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DearProf. Mudd,

deso

Thank you very much for the two reviews of our submission to ESurf. Hretgoughtful and constructive

reviews that have helped us to improve the manuscript, and we are grateful to both reviewers for considering

our work so carefully. We are pleased that they both liked the essetheernfnuscript.

We have incorporated many, though not all, of the recommended chBiegese find attached our detailed
responses and edits. Page/line numbers refer to the rer@sgdn of the manuscript with tracked changes
showi ng 0 dihdnunmbers réfar tp the final revised version of the manuscript with tracked changes.
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We hope that our manuscript is now suitable for publication in ESurf. Please do not hesitatadionee for

any further information.

Yours sincerely,
Anitel. Mﬂﬂ

Dr Mitch D'Arcy
(on behalf of all authors)
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Reviewer 1: Dr Luca Malatesta

Dear Editor, I have read the | atest a manuscri
new probabilistic approach to identify the likeliest age of abandonment of an alluvial surface based on
series of exposurdated samples at its surfacéey build a power law that predicts the likeliest amount

of time elapsed between the youngest surface age and the effective fluvial incision based on the
distribution of surface ages assuming their uniform distribution during the period of activity of said
surface. It is a useful contribution that can be applied widely and is definitely worthy of publication in
ESurf! In my opinion, the manuscript is ready for publication pending minor clarifying modifications.
The article is very well written and easy tad. | would however encourage the authors to consider
modifying their probabilistic approach and follow an explicit derivation of their probability power law
without requiring the use of dartificial dat ao

We thank Dr Malatesta fdiis helpful review. We are pleased thatlikes our work, and we respond to
his comments below.

Below | briefly describe an alternative approach for the probability law and | providebyinine
comments on the text.

Probability The approach using synibatata has the advantage of mimicking a field situation with n
dated boulders out of a larger number. However, it seems to me that using an explicit approach would b
much more advantageous. There is no need to graphically fit the powerlaw and delad \@ghdciated
error margins, the term fAartificial datao can
be reinforced. Further it would become a more flexible platform, for example to introducaifam
distribution of surface ages. | masked Quentin Berger, probabilist at R&asbonne, for some help as

to how the explicit derivation can be made. | include a document that summarises his explanation hereby
The derivation would replace section 4.1 and provide a definitive and clediosdor this approach. |

think it would improve the impact of the manuscript. That being said, it is not a necessary modification
and the manuscript stands on its legs as is. It is for the authors to decide whether they want to follow a
explicit approahb or not.

We agree that ités worthwhile to consider an a
Dr Berger have taken the time to derive these suggested equations. Nonetheless, there are several reas
why these equations cannot regdbe approach we take usiadgificial data.

First, let us quickly summarize how we understand the derivation in the document. Essentially, the
probability is evaluated that a particular sample is older than the time of abandonment (set to zero in th
doaument) plus a specified duratiiteq. 4).This periodUis identified with the time difference between

the youngest sample and the time of surface abandonment (which is alsdJéalmgt manuscript).
Because we assume uniform distribution of sampled boulders with equal likelihood of sampling, the
probability is given by 1UT, where T is the length of surface activity. Next, it is required that all samples
fulfil this criterion, and consequently, tipeobability is raised to the power of n, where n is total number

of samplegeq. 5). Finally, assuming<T, the equation is expanded to first order, using a Taylor series,
noting that the result is equal to a Taylor expansion of an exponential furtctiost brder.

There are a number of points that can be made in response.
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Firstly, the suggested equations are incompketmparison of eq. 5 in the derivation and e§.i# our
manuscriptshowsthat our equatiasn yield more detail, for example a peefor to the exponential term
(Eg. 2) and the dependence of the expormenthe specified percentile E3). Further details of our
results, for example the relationship betw&eand the spread of sample ageq.(&) are not dealt with.
Therefore the deivation may provide a first step, but further steps s@kdto be worked out.

Secondly,we do not think that the derivation actually reproduces what we are simulating with the
artificial-data approachThe youngest sample age in our approach is not thde( but determines)

(i.e., we require a sample with ageThus, the determination of the probability is not cor(&ct 4 in

the derivation) We have since developed some ideas of how to correct the equations, but this is far from
giving a usableor publishable result. Whether the exponential approximation that arises from the
derivation is coincidental or whether there is a relationship to our approach is not yet clear to us.

Thirdly, even if a complete analytical solution is possible (whichighinot be)t seems likely that a
numerical solution oartificial dataare necessarp provideother elements of a workable approach. An
example is thestimation ofT, whereonly the spano ® can ever be measured empirically (i.e.,

Fig. 6 and section 4.2)Thereare actually several advantages thoosingan artificiatdataapproach

which we mention at the end of sectiorCheadditional reason that is not mentioned in the manuscript

is that the artificial datanay beeasier to underahd for researchers wha dot have a rigorous
mathematicabackgroundOur equations are correct, the error margins of our parameterisation are very
small (see Fig. 5), and importantyur equati ons do not r Bg@tsuchas app
in the suggested derivation, which Fig. 4 shaswsot realistic.

We arevery openminded about the possibility of developing a full analytical solution in the future, but
this is a complicated problem to solve and the suggested equations only proaitiegsbint. For these
reasons, we believe it is advantageous to continue with our approach using artificMleldecided to

not include analytical derivations in the present paper.

Line by line

p. 2 L. 31. ATheseiapprauaahes i mitek pagiet@uli amsaro
examples of these risks?

Yes, we haveclarified the text. Wee h a n gpprdaches tassumiptions , because this
referring directly to the previous sentence where we open this pitintwe specific examples, including
citations.We added an additionaltation to Macklin et al. (2002We now explain in the text thttese
examples (1) asswthat abandonment coincides with palaeoclimate events, and then eoticid
climate contra aggradation/incision cyclgsisking circularity); and (2) assumthat the youngest
sampled age approximates abandonment, which our asasev will often not be the cagesking
inaccuracy).

p. 3 L. 1315. | suggest to indicate that these ages dnigramily selected to produce the scenarios. The
reader (or at least I) might think that they are lucky draws from random rounds and that you are already
tal king about experiment results. ltds a remall
building.
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Done, this is a good suggestion.

p. 4 | . 4. dAln this study, we use artificial d
data on virtual surfaces or i f you polmsugbestttoe a
maybe include the purpose of the approach her
characteristics of surveyed surfaceso (whi-ch vy
10.) This entire paragraph isactyall par amount as it frames the useE&e
| suggest to carefully edit it such that the combination/coexistence of artificial data and field sites is clear.
At this point i n the text, Mla inugderstamch tbdeeproblemvand! |
motivation but how is that wuseful for my field

These are good points. We have edited the paragraph to make our approach and its utility clearer, ar
elaborate on how our synthetic data approach can infeaffield studies.

p.4 | . 27. Mi ssing coma after ATO
Corrected.

p. 4 1. 2728. | suggest to indicate the uniform distribution of the ages here already. The readers might be
wondering about it.

We agreethatt 6 s I mportant to poi ntectable ageduhwethinkma bettay r m
place todiscuss the assumptions of our appraache ct i on 3. 3 O EXx p énowatnyeént a |
[.12), once the reader is familiar with our overall appraagblving artificial data Wenow address this
particular assumption explicitly in sections 3.2, 3.3, 5.1, and 5.3, which weishimmgood context

p.51.13.tau=a mnt aban is an i mportant relati on, | 6d

Good idea, we have done th¥e putthe equatiorat the start of section 3.1 andmembered the other
eqguations accordingly.

p. 7. The lines of equations lack punctuation.

Webre not sure what punctuation is missing fro
course hapy for it to be formatted following ESustyle guidelines.

p. 7 | . 6. Athen tau = 12 kyr for P = 0.95.0 1
for clarity.

Done.

p. 7 I. 1115. the parameter k has a negative value. It shoulchdrgioned here (important for what
happens when n grows to infinite). Potential |y
convention for such parameters ©AéT give Kk a
equation.

We now explicitly pointout thatk has a negative value (p.7, 1)34
p. 8 1. 21: section 4.3 is very good and will be very useful.
Thanks!
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p. 8. I. 24: using the parameters values listed above | assume? It might be worth specifying it.

Yes, the parameters (andjuations) we derive from our artificial data are universal. Rather than
speci fying this h eBgwton2vlkeroughsgareghusacdlidratetl usang our artigcial A
dateéé ) t o t he e nadoveo(p9, |.dk1d){ta nake thikcled

p. 91. 1217. this paragraph reads a little like conclusion material. | am not sure it is necessary.

We disagreeThis is the opening paragraph of the Discussion and we think it should lougfitye the

key implications of our work, namely that abandmnt ages will often be more informative than average
surface ages, aridat our probabilistic approach provides a new way of constraining abando@ivemt
that readers thinking about their own chtiorsfod s
surface dat i n gedyrief dsassibdi thenkky pointsasielpfld

p . 9 I. 2 3. Asignificantlyd probably needs d
magnitudeo thereafter.

