected color mask). The image10

and shadow/sand mask are then windowed for further processing. At each window, the RGB image undergoes another weaker

non-local means denoising, is then converted to CIELab, and the chromaticity bands from this color space undergo bilateral

filtering (Tomasi and Manduchi, 1998) to preserve inter-granular edges while further smoothing color. Following this, edge

detection on the smoothed, gray-scaled image occurs via a combination of top-hat, Sobel, and Canny methods with feature-

AND selections (Russ, 2002), in which an edge is added to the full mask only if it overlaps with a found edge in the shadow-,15

sand-, or previous edge-mask, thus piece-wise building an edge map while avoiding lone (i.e., intra-granular) edges (Detert

and Weitbrecht, 2012).

After edge detection, our algorithm uses k-means clustering (Lloyd, 1982; Sculley, 2010) to further segment the pebbles.

First, the matrix of non-masked pixels is converted into a vector that includes the spectral information at each location. This

N × 4 dimensional vector (N being the number of non-masked pixels) includes two spectral observables: the green-red and20

blue-yellow smoothed chromaticity bands from CIELab; and the two spatial observables: the x and y coordinates of the pixel

in image space. To avoid over-segmentation by anisotropic or image-spanning grains, the x,y coordinates are rescaled to 50%

of the color, which is also rescaled from 0 to 1. We attempted using agglomerative Ward hierarchical clustering (Ward, 1963)

to further improve results on anisotropic and/or large grains, however, this approach is prohibitively slow on large images,

and test results did not show significant improvement. K-means clustering requires a user-supplied number of clusters. Here,25

we add clusters beginning at 1 and recalculate the k-means clustering up to an inertia improvement threshold of 1–10%. The

resulting k-means labeled masks are cleaned via binary operations and the user is prompted to select the labeled regions that

contain full, single grains within a simple pop-up window.

After selection, the orientation and a- and b-axes of an ellipse fit to the labeled region, shown to accurately approximate

grain size (Graham et al., 2005a), are recorded and the grain is added to the final list and the masked region. This processing30

takes place over three separate scales representing a “burrowing” of the algorithm through the image (from largest to smallest

window/grain size). Scales are set by the user supplied longest expected a-axis and image resolution. In contrast to the 46

variables employed by Basegrain, PebbleCounts has 20 command-line variable flags — of which 15 exert influence on the
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Figure 3. Flowchart of PebbleCounts (left) and PebbleCountsAuto (right). The boxes are user supplied input or output from the algorithm.

Dashed lines indicate a user input step during processing, either entering and checking values or clicking.

results — with most requiring little to no modification (Table S1). Examples of the command-line interface and manual clicking

steps are shown in Figure 4 and Figure 5, respectively.

5.2 PebbleCountsAuto: Automatic with Image Filtering (AIF)

The general outline of PebbleCountsAuto is shown in Figure 3. This method applies the same initial non-local means denoising

and interactive shadow/sand masking, with the option to input user supplied values for full automation. From here, we diverge5

from the windowing and k-means approach and move directly to edge detection on the entire image using the same top-hat,

Canny, and Sobel combination with feature-AND selections.

The resulting mask is then cleaned via binary morphological operations (e.g., erosion and dilation) and each disconnected

label in the resulting mask is measured as a grain via ellipse fitting. To reduce the misidentified grains, the ellipses are filtered

in a three-step chain: (A) Does the centroid fall within another ellipse?; (B) Does the ellipse overlap with any neighboring10

ellipses above some threshold?; and (C) Is the percent misfit (ellipse area vs. grain-mask area) above some threshold? At

each step, an answer of yes leads to the elimination of the grain. The (A) and (B) steps filter grains that have high overlap

or are over-segmented, whereas (C) helps filter areas where multiple grains were combined in one mask or a non-grain was
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(a)

(b)

(c)
measured
not measured

Figure 4. Example of command-line and pop-up interface for PebbleCounts. (a) Interactive Otsu thresholding using percentage of Otsu

value and yes (‘y’) or no (‘n’) confirmation. (b) Interactive color masking by yes (‘y’) or no (‘n’) and resulting color mask after selection.

(c) K-means clustering and pop-up window for pebble selection by left clicking, with black arrows measured in final output and red arrows

ignored after right-click removal (see Fig. 5).
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(a)
grains not separated

left-click selection

(b) (c) (d)

right-click removal

measured
not measured

KMeans ('r' see image, 'q' close) Image Overlay ('r' close) KMeans ('r' see image, 'q' close)

Figure 5. Clicking tutorial continued from Figure 4c. Following k-means clustering at each scale a mask overlaid on the original image is

presented (a), and grains are selected by a left click anywhere in the segmented area, resulting in a black circle at the click location. When

clicking is finished the mask is closed by pressing ‘q’. To view the original unmasked image the user may press ‘r’ (b). Using this switching

the user can see which grains are poorly delineated and remove the last click with a right click on the mouse (c). The original black circle

selection turns to red to signify this grain is off and will not be measured in the final output (d).

identified (e.g., remaining sand patch). Only the remaining, unfiltered grains are taken as the final results, with the assumption

of higher uncertainties, but that the remaining misidentified grains are minimal compared to the good grains, particularly when

up-scaling to large areas and tens-of-thousands of pebbles on high-quality (low-blur) images. The command-line variables for

this method are shown in Table S2, and the first steps are identical to Figure 4a,b.

We experimented with resampling (over- and under-sampling) the image prior to grain detection to increase smoothing and5

to improve the detection of larger grains at the cost of measuring fewer smaller grains. The majority of images achieved the

best results using the original resolution, though we did find a slight improvement in results using under-sampling on some

unsharp images (see Section S3 in the supplement). The selection of other parameters like the maximum percent misfit is also

covered in Section S3 in the supplement.

6 Calibration and Validation Test I: Controlled Experiment10

6.1 Experimental Setup

To test the KMS and AIF approaches on a simple control we arranged three distributions of well-rounded, river pebbles with

a-axis sizes from 3–130 mm in semi-overlapping patterns in a 0.5×0.5 m area (Fig. 6). As opposed to most studies that use

b-axis lengths to measure the GSD (Bunte and Abt, 2001), in the experimental setup we use a-axes since it was easier to

hand-measure the longest axis of each of the > 200 grains measured. Six size class bins (3–5, 10–20, 25–35, 40–50, 60–70, and15

80–130 mm; all a-axis) were sampled to approximate two log-normal and one bimodal GSD. These classes ensured the clear

demarcation of sizes into the appropriate binned values, irrespective of small uncertainties in measurement. The river pebbles

were selected to have uniform intra-granular color with minimal striations (i.e., veins), low angularity, and a diverse array of

inter-granular colors. Lighting was controlled by overhead fluorescent bulbs and the photos were taken without flash to limit
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cast shadows. The choice of background was a textured carpet surface to provide enough match points around the pebbles in

SfM-MVS processing.

6.2 Camera Setup

We tested a Fujifilm X100F model camera with a fixed 23 mm focal length lens and a Sony α6000 model with a removable

35 mm fixed length lens. Both had the same advanced photo system type-C (APS-C) sensors (23.6 mm×15.6 mm) and both5

output photos at 24 MP in a 4000×6000-pixel format. Following initial tests, it became clear that the image quality and grain-

size results were practically identical for these two cameras, so the results presented are only those for the Fujifilm, as the

photo quality was slightly sharper throughout and less distorted at the image corners. To simulate reduced quality, the 24 MP

Fujifilm picture dimensions were reduced to 75, 50, and 25%, resulting in 13.5, 6, and 1.5 MP images at pixel dimensions of

3000×4500, 2000×3000, and 1000×1500, respectively.10

6.3 Images

6.3.1 Top-down Images

We refer to all imagery used as top-down as opposed to the commonly used nadir term, which refers to images taken con-

sistently from a directly downward-pointing vantage, since our images are taken from a variety of near-downward angles. As

consumer-grade cameras have square pixels with negligible difference in horizontal and vertical resolution, the image scale15

can be calculated directly from the camera parameters and camera height with the resolution (R) in mm/pixel given by:

R=
(S · h)

(f · I)
(1)

where S is the sensor height or width in mm, f is the lens focal length in mm, h is the camera height in mm, and I is

the image height or width in pixels. S and I should either both be the width, or both be the height of the sensor and image,

respectively. This assumes no major distortions within the field of view, which is not valid for oblique imagery, but is negligible

for top-down photography at close range using non-fisheye lenses. With h=1.55 m, the resulting image resolutions tested from20

the Fujifilm were 0.26, 0.35, 0.53, and 1.05 mm/pixel by eq. (1).

6.3.2 Orthomosaic Images: SfM-MVS Processing

To ensure uniform resolution, we used multiple overlapping photos taken from different angles (up to 16 photos per setup,

including at least 4 overhead shots) to generate SfM-MVS orthoimages in Agisoft Photoscan v.1.4.2 (Agisoft, 2018) — re-

named Agisoft Metashape in recent versions. This allows rapid output of additional information including point clouds, digital25

elevation models (DEMs), and the undistorted orthomosaics, with resolution recorded in the image metadata for direct input

into PebbleCounts and PebbleCountsAuto. Agisoft processing was carried out in the following steps:
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1. Image quality detection and the exclusion of photos with quality metric < 0.7. This step analyzes pixel contrast to

estimate sharpness with values ranging from 0 (blurred) to 1 (sharp). We found 0.7 to be a sufficient lower cutoff upon

visual inspection of results.

2. Detection of 12-bit coded targets in the remaining photos, with two targets placed at each of the four corners of the area

and ensuring that the diameter of the printed targets’ center circle was limited to 10–30 pixels in image resolution for5

successful automated detection.

3. Input of scale for the orthomosaic output, provided by the distances between the targets at each corner (resulting in four

distance measurements) with 0.5 mm accuracy using a ruler with cm and mm demarcations.

4. Photo alignment at high quality with a 40,000 key-point and 2000 tie-point limit.

5. Dense cloud generation from the aligned photos at the medium output and with moderate depth filtering. Given the high10

quality of the photos more aggressive options did not improve results.

6. DEM building from the dense cloud with default settings in a local coordinate system.

7. Generation of an orthomosaic from the input imagery and DEM at the default settings.

8. Output of the orthomosaic to a GeoTiff file with resolution provided in m/pixel.

6.4 Comparison Metrics15

For the simple, controlled experiment, with relatively coarse grain-size bins, it is not appropriate to compare percentiles (e.g.,

D50) or to run Kolmogrov-Smirnov (KS) tests and measure the difference in distributions between the AIF or KMS and control

GSDs. Instead, we compared the counts in each bin between the control and algorithm and visually assessed the matching of

the GSDs. This provides a reasonable baseline for checking the performance of the algorithm in a highly controlled setting.

6.5 Controlled Experiment Results20

For each of the three 150–200 clast arrangements, the KMS PebbleCounts run time was ∼7 minutes on a laptop with 16 GB

RAM and 2 cores (Intel i7-6650U 2.20 GHz) and no GPU, whereas the AIF PebbleCountsAuto run time was ∼1 minute. Both

the top-down and orthoimagery was used, but the results were entirely consistent aside from some inter-run variability in the

KMS approach caused by the non-unique solution of k-means clustering. Given this consistency, we only present the results

from the top-down images. Furthermore, the use of only 4 top-down photos also generated the same results, albeit in about25

1/6th the processing time of using all 12–16 photos (∼10 minutes versus ∼1 hour on the same laptop).

Across all three distributions, the KMS approach consistently undercounts the number of clasts in each a-axis bin (Fig. 6).

However, and in agreement with previous research (Graham et al., 2010), this undercounting is uniformly distributed and thus

the GSDs do not show notable differences between the algorithm and control. For the two arrangements with increased fine

(3–5 mm) and coarse (60–130 mm) pebbles (Fig. 6b,c), the undercounting is stronger at the finer end of the distribution leading30
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Figure 6. Result of KMS (gray, dashed lines) and AIF (red, dotted lines) on the three experimental lab setups (a-c) with known grain inputs

in six size classes (black line), measured as the grain a-axis. (a) Log-normal, (b) log-normal with increased number of all classes, including

fines, and (c) skewed bimodal with increased number of coarser grains. Bottom row shows the counts per bin and the top row shows the

resulting GSD. The images are 0.26 mm/pixel (24 MP).

to a slight underestimation of the GSD by the KMS approach in this region. This is caused partially by the user missing more of

the smaller grains (of which there are exponentially more), some smaller grains being partially hidden by the larger, and also by

the smallest grains being only a few pixels in area and thus eliminated during mask-cleaning steps, or not captured at all. On the

other hand, the AIF approach tends to overcount the fine pebbles, leading to overestimation of the GSD, because many small

non-grain areas remaining in the masked image are automatically selected in the final result, rather than ignored as in the KMS5

approach. As we reduced the resolution from 0.26–1.05 mm/pixel, the reduction in the finest size class increased dramatically

for the KMS approach (Fig. 7). At the lowest resolution tested (1.5 MP), this undercounting leads to severe discrepancies in the

GSD curve. As the resolution degrades it becomes more difficult to discern rocks in the smallest size class (3–5 mm), which

correspond to an a-axis grain size of 12–19, 9–14, 6–9, and 3–5 pixels for the 24, 13.5, 6, and 1.5 MP resolution, respectively,

indicating the necessity of a limiting lower measurement factor (e.g., Graham et al., 2005a).10

7 Calibration and Validation Test II: Field Surveys

7.1 Field Setting

Having established the algorithms on control data, we sought to evaluate the performance on complex, natural photos. Field

data provides the real-world application and detailed uncertainty analysis most useful for researchers seeking to apply the

methods to their own sites. For this we turned to photo surveys carried out on gravel-bed river cross sections of the foreland and15

topographic transition zone of the northwestern Argentine Andes (Fig. 8). This is an area of strong precipitation, topographic,

and environmental gradients, and the rivers surveyed are dynamic environments capable of transporting enormous quantities of
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Figure 7. Results of reducing the image dimensions to (a) 75% (13.5 MP), (b) 50% (6 MP), and (c) 25% (1.5 MP) and re-running the KMS

approach on the distribution in Figure 6a. Control is shown as black (left y-axis) and gray (right y-axis) solid lines and KMS as the dashed

lines.