We ¢ h asiggifcanthydi tswbstaftiallyo |, as this sentence is onl)
statement.

p. 9, |. 25. There is no figure 5d.
This was a typo, we have corrected it to Fig. 5b. Thanks for spotting it!
p. 12 I . 10 Without much contepdtumbdb. dondt see

We ¢ h aThig edundfium could be partly resol¢ed tMore rialistic values can be obtairead
(p.23, 1.19.

p. 13 |. 24. | am not sure that this characterisation is fair to previous work, many authors showed the
importance of timing@bandonment and not mean ages. The st
is to propose a simple and efficient method to

We think this is referring to p. 14, I-£ rather than p. 13 (whicdoes not refer to previous work). The
majority of studies that date surfaces such as alluvial fasswdisticallyrepresent the surfaeéth an
average age (whether a mean, mode, or the peak of a frequency distribution) and rarely attempt to infe
the subsequenage of abandonmerfalthough we do explicitly acknowledgeveralexamples in the
Introduction)Webr e certainly not claiming to béelitibe fi
fair to concluden our papet h dhe timing of surfag abandonment may provide more informative and
more precise interpretations than taking an average of measured surfaceageb e cause one
contributions of ouwork is quantify the precision with which abandonment can be inferred.

For exampleFig. 4demonstratethat for desirable probabilities, thiening of abandonmerdan
indeed be pinned down more precisely than the period of surface format®milarly, the example
application to the younger Q4 surface on the Baja California fans §Filgft) shows that surface
abandonment likely overlaps with the Younger Dryas, offering a more precise and informative
interpretation than the average surface @gereasons we elaborate on in section 5.8Bb}h of these
results demonstrate the valokinferring abandonmentnd the potential precision with which this can
beaccomplished n a new way that hasndét been demonstra
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Reviewer2: Anonymous

Il n this manuscriopt, D6Arcy et al . ptimngafalleviala ne
surface abandonment using cosmogenic radionuclide dating of surface boulders. Using randomly sample
surfaces ages from a hypothetical alluvial surface, a distribution of surfaces ages are obtained where bo
the number of samples andeagf the depositional surface are varied. The discrepancy between the ages
sampled and the true timing of surface abandonment are then determined. The relationships drawn fror
this analysis are then also applied to an independently dated alluvial fam sys#exico to infer the

timing of surface abandonment. The manuscript is motivated by better constraining the timing of surface
abandonment; the authors suggest that this may be a more useful constraint than an average surface
which is unlikely to redte to any particular forcing or event of interest. In contrast, the timing of
abandonment will likely reflect changes in climate, base level change, tectonic forcing or major drainage
reorganization. | enjoyed reading this manusdrigt addresses a wethoughtout set of questions, is

very well written and | believe is a valuable contribution to the field. | would recommend the manuscript
for publication pending a few very minor clarifications.

We thank Reviewe2 for his/her thoughtful review, and wespond to his/her comments bel®eviewer
2 has raised some very interesting questions that we hope will inspire future studies!

| have a general query about boulders and age distributions and their representation. In the conceptu
model, it is assumedhat boulders are evenly distributed across the surface and that there is a uniform
probability distribution of selectable ages. This is mentioned in the experimental assumptions too (sectior
3.3). I am curious as to how much these two assumptions anetbkelodify the modelling results, and
whether these assumptions are actually more likely to be the norm in reality. Is this by any chance
something that has been examined or tested? The fact that many alluvial surfaces are not characteriz
by large numbes of large boulders does indeed suggest that their delivery downstream of their source
areas may be temporally clustered and correspond to very large eveistsnay not be relevant given

that it is only the youngest ages which matter here. In gerntbmlauthors do a thorough job of
highlighting the assumptions and limitations of their approaches.

We 6 r e p | Regiever@ thinkls wlavethoroughly highlightdthe assumptions and limitations of
our approach, because we want to be upfront ahest

We have not yet performed explicit tests with different distribution shapes of selectable surface
ages. One of the reasons for this is simply because it would multigpafesesn our current manuscript
by x number of different distribution shapesid each would require a substantial amounbo§ideration
(to work through the predictive relationships and equations), and too many figures and analyses for on
paper. Howeverwe do agree that it would make a very interesting question for a futuhg sthich
could also bring in a compilation of age clusters from ssathpled alluvial fans in order to empirically
look at what shapes these distributions tend to have in the real world.

For our workhere the main implications of changing the shapeselectable age distributions
would be to (i) change the number of samples needed to get an accurate estimateomdd(fi) change
the value otJfor a given probabilitinumber of age$/ We can speculate here with teases

1. Selectable ages are normalidistributed with a peak in the middle of T.
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A slightly greater number of ages would be needed to estimate c ur at el vy, bec
more likely to end up sampling ages that cluster around the middle of the depositional
timegan, as opposed thistributedrandomly throughouT like in our scenarios. Therefore,
everything in Fig. 6 would probably be shifted down to slightly lower ratiogan@k( amin)/T.

Next, amin would presumably fall further fromasanin many cases, whickiould makeJslightly
larger for a given value d?. The magnitude of this effect might in turn dependhaand T
(i.e.,a bit like Fig. 2).So for small values ai changing the distribution shape might have a
bigger effect, but as increases, perhapse results would becagmore similar to ours.

2. Selectable ages are biased towards the youngest end afith a long tail decaying
towards the older end ofT.
Again, slightly more ages would be needed to estirmiaéecurately, simply because the
sampled ages will always be biased by clustering (wherever the cluster sitsivithawever
in this scenarioyoudr e more | ikely to densely samp
which shouldresult in a smaller valuef Ufor a given value of, T, andP, i.e., more accurate
estimates of abandonment timing.

So, wespeculate that different distributions of selectable ages would result in different effects, probably
changing the size diiby some small amount. A dedicdtstudy would be needed to pin these effects
down.We think thata goodway to go would be tetart with a compilation of measuragesrom natural

fans, to see ifages appear to bendomly distributed throughout a timespan, or witipaaticular
distribution shape of the tails.

Section 3.1 The first time | read this section | was a little confusetifelt like the second paragraph
was more observations made from the data rather than a description of methodsZ&ne garticular).
Perhaps some 4ghrasing or reordering of material may help with the flow of this section.

We agree that the text needed some clarificatien® which was also raised by Reviewer 1. We have
edited both section 3.1 and the preceding sectig® response to Reviewer Wje chose to keep the
reference to the example case in Fig Tefred to as p.4, 1.2@5 abové because it illustrates the key
advantage of using artificial data and bridges the Justification and the Methods section. However we hav
added a sentence aftiis point that explicitly points out why an artificial data approach mag&ase,

and edited the section toake the text clearer.

Fig. 1B1 Could you add a-axis on the kernel density plot?

In principle we couldyes,but it would be somewhat meaningless because the values would only reflect
the size of the saxis binsused to make the frequency distributiofkis is only acartoon illustratiorso

we feel that would complicate the figuubmnecessarilyandwe left outthe yaxis. Of course, later in the
paper the yaxis becomes meaningful when we develop the probabilistic approach, so we do then add y
axis labels.

P4.1411. Agai n, I had to read this paragraph a ¢
and a Or kesadme swardfacsei on on what you have model
do not mention/introduce that you apply the modelling to a case study in either section 1 or 2. Instead, i
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does feel like it pops slightly out of théuk during the paper discussion. Perhaps integrate this into the
end of section 1 where you outline what you are going to present with respect to the artificial data anc
generation of probabilistic equations.

These are good points. We have editexparagaph (now p.4from[.8), also in response to Reviewer 1,
to make it cl ear eenlsurfates haesturafisurfaegs for clargyeWe al$o agree
about flagging up the case studyrleer on; & suggested, weow mentiorthis at the end of séon 1.

P9.L13I1 dondét think it is unreasonable to say th
external forcing.

This is a googboint, this sentence can be phrased in a better way. We have claogett p.10, 1.16)

fi éour findings ndicate that averages of sampled surface ages are likely to be imprecise
representations of the mjgbint of surface formatiorand may notcorrelate with any external
forcing everg 0

to:

fi éour findings indicate that averages of sampled surface ages ket lto be imprecise
representations of the myabint of surface formationwhich may notcoincidewith a particular
external forcing evegt 0

We agree that our results do not explicitly demonstrate that average surface ages will not correlate witt
externalevents. They do demonstrate that average ages will often be imprecise representations of thi
actual average surface age (i.e., Fig. 3a), so we have kept the first part of the sentence. For the seco
part, we now simply point out that the average surd@eemight not coincide with external forcing events,

for the reasons we discuss in section 2 (Justification). Thegaird of surface formation is, by definition,

in the middle of a period of stability when a surface continues being deposited, unlik¢éhessvitch

from activityto abandonment occurs.