sand, gravel, and boulders of various lithology (Bookhagen and Strecker, 2012; Purinton and Bookhagen, 2018). Catchment-

average erosion rates from the area, based on cosmogenic nuclide inventories, suggest rates on the order of 0.6–1 mm/yr

(Bookhagen and Strecker, 2012), with large variability during the Pleistocene and Holocene (Tofelde et al., 2017). The region

is frequently affected by extreme hydrometeorologic events that lead to flooding and drainage-pattern re-arrangement (Castino

et al., 2016, 2017).5

7.2 Surveying and Orthomosaic Generation

All cross-section surveys were collected using the Sony α6000 camera model at 24 MP, and survey sizes ranged from ∼1000–

5000 m2. In this case, the standard zoom lens delivered with the camera was used at the shortest focal length of 16 mm to

maximize the field of view. Also, to help cover the large survey sites, the camera was affixed to the end of a pole with a

remote control trigger, allowing overhead shots to be collected from a height of 4.5–5 m (Fig. 9), giving a ground resolution10

of approximately 1.1–1.2 mm/pixel by eq. (3). UAV flights have proven difficult in the windy conditions experienced in these

valleys, but flights at 20–30 m heights with the 12 MP camera provided on the DJI Mavic and Phantom models (focal lengths

of 3.6–4.3 mm, sensor dimensions of 6.17×4.55 mm, and image dimensions of 4000×3000 pixels) would result in image

resolutions of ∼7–13 mm/pixel, and are thus inadequate for delineating cm-scale pebbles.

To generate georeferenced orthomosaics that could be tiled and passed directly to PebbleCounts and PebbleCountsAuto,15

survey sites on the dry river-bed were laid out with on average 18 coded targets (with a range of 10–24) and the position

of each was measured with a differential GPS (Fig. 9). Kinematic post-processing with a permanent base station < 100 km

away at the Universidad Nacional de Salta (UNSA) in Salta, Argentina, led to cm accuracy of XYZ target locations. The site

was traversed in a cross-hatched pattern with a photo captured every 2–3 paces, so that each location appeared in ∼9 top-

down pictures from different angles. Agisoft processing is similar to that described for the experiment (see Section 5.3.2.),20

with some key differences. Here, the scale was provided by the XYZ coded target locations in UTM zone 19S, WGS84

ellipsoidal datum. Given the increased complexity of the setting and imperfect photo collection, the dense point cloud was
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Figure 8. (a) Field cross-section survey sites (black triangles) in NW Argentina from three gravel-bed rivers (Toro, Vaqueros, and Grande)

and their tributaries, draining from the sparsely vegetated mountains in the west towards the verdant foreland and city centers of Salta and

Jujuy in the east. The Landsat 8 RGB composite satellite image (using bands 2, 3, and 4) from 12 June 2017 shows the climatic transition from

wet foreland to dry mountains, demarcated by the green-brown transition zone corresponding to vegetation changes running approximately

north-south. (b) Detailed view of the 12 × ∼1 m2 orthomosaic clips from each of the field sites with average resolution of 1.16 mm/pixel.
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Figure 9. Sony α6000 24 MP camera affixed to mast for photo collection at a height of 4.5–5 m (left) and differential GPS measurement of

coded targets (right).

generated at high quality with aggressive depth filtering. The DEMs and orthomosaics were also output in UTM zone 19S

projections, providing undistorted pixels with resolution in m/pixel. Given the volume of photos (600–1300 per site), the sites

were processed automatically using the Python API for Agisoft, with processing times consistently over 10 hours on an 80

core, 500 GB RAM server making use of 1 GPU NVIDIA Tesla K80 unit for some of the steps (e.g., dense matching).

From 10 of our full survey sites over three different river systems we selected 12 × ∼1 m2 patches to clip out of the full5

orthomosaics and evaluate using the KMS and AIF approaches. The final resolution of these 12 GeoTiff orthoimages matched

the theoretical value from eq. (3), with an average of 1.16 mm/pixel and range of 1.08–1.24 mm/pixel (standard deviation of

0.05 mm/pixel). The patches (Fig. 8b) include variable amounts of sand and a large range of grain sizes, packing arrangements,

and shadowing. From one site (S14A) there were hand-held images available for the same selected patch from the same

Sony α6000 camera zoomed to 20 mm focal length and taken from a height of ∼1.5 m, allowing for the generation of a10

complementary orthomosaic at 0.32 mm/pixel resolution.

7.3 Control Data and Comparison Metrics

For control data from the field we return to b-axis measurements (rather than a-axes as in the lab). In each patch, the b-axes of

all grains visible to the naked eye were manually digitized. This generated a 5490 pebble control dataset across all 12 mast-

surveyed sites. For the lone hand-held patch at 0.32 mm/pixel, the control data was 1726 pebbles versus 621 from the same15
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patch at the 1.12 mm/pixel mast resolution, as smaller grains could be manually measured on the image at a 4-times improved

resolution.

The use of continuous control data, as opposed to discrete bins in the lab experiment, allows a more detailed investigation

of the performance of both approaches, including biases and their correction. B-axis measurements of overlapping control and

KMS grains were compared to look for sizing bias. This was followed by a search for the lower truncation limit (the lower5

cutoff in b-axis length in pixels that grains are reliably measured at) of the algorithm, also using the KMS results. For parts of

the analysis, the size data were converted to the typical ψ scale (ψ =−φ= log2(mm)) of grain-size measurement of coarse

river sediments. This allows direct comparison of statistical results with other studies (e.g., Graham et al., 2005b)

We compared the GSDs from the KMS and AIF approaches with the control using a two sample KS-test to check the null

hypothesis that the two samples are drawn from the same distribution. Because sample sizes were at times small, leading10

to erroneous KS-test results, we also devised a second metric of GSD comparison. Similar to the KS-test, which uses the

maximum distance between the cumulative distribution functions (CDFs), or in our case the GSDs, our metric interpolates

both distributions to the same lengths in 0.1 ψ steps and then sums the difference between the re-interpolated curve to give

an approximate integral of the difference between the two GSDs (AIF or KMS minus the control), which we term Adiff. Here,

an Adiff value close to 0 indicates good matching, and positive or negative values indicate underestimation or overestimation,15

respectively.

We also examined the performance of some key percentiles (D5,16,25,50,75,84,95). The metrics for comparison of control (PC)

and KMS or AIF (PP ) percentiles are consistent with other studies (Sime and Ferguson, 2003; Graham et al., 2005b, 2010).

These are the mean (m= 1
n ·Σ(PP −PC)), the mean squared (ms= 1

n ·Σ(PP −PC)2), and the irreducible random error

(e=
√
ms−m2). The bias of PebbleCounts is quantified by m, and e measures the scatter or precision after bias correction20

(Sime and Ferguson, 2003).