P.9 L 21. This is probably more for my own curiosity. For the variables you have modelled, you state that
6 to 7 ages are sufficient to characterize the timing of abandonment when T = 30 kyr. You alsm touch
this in section 5.3 but was wondering if you could just clarify/expand. In your artificial case, the period
of surface activity is defined. What if you turn up at a new field site without any indication of how
old/period of time each surface has bedivador? How many samples are needed/adequate to estimate
the timing of surface abandonment to a high degree of probability? Perhaps some idea of the periodicit
of forcing mechanism needs to be known (if climatically driverjut then the argument becem
somewhat circular! Or should we just grab as many samples as we can and state the
uncertainty/probability?

These are great questions, and we have been thinking about this issue of hovammaleg 0 collect
too!l t 6 s t r Bisreferting to th Easegwher@ = 30 kyr, but Fig. 4 on the other hand is looking
at a wide range of values @f and we still see that the curves really start to level off atteut6-7
samples. The value dfis larger wher is larger, but collecting a few extra saeml(say, 10) rarely
counteracts the effect of increasihgn other words, yod o rkidow whatTi s when youdr e
the field, but whatever number of samples you
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after~6 or 7 ages (unleg®u collect hundreds, which is not feasibEyen if T happens to be very large,
collectingl 0 ages r at her t hlseenoughtefisetthd effqetrob babl y wonot

We think itds a really interest.i thgformatienaf t h a
fan surfaces, and therefore might provide a guide for the sizeRéviewer 2 is right to point out the
risk of circularity, which is why we dondt spe:

planning to explorehis topicin future papers containing data from real alluvial fan syst&eshope
our workhereinspires other groups to date more fans, because to tackle this question we really need mort
field examplesvith well-dated fan surfaces.

Regarding how manyasnples to collect, our view (based mostly on Fig. 4 and Fig. 6) is that going
up to 6 ages will alwaygrovidebenefits whatever the age/duration of the surface. Collecting more than
6 ages will give smaller and smaller returns, so while it might be uséfah especiallyprecise
constraints on abandonment are required (e.g., comparing with millscalal climate events), it would
probably be biger tospendthoseadditional resources datingldferent surface. The case study from the
Baja California fas illustrates this well the Q4 surfaces only dated wittb ages, but h astill@rsough
to showfairly convincingly that abandonment overlaps with the Younger Dryas (which only lasted ~1
kyr, so is as short as most palaeoclimate events c@ukgcting another 5 ages from that surface would
narrow the probability distributioa little bit, but it would probably be a better use of time and money to
use those 5 samples to datenething else.

One caveat here is that an old outlier was discafided the Q4 dataset (attributed to nuclide
inheritance). So if the goal in the field isrteeasure- 6 6 g 0 o d dgatlegnglsor 2 extra samples
might still be usful in case there asmmeoutliers that need to be thrown oGiven unlimited resowes,
our strategy would be to procegsr7 sanples per fan surface, but collegtother 1 or 2 samples to keep
in reserve. Even if 1 or 2 of the ages turned out to be outliers then the dataset would still probably be fine
for inferring abandonment timin@or most purposes). If 3+ outliers turned up, or the project required
very precise estimates of abandonment age, then you could go back andthmbas&ups.

This is a bit tangential, but i f yokingsoree goi
free LandsaB imagery with you to help choose your sampling sites. We published a pdpemte
Sensing of Environme(it2 0 1 8 ) Alluvial fah sairfhcefages recorded by LaneBanagery in Owens
Valley, California |, wher e witbhese bpadrtknities. L. andst8 imagery isa really powerful
resource when sampling fans and can make a big difference to ensuring you collect samples from th
right patches of the surfaces, and ultimatelyrgbtistdatasets.

P9. L251 There is no Fig. 5D.

This was a typo, we have corrected it to Fig. 5b. Thanks for spotting it!
P11. L9 Should this be Figure 8D?

Corrected.

P12. L12i If displacement can only occur after surface abandonment, do you have any constraint on a
minimum age of displacement ons€&®auld this estimated timaveraged slip still only be a minimum
rate? If so, perhaps state somewhere.
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Weassume that a faulted surface would start to
as soon as it stops being actively resurfacHut perspective in turn assumes that a fault is continuously
slipping, or at least that the time interval between slip events is insignificantly small compared to the age
of surface abandonmetitmight be that in some cases there is an additionaintegg thich would make

the timeaveraged slip rate a minimum estimate as Reviewer 2 suggests, even when calculated using th
abandonment age instead of the average surf ac:i
likely to be a lag time in a sigitant number of cases, so we prefer nanhtke a general suggestithrat
time-averaged rates will be minimum estimat@pplied studies willprobablyneed to evaluate this
possibility on a casby-case basis.

P12. L 2830 Thisis a really good poirit | al so feel that this shoul d
Deriving an average surface age would certainly be biased by burial of older material but by focusing or
the timing of abandonment this bias is removed. Perhapg bthis up earlier in the manuscript as an
additional strength of this method.

Thank you!We prefer to avoid repetition in different partstioé manuscript, but we agree that this is a
valuable point so we have emphasisedate clearlyin the text at @4, 14-12.

Additional Edits

Wedecidedtoadd | i st of mathematical notati on,bgtwew s
think it will make it easier for readers to get to grips with our equations.

We have madesomevery small text editsthroughoutto improvethe wording and clarity of a few
sentenceslThese edits are all shown with tracked changes.

We renamedubs e c t i o n Applic&ionftoreal surfagde agedt oAppdication tomeasuredsurface

age® , rel ated to t he above Wenaso adsed b ymalRaenount efvelarificatidn to

this section, just to make sure the text is very clear about how readers could go about applying ou
approacho their own data (which is ultimately our goaFor exampleherewe e x p | discrete t h a
valuesolJ can be converted into a probability dist
i ncr e mé We decided thatit would be helpful to briefly expand on this pwifit two additional
sentencethatclarify what we meamard alsoexplainhow the Matlab script can be used to implement our
approachThe section is still concise, but we think it will now be easier for readers to follow Fig. 7 and
reproduce our approach with their own data.

Related to Fig. 7, we decided totakeit t he equati ons because it 1Is
figure and was a waste of space. Figure 7 is now a stodenn figure.

We added a citation to Terrizzano et al. (2017) B2,d.17
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Inferring the timing of abandonment of aggraded alluvial surfaces
dated with cosmogenic nuclides
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CorrespondencetMi t ¢ h K (md&réy@unipogsdam.dp

Abstract. Information about past climate, tectonics, and landscape evolution is often obtained by dating geomorphic surfaces
comprising deposited or aggraded mategag., fluvial fill terraces, alluvial fans, volcanic flows, or glacial till. Although
surface ages can provide valuable information about these landforms, they can only constrain the period of active depositiol
of surface material, which may span a #figant period of time in the case of alluvial landforms. In contrast, surface
abandonment often occurs abruptly and coincides with important events like drainage reorganisation, climate change, o
landscape uplift. However, abandonment cannot be dirgatbd because it represents a cessation in the deposition of dateable
material. In this study, we present a new approach to inferring when a surface was likely abandoned using exposure age
derived from in siteproduced cosmogenic nuclides. We use aréifidata to measure the discrepancy between the youngest
age randomlybtainedgampledfrom a surface and the true timing of surface abandonmantanalysesimulae surface

dating scenarios with variable durations of surface formation and variable nuofilzerspleexposure agesom sampled

boulders From our artificial data, we derive a set of probabilistic equations and a Matlab tocdntha¢ applied to a set of

real sampled surface ages to estimate the probable period of time within which abandstiken to have occurredur

new approach to constraining surface abandonment has applications for geomorphological studies that relate surface ages

tectonic deformation, past climate, or the rates of surface processes.