7.4 Field Survey Results

7.4.1 Initial Results: Biases and Their Correction

The KMS PebbleCounts approach took ∼10 minutes per 1 m2 orthomosaic clip at 1.16 mm/pixel resolution, depending on

the number of grains, and particularly the number of finer grains, present. Run time for the AIF PebbleCountsAuto approach25

was typically ∼2 minutes per site. All run times refer to the same laptop with 16 GB RAM and 2 cores (Intel i7-6650U 2.20

GHz) and no GPU. For the 0.32 mm/pixel image the processing for KMS took ∼45 minutes, as there were more fine grains to

be identified (given the log-normal distribution) and so the clicking took exponentially longer, and the AIF took ∼20 minutes

given the longer time spent filtering the large number of grains. These run times refer to the use of no lower truncation value

and only some morphological (e.g., erosion and dilation) cleaning operations. We note that the use of a GPU for the filtering30

steps will significantly improve processing time.

An aggregation and coarse binning of all b-axes in the control versus KMS and AIF data for the coarser imagery are

presented in Figure 10. There is obvious undercounting in these data from the KMS results, similar to the experimental setup,
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Figure 10. Comparison of (a) KMS and (b) AIF at the 12 field sites all aggregated and coarsely binned. Control is shown as black (left

y-axis) and gray (right y-axis) solid lines and KMS and AIF as the dashed lines.

and it appears in this case to be causing a significant discrepancy in the GSD curves. Whereas the manual clicking found over

1000 grains in the smallest classes (1–2 and 2–3 ψ), the KMS approach found none in the smallest and only∼100 in the second

smallest. This skews the percentiles to the higher grain sizes, and thus overestimates them significantly. In opposition to this,

but again in agreement with the experimental setup, the AIF results display significant overcounting at the finer sizes as many

non-grains are identified, particularly when the algorithm is run with no lower truncation.5

The skewed results from both the KMS and AIF approaches warrant detailed analysis of the algorithms’ deficiencies and

GSD corrections. To begin, we examined the performance of PebbleCounts on grains manually digitized and the same grains

selected during clicking in the KMS approach on the coarser imagery (Fig. 11). There is only a slight negative bias across all

grain sizes, indicating underestimation of individual grains by PebbleCounts, however, this median shift varies with no apparent

pattern and is likely caused by uncertainties in the manual b-axis digitization of thousands of grains. For instance, digitization10

with b-axis vector lines can achieve sub-pixel accuracy compared to the raster processing of PebbleCounts. The AIF approach

measures grains identically to the KMS method and thus has the same misfit errors on correctly identified grains. From this we

conclude that the algorithm is effective on a grain-by-grain basis and the skewing of the GSDs are instead caused by sampling

errors related to the image resolution and ability to find small grains (see Figure 7).

The undercounting error can be explored on the full distribution of pebbles by gradually increasing the lower truncation15

value and assessing the error in percentiles versus the control data at each step (Fig. 12). As truncation is increased, the median

percentile error decreases rapidly up to an inflecting value — manually chosen from the graph as a significant local minimum —

where the median difference is near 0 mm. Truncating the KMS distributions at a minimum b-axis length of 23 mm (rounded

to 20 pixels) improves the results significantly for the 1.16 mm/pixel imagery taken from the mast. Beyond this truncation,
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Figure 11. Measurement error of PebbleCounts (here the KMS results) versus control on a grain-by-grain basis for overlapping grains in the

coarser (1.16 mm/pixel) imagery. There is an overall median shift, but the binned medians do not display a consistent pattern.

there is limited improvement. Regarding the 0.32 mm/pixel image, the 20-pixel (6.5 mm) truncation also results in a median

difference near 0 mm, with subsequent truncation values leading to only ∼0.5 mm improvements. Supplying these truncation

values directly to the KMS PebbleCounts tool results in reduced processing time to ∼5 minutes for the coarser imagery and

∼15 minutes for the finer, as many small grains were then ignored and left out of the clicking mask.

The same analysis for the AIF approach is complicated by the large number of false grains found and the extreme over-5

counting of fine grains. Given this, we instead make the assumption that the similarity of the two methods, particularly in the

edge detection and ellipse fitting steps, leads to similar errors in both. Therefore, we assume the same 20-pixel truncation. For

the AIF PebbleCountsAuto tool, processing times with the 20-pixel truncation reduced to < 1 minute and ∼3 minutes for the

coarse and fine images, respectively.

7.4.2 Results: Mast Images10

The combined results before and after lower truncation for the coarser (∼1.16 mm/pixel) imagery taken from the mast surveys

is shown in Figure 13. For separate plots of the 12 different sites before and after truncation in the KMS approach see Section

S2 in the supplement. Without any lower truncation, the AIF tool results in significant overcounting and GSD underestimation

with a high Adiff > 8. The KMS tool instead shows undercounting and GSD overestimation with a low Adiff < −4. Both have

KS-test p-values < 0.0001. When we apply a 20-pixel truncation, both the AIF and KMS approaches achieve Adiff values near or15

below−1, with the manual KMS approach performing best and achieving a high KS-test p-value of 0.2398. The AIF approach

retains a low p of 0.0008 with a ∼0.1–0.2 ψ bias towards coarser values in the upper portion of the GSD (> D50).

In Figure 14, we show the 20-pixel truncated KMS and AIF results on a site-by-site basis. For the KMS approach, following

truncation 11 sites have p-values > 0.1 and one site (S16) has p=0.0971. Adiff values are also near 0 indicating close matching

of the GSDs, aside from S24 and S34, which both show large discrepancies. The AIF results in Figure 14 follow a similar trend20
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Figure 12. (a) Error in each percentile (5–95) as lower truncation value is increased in 1 mm steps for the 1.16 mm/pixel imagery. Only a

few steps are plotted for clarity. (b) The median difference in percentiles compared with the control versus the lower truncation value, with

the normalized median absolute difference (NMAD) shown as the error envelope (Höhle and Höhle, 2009). From this analysis, we select a

lower truncation of 20 pixels. The analysis in (a) was repeated for the finer image (with 0.5 mm truncation steps) to get the gray squares line

in (b), and is not shown here.

to the KMS results. The main difference is that, for the AIF approach, there is a bias towards coarser values, with many Adiff

values < −1, and generally poorer results compared with the KMS approach, with GSDs being overestimated by ∼0.1–0.2 ψ.

In the KMS results, despite a high p-value, S24 demonstrates a stronger bias in the GSD towards coarser grains (up to 0.5

ψ discrepancy), as indicated by the high Adiff value of −1.36. Here, the KS-test pass is likely caused by the small sample size

remaining after truncation (n=24), the least of any site. The poor performance of S24 was expected given the large size range5

with many sub-cm pebbles and a few large boulders, strong cast shadows from the large grains, and intra-granular edges on

angular boulders with quartz veins (see Figure 8b). Importantly, S24 is the only site not from a major river stem, but rather

from a debris-flow fan draining a small tributary catchment in the Quebrada del Toro. S34 also had a high Adiff=−2.11. In this

case, poor performance is due to significant blurriness of this image, and again a small sample size (n=47).