1 Introduction

Geomorphological studies that link the formation of landforms to past changes in climate or tectonic deformation depend on
the accurate dating of surfaces comprising aggraded or deposited material. Surfaces commonly targeted for dating includ
alluvial fars, fluvial fill terraces, glacial till, pediments, and volcanic flows, among others. For exampteies dfluvial fill

terraces and alluvighn surface$ave been usede-widely-dated-in-orddo (i) decipher how erosion and sedimentation have
respon@d to past hydroclimate changes (Owen et al., 2014; Schildgen et al., 2016; Tofelde et al., 2017); (ii) derive time
integrated slip rates for active faults (e.g., Frankel et al., 2007, 2011; Gosse, 2011; Hughes et al., 2018); andhfitheuant
rates & surface processes such as weathering, landform erosion, or channel avulsion and incision (Schildgen et al., 2012
Re g mi et al ., 2014; Bufe et al., 2017; DO6Arcy et al ., 2
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A common assumption is that a geomorphic surface can be represented by faisimagien age. Surfaces are usually point
sampledand datedn multiple locations, e.g., by cosmogenic nuclide exposure dating of surface boulders. Tygcalliyng

isa limited to a smallnumberof (often fewer than 10) large, stable surface bouldersampled-forexposure-datjnwhich
exhibit no evidence of weathering, rotation, or disturbance. From the sepofureages obtained, an average surface age

can bés calculated with an uncertainty that reflectgh analytical uncertainty athe sprad of sampled ages. However, many

geomorphic surfaces are active for an extended period of time, during which material is continually deposited untidehe surfa
is abandoned (e.g., Savi et al., 2016; Denn et al., 2017; Foster et al., 2017). -#dlogiafaces provide one example. Rather

than being formed instantaneously, fan surfaces are typically active for thousands or tens of thousandsedbrngebesng
abandoned when the channel avulses or in€esgs, Dihnforth et al., 2007This prolonged eriod of activity resultsn a
meaningful spread in ages collected from a single surfage;(Owen et al., 2011). For any geomorphic surface with a non
negligible period of formation, a set of surface ages will capture a portion of the full timespan over which that surface was
active. An average of those ages will sit somewhere within the trespism of surface depositionhereabut-will-overlosk
information-such-athe maximum agexhich might approximate the onset of surface activitycor the minimum agewhich

might approximate the timing of surface abandonment.

In some cases, the timing sirface abandonment may be a more useful constraint than an average surface age. In contrast tc
surface deposition, abandonment occurs at a particular moment in time (e.g., coinciding with a switch to incision) and so can
in principle, be defined with gater precision. For surfaces with an extended period of formation, the timing of abandonment
is more likely to coincide with events of interest such as reorganisation of a drainage network (Bufe et al., 2017)nchanges
climate, sediment supply, or baewel (Steffen et al., 2009; Tofelde et al., 200Mguslopoulou et al., 2017; Brooke et al.,

2018); or tectonic deformation such as faulting, uplift, or subsidence (e.g., Frankel et al., 2007, 2011; Ganev et al., 2010)
Abandonment ages would also benefity study that uses surface exposure dating to measure thef rpostdepositional
processs such as in situ weathering.§., White et al., 19962005 D6 Ar cy et al . , 2015, 2018)
landforms €.g.,Hanks et al., 1984; Andrew& Bucknam, 1987 Spelz et al., 2008), or channel avulsion and incis@g.(
Schildgen et al., 2012; Finnegan et al., 2(Nldlatesta et al., 2017Y.et the abandonment of a surfaepresents a cessation

in the deposition of dateable material, and tfegeecannot be directly dated. Instead, the timing of abandonment must be
inferred. Some studies make assumptions about when geomorphic surfaces were abandoned based on independent informat
such as palaeoclimate records (e\{; Cest and Ward, 2016); others assume that the youngest sampled
surface ages fall close to the timing of surface abandonmentSeagr, € &t al.y 2015foster et al., 2017; Ratnayaka et al.

2018 Clow et al., 2019 These fisk interpretations that aircular(in the former casegr potentially

inaccurate(in the latter cas&jterpretationshighlighting the need for a robust method to quantitatively infer the timing of

surface abandonment from a set of sampled surface ages.
Here, we introduce a new probabilistic approach to constraining when a depositional surface was abandoned, based on wh
is known about its activity. We use artificial data to randomly psémple the ages of virtual surfaces, in scenarios that are

represetative of studies dating natural geomorphic landforms such as alluvial fans. We quantify how close the youngest
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obtained age is likely to fall to the true timing of abandonment, depending on the overall period of surface activity and the
number of samplesollected. From these artificial data, we derive a set of probabilistic equations and a Matlab tool that can
be applied to real geomorphic surfaces to estimate when they were abaridoagd,and

Bsnd tle Matlab tool

2 Justification

Here, we present a hypothetical example of a dated alfanadurface to illustrate why the timing of abandonment may, in
somecases, be more useful than an average of sampled surface ages.

Consider an alluviafan surface that was active for a 30 kyr timespan, starting at 80 ka and ending avbBérkthe surface
was abandoned due to fan incision (Fig. 1). In this exardplegsition occurred athe fan surfaceras-depesitethroughout

a period of climatic stability and abandoned when the climate chaagddre make the assumption that there is an equal

likelihood of obtaining any age within the entire period of deposifodistribution of surface ages can be obtained by point

sampling the fan surface; an approach analogogs:ttiesusing-cosmgenic-nuclidedo-measurstudies that measuthe

exposure ages of bouldexgp landformsWe present twa possible outcomes in Fig. 1, where 6 surface

ages are obtained. In scenario 1, the ages are distributed relatively evenly through time, producing a mean age of 65.8 k
whichthatclosely approximates the true average surface age of 65tkanda standardleviation of 10.5 kyr. In scenario 2,

the ages obtained are unevenly distributed through time, producing a slightly older mean surface age (71.4 ka) and a smalle
standard deviation (5.2 kyr). These scenarios are plotted against time in Fig. 1b asndat@nplokernel density plots, and

they resemble equivalent natural datasets (e.g., Owen et al., 2014).

Sample set 2 is more tightly clustered than sample despite being less representative of the average surface age, illustrating
that greater clustang of ages is natecessarilan indicator of accuracy. Furthermore, neither average age corresponds to any
meaningful event. The fan surface was equally active for the entire period between 80 and 50 ka, the average ages sit within
period of climaticand depositional stability, and the peaks in the kernel density plots are artefacts created by randomly
sampling a linear series.

In contrast, the abandonment of the fan surface does occur at a precise moment in time when deposition ends at 50 ka. In tf
example, abandonment coincides with an abrupt change in climate that triggered an incision event (cf., Simpson artg Castelltor
2012), sat is arguably a more informative target for dating than an average age that imprecisely approximateg tirg mid

in the duration of surface deposition. However, the abandonment of the surface represents a cessation in the deposition
dateable material, so its timing instead must be inferred from what is known about the surface activity. Givethéhat
sampled ageconstrain the timespan over whithe surface was formednd (ii) abandonment occurred sometime after the
youngest agdt could be assumed that the youngest sampled age best approximates abandlososrario 1, the youngest

age falls within ~1 kyof surface abandonment, which would enable a correct interpretation of correlation between fan incision
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and the climate change event. In scenario 2, however, there is a ~14 kyr discrepancy between the youngest sampled age ¢
the timing of surface abandormt, which wouldorobably fail to demonstrate the correlation between climate change and fan
incision. Therefore, the question becomes: how close is the youngest age obtained from a surface to the actual tiateg of surf
abandonment?

This question cannaturrently be answeretbr a natural dataseyet the ability to reliably estimate when a surface was

abandoned has important implications for many geomorphologiedlesapplications(see section 1). In this study, we use

artificial data to undergo active depositiaredeposited
with by-sampling ages artificial {dhetie
lavith obtained fronsampledoulderscellecteadbnfrom
However,u artificial uniguely constrain the time

difference between the youngesfe obtained from a geomorphic surface and the true timing of surface abandoennent
Fhere are severadditionaladvantages to taking atificial-data approach.

First, we can repeat the random samplaigsurface ages (e.g., as depicted in Figmbna-large-numberofimes to

probabilistically determine where the youngest sampled age tends toitfall 2rSecond, we can

prescribe the surface parameters, meaning the exact timaiganflonment and the full period of surface activity are known.
Third, we can select surface properties that are representativewfieal geomorphic surfaces and numbers of samples
commonly obtained in geomorphic studies. Fourth, we can perform a thorough quantification of the uncertainties in our

analyseskor the above reasortbe artificialdata approach allosws to derive a set of egtionsand develop a Matlab tool

thatcan then be applied to natural dataéetset of surface agas)determine the probability of surface abandonment occurring

within a specified window of time.

3 Methods
3.1 Artificial --data approach

We used artificihdata to constrain the temporal discrepaneiich we denoté) between the youngest age sampled on a

surface(®d ) and the actual timing of surface abandonniént ):

I 0 (1)

-Our experiments are designed to be representative of natural afavisilirfaces, but the results are more widely applicable
to any abandoned depositional surface that hasfeermguentidated.
In the absence of additional information (e.g., theterise of ar
surface with an intermediate age), the abandonment of a surface could have occurred at any time between the younge

sampled agep , and the present, or within a partiautame window afted . In the example case (Fig. 1), the data in
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sample set 1 would require a time windawof 1.1 kyr {and14.4-kyrforsample-sef)2placed immediately aftehe the
youngestamplecages; to overlap with the correct timing of surface abandonnient, . However{ffor sample set 2, a 14.4

kyr window is require}l For natural cases, the abandonment timing is unknowerknew the temporal discrepancy between

@ ando -in theseartificial-dataexamples because we impase . forreahworldcases thisinformationis-unknewn.

omparedgainshsampledsetof surface-amllows ush-order

Uhe-time-differencebetweend——and<¢>— in_every tested scenariovhich in turnenables us to determim@obability

distributions ofJ

ythesize orlJ i.e., theproximity of @ tod -, wil-depend on the number of

surface ages obtained, The greater the number of samples, the closer the youngest sampledilkadg e come to the

abandonment age (Fig. 2@nhesize d Ualso depends on the total duration of surface activity, which we dendtéf asages

are randomlysampled from a longer time span then® s likely to fall farther fromo (Fig. 2b).
Our artificial-data experiments simulate surfaces withatiorsa-tength-ef-the-periodf activity, T, between 10 and 50 kyr,

sampled with numbers of surface ageshetween 2 and 10. These values are representative of natural dhnvglrfaces

and typical dating studies involving a small number of ages. For each combinafiamaif, we randomly sampled a set of

surface ages 10,000 times, allowing usetably-constrain the probability thay  falls within a certain temporalindow
(Udistanceof 6 in each scenario.