We also compared the individual percentiles of interest to assess the bias and accuracy of truncated results (Fig. 15). For the10

KMS approach, the bias (m) is 0.06 ψ with a precision (e) of 0.13 ψ. Excluding S24 and S34, m and e drop to 0.03 and 0.09

ψ, respectively. The AIF results have higher m and e values of 0.15 and 0.17 ψ, respectively, which are reduced to 0.13 and

0.15 ψ following exclusion of the same S24 and S34 sites, in addition to the S10 site, which was also somewhat blurry and

with relatively few grains. For the AIF percentiles, we chose to include S16 despite large overestimation at higher percentiles

(Fig. 14), as this was a sharp image with a relatively large sample size. The high uncertainties from this scene likely require15

some adjustment of the edge-detection variables (see Section S3 in the supplement) for improved segmentation, but the results

presented are realistic for fast processing using the AIF method, with the caveat of higher expected uncertainties.

The uncertainties in Figure 15 are average values, and the inset plots also demonstrate the increasing uncertainty of larger

percentiles. The maximum uncertainty for both at D95 is m=0.08 ψ and e=0.07 ψ for the KMS result and m=0.35 ψ and e=0.2

ψ for the AIF result. Importantly, since the ψ scale is logarithmic, the larger errors at higher percentiles correspond to similar20
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Figure 13. Results from hand-clicked control (black line), KMS PebbleCounts (gray, dashed line), and AIF PebbleCountsAuto (red, dotted

line) with the initial non-truncated run (a) and the 20-pixel truncated run (b). In corresponding colors are the p-value results of a KS-test

and the Adiff approximate integral between the curves for each approach versus the control data. The legend indicates the number of grains

(n) making up each curve. Note the reduction in x-axis scale between the columns, where the right, truncated distributions are plotted on a

narrower range to emphasize the remaining discrepancies.

percentage misfits as lower errors at smaller percentiles (e.g., 0.2 ψ precision at a grain size of 6.5 ψ (91 mm) is a 13–15%

misfit, whereas, a 0.01 ψ precision at 4.5 ψ (23 mm) is a 4–10% misfit).

7.4.3 Results: Handheld Image

As a final test for the KMS and AIF approaches, we turn towards our handheld imagery taken from S14A with a 4-times

improved resolution of 0.32 mm/pixel (Fig. 16). We only show the 20-pixel truncated results, which displayed high KS-test5

p-values > 0.2 and Adiff close to 0 in both cases, with the AIF approach slightly underestimating (Adiff=0.6) and KMS slightly

overestimating (Adiff=−0.77). For the KMS approach m and e are 0.07 and 0.05 ψ, respectively, and−0.06 and 0.05 ψ for AIF.

7.5 Caveat of AIF

The promising results of the AIF approach shown in Figure 13–16 come with some consideration of the grain-by-grain accu-

racy. In Figure 17, we analyze the percentage of grains found in the AIF approach that have a corresponding grain in either the10

hand-clicked control (based on a 6-mm buffer of the b-axis line) or the KMS results (based on a 6-mm centroid buffer). From

this subset of grains, we consider the AIF grain to be a matching (or correct) result if the b-axis difference between it and the

nearby ”good” grain (from the control or KMS) is < 1 cm. From this we see that in the best-case scenario the percentage of

correct grains identified by the AIF approach is only 70%, from the handheld 0.32 mm/pixel image. A number of sites (S10,

S16, S20B, S24, S34, and S35) have < 50% matched grains. The two poorly performing sites (S24 with grain complexity and15

S34 with image blur) both demonstrate the lowest accuracy with < 40% matches. Notably, despite a significant number of false
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Figure 14. Comparison of 20-pixel truncated GSDs between hand-clicked control (black line), KMS PebbleCounts (gray, dashed line), and

AIF PebbleCountsAuto (red, dotted line) for the 12 × ∼1.16 mm/pixel control sites. In corresponding colors are the p-value results of a

KS-test and the Adiff approximate integral between the curves for each approach versus the control data. The legend indicates the number of

grains (n) making up each curve.
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Figure 15. Comparing the key b-axis percentiles across all 12 field sites and between the KMS and AIF approaches with the 20-pixel

truncation applied. (a) All 12 sites from KMS, (b) KMS improvement when excluding S24 and S34, (c) all 12 sites from AIF, and (d) AIF

improvement when excluding S10, S24, and S34. For the main plot, each data point is a percentile value from a single site and the 1:1

relationship is the gray diagonal. The mean (m), mean squared (ms), and irreducible (e) errors are shown for each plot, taken as the average

of all 7 percentile errors across the 9–12 sites plotted. The m and e are separately plotted for each percentile in the inset plot. The number of

grains in the control (”control grains”) and KMS or AIF results (”grains found”) are also indicated.
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Figure 16. (a) Results from hand-clicked control (black line), KMS PebbleCounts (gray, dashed line), and AIF PebbleCountsAuto (red,

dotted line) from the 20-pixel truncated run on the 0.32 mm/pixel handheld imagery. In corresponding colors are the p-value results of a

KS-test and the Adiff approximate integral between the curves for each approach versus the control data. (b) Percentile comparison for both

methods with KMS in gray and AIF in red, with inset box showing the uncertainties for each in the corresponding color.

positives in the results, when comparing the overall GSDs (Fig. 13), and on a site-by-site basis (Fig. 14), the distribution of the

AIF results matches the hand-clicked control well.

Figure 18 demonstrates the issues with the AIF approach in a few map-view examples of the results of the KMS approach

versus the same pebbles in the AIF approach. On a grain-by-grain basis, there are many inaccuracies falling into three main

categories: over-segmentation of grains with internal edges and the selection of each segment as a separate grain, under-5

segmentation and merging of neighboring grains that have weak edges sometimes caused by image blur, and misidentification

of non-grain objects or clusters of small grains. It is clear from this analysis that caution must be used when interpreting AIF

results, particularly in complex or blurry images.

8 Discussion

In this study we developed two new methods for grain-size measurement with low uncertainties and the potential to deliver10

full GSDs from complex images of high-energy mountain rivers. Our open-source Python-based algorithms perform equally

well to other image segmentation tools, but can be applied more quickly over larger areas surveyed by the SfM-MVS workflow

we present. Critical to success is the application of a strict lower cutoff, which limits the minimum measurable b-axis grain

size to 20-times the pixel resolution. The automated version of the algorithm delivers less accurate measurements, but these

can be limited by using low-blur, higher resolution imagery. We focus our discussion on the comparison of our approach with15

similar work, the effect of the lower truncation on GSD estimates, and practical guidelines for acquiring imagery and applying

PebbleCounts, including the application of UAV surveys.
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8.1 Performance of KMS and AIF

For comparison of our algorithms to previous work, we do not consider errors reported in studies using texture-based measure-

ments (e.g., Woodget et al., 2018), since these methods are based on correlative relationships rather than physical measurement

of each grain. Similar to other image segmentation methods (Butler et al., 2001; Graham et al., 2010), the KMS PebbleCounts

approach undercounts grain sizes in each respective size class. This undercounting does not undermine the resulting GSDs and5

associated percentile estimates, so long as an appropriate lower truncation is defined. This cutoff was found to be 20 pixels

(compare to 23 pixels found by Graham et al. (2005a)) in b-axis length (Fig. 12), which explains the degradation in 3–5 mm

counting in the reduced resolution lab images (Fig. 7)), where the smallest pebbles were only a few pixels in size as resolution

was decreased.