3.2 Implementation

We first implemented our experiments using discrete sampling within a spreadsheet. For each surface, veelistezted

selectable surface ages spanning the total period of surface agtigity placed at equal intervals of 0.1 kyr. For the example

case (Fig. 1), this would mean a list of selectable ages of 80.0 ka, 79.9 ka, 79.8 ka, etc., to a minimuns@&ueaoive

chose periods of surface activitly,equal to 10, 20, 30, 40, and 50 kyr. From each list, we randomly setactéglie values,

and repeated this exercise 10,000 times for each integer vatusetiveen 2 and 10. For examplenif 6 andT = 20 kyr,
then we extracted 10,000 different datasets, each comprising 6 rapsiatie@mpled-surfacages, from the 20 kylong
list of selectable ages available at 0.1 kyr intervals. This process is analogous to random séfiptingiers foicosnogenic

nuclide exposurelatincages,—e-g-—frem-surface-bouldeon an alluvial fan surface that formed over a 20 kyr period and
0 sredewery 100 pelars. e bxwagtéddl@,000 setsuobceages for each of the 45 different

deposited

combinations of T (5 unique values) and (9 unique values). For each dataset, we calculated the mean value of the

a

selectecmpled ages,®, and the tine difference between the youngest age and the abandonment(kinée then

determineextractcumulative frequency distributions dfin each scenariwith a given combination of andn.

To test whether 10,000 iterations are sufficient to produce reliable statistics and whether the discretization of ages has a

important effect, we repeated all F

experiments using a natiscrete approach in a Matlab script. We defined

T as a time range, from within which any point in time could be randomly sampledniecessiumbeters of thousandef

6sel ectabl

e o

sur face

algteothunweds eliscaete adlubsa Reffoeming H00,00@ iterattors avith
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the Matlab script producedenticalresultsthat are indistinguishable frota-the discrete spreadshdmtsed approach with

10,000 iterationsAll data analyses are providedy Amyet al. (2019) in an online data repositdfinally, we explore the
assumptions and limitations of our analyses in section 5.3.

3.3 Experimental assumptions

In designing our artificiabata expernents, we make several assumptions. First, surface ages are randomly selected from the
total period of surface activity. Therefore, when constructing our experiments, we assume that whemeagesaitellected

from real geomorphic surfaces, they amed@mly pointsampling the full timespan of surface formatiand that this timespan
represents a uniform probability distribution of selectable .agé$is uniform probabity of agesmay notatwaysbe

realistiche-caseén certainnatural casesfor example, if boulders on an alluvi@n surface are spatially clustered by age and

all samples are taken from one part of the surface. Second, the entire period of surface activity is assumed to Heravailable
sampling, i.e., no subset of the sedzhistory is missing as a result of processes like burial or erosion. Third, all selectable
ages within the period of surface activity have an equal likelihood of being sampled; this implies that the surface formed wi

a constant deposition rate and thare no pulses of activity that increase the probability of sampling a particular age. Finally,
we do not explicitly factor in processes like nuclide inheritance, erosion, or incomplete exposure, which can affect exposure
ages derived from cosmogenic rideks. We consider the implications alf these assumptions feeatnaturaldatasets in

section 53.

4 Results
4.1 Random sampling of surface ages

To illustrate the results of our experiments, we first presentdrieial-dateexamplescenario in Fig3, in which the surface

is formed between 80 ka and 50 ka (iTes 30 kyr) and is randomly sampled with= 2, 4, 6, or 8 ages (with 10,000 repeat
experiments for each value of. Figure 3a shows how a frequency distribution of tiean value ofill sanpled ages

changes witn. The distribution is centred on the true average surface age of 65 ka and narrows as a greater number of age
are sampledf only 2 ages arsampledthenccan occupy almost any age within the fdiriodof surfaceactivity.; Aand-s

n increases¢tends to fall closer to 65 ka. The distributiondefipproaches normal distributioras n increases. This
observation is compatible with the central limit theorem and the law of large nupsbeié&converges on theue average

surface age as the number of samples increases, despite the dataset randomly sampling a linear series.

A frequency distribution caalsobe plotted for the youngest age , randomly slectecdmpledfrom the surfac€Fig. 3b).

If only 2 ages arebtainedeliected then the youngest can fall almost anywhere between 50 and 80 ka, although the distribution

is asymmetric and younger valuestdf occur slightly more frequently than older values.nAscreases, the distributiaf
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&  shifts towards 50 ka such that when 8, falls within 510 kyr ofd (i.e.,Us equal to 510 kyr)in the majority
of sampling experiment#\s-o——is-known-in-our-experiments{(50-kd)can-be-calculatedfor-each-set-of-ages-sampled.

Cumulative frequency distributions dfreveal how close the youngest sampled age comes to the known timing of surface

abandonmen(Fig. 3c) For example, ibnly 2 ages ar@btainedthen in 60% of experients TO 1 2  ktherypungest e . ,
age fallssomewnherawithin 12 kyr of abandonment. If 6 ages afetained then in 90% of experiments O 10 kyr. Any

percetile of T can be measured from Fige,&allowing tto be plotted against (Fig. 3d). As agreater number of ages are

obtainegampled the value off associated with a given percentile decreases, i.e., the youngest sampled age comes closer to

the timing of surface abandonmemt-the number-of samples-increasdewever, the decrease ihis nonlinear and

diminishes with increasing. For example, as increases from 2 to 4 ages, thé"@@rcentile oft falls from ~23 kyr to ~16

kyr, but collecting another 2 ages £ 6) only reducest to ~12 kyr. The 95 percentile oft falls below 10 kyr whem
exceeds 7 ages. In other words, if 7 ages are ranesantpled from a surface, abandonment will have occurred within 10 kyr
after the youngest age in 95% of cases.

We equate the percentiles §fin Fig. 3c with the probabilityP, of abandonment occurring within a time window defined by
t. Thus, ifP = 0.9, the window of timé (placed immediately afteb ) is large enough that in 90% of our experiments, the
true timing of surface abandonment would fall within it. Tisigqual to the 90percentile of t, which would be 7.5 kyr for

the scenarid = 30 kyr andn = 8, for example (Fig. 3d). Note that in this scenaridpes not imply that the surface was
abandoned exactly 7.5 kyr aft@r , but rather that theris a 90% likelihood that abandonment occurred anywhere within a
7.5 kyr window aftexd . The probable window of abandonmehtjncreases wit® because a larger window of time is
required to capture the true timing of abandonment in a greaterrpfoopof cases.

At the same timet is inversely and notinearly related to the sample size of ages obtaindéig. 4). The dependencies
betweent andn, T, andP are illustrated in Fig. 4 for all tested scenarios that are representative of Hatuial fan surfaces
(n=21to 10;T = 10 to 50 kyr), with probabilities between 0.50 and OF%.example, if 6 ages are obtained from a surface
that formed over a 30 kyr duration, therm 12 kyr forP = 0.95 (Fig. 4a)!

If P decreases to 0.5 (Fig. 4f) thénlecreases to 3yk for this
particular scenarion(= 6 andT = 30 kyr).

The results of our artificiatlata experiments (Fig. 4) can be described by one equation that aiiowse calculated for any

scenario

Tt 0% (29
Here, the parametéris a decay constant that increases exponentially wigh(Fig. 5a)

N O (32)

Constants, b, andc can be derived empirically using our artificial data. Note that we calibrate all our equations with time in

kyr.
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a=-0.425+ 0.029 b=0.011+0.011 €c=2.830+0.885
The parametet increases linearly witfi, but with a slope that increases exponentially Wi{fig. 5b), and can therefore be

described by a pair of relationships:

T a’y (423)
a a m (54)
Parametersi , g, andh are constants withalues again determined empirically from our artificidta experiments

& =0.019+0.008 g=0.005 + 0.002 h=3.784 + 0.406

Given thatt signifies the value of asn trends towards infinity, it represents st precise-pessible-constraindionit of

precisionthat can be obtaineon the abandonment periotl, -when inferring theiming of surface abandonment with this

probabilistic méhod For the scenarios shovim Fig. 5b, which represent reasonable valu€eg foir natural alluvial fans and

desirable values &1, T varies from a few centuries to ~10 k{hesetvaluesillustrate the limitsto-precision-when-inferring
-  surf o listic-way.