As shown in Figure 15, when we apply this cutoff and exclude poorly performing images we find an average m (bias) and e10

(spread) of 0.03 and 0.09 ψ, respectively, for the ∼1.16 mm/pixel imagery and 0.07 and 0.05 ψ for the 0.32 mm/pixel image.

For the AIF approach these values are 0.13 and 0.15 ψ for the ∼1.16 mm/pixel imagery and −0.06 and 0.05 ψ for the 0.32

mm/pixel image. These are averages, which actually increase at higher percentiles in agreement with other image segmentation

methods (e.g., Sime and Ferguson, 2003). We thus suggest higher error budgets at higher percentiles.

As demonstrated in Figures 17 and 18, there are significant inaccuracies associated with the AIF approach. The errors15

associated with the AIF approach can be limited when applied to high-quality (low-blur) ∼1 mm/pixel resolution imagery,

with better results possible on < 0.5 mm/pixel imagery. Ultimately, the uncertainties are highly dependent on the input image

quality and complexity (range in grain size, angularity, intra-granular variability) and providing blanket estimates is less useful

than end-users applying the KMS tool to a subset of images to validate the results of the AIF approach.

In spite of this caveat, our bias values of 0.03–0.13 ψ are in the range of previously published absolute biases of 0.007–0.3320

ψ from similar techniques (see Table 2 in Graham et al. (2010)).To our knowledge, the only study to compare Basegrain results

to control data by Westoby et al. (2015), makes comparisons in mm rather than ψ units. Since the ψ scale is logarithmic, in

our study the error in mm increases with ψ from ∼0.8 mm uncertainty at 4.5 ψ (23 mm) to ∼7 mm uncertainty at 6.5 ψ

(91 mm) for the ∼1.16 mm/pixel imagery in the KMS case. Westoby et al. (2015) report similar bias from Basegrain, again

increasing in magnitude at higher percentiles. Regarding the error spread reported in the literature, our range of 0.05–0.13 ψ is25

less than the 0.25 and 0.14 ψ values reported by Sime and Ferguson (2003) and Graham et al. (2005b), respectively, for their

image segmentation techniques. We emphasize that the previous image segmentation techniques discussed here all rely on the

watershed segmentation step, whereas, neither of our algorithms use this step for the reasons demonstrated in Figures 1 and 2.

8.2 Effect of Lower Truncation on GSD

The issue of lower truncation on GSDs and percentile estimates has received much attention in the literature (e.g., Fripp30

and Diplas, 1993; Rice and Church, 1996; Bunte and Abt, 2001; Graham et al., 2010). Previously, field geomorphologists

were interested in all grains above 8–16 mm, simply because smaller grains were difficult to manually identify and thus

underrepresented in the results (e.g., Fripp and Diplas, 1993; Rice and Church, 1998). Previous work suggests that truncation
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at the finer end of the distribution primarily increases the lower percentiles, while having less effect on the large (> D50)

percentiles (Bunte and Abt, 2001). We find significant shifts in all percentiles of > 0.5 ψ when applying a 20-pixel truncation.

Graham et al. (2010) report truncation errors of < 0.3 ψ for all percentiles in 1, 3, and 5 ψ truncated distributions. Their better

results at lower percentiles are likely because the data were collected manually grid-by-number style in the field with the

ability to include smaller grain sizes. The measurement resolution presents the ultimate control on how accurately grain-size5

percentiles can be measured. The purpose of the KMS and AIF approaches introduced here is in acquiring GSDs from a subset

of the full grain-size range present in the river, namely the subset with > 20-pixel b-axis length in image resolution.

8.3 Practical Considerations for Image Collection and Processing

To conclude the discussion, we focus on the collection of imagery by camera-on-mast or handheld setups. This includes

geometric acquisition and resolution considerations. We further address the potentials for UAV surveying. Finally, we address10

the up-scaling potential of the proposed method.

8.3.1 Acquisition Geometry and Resolution of Mast or Handheld Images

Ideally, collecting 9+ top-down images/m2 (as in our field surveys) or collecting an approximately 1:2 (or greater) ratio of

top-down to oblique imagery (as in our experiments with point cloud data dimensions; see supplement Section S1), leads

to the highest quality point cloud results in Agisoft. Higher quality point clouds, in turn, lead to less distortion errors during15

orthorectification and higher quality orthomosaics. Due to the textured nature of gravel images, we were able to get comparable

results in reduced time using only 4 top-down images/m2 in the lab setting. In any case, high overlap of∼80% between images

is recommended to ensure the best results. Where a user desires accurate and dense point cloud data in addition to the 2D

orthomosaics, it is recommended that (many) more images closer to the surface be collected and from oblique viewing angles

(e.g., Verma and Bourke, 2019).20

As we find the difference in calculated resolution and subsequent grain-size measurement to be negligible between orthorec-

tified and raw top-down imagery at these scales, the use of orthomosaic imagery is not strictly necessary when using image-

segmentation software like PebbleCounts (e.g., Carbonneau et al., 2018). However, on very rough surfaces with cast-shadows

from large grains, generating orthoimagery will overcome distortions present in the raw photos. Furthermore, georeferenced

orthomosaics may be preferable for capturing large sites at a constant resolution that can be fed into the algorithm.25

In terms of camera and photographic height (and thus resolution) considerations, one first needs to assess the minimum

grain size that is desired. Following this, the resolution of the image can be determined using eq. (1) with some knowledge of

the camera parameters (focal length, camera height, sensor size, and image size). The smallest grain b-axis needed should be

20-times this resolution. For instance, using a similar camera to the Sony α6000 (24 MP, 15.6×23.5 mm CMOS sensor, 16

mm focal length), to measure all grains down to 1 cm one needs a resolution of 0.5 mm/pixel, and thus a maximum camera30

height of ∼2 m. If finer grain sizes are desired, the user can use higher resolution imagery, but must be aware of the longer

time needed for processing finer imagery.
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8.3.2 On the Use of the UAVs

The > 20 m flight heights typical of UAV surveys lead to cm-scale imagery with currently available 12–24 MP cameras, which is

less appropriate for PebbleCounts processing, unless large (> 0.2 m) cobbles and boulders dominate the river site. Carbonneau

et al. (2018) build on the work of Carbonneau and Dietrich (2017) to present a workflow for robotic photo sieving on mm to

sub-mm UAV imagery without any GCPs. The method uses a number of high and oblique overlapping flights to orthorectify5

a lower non-overlapping flight with mm-scale acquisition. In their study, the resulting georeferenced single orthoimages are

measured using Basegrain, demonstrating the potential of this method to be applied with PebbleCounts instead.