4.2 Total period of surface formation

Equatiors 12 can be solved fot (using the parameterization of E@sthrough 5Swith knowledge donly the number of ages

sampled,n, and the total period of surface formatidn,as well as a chosen probabili, We are able to parameterise
equations-2-through5Uusing artificial data because we know the valud of our experiments. However, when sampling
naturateal depositional surfaceg, is unknown and instead only the span of sampled ages, @& , can be measured.
This span might approximaie but some fraction of time witl dFortunatelyFe-reselveur

artificial-data experiments also allow us to deterntin also-determivimthe

fraction of T thatis captured by & in scenarios of varying (Fig. 6).

The artificial data indicate that, for example, 6 randosdigtributed ages will span ~70% of the total timespan of surface

activity, , i n the average case. | n thed 1% oWwilonlwrepresenté-30¢mfp st ¢
and in the 1% of O6besto6 (Il east c | usT ihafdfalbegpersngntbr m=s6e s it
(from P25 to P75) & falls within 60-85% ofT. There is a diminishing improvement with an increasing number of

sampled ages, such thatiby 10, the average span of ages has only increased to ~8D#ndf50% of all experiments fall
between 780% of T. An order of magnitude more ages (hundreds) would be needed for the&dmean® to come
within 95% ofthe full period of surface activity.
A regression can be fitted to the distributions in Fig. 6, taking the form:

n 1Q (695)
Parameterg, r, andsare empirical coefficients derived graphically from our artificial date.the mean case (the solid black
line in Fig. 6), they take the values:
n =0.838+0.007 i =-1.035+0.030 i =-0.366+0.016
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Equations6 is also fitted tat1 standard deviationl) above and below the mean values in Fig. 6 (dablzak lines). For

above the mean, parametgrs, andstake the values:

n  =0.928+0.005 i =-0.983+0.055 i =-0.512+ 0.027
For 10 below the mean, parametefs, andstake the values:
N =0.764+0.007 i =-1.196+0.015 i =-0.296+ 0.008

EquationG5 can therefore be used to estimate the siZBinfthe average case plusiHiounds, given the measured span of
ages collected from a surfaceéquations 2 through 6 are thus calibrated using our artificial daich,can be used to

probabilistically calculate the window of time during which any dated surface was likely abandoned.

4.3 Application to real-measuredsurface ages

Given that Eg- 2% through-6 ards probabilistic (i.e.,P is a variable)jt-our artificialdata approacican be used to infer a

probabilitydistribution of abandonmeagesrom a set of measured surface ad¥s.illustrate the steps involved in applying
Eg.1Egs 2through-6 and the Matlab scrifgo realdatain Fig. 7.

To solve forUat a discrete probability valu®), T is first calcubted with Eq. 6 anttis thencalculated usingq-eguations,
Hwith parameters defined in Eqs 3 througkss W&h@lﬁepeize—\,taiues@(ﬁg Tayroonliinondicorotoind o oL i s 1

obabiliiesse discrete values Gtan be converted into a

probability distribution by calculating the density d® within fixed increments of) For examplejn Fig. 7a50% of the

probability of abandonment falls within a relatively small window of time (the light blue bd f00.5), whereas a longer

window of time is required to contain an additional 45% of the probability of abandonment (the light pink®ar G&@5).

Thus, the density d® is greater within the windowfor P = 0.5, and this density diminishes@andP increase-The Matlab

script(provided as supplementary informati@mable determination othefullcontinuousprobability distribution of) After

generating artificial dathased om agesanda duration of depositiod (from Eqg. 6),the script-calculats Fhese-values-of

hecdensity o within fixed increments of. If the

sampled surface ages arrown with exact precisignthen the resulting distribution dfvaluesprovidesa probability
distribution oftimes that~oulddirectly postdate the youngest age and yield a probability distribution of staifzaredonment
agesFig. 7a)

-However, real surface agkaveassociated uncertaintifsatmustalsobeincorporated into thestimatecabandonmerdges

(Fig. 7be). The Matlab tool is designed incorporate this uncertaintgnd is explained in the folldng stepsFFirst, we use

+30 uncertainty ond  to characteide theprobability distribution of potentiab  values In the exampleschematidFig.

7¢b) we assume a normal distribution, as is typical for exposure ages of individual boulders, but alternative distributions
could be used. This distribution @  values is then discretised, and separate probability distributicnarefcalculated for
9
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each potaetial value ofdd | i.e., repeating 1 The resulting, temporally shifted probability

distributions off are weighted according to the probability distributiomxof and summed; in an overd
probability distribution of likely abandonment ages that accounts for uncertainty on the youngest age (Fig. 7c).
If the 28-uncertainty ord  is small compared tb calculated using E@., then incorporating age uncertainty will have little

impact on the resulting probability distribution of abandonment ages. fithancertainty ortd  is large, it will have a

greater influence on the final probability distribution of abandonmegs.5

ent timing

5 Discussion
5.1 Implications for suface dating

Our artificial data provide new information about what measured ages represent when collected from aggraded surfaces the
formed over nomegligible timespans. Crucially, our findings indicate that averages of sampled surface ages acedikely t
imprecise representations of the mpidint of surface formatiors may not with

external forcing event (Fig. 1). In contrast, surface abandonment typically occurs at a discrete moment in time and is more
likely to coincide with external forcing events such as changes in climate or tectonics. By using artificial data, wevealve de

a set of probabilistic equations for inferring when a surface was likely to have been abandoned, badistribotion of
randomlysampled surface ages. These equations can complement and enhance interpretations based on any dataset compris

surface agesThe spreadsheet and the Matlab tool allow for quantification of the full probability distributidranéithe

Matlab tml additionallyallows for theincorporationof the youngest aged

While a distribution of ages is required for dating surfaces that have formed over extended periods of time, our apalyses rev
that an increasing number of ageselgsdiminishing returng A
returps-—apply-te-constraints-fon constraining the timing cdbandonment (Figs 3d and 4) and the total duration of surface

activity (Fig. 6). An appropriate number of surface ages will depend on the desired precision, but our results indieate that

is little to be gained by obtaining more than 6 to 7 agesyréace (Figs. 3, 4, and 6), assuming no outliers, for the purposes
of most geomorphological studiesrdeed; -0 obtainsignificantlysubstantiallimore information about a surface, an order of
magnitude more ages would be required. As explained in settlot represents the maximum precision with which the
abandonment age can, in principle, be inferred. For many natural suffacas,range from a few centuries to ~10 kyr (Fig.
5bel), depending on the period of surface activity and the desiredlpiityp. Our methodology thus provides a new wagyt

quantifying the-limits-to-the-precision-with-whitlow preciselya distribution of surface ages can be interpreteceFhlimit
to precisios should be considereeein addition to the age uncertainty associated with cosmogenic nuclide exposure dating

and both arean-important consideraticnwhen inverting landforms and sedimentary deposits for paagwonmental
information (Foreman and Straub, 2017).
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When samphig in the field, it maysemetimesde advantageous to target different partsrofiagradecsurfacein-erderto

capture as much of its period of activity as possible. This strategy applies to surfaces upon which the locus of daposition h
systematically ngrated during deposition. For example, if channel migration on an alfavialurface resulted iparticular
fragmenta portionof its overall history being recorded in particular parts of the surface (e.g., Savi et al., 2016; Schirch et al.,
2016; @al.A01dgb),then greater spatial coverage would capture a greater range of ages. However, if each depositio
event followed a random trajectory on the surface,it resu

would be umecessary to distribute sampling locations across the surface.

5.2 Case study: Alluvial fans in the Laguna Salada Basin, Mexico

Here, we use a case studfyalluvial-fan surfaces in the Laguna Salada Basin, Mex@alemonstrate how our findings can
beapplied to real surfaces to gain new information about when they were abandoned.

The Laguna Salada Basin is a hgdében in northern Baja California, Mexico. This basin contains-pveBerved alluvial

fans eroded from the neighbouring Sierra EI Mayor Srefra Cucapa, with at least 8 generations of distinct fan surfaces
formed by a sequence of aggradation and incision cycles. The ages of two of these fardsovéges] as Q4 and @7

were estimated by Spelz et al. (2008) usitige exposure ages of stalderface boulders with no evidence of erosion or
disturbance (Fig. 8). We used the CREp calculator (Martin et al., 2017) to update the exposure age estimates of Spelz et ¢
(2008) using the timeorrected Lal/Stone scaling scheme (Lal, 1991; Stone, 20@0ERA40 atmosphere model (Uppala et

al., 2005), the atmospheritBe-based VDM geomagnetic database of Muscheler et al. (2005) and Valet et al. §£200Bg

current global reference SLHIBe production rate of 4.180.20 at ¢ yr in the ICED database (Martin et al., 2017). We
assume sample density of 2.7 g cnand no boulder erosion. The oldest age measured on the Q4 surface was excluded as an
outlier by Spelz et al. (2008), and we maintain this interpretation. The remakpioguee ages sparmm 14.4+1.1 ka to 32.1

+2.9 ka for Q414 = 5), and 188.6:22.7 ka t0246.9+13.7 ka for Q71 = 6) (Fig. 8b, yellow bars). On both fan surfaces, the
dispersion of ages greatly exceeds the age uncertaintyestingenfirmingthat eactsurface wasleposited over an extended

period of time.