Practical considerations for UAV image acquisition include the use of multiple flight heights for georeferencing, including

one low flight to acquire mm-scale imagery, and the collection of both nadir and oblique imagery for improved SfM-MVS

results (Carbonneau et al., 2018). Also, the use of a 3-axis camera gimbal is key to reduce blur in the images (Woodget et al.,10

2018). Imagery at sub-mm resolution is already achievable from newer drone models with high MP cameras flown at low

heights. For example, 0.5 mm/pixel imagery from a DJI Mavic drone with a 12 MP camera, wide angle 4.3 mm focal length,

and 4.55×6.17 mm sensor requires a very low flight height of ∼1.4 m, giving a field of view of only ∼1.5×2 m. This may be

somewhat improved using better cameras like on the Mavic 2 Pro (20 MP camera). Regardless, acquiring such imagery with

the high overlap (∼80%) required for SfM-MVS processing is still difficult (particularly given current∼20-minute flight length15

limitations from available batteries). Improvements in technology will continue to increase survey sizes from UAVs, but, for

the time-being, the single, non-overlapping orthoimage workflow proposed by Carbonneau et al. (2018) has high potential to

achieve large-areal results from PebbleCounts using UAV imagery.

8.3.3 Coverage and Processing Limits Using PebbleCounts

Using handheld imagery, a survey site of 1,000–5,000 m2 with ∼10 GCPs measured via dGPS can be covered in 2–6 hours20

by one person (including GCP collection). Using a camera-on-mast setup, this time can be reduced by half, with even greater

speed possible using more people and cameras (of the same focal length). The potential to cover even larger survey sites up to

or exceeding 100×100 m (10,000 m2 = 1 hectare) is feasible in a day of work by two people using the proposed method with

a 16–20 mm focal length lens and a 3–5 m mast.

Current UAV technology limits mm to sub-mm orthomosaic generation via high-overlap SfM-MVS to relatively small areas,25

unless carefully applied to single images as in Carbonneau et al. (2018). However, technology improvements will continue.

These include greater battery life, more accurate geo-tags from onboard dGPS, higher MP cameras, and reduced motion blur.

It is thus within reason to expect hectare to multi-hectare SfM-MVS UAV surveys at mm to sub-mm resolution in seamless

orthomosaics along entire river reaches in the near future.

One limit of the scalability of the PebbleCounts method is processing time. The KMS PebbleCounts tool is recommended30

to be applied to maximum 1–2 m2 patches, depending on the image resolution, as the manual clicking of good grains is time

consuming, requiring 5–20 minutes per patch depending on patch size, image resolution, and abundance of finer grains. On

the other hand, the AIF PebbleCountsAuto tool can theoretically be applied at larger scales. However, it is also advisable to tile
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data and feed it to the algorithm in maximum 1–2 m2 patches for ∼1 mm/pixel imagery, since the non-local means denoising

can take minutes on very large images (> 2,000×2,000 pixels). Again, the use of systems with GPUs or large memory will

shorten processing times and allow for larger images to be run.

In practical terms, a workflow to cover a ∼2,500 m2 survey site captured at 1 mm/pixel resolution would be: (1) tiling into

2 m2 patches, (2) passing each patch to the AIF PebbleCountsAuto tool with quick manual steps of shadow-masking and sand-5

clicking (if sand is present), where each tile takes 1–2 minutes, (3) selecting a random subset of ∼20 tiles to pass to the KMS

PebbleCounts tool as validation and uncertainty estimation for the AIF approach. Such a workflow could be accomplished in

1–2 days of work by an experienced user, providing tens- to hundreds-of-thousands of measured grains from the survey site

and a robust measurement of the full GSD. To increase processing speed, a gridded subset of tiles could also be extracted from

the full survey site, with a 3–5 m step size between patches, to provide complete coverage across heterogeneous gravel-bar10

features, while avoiding unnecessary over-sampling and processing of every patch in the survey site.

9 Conclusions

Using a k-means approach for pebble segmentation in the spectral and spatial domain combined with fast manual selection

of good results, we developed a new semi-automated algorithm for grain sizing optimized for images taken over gravel-bed

rivers (PebbleCounts). We also developed an automated algorithm that uses suspect grain filtering (PebbleCountsAuto), albeit15

with larger uncertainties in the results. The lower truncation of the methods (minimum b-axis length measurable) is limited

to 20-pixels and above. These new methods were necessary to acquire grain-size distributions from dynamic high-mountain

rivers with complexity from sources such as large ranges in grain size, intra-granular heterogeneity, grain overlap, irregular

shadowing, and sand patches. Similar to previous methods, PebbleCounts is best applied at the patch scale (1–10 m2), however,

PebbleCounts provides more realistic results in complex images without any post-processing steps in∼5–20 minutes per patch,20

assuming ∼1 mm/pixel resolution imagery. PebbleCountsAuto performs very well on high-quality (low-blur) imagery, though

with remaining misidentification that must be approached with caution. Grain-sizing results can be upscaled to areas on the

order of 102–104 m2 when PebbleCounts results are used as calibration and validation for the automated PebbleCountsAuto

function.

Code availability. PebbleCounts is a Python based program with the code and documentation available on GitHub at: https://github.com/25

UP-RS-ESP/PebbleCounts (Purinton and Bookhagen, 2019).
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Langhammer, J., Lendzioch, T., Miřijovský, J., and Hartvich, F.: UAV-Based Optical Granulometry as Tool for Detecting Changes in Structure

of Flood Depositions, Remote Sensing, 9, https://doi.org/10.3390/rs9030240, 2017.15

Lloyd, S.: Least squares quantization in PCM, IEEE Transactions on Information Theory, 28, 129–137,

https://doi.org/10.1109/TIT.1982.1056489, 1982.

Otsu, N.: A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66,

https://doi.org/10.1109/TSMC.1979.4310076, 1979.

Paola, C., Parker, G., Seal, R., Sinha, S. K., Southard, J. B., and Wilcock, P. R.: Downstream Fining by Selective Deposition in a Laboratory20

Flume, Science, 258, 1757–1760, https://doi.org/10.1126/science.258.5089.1757, 1992.

Parker, G., Klingeman, P. C., and McLean, D. G.: Bedload and size distribution in paved gravel-bed streams, Journal of the Hydraulics

Division, 108, 544–571, 1982.

Pearson, E., Smith, M., Klaar, M., and Brown, L.: Can high resolution 3D topographic surveys provide reliable grain size estimates in gravel

bed rivers?, Geomorphology, 293, 143–155, https://doi.org/10.1016/j.geomorph.2017.05.015, 2017.25

Purinton, B. and Bookhagen, B.: Measuring decadal vertical land-level changes from SRTM-C (2000) and TanDEM-X (∼ 2015) in the

south-central Andes, Earth Surface Dynamics, 6, 971–987, https://doi.org/10.5194/esurf-6-971-2018, 2018.

Purinton, B. and Bookhagen, B.: PebbleCounts: a Python grain-sizing algorithm for gravel-bed river imagery,

https://doi.org/10.5880/fidgeo.2019.007, https://github.com/UP-RS-ESP/PebbleCounts, 2019.

Rice, S. and Church, M.: Sampling surficial fluvial gravels; the precision of size distribution percentile sediments, Journal of Sedimentary30

Research, 66, 654, https://doi.org/10.2110/jsr.66.654, 1996.

Rice, S. and Church, M.: Grain size along two gravel-bed rivers: statistical variation, spatial pattern and sedimentary links, Earth Surface

Processes and Landforms, 23, 345–363, https://doi.org/10.1002/(SICI)1096-9837(199804)23:4<345::AID-ESP850>3.0.CO;2-B, 1998.

Rubin, D. M.: A Simple Autocorrelation Algorithm for Determining Grain Size from Digital Images of Sediment, Journal of Sedimentary

Research, 74, 160, https://doi.org/10.1306/052203740160, 2004.35

Russ, J. C.: The image processing handbook, fourth edition, CRC press, 2002.

Rychkov, I., Brasington, J., and Vericat, D.: Computational and methodological aspects of terrestrial surface analysis based on point clouds,

Computers & Geosciences, 42, 64–70, https://doi.org/10.1016/j.cageo.2012.02.011, 2012.

32

https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.isprsjprs.2009.02.003
https://doi.org/10.1002/esp.3290110108
https://doi.org/10.1007/s002679900048
https://doi.org/10.1029/93WR00402
https://doi.org/10.1002/2016GL068713
https://doi.org/10.3390/rs9030240
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1126/science.258.5089.1757
https://doi.org/10.1016/j.geomorph.2017.05.015
https://doi.org/10.5194/esurf-6-971-2018
https://doi.org/10.5880/fidgeo.2019.007
https://github.com/UP-RS-ESP/PebbleCounts
https://doi.org/10.2110/jsr.66.654
https://doi.org/10.1002/(SICI)1096-9837(199804)23:4%3C345::AID-ESP850%3E3.0.CO;2-B
https://doi.org/10.1306/052203740160
https://doi.org/10.1016/j.cageo.2012.02.011


Sculley, D.: Web-scale K-means Clustering, in: Proceedings of the 19th International Conference on World Wide Web, pp. 1177–1178, ACM,

New York, NY, USA, https://doi.org/10.1145/1772690.1772862, 2010.

Shields, A.: Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, Ph.D. thesis, Technical Uni-

versity Berlin, 1936.

Sime, L. and Ferguson, R.: Information on Grain Sizes in Gravel-Bed Rivers by Automated Image Analysis, Journal of Sedimentary Research,5

73, 630, https://doi.org/10.1306/112102730630, 2003.

Sklar, L. S., Dietrich, W. E., Foufoula-Georgiou, E., Lashermes, B., and Bellugi, D.: Do gravel bed river size distributions record channel

network structure?, Water Resources Research, 42, W06D18, https://doi.org/10.1029/2006WR005035, 2006.

Smith, M., Carrivick, J., and Quincey, D.: Structure from motion photogrammetry in physical geography, Progress in Physical Geography:

Earth and Environment, 40, 247–275, https://doi.org/10.1177/0309133315615805, 2015.10

Tofelde, S., Schildgen, T. F., Savi, S., Pingel, H., Wickert, A. D., Bookhagen, B., Wittmann, H., Alonso, R. N., Cottle, J., and Strecker, M. R.:

100 kyr fluvial cut-and-fill terrace cycles since the Middle Pleistocene in the southern Central Andes, NW Argentina, Earth and Planetary

Science Letters, 473, 141–153, https://doi.org/10.1016/j.epsl.2017.06.001, 2017.

Tomasi, C. and Manduchi, R.: Bilateral filtering for gray and color images, in: Sixth International Conference on Computer Vision (IEEE

Cat. No.98CH36271), pp. 839–846, https://doi.org/10.1109/ICCV.1998.710815, 1998.15

Verdú, J. M., Batalla, R. J., and Martínez-Casasnovas, J. A.: High-resolution grain-size characterisation of gravel bars using imagery analysis

and geo-statistics, Geomorphology, 72, 73–93, https://doi.org/10.1016/j.geomorph.2005.04.015, 2005.

Verma, A. K. and Bourke, M. C.: A method based on structure-from-motion photogrammetry to generate sub-millimetre-resolution digital

elevation models for investigating rock breakdown features, Earth Surface Dynamics, 7, 45–66, https://doi.org/10.5194/esurf-7-45-2019,

https://www.earth-surf-dynam.net/7/45/2019/, 2019.20

Ward, J. H.: Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical Association, 58, 236–244,

https://doi.org/10.1080/01621459.1963.10500845, 1963.

Warrick, J. A., Rubin, D. M., Ruggiero, P., Harney, J. N., Draut, A. E., and Buscombe, D.: Cobble cam: grain-size measurements

of sand to boulder from digital photographs and autocorrelation analyses, Earth Surface Processes and Landforms, 34, 1811–1821,

https://doi.org/10.1002/esp.1877, 2009.25

Westoby, M. J., Dunning, S. A., Woodward, J., Hein, A. S., Marrero, S. M., Winter, K., and Sugden, D. E.: Sedimentological char-

acterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry, Journal of Glaciology, 61, 1088–1102,

https://doi.org/10.3189/2015JoG15J086, 2015.

Wohl, E. E., Anthony, D. J., Madsen, S. W., and Thompson, D. M.: A comparison of surface sampling methods for coarse fluvial sediments,

Water Resources Research, 32, 3219–3226, https://doi.org/10.1029/96WR01527, 1996.30

Wolcott, J. and Church, M.: Strategies for sampling spatially heterogeneous phenomena; the example of river gravels, Journal of Sedimentary

Research, 61, 534–543, https://doi.org/10.1306/D4267753-2B26-11D7-8648000102C1865D, 1991.

Wolman, M. G.: A method of sampling coarse river-bed material, Eos, Transactions American Geophysical Union, 35, 951–956,

https://doi.org/10.1029/TR035i006p00951, 1954.

Woodget, A. S. and Austrums, R.: Subaerial gravel size measurement using topographic data derived from a UAV-SfM approach, Earth35

Surface Processes and Landforms, 42, 1434–1443, https://doi.org/10.1002/esp.4139, 2017.

Woodget, A. S., Fyffe, C., and Carbonneau, P. E.: From manned to unmanned aircraft: Adapting airborne particle size mapping methodologies

to the characteristics of sUAS and SfM, Earth Surface Processes and Landforms, 43, 857–870, https://doi.org/10.1002/esp.4285, 2018.

33

https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1306/112102730630
https://doi.org/10.1029/2006WR005035
https://doi.org/10.1177/0309133315615805
https://doi.org/10.1016/j.epsl.2017.06.001
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1016/j.geomorph.2005.04.015
https://doi.org/10.5194/esurf-7-45-2019
https://www.earth-surf-dynam.net/7/45/2019/
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1002/esp.1877
https://doi.org/10.3189/2015JoG15J086
https://doi.org/10.1029/96WR01527
https://doi.org/10.1306/D4267753-2B26-11D7-8648000102C1865D
https://doi.org/10.1029/TR035i006p00951
https://doi.org/10.1002/esp.4139
https://doi.org/10.1002/esp.4285