For both distributions of fan surface ages, we used equatiotisougle 65 to calculate probable abandonment windatys,

for different values oP. For example, on the Q4 fan surface withcan of 14.4+1.1 ka, = 3.3 kyr wherP = 0.5, suggesting

a 50% probability that the surface was abandoned within 3.3 kyréafteri.e., between 14.4 ka and 11.1 ka. The sizk of
increases withP, as explained in section 4.1, such that12.0 kyr for the Q4 surface whéh= 0.95, i.e., the abandonment
window ranges from 14.4 ka to 2.4 kghe full {-Eg-2
resultingprobability distribution off is highly asymmetric (ig. 8c, red dashed lines). Of course, the uncertainty on must
alsobe accounted forTo do so,we usedse-bllewing-the-approach-outlined-in-Figthe Matlab script with the

inputsd -T, n, the desired number of iteratigns , and the fil uncertaintyon & -6 to; we-derive a continuous probability
distribution oft for Q4-and-OAan surface that incorporates age uncertainfyg-the-Matlab-teo(Fig. 8c, solid

black lines). Thee probability distributions off- incorporating age uncertaintgerived for both the Q4 and Q7 surfaces,

ainty, the

11



10

15

|2o

25

30

illustrate how the likelihood of surface abandonment is distributed over time for two representative natural datasets. On the
Q4 surface, the measured age uncertainty is small comfmatedo the resulting distribution has an asymmetric shape that

is primarily determined by the form of Eq?1-te-65 and our artificial data calibration (Fig=3 and 4). The majority of the Q4

T distribution occupies a short timespan that is smaller than the spread of sampled surface ages; this result supports ol
reasoning that the timing of surface abandonment can, in some cases, be constrained more precisely than a representative
of surfa@ formation (see section 2). The age uncertainton is significantly larger on the older Q7 surface and therefore
dominates the probability distribution f giving it a wider and more symmetrical shape despite the greater number of
measured agen. This result underscores the importance of accounting for age uncertainty when using our equations to infer

the likely timing of surface abandonmenthich-oursupplementary-Matlab-toolincerporates

5.2.1 Climatic implications

Our estimates of wherhé Laguna Salada fans were abandoned have important climatic implications. Spelz et al. (2008)

speculated that the aggradation and incision of the fan surfaces was partly controlled by past climate changes, and there

growing evidence that alluvial systes can be highly sensitive hydrloerczianomat e
Wickert and Schildgen, 2019). We explore this idea by comparing the

surface age data with two palaeoclimptexy records (Fig.&:t he GR1 P %0 recerd fcom Geenland (Johnsen et

al ., 1997) and t B stackROsieckigphdRhyand, 200Fhask tedormls piimarily reflect the growth and

decay of continental ice sheets, which are gdiserhinto Marine Isotope Stages (MIS).

The obtainedsampledQ7 ages clearly coincide with the broadly interglacial conditions of MIS 7, so we interpret that the

surface was deposited throughout this stage. Our statistical analyses indicate that tliec® Wwasrabandonddn this case

due to fan incisiod during the subsequent MIS 6 and coinciding withi@atic transition toamore glaciaklimateconditions

Indeed, 71% of the area beneath thet@#stribution falls within MIS 6 (194130 ka), which we interpret as a 71% likelihood

that the surface was abandoned and incised during this Stagthe Q4 fan surface, the sampled ages alone indicate that

abandonment coincided with the end of the IGlsicial Maximum (MIS 2) and the global shift to interglacial conditions in

the Holocene. Spelz et al. (2008) interpreted this observation (fan incision during a shift to interglacial climateddaontr

the Q7 data (fan incision during a shifttoreglacial cnditionsimate). However, supplementing the measured ages with our

probabilistic analyses reveals that Q4 abandonment is likely to have occurred during the Younger Drydsyedstionate

episoderombetweerll2.9t0-11.7 ka during which theorthernhemisphere climate returned to a cooler state (Carlson, 2013).

In-Fig—8cWe find that the peak of thd distributiord i.e., the

single most probable abandonmentddalls at 12.7 kgFig. 8c). This interpretation reconciles the Q7 and Q4 surfaces on

the Laguna Salada fans, which would have both been incised as a result of climatic shifts towards more glacial conditions
This case study also demonstrates how our probabilistic appreaghelyenabled by our use of artificial datan be used
to quantify the likelihood of individual abandonment scenarios and strengthen palaeoclimatic interpretations derived from

alluvial deposits.
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5.2.2. Tectonic and weathering implications

The resultsn Fig. 8 also have tectonic implications. The Laguna Salada fans are dissected by fault scarps related to the Lagun
Salada fault and th€afiada David detachment; the largest Q7 scarp has an offset of 9.9 m (Spelz et al., 2008). Typically,
studies dividehe fault offset by the mean surface age (which for Q7 is 215.9 ka) to estimateaadiraged slip rate, which

would be 0.046 mm ykin this example. However, as a scarp can only accumulate displacement once the surface has beer
abandoned, i.e., wheni$ no longer being resurfaced, the estimated age of abandonment may be a more appropriate timescale
for determining a displacement rate. Accumulating a 9.9 m offset since 177 ka (the most likely abandonment age, Fig. 8c)
would produce a timaveraged gfi rate of 0.056 mm ¥k an increase of 22%. Following this logic, the probability distribution

of T could be translated into a probability distribution of timeeraged slip rates. For the Q4 fan surface, calculating a slip rate
with a most likely abandament age (e.g., 12.7 ka) instead of the mean surface age (23.3 ka) would result in an even larger
increase in the calculated displacement rate of 83%. Underestimating fault slip rates by this magnitude could have
importantajerimplications for tectonicrad fault hazard analyses.

Spelz et al. (2008) also measured the diffusional decay of fault scarp geometry over time, and used the calculated mean fe
surface ages to derive tinmgtegrated scarp mass diffusivities between ~@AD nf kyr?l. Intriguingly, the authors
interpreted these diffusivities to be anomalowy. Fhis-cenundrunMore realistic values can be obtaineduld-be-partly

resolvedby, again, using the estimated surface abandonmenttagedculate scarp mass diffusivitsather thamaverage

surface ages. This approach would result in faster diffusion rates, as Spelz et al. (2008) expectednwifaitecously
recognising that a fault scarp can only form and erode once a fan surface has been abandoned.

The alluvial fans of the Lagurgalada Basin provide a representative example of natural, aggraded geomorphic i$urfaces
which are formed over a nemegligible period of activity andre dated with a small set of exposure ages that randemly
sample the duration of surface activithi§ case study demonstratesthars2i-throughio 65,togetherwith-an-tncorpoeration
of-exposure-age-uncertainty-provided-by-the-Matlabdoolartificialdata approacban provide valuable constraints on the

timing of surface abandonmebnfised on a set of exposure aoesich —Fhese-constraints-complement-the-sampled-surface
ages-anganimprovesnhancdnterpretations involving palaeoclimate, tectonics, and landform evolution.

5.3 Limitations to the probabilistic approach

Our artificial-data approactandthereferethe resultingparameterisation of Eqs% througle 65 ;-assume that a distribution
of surface ages aretained byrandomly sampling the full duration of surface activity. In some cases, this assumption might
be realistic Forexample;e-g-the Q7 surface on the Laguna Salada fans (Fig. 8) was sampled in different places and produced
ages spanning all of MIS 7, suggesting the full duration of surface activity might beepedkented. If sc;

could be gmmetrically applied to the oldest sampled age to estimate the onset of deposition. In contrast, the Q4
surface was sampled entirely at the fan apex, where enhanced vertical aggradation makes it likely that the earliest deposi

from this depositional epigle have been buried. In practice, this sampling approach would improve estimates of when
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abandonment occurred. By clustering the surface ages towards the end of the depositiond@lweuidd:ffectively shorten

given that our approach derivdsempirically from the ages that are actually obtained from a suréawkf would be

total duration of deposition toward younger agds unimportant

when which However, vertical burial would mean that

T (solved with Eq. 6would no longer represent thatal duration of deposition, and it would therefore be inappropriate to use
our eguatiensapproactto estimate the onset of deposition.
Like burial, subsequent erosion of part of a surface might hide a fragment of the period of deposition from sampling. The
implications of erosion depend on how spatidlynogenous the surface is, i.e., whether erosamrandomly eliminated
6selectabled ages from throughout the duration of itacti vi
Again, erosion would only impede our method of inferring the abandonment age if the youngeghpatticdtion of activity
were destroyed. Given that burial and erosion arespiégific, they cannot be universally incorporated into our equations and
must be considered on an indivichealse basis.
Egquations21-t0-60ur approach assumethat all sampledurface ages are true ages. In reality, incorrect ages are sometimes
encountered when dating surfaces. For example, cosmogenic nuclide exposure ages may be biased towards older ages &
result of nuclide inheritance, as is interpreted to be the cas¢hwitiidestxposureage on the Laguna Salada Q4 fan surface
(Fig. 8a). Including old outliers in our analyses would lead to an-estimation of the size of bothandt, and therefore
unnecessarilympreciseestimates of the abandonment window, but oot change the position ¢f . A more serious
error would arise from incorrect young ages, e.g., resulting from erosion or shielding of boulders targeted for cosmogenic
nuclide exposure dating. The inclusion of spurious young ages could expapp#rent period of surface activifypast the
true timing of abandonment, leading to estimate$ tbft are both too large and, more importantly, too young. Therefore,
equationi-65and the Matl ab tool should be applied to 6cleané
not spuriously young ages when attempting to calculate abandonment times.
Finally, our approach derives the true period of surface actiWjtirom the measured age range @ , based on the
results of our artificialdata experiments (see section 4.2 and Fig. 6). This step is necessary because the true durstion of
ultimately unknowable for natural surfaces, so we parameteriséskping the mean ratio ofo &  T'Yamong our
artificial--data experiments. Of course, any given set of real surface ages might happen to capture a greater or smaller fractio
of T than the mean case. For this reason, we also provide paraat&es of Eq65 for +1 standard deviatioftl) above and
below the mean ratio ofd @ 1Y thus allowing+1{ uncertainty onT to be tested. In practice, the uncertainty
associated witf has little effect on the probability distributionsfoproduced by Egz4, and so is likely to be insignificant
for most geomorphological applications. To illustrate the sensitivitytothe uncertainty oif, we recalculate the probability
distributions off for the Q4 and Q7 Laguna Salada alluvial $arfaces with the Matlab tool (Fig. 9) using th& hounds on
T (Fig. 6).
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The uncertainty off has a negligible effect on the probability distributiong,ofor both the young and precisedated Q4

surface where thgdistribution is most sensitivio the form of Eqs21 througle 5, and the older, legsrecisely dated Q7
surface where thet distribution is most sensitive to the measured age uncertainty. This sensitivity analysis demonstrates how
the conversion ofd @ to T has little bearing on the estimated timings of surface abandonment. Nonetheless, our

artificial--data calibration allows thel( uncertainty ol to be calculated, if desired.

6 Conclusions

Our study uses artificial data to simulate depositional geomoeahifaces that form over a rorgligible timespan, and are
subsequently dated withkposure ages aset of randombigampledsurface-agdmulders We investigate scenarios that are
representative of natural alluvial fans, which are commonly targetesuféace dating, however our results may be more
broadly applicable to other depositional landforms that form over protracted periods of time. Our findings suggesathat, for
variety of different purposes, inferring the timing of surface abandonment roaigle® more informative and more precise
interpretations than taking an average of measured surface ages. We use our artificial data to derive a set of probabilisti
equations that can be applied to a distribution of real sampled surface ages to esteradel af time within which

abandonment is likely to have occurredh a given probabilityThese equations account for ssggecific variables including

the number of ages and the duration of activity for a particular surface;and can be used to
generate a probability distribution of likely abandonment ages.Jife provide a Matlab script that

allows for the uncertaintgssociated with
measured ages to be incorporated \dFke ability to constrain the timing of
surface abandonment has useful applications for geomorphological studies that relate surface ages to tectationdefor
(e.g., deriving fault slip rates), climate (e.g., reconstructing past hydroclimate changes), or the rates of surface(prgcesse
weathering and landform evolution), a subset of which we demonstrate using a case study of alluvial fan shddcegina
Salada Basin, Mexico. The statistical framework we introduce in this paper offers a new method of probabilisticallygestimatin
when a surface was abandoned, which can complement and enhance interpretations of any distribution of sampled age

obtained from surfaces that experienced a-negligible period of deposition.
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Figure 1: (A) Conceptual alluvial fan surface that was formed over a 30 kyr period, from 80 ka to 50 kaafter which it was
abandoned e.g., due to incisionTwo different dating scenarios (sample sets 1 and 2) asbownin which 6 surface ages are randomly
selected (B) The true period of surface activity (grey bar) compared with the sampled ages presented as data points (circles), kernel
density plots, and mean surface ages standard deviation (stars).A hypothetical climate scenario is depicted as a dotted line.
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Figure 2: Schematic surface with aperiod of activity, T (orange bar), abandoned at4 4 +.and randomly sampledwith n ages

(circles). (A) If n increases, the youngest sampled agg, - , is likely to fall closer to 41 1.(B) If T increases, the youngest sampled
5 age,=|=D +, is likely to fall farther from 4 4 1,.even if the same number of ages are sampled.
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Figure 3: Example results of the artificial-data experiments for a surface active from 80 to 50 kal'(= 30kyr). A number of ages,n,

wererandomly sampled from the surface 10,000 times. (A) Frequency distributions of resulting meaampledage,=|=. (B) Frequency
distributions of the youngest sampled ageL:D .. (C) Cumulative frequency distributions of Whormalised to a sum of 1(D) Selected
percentiles ofWplotted againstn.
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Figure 4: The probable abandonment window Was a function of the number ofboulder ages,n. Data are shown for different
probabilities, P (panels) and durations of surface activity, T (colours). Parameterk is a decay constant that depends oR (see text

5 for details).
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Figure 5: (A) Variation in the decay constant,k, as a function of the probability, P. Error bars show the standard error onk when

Eq.

of P (indicated by colours). Linear regressions are fittedcorresponding to Eq.

exponential regression is fitted corresponding to E¢4.
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is fitted to the datain Fig. 4. The regression corresponds to Ed32. (B) Variation in W as a function ofT for different values

. Inset: Variation in m as a function of P. An
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Figure 6: Box plots showing the fraction of the total period of fan activity,T, captured by the span of sampled boulder ages in the
artificial --data experiments,=|=D Lo =|=D ..plotted against the number of sampledges n. Each boxrepresents10,000 experiments.
As a greater number of ages are samplethe spanof the set of ageis more likely to capture a greater fraction of T, although with
diminishing returns for increasing n. Black lines showexponential regressios corresponding to Eq.65 and fitted to the mean values
(solid) and 1 standard deviation (dashed).
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Figure 7: Schematic demonstrating how to infer the timing of surface abandonment from a set of sampled ages. (A) Probable
abandonment windows,W are calculated using Eqg.2% for discrete values ofP (coloured bars). A continuous probability
distribution of W's the density of P within each discrete of Wia-(

. (BE) In reality, =|q] .is not perfectly known, and has an associated age uncertainty that
must be accounted for. (i) Thet3 @ uncer =ﬁ=E,a' iprovidgs a distribution of probable values 0f=|=[j . (ii) The distribution of

4, .values is discretised. In the Matlabtob, we have set this discretization 40, be
to provide a highly--resolved result (note that the cartoon illustration here shows much wider discretisation bins for ease of
visualisation), but this discretsation value can be modified. The discrete window &fsed to calculate the density of is set

to the same width. (iii) Probability distributions of Ware calculated for each potential value oﬂrm .(as per panelAB), and weighted
according to the probability distribution of =|=E, values. (iv) The weighted, temporally shiftedMistributions are then summed to
produce a final probability distribution of surface abandonment timing that incorporates uncertainty in the youngest age!
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Figure 8: Two alluvial-fan surfaces in the Laguna Salada Basin, northern Baja California, Mexica.eft: Q4 surface; right: Q7
surface,after Spelz et al. (2008)A) Locations of surface boulders sampled fo'°Be cosmogenic nuclidexposure dating. (B)Boulder
exposure agegecalculated after Spelz et al. (2008) (white circl¢sand mean surface ages10 (yellow stars). (C) Probability
distributions of Wealculated using Eg—21the Matlab tool and incorporating uncertainty on =|=D . (black). For
illustrative purposes, probability distributions of Ware shown if uncertainty on=|=D .is not incorporated (red dashed). (D) Selected
palaeoclimate proxies: the GRIP ice coré!®O record from Greenland (blue; Johnsen et al., 1997) and the LR04 global benthi¢fO
stack (black, Lisiecki and Raymo, 2005). Marine Isotope Stages (MIS) are indited by boxes.
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